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ABSTRACT

Playing recorded speech samples of an enrolled speaker – “replay
attack” – is a simple approach to bypass an automatic speaker ver-
ification (ASV) system. The vulnerability of ASV systems to such
attacks has been acknowledged and studied, but there has been no
research into what spoofing detection systems are actually learning
to discriminate. In this paper, we analyse the local behaviour of a
replay spoofing detection system based on convolutional neural net-
works (CNNs) adapted from a state-of-the-art CNN (LCNNFFT )
submitted at the ASVspoof 2017 challenge. We generate tempo-
ral and spectral explanations for predictions of the model using the
SLIME algorithm. Our findings suggest that in most instances of
spoofing the model is using information in the first 400 milliseconds
of each audio instance to make the class prediction. Knowledge of
the characteristics that spoofing detection systems are exploiting can
help build less vulnerable ASV systems, other spoofing detection
systems, as well as better evaluation databases1.

Index Terms— Convolutional neural networks, automatic
speaker verification, replay attack, spoofing detection, end-to-end
learning.

1. INTRODUCTION

Automatic speaker verification (ASV) [1] systems are used for per-
son authentication in various commercial applications such as call
centers, banks, smart phones [2] etc. However, these systems are
sensitive to spoofing attacks [3, 4]. The vulnerability of ASV sys-
tems against spoofing attacks is an important problem to solve be-
cause it poses a serious threat to the security of such systems. When
successful, a spoofing attack can grant unauthorized access of pri-
vate and sensitive data. Spoofing attack methods include generating
artificial speech [5], impersonation or mimicry [6], and playing back
speech recordings [3, 7]. To counter such spoofing attacks, one can
build a system that discriminates between genuine and spoof speech
signals; but what attributes should such a system use to make this
discrimination? One can hope that statistical machine learning and
an appropriate amount of data will be able to discover such attributes.

Several machine learning systems have shown success in spoof-
ing attack detection in both the ASVspoof 2015 [8, 9] and ASVspoof
20172 public evaluation challenges. Particularly successful in detect-
ing replay attacks are systems using deep neural networks (DNNs)
[10, 11]. Although these systems have shown promising results,
what they have actually learned to do has not been answered; they are
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often used as a black-box. Is a system that appears to detect a spoof-
ing attack actually working with attributes relevant to the problem,
or is it merely a product of how a train/test database was constructed
[12]? For example, [13] demonstrates how a frame-based Gaussian
Mixture Model (GMM) system trained for replay spoofing detection
on the version 1.0 of the ASVspoof 2017 database exploited arte-
facts in the database to make class decisions. Further in [14], the
same authors identify a similar issue for frame-based GMM systems
on the updated version 2.0 corpus. Can we trust such a system “in
the wild”? Answers to these questions can not only help improve the
security of ASV systems, but also motivate new spoofing attacks,
and improve training databases.

In this paper, we attempt to answer these questions for an
utterance-based CNN adapted from a state-of-the-art CNN system
(LCNNFFT ) [11], trained on the version 2.0 ASVspoof 2017 cor-
pus [15]. There exist several methods to understand the global or
local behaviour of DNNs/CNNs [16]. Here, we use the SLIME
[17] algorithm to generate explanations for individual predictions.
SLIME is based on the LIME algorithm [18], which is an acronym
for Local Interpretable Model-Agnostic Explanations. The explana-
tions from SLIME highlight temporal and spectral regions that the
model weighs heavily to form its decisions for each class. Our find-
ings show that a decision of a recording being “spoof” is weighted
heavily by the information present in the first 400 milliseconds of
the recording. It appears than that at least some of the attributes the
model has learned come from peculiarities of the database, and not
from the difference in channel characteristics one would expect in a
replay attack. We demonstrate the significance of our analysis in two
ways. We show how to manipulate misclassified spoof recordings
to be judged as “spoof” by the model, thereby lowering its equal
error rate (ERR); and we show how to manipulate spoof recordings
such that the model judges them as “genuine”, thereby dramatically
raising the EER.

The rest of the paper is organised as follows. In the next section
we provide our system description. Then in section 3 we introduce
the SLIME algorithm that we use for generating local explanations
for model prediction. We demonstrate the application of SLIME in
section 4 for explaining model prediction at both the instance level
(few confidently classified audio signals) and model-level (on the
entire database). We further show the importance of our analysis
through two intervention experiments in section 5. Finally, in section
6 we provide a discussion and conclude the paper.

2. SYSTEM DESCRIPTION

2.1. Database

The ASVspoof 2017 database was released as part of the second
automatic speaker verification spoofing and countermeasures chal-
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Table 1. Statistics of the ASVspoof 2017 version 2.0 corpus.

Subset # Speaker # Genuine # Replay Dur (hrs)
Train 10 1507 1507 2.22
Dev 8 760 950 1.44
Eval 24 1298 12008 11.94
Total 42 3565 14465 15.6

lenge that focused on text-dependent replay attack detection ‘in the
wild’ with varying acoustic conditions [19]. As an update to fix the
data anomalies found in the version 1.0 of the database [13], version
2.0 has been released online3 by the organizers. Table 1 shows the
statistics of the database. It is divided into three subsets: training,
development and evaluation [15]. The training subset contains an
equal number of genuine and replayed audio examples, 1507 each.
The development subset has 760 genuine and 950 spoof examples.
The evaluation subset has 12008 spoofed and 1298 genuine exam-
ples. Our work uses the version 2.0 ASVspoof 2017 database.

2.2. Model architecture and the input representation

We use the architecture adapted from the state-of-the-art convolu-
tional neural network LCNNFFT [11] which has shown the lowest
equal error rate (EER) on the evaluation subset of the ASVspoof
2017 spoofing detection challenge. As in LCNNFFT , our CNN
comprises of 5 convolution layers, 4 network-in-network layers, 5
max-pooling layers and 2 fully connected (FC) layers. We use ReLU
activations instead of the max-feature-map (MFM) activations since
our preliminary results show similar performance for both the acti-
vations. Thus we made a number of changes to achieve performance
close to the state-of-the-art. We use 32 neurons in the first FC layer
and a single neuron in the output layer in contrast to 64 neurons and
two neurons used in LCNNFFT . We add a batch normalization
layer before the activation layer. Further, we reduce the number of
kernels in each convolutional layer by a factor of 2 to keep the free
parameters to a minimum.

The input to the network is a mean-variance normalized log
power spectrogram of 4 seconds, similar to LCNNFFT . Since the
ASVspoof 2017 dataset uses 10 different phrases [15], the duration
of audio files vary across these phrases. To obtain a consistent in-
put representation we replicate4 the audio samples if the duration is
smaller or truncate the samples to 4 seconds duration. We use a 1728
point FFT, and a 108 ms window with a hop of 10 ms. Therefore,
the input spectrogram has a dimension 865× 400, where 865 is the
number of frequency bins and 400 the number of time frames.

2.3. Model training and testing

We initialize the network weights using Xavier initialization [20].
We initialize all biases by zero. We train the network to optimize
the binary cross entropy loss between a genuine and a spoof class.
We use a learning rate of 1e-4, a batch size of 32 and a momentum
of 0.9. We use the ADAM [21] optimizer with default parameters.
We apply a dropout of 70% to the inputs of fully connected layers.
We implement the CNN using the Keras [22] library. We use early
stopping with the criterion: if the validation loss does not improve
for 10 training epochs then we abort the training. We use a maximum
of 100 training epochs and chose the best performing model on the
validation data. At test time, for each audio spectrogram we use

3https://datashare.is.ed.ac.uk/handle/10283/3017
4We replicate samples in the time domain.

Table 2. Performance (EER%) on the ASVspoof 2017 corpus.
System DB version Train Dev Eval.

LCNNFFT [11] 1.0 - 4.53 7.34
M1 1.0 0.0 7.0 9.4
M2 2.0 0.0 7.6 10.6

0 1 2 3 4
Time(sec)

0

2000

4000

6000

8000

H
z

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Fig. 1. Temporal segmentation of an input spectrogram (xi) into 10
uniform segments (T i), each of duration 400 ms.

the model output (the posterior probability of being genuine) as the
score and compute the equal error rate (EER) over the entire dataset
using the Bosaris toolkit [23].

Using the above approach, we trained two models M1 and M2
on version 1.0 and 2.0 ASVspoof 2017 database, respectively.

2.4. Results

Table 2 shows the performance of M1 and M2. Model M1 show
comparable performance with LCNNFFT trained on the version
1.0 database. Further it should be noted that reproducing5 the exact
same results is difficult due to high dropouts and random weight
initialization used during the training. Since our main objective in
this paper is to understand what the CNN has learned about spoofing
detection, we do not focus on minimizing the EER of LCNNFFT .
Further, we consider model M2 only for further analysis as it uses
the updated version (2.0) database.

In the next section we introduce the SLIME [17] algorithm
which we use to gain insights on what M2 has exploited from the
underlying training data to make class decision.

3. SLIME ALGORITHM

SLIME is an algorithm to analyse the local behaviour of any (deep
or shallow) machine listening model. SLIME is based on the LIME
algorithm [18], which is an acronym for Local Interpretable Model-
Agnostic Explanations. Ribeiro et al. [18] introduced the LIME
algorithm and demonstrated its applicability to image recognition
and text classification models.

SLIME extends LIME to machine listening systems by defining
an interpretable sequence Xi for an input instance xi (e.g., a time-
frequency representation). An interpretable sequence is composed
of elements, called interpretable components, that are in some way
related to the classification of xi. SLIME defines three types of inter-
pretable sequences (temporal, spectral, and time-frequency) depend-
ing on the way it segments xi into interpretable components. For ex-
ample, a temporal sequence X t

i consists of temporal segments that

5Reported models (M1 and M2) are the best obtained out of five different
runs of training.



Table 3. Temporal explanations of the most confidently correctly classified audio instances in the training (T), development (D) and evaluation
(E) subsets. T1-T10 represent temporal segments in seconds. T1: 0-0.4, T2: 0.4-0.8, T3: 0.8-1.2, T4: 1.2-1.6, T5: 1.6-2.0, T6: 2.0-2.4, T7:
2.4-2.8, T8: 2.8-3.2, T9: 3.2-3.6, T10: 3.6-4.0. G and S denote the genuine and spoof classes.

Weights assigned to different temporal segments
Class File Probability(%) T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

G
T 1000780 87.8 0.009 -0.000 -0.002 0.007 -0.005 0.009 -0.003 0.031 0.024 -0.013
D 1000260 91.2 0.007 -0.006 0.010 0.018 -0.012 0.005 0.001 0.041 0.042 -0.023
E 1002535 88.4 -0.008 0.002 -0.000 0.006 -0.014 0.004 -0.000 0.040 0.034 -0.022

S
T 1002124 86 0.335 0.000 0.008 -0.000 0.008 -0.015 0.012 0.009 -0.005 0.274
D 1001596 83.2 0.507 0.004 -0.013 -0.010 0.014 -0.007 0.007 0.006 -0.039 0.119
E 1014008 81.0 0.353 -0.005 -0.015 0.010 0.009 -0.001 0.004 -0.018 -0.008 0.207

Table 4. Spectral explanations of the most confidently correctly classified audio instances in the training (T), development (D) and evaluation
(E) subsets. F1-F10 represent spectral bands (segments) in Hz. F1: 0-813, F2: 813-1626, F3: 1626-2439, F4: 2439-3252, F5: 3252-4065,
F6: 4065-4878, F7: 4878-5691, F8: 5691-6504, F9: 6504 to 7318, F10: 7318 to 8000.

Weights assigned to different spectral segments
Class File Probability(%) F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

G
T 1000780 87.8 0.019 0.015 0.007 0.016 0.014 0.012 0.015 0.019 0.014 0.009
D 1000260 91.2 0.018 0.018 0.020 0.013 0.017 0.022 0.025 0.011 0.020 0.013
E 1002535 88.4 0.005 0.013 0.011 0.016 0.012 0.015 0.015 0.018 0.013 0.009

S
T 1002124 86 0.095 0.094 0.108 0.090 0.105 0.082 0.076 0.078 0.062 0.044
D 1001596 83.2 0.094 0.102 0.091 0.100 0.091 0.093 0.105 0.097 0.080 0.055
E 1014008 81.0 0.136 0.104 0.145 0.076 0.132 0.139 0.091 0.116 0.098 .077

SLIME generates by segmenting xi (uniformly or non-uniformly)
along the temporal dimension as shown in Fig. 1. SLIME maps an
input instance xi to its interpretable representation x∗i ∈ {0, 1}|Xi|.
In order to generate local explanation for the prediction f(xi) where
f : Rn → R is a classifier, SLIME first generates N artificial sam-
ples (z∗i ) by perturbing the interpretable representation. SLIME per-
turbs x∗i by randomly setting the interpretable components to zero.
For example, for the instance in Fig. 1, if we set the temporal seg-
ments T1, T4 and T7 to zero, then a possible z∗i is given as (0, 1,
1, 0, 1, 1, 0, 1, 1, 1). Later, SLIME maps each perturbed representa-
tion z∗i to the feature space with an assumption that such a mapping
exists. In other words, SLIME assumes that for each z∗i there ex-
ists a corresponding zi in the feature space. Finally, SLIME uses
the perturbed representations z∗i and their corresponding predictions
f(zi) to approximate f with a linear model g in the interpretable
space τ = {0, 1}|Xi|. The explanation to the prediction f(xi) is
given by the weights w of the linear model g(z∗) = wT z∗; z∗ ∈ τ .
Formally, SLIME generates an explanation by the optimisation

min
g∈G

L(f, g, ρxi) + ∆(g) (1)

where L is a loss function (squared error between the original pre-
diction f(zi) and the model approximation g(z∗i )), ρxi measures the
distance between the input instance xi and the generated sample zi,
and ∆(g) measures the complexity of g (e.g., sparsity).

4. EXPLAINING THE PREDICTIONS USING SLIME

We use temporal and spectral interpretable sequences to generate ex-
planations for a prediction of M2. For temporal analysis, we segment
the input spectrogram into 10 temporal windows labeled T1-T10,
each of 400 ms. For spectral analysis we segment the spectrogram
into 10 spectral bands by grouping different frequency bins. Each
of the nine bands labeled F1-F9 has a bandwidth of 813 Hz; F10
has a bandwidth of 683 Hz. We generate N = 2000 samples for
producing explanations from SLIME.

4.1. Instance-level explanations

We take the six most confidently correctly classified genuine and
spoof audio instances from the training, development and evaluation
subsets and have SLIME generate explanations for their predictions.

Table 3 shows the weights assigned to each of the ten temporal
segments for these six instances. The polarity of the learned weights
signifies how the presence (or the absence) of a segment influences
a model prediction. For example, the T8 and T5 segments in all the
genuine instances in Table 3 are segments in favour of and against
the prediction, respectively. The bold numbers in the table represent
the top two weighing segments/components. We refer them as top1
and top2 explanations. For the genuine instances, SLIME assigns T8
and T9 as the top two explanations. We observe a marginal differ-
ence in the magnitude of weights assigned to T8 and T9 but a rela-
tively larger difference for other temporal segments. These weights
suggest that T8 and T9 offer more contribution towards genuine de-
cisions. For the spoof instances, SLIME returns T1 and T10 as the
top two explanations.

Table 4 shows the spectral explanations for genuine and spoof
class prediction on the same six instances used in Table 3. There is
not much difference in the magnitude of weights across the spectral
segments. For both genuine and spoof decisions, it seems that M2
uses information across most of the spectral bands.

Using only the explanations for few confidently classified au-
dio instances would not provide global understanding of the model
behaviour. Therefore, in the next section we apply SLIME to ev-
ery audio instance of the ASVspoof 2017 2.0 database and study the
prediction explanation (weights) statistics to derive significant con-
clusions about what M2 has learned to make prediction.

4.2. Model-level explanations

Now we apply the SLIME algorithm across the entire training, de-
velopment and evaluation subset. It is infeasible to show the distri-
bution of weights across all the instances of the corpus, therefore we



Table 5. Distribution of temporal and spectral explanations generated from SLIME on the ASVspoof 2017 version 2.0 database. We take all
the instances classified correctly with more than 70% confidence. Set T, D and E denote the training, development and evaluation subsets.
G,S denote the genuine and spoof classes. T1-T10 and F1-F10 has the same meaning as in Table 3 and 4. The numbers represent the count
statistics for the top1 explanations.

What temporal information is the most critical? What spectral information is the most critical?
Set Class T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

T G 13 12 60 215 0 9 2 132 1047 15 191 103 77 119 93 196 162 172 285 93
S 1208 0 0 0 0 0 0 0 0 296 224 260 410 208 141 163 50 45 1 2

D G 3 0 8 86 0 8 0 50 521 2 93 51 33 44 34 77 91 71 122 53
S 188 0 0 0 0 0 0 0 0 167 60 44 79 30 23 44 21 37 15 2

E G 49 13 13 116 0 9 0 98 937 30 100 93 96 124 82 126 170 190 216 52
S 1489 0 0 0 0 0 0 0 0 1668 570 647 585 329 243 417 166 103 77 20

record only the top1 explanation returned by SLIME and present the
count statistics for top1 explanations. This helps us derive a global
understanding on the behaviour of M2 for genuine and spoof deci-
sion.

4.2.1. Explanations for the genuine decisions

In the training set, M2 correctly classifies 1505 out of 1507 genuine
instances with more than 70% confidence. Table 5 (first row) shows
the temporal and spectral explanations on these 1505 genuine in-
stances. The temporal explanations suggest that though the majority
vote for top1 appears to be T9, other temporal components also have
some contribution in the prediction. To summarize, we observe that
the first four (T1-T4) and the last three temporal segments (T8-T10)
contribute most towards the genuine class decision.

One possible reason for such a spread in temporal explanations
could be because of the 10 different variable length utterances used
in the ASVspoof 2017 dataset. Further, inspecting the T9 segment
of several genuine files in the training subset does not immediately
reveal what M2 is detecting; however, we noticed that many files
have non-speech (or silence) frames at their beginning. Therefore,
M2 may be using both the speech and non-speech information across
different temporal locations.

Looking at the spectral explanations (right hand side of Table 5)
we find that M2 give importance to the information present across
all frequencies (0-8 kHz).

To validate these findings, we repeat the above process across all
the instances in the development and evaluation subsets. As shown
in Table 5 (third and fifth rows), we observe a consistency in the
genuine class explanations.

4.2.2. Explanations for the spoof decisions

In the training set, M2 correctly classifies 1504 out of 1507 spoof in-
stances with more than 70% confidence. Table 5 (second row) shows
the temporal and spectral explanations on these 1504 instances. The
temporal explanation statistics suggest that the discriminative cue for
replay spoofing detection appears either in the first or last 400 ms of
the signal (T1 or T10 segments) and that M2 is not influenced by the
information present in temporal regions T2-T9. On the spectral ex-
planations, we observe that M2 is looking at the information present
across all the frequencies. To validate these observations we repeat
the process across all the instances in the development and evalua-
tion subsets. As shown in the fourth and sixth rows of Table 5 we
observe similar explanations.

Now the question is what cue is there in the first and last 400 ms
of these instances? We inspect 50 spoof instances drawn randomly

from the training subset and find that (1) the majority of instances do
not have non-speech/silence in the first 400 ms (2) These instances
have DTMF-like (dual-tone multi-frequency) tones with speech (29
out of 50) and without speech (7 out of 50) in the first 400 ms of
the signal. The last 400 ms of the spoof instances have the same
property found in (1) and (2). One reason for this could be due to
raw samples copied for audio instances less than 4 seconds duration
as pointed out in section 2.2.

4.2.3. Explanations for misclassification

We now analyse why a genuine test instance is misclassified as spoof
and vice-versa. We hypothesize that a test utterance is misclassified
if it does not exhibit its own class attribute but shows the attributes
of the competing class. First, we look at why M2 misclassifies a
genuine instance. We take all the genuine instances misclassified as
spoof with more than 50% confidence6 in the development and eval-
uation subsets and generate temporal and spectral explanations. We
show the results in the first two rows of Table 6. We find that these
genuine instances do not have the genuine class attributes, rather
show the attributes of a spoof class (top1 corresponds to either T1 or
T10 only), which explains the reason for misclassification.

Finally, we look at the spoof audio instances in both the develop-
ment and evaluation subsets that were successful in fooling M2 with
more than 50% confidence. We find 269 (out of 950) such instances
in the development subset and 2088 (out of 12008) spoof examples
in the evaluation subset. We show the explanations obtained from
SLIME in the last two rows of Table 6. We find that these spoof
audio instances do not show the attributes of the spoof class but ap-
pear to exhibit genuine class properties (top1 explanation distributed
across T1-T10).

5. INTERVENTIONS

SLIME identifies where M2 is looking to discriminate genuine and
spoof instances. We now perform two intervention experiments to
test the significance of this analysis.

5.1. Intervention I: Break the system

Here, our primary goal is to break M2 from an attacker’s perspective.
In other words, we aim to increase the false alarm rate by manipu-
lating correctly classified spoof instances so that M2 judges them as
genuine.

6We chose confidence more than 50% as there are very few instances with
more than 70% confidence in the development subsets. We use the same
threshold across the evaluation subsets.



Table 6. Spectral and temporal explanations for all the misclassified genuine (G) and spoof (S) instances with more than 50% confidence in
the development (D) and evaluation (E) subsets. F1-F8 has the same meaning as in Table 4 and T1-T10 as in Table 3.

What temporal information is the most critical? What spectral information is the most critical?
Class Set T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

G D 4 0 0 0 0 0 0 0 0 3 1 2 1 2 0 0 0 1 0 0
E 0 0 0 0 0 0 0 0 0 2 0 1 1 0 0 0 0 0 0 0

S D 0 0 5 18 0 7 1 14 224 0 3 4 3 7 10 16 14 19 21 13
E 62 34 28 221 0 23 2 172 1540 6 150 123 93 140 167 196 213 235 311 206

Table 7. Intervention I: breaking the system. Demonstrating the
effect on two spoof instances each in the training, development and
evaluation set.

Genuine class probability %
Subset Instance id before after

Train T 1002189 0.21 0.80
T 1001687 0.22 0.80

Dev D 1000884 0.21 0.85
D 1000889 0.25 0.83

Eval E 1004999 0.18 0.8
E 1008476 0.19 0.81

We randomly take two spoof audio instances from each of the
training, development and evaluation subsets that have been classi-
fied correctly with more than 70% confidence and replace their first
and last 400 ms (T1 and T10) by a T17 segment of the most con-
fidently classified genuine signal in the training set (T 1000780).
We then submit them to M2 to see if they can pass as genuine. Ta-
ble 7 shows that M2 now misclassifies them with high confidence.
When we repeat this procedure for all the correctly detected spoof
instances in the development and evaluation subsets, we observe a
dramatic increase in the EER from 7.6% to 34.1% and from 10.6%
to 29.7% respectively (first and second rows of Table 9).

Table 8. Demonstrating the effect of intervention II: protecting the
system. Training subset has no misclassified instances.

Genuine class probability %
Subset Instance id before after

Dev D 1001544 0.81 0.23
D 1000803 0.78 0.4

Eval E 1003144 0.83 0.25
E 1001926 0.82 0.29

5.2. Intervention II: Protect the system

Here our goal is to protect M2 from a researcher’s perspective (or
an ASV system administrator). In other words, we aim to reduce
the EER by manipulating misclassified spoof instances so that M2
judges them correctly. Since the training subset does not have any
misclassified spoof instances (EER is 0.0%) we randomly take two
spoof instances each from the development and evaluation subsets
that were successful in fooling M2. From section 4.2.3, we know

7Main motivation here is to ensure that T1 and T10 (of the spoof in-
stances) would not have any spoof attributes (section 4.2.2) after the inter-
vention. Best option was to pick a genuine audio whose first 400 ms would
contain mostly non-speech/silence. That is why we pick T1 of T 1000780
(confident genuine instance) which satisfies the criteria.

Table 9. EER% before and after the two intervention on M2.
Intervention Dev Eval
Initial EER 7.6 10.6

I: Break the system 34.13 29.76
II: Protect the system 5.9 7.8

that M2 detects a spoof signal correctly if spoof attribute (DTMF
tone and/or speech) appears in the first or last 400 ms (i.e T1 or T10
segment), we hypothesize that T1 and/or T10 of these four spoof
instances do not have such attributes. We generate temporal expla-
nations for these four instances and find that the top1 explanation
does not favor T1 or T10.

Now, we remove raw samples from the beginning of these four
instances to ensure that the speech signal occurs within the first 400
milliseconds. We chose the amount of samples to remove based on
the original duration of the audio signal. For example, if the duration
is between 3 to 4 seconds we remove the first 1200 ms samples. We
then submit them to M2 to see if they can be now detected as spoof.
Table 8 shows that M2 now classifies them correctly as spoof with
high confidence. When we repeat this process across all the misclas-
sified spoof instances in the development and evaluation subsets, we
observe a reduction in the EER from 7.6% to 5.9% and from 10.6%
to 7.8% respectively (first and third rows of Table 9).

Though intervention II did not completely reduce the EER of M2
to 0% on the development and evaluation subsets, it shows the poten-
tial of our analysis work, and demonstrates how knowledge gained
from such model explanations can help improve the detection perfor-
mance. Upon closer analysis, we find that out of 269 misclassified
spoof instances we intervened in the development subset, M2 detects
only 8 instances as spoof with high confidence while large number of
instances were detected spoof with low confidence. We find a sim-
ilar observation on the evaluation subset. Out of 2088 misclassified
spoof instances, only 88 instances were detected as spoof with high
confidence. This explains the reason for a small change in the EER.
Further investigation is required to gain deeper understanding about
this discrepancy, which we leave as our future work.

6. DISCUSSION AND CONCLUSION

In this paper we implemented and analysed a CNN-based replay
spoofing detection system (M2) adapted from the state-of-the-
art CNN LCNNFFT using the updated version 2.0 ASVspoof
2017 database. System M2 shows comparable performance to
LCNNFFT . We use the SLIME algorithm to generate class ex-
planations from spectral and temporal perspectives. Our analysis
shows that M2 uses the first few milliseconds of the audio signal to
make class prediction. We further demonstrated the significance of
our analysis and findings by pre-processing the test signals which
led to a predictable change in the EER on both the development and



evaluation subsets.
Though these systems, including the state-of-the-artLCNNFFT ,

seem to be successful in discriminating between genuine and
spoofed speech, our analysis shows that to some extent they could be
exploiting cues from the database which are unrelated to the prob-
lem. This raises a question about the integrity and trustworthiness
of such systems. Further, variability of patterns of signals (presence
and absence of non-speech frames in the beginning) within a class
makes the problem difficult on this database. For example not all
spoof instances have a speech onset in the first few milliseconds
of the audio signal and not all genuine instances have non-speech
signals in the start.

Our analysis shows how spoofing detection performance is cor-
related to the first few samples of the audio signals. This suggests
that a replay spoofing detection system built on this dataset needs
to use a pre-processing step that detects non-speech samples before
and after the speech onset/offset making sure that dataset artefacts
are removed completely so that the models would then actually start
to exploit factors of interest (acoustic environment, playback device,
recording device properties etc.) from the underlying training data
for replay spoofing detection.

Our future work aims to extend this analysis to investigate: (1)
how explanations vary across the ten different phrases of the corpus,
(2) how explanations vary across different types of replay con-
ditions/configurations of the ASVspoof 2017 corpus, (3) whether
speaker information (fundamental frequency, speaking styles) is
used by M2 for making class decisions, and (4) different temporal
and spectral segmentations (example, 40 temporal segments each of
100 ms) that may help us derive more deeper understanding of the
explanations. Finally and most importantly, we would also look into
methods to address the issues found in the ASVspoof version 2.0
database either through an automatic preprocessor or permanently
cleaning the audio signals.
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