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Abstract

Chebyshev interpolation is a highly effective, intensively studied method
and enjoys excellent numerical properties which provides tremendous applica-
tion potential in mathematical finance. The interpolation nodes are known
beforehand, implementation is straightforward and the method is numerically
stable. For efficiency, a sharp error bound is essential, in particular for high-
dimensional applications. For tensorized Chebyshev interpolation, we present
an error bound that improves existing results significantly.
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1 Introduction

Tensorized Chebyshev interpolation underlies various algorithms for computational
problems in high dimensions. The Chebyshev interpolation of function f is the
more beneficial, the higher the cost of evaluating f itself is. The cost of evaluating
f directly scales with the computational cost for obtaining the coefficients of the
Chebyshev interpolation. For computationally challenging high-dimensional prob-
lems, these costs become a bottleneck for the implementation of the interpolation.
In these situations it is crucial to use the least number of nodal points possible to
achieve a pre-specified accuracy. One valuable application is the quantification of
parameter uncertainty for high-dimensional integrals that require Monte-Carlo sim-
ulations. Here, computationally expensive integrals have to be evaluated for a large
set of different parameters. Specifically the realm of uncertainty quantification has
lead to an increasing amount of attention to multivariate polynomial approximation,
we refer to Xiu (2009, 2010). For applications in finance, interpolation in the pa-
rameter space promises to be highly beneficial as shown in Gaß et al. (2017). There
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from Maximilian Gaß, Daniel Kressner, Maximilian Mair and Christian Pötz.
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is a subtle difference of the latter approach to generalized polynomial chaos (gPC).
The starting point of gPC is the random distribution of the parameters according to
a given measure. The polynomial basis for the interpolation in the parameter space
are chosen to be orthogonal in the weighted L2-norm induced by that probability
measure. The choice of Chebyshev interpolation is instead solely motivated by its
excellent numerical properties.

In this paper, we provide an improved error bound for the Chebyshev interpo-
lation of analytic functions. Sauter and Schwab (2004) derive an error bound for
the tensorized Chebyshev interpolation. Their proof relies on a method for error
estimation for analytic integrands from Davis (1975). In Gaß et al. (2017) the re-
sult of Sauter and Schwab (2004) has been slightly improved. The error bound is
connected to the radius % of a Bernstein ellipse and in the one-dimensional case Tre-
fethen (2013) presents a different approach which goes back to Bernstein (1912). In
Börm (2010) error bounds are presented for the case when the derivatives of function
f are bounded. In this paper we assume f to be analytic. We iteratively extend the
one-dimensional result shown in Trefethen (2013) to the multivariate by induction
over the dimension. The resulting nested structure of the proof reaches a certain
complexity and therefore requires more space than the proof in Sauter and Schwab
(2004). Finally, we present the new error bound as a combination of this result with
this result from Sauter and Schwab (2004) and Gaß et al. (2017). We furthermore
discuss examples that show that a significant improvement of the new error bound
can be achieved.

Typically in applications, the efficiency of the tensorized Chebyshev interpolation
can be significantly improved by an additional complexity reduction, for instance by
applying sparse grid or low rank tensor techniques. We refer to Barthelmann et al.
(2000) for Chebyshev interpolation with Smolyak sparse grids and for instance to
Townsend and Trefethen (2013) for a bivariate Chebyshev version of the Chebyshev
interpolation based on low rank tensor techniques, a multivariate version is devel-
oped in Glau et al. (2018). The error bound in Barthelmann et al. (2000) is derived
for functions with derivatives up to order k and their proof is based on the univari-
ate result for Chebyshev interpolation. Another strategy for deriving error bounds
is to start from the error bound for the tensorized Chebyshev interpolation and to
introduce the sparse grid as further approximation. The improvement of the error
bound for the tensorized Chebyshev interpolation presented in this paper can be of
use in such a two-stage approximation for deriving sharper error bounds interpola-
tion algorithm to choose the minimal degrees of freedom according to a prescribed
accuracy first. We also point out that in this article we assume higher regularity,
namely analyticity as we observe that parameter dependence is analytic for a large
lass of problems of interest, see Gaß et al. (2017).

Examples where such an error analysis can be of use are the interpolation of prices
in their parameters in order to approximate prices and sensitivities as outlined in
Gaß et al. (2017), in the interpolation of the implied volatility as in Glau et al. (2017)
as well as in an approximation of Bermudan option prices based on a combination
of Chebyshev interpolation and dynamic programming in Glau et al. (2018).

In Section 2, we present the main mathematical result and discuss this result.
Section 3 provides the proof and finally, Section 4 concludes.
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2 Main result

In this section, we provide our main result, the improved error bound for the multi-
variate Chebyshev interpolation. The main result in Theorem 2.1 is a combination
of two error bounds. On the one hand, we use an extension of the result of Sauter
and Schwab (2004) as shown in Gaß et al. (2017). On the other hand, we extend the
one-dimensional result presented in Trefethen (2013) iteratively to the multivariate
case.

We consider the tensor based extension of Chebyshev polynomial interpolation of
functions f : X → R, X = [x1, x1]×. . .×[xD, xD] ⊂ RD, as in e.g. Sauter and Schwab
(2004). For notational ease we introduce the polynomials for X = [−1, 1]D with the
obvious extension to general hyperrectangle by the appropriate linear transforms.
Let N := (N1, . . . , ND) with Ni ∈ N0 for i = 1, . . . , D. The interpolation with∏D
i=1(Ni + 1) summands is given by

(2.1) IN (f)(x) :=
∑
j∈J

cjTj(x),

where the function variable x = (x1, . . . , xd)
′ ∈ [−1, 1]d and the summation index j

is a multiindex ranging over J := {(j1, . . . , jD) ∈ ND
0 : ji ≤ Ni for i = 1, . . . , D}. For

j = (j1, . . . , jD) ∈ J , the basis functions are defined as Tj(x1, . . . , xD) =
∏D
i=1 Tji(xi)

and the coefficients are given by

(2.2) cj =
( D∏
i=1

21{0<ji<Ni}

Ni

) N1∑
k1=0

′′
. . .

ND∑
kD=0

′′
f(x(k1,...,kD))

D∏
i=1

cos

(
jiπ

ki
Ni

)
,

where
∑ ′′

indicates that the first and last summand are halved and the Chebyshev
nodes xk for multiindex k = (k1, . . . , kD) ∈ J are given by xk = (xk1 , . . . , xkD)with

the univariate Chebyshev nodes xki = cos
(
π ki
Ni

)
for ki = 0, . . . , Ni and i = 1, . . . , D.

For hyperrectangle X ⊂ RD and parameter vector % ∈ (1,∞)D, we define the
generalized Bernstein ellipse by

B(X , %) := B([x1, x1], %1)× . . .×B([xD, xD], %D),(2.3)

where B([x, x], %) := τ[x,x] ◦ B([−1, 1], %), with the transform τ[x,x]
(
<(x)

)
:= x +

x−x
2

(
1 − <(x)

)
and τ[x,x]

(
=(x)

)
:=

x−x
2 =(x) for all x ∈ C and Bernstein ellipses

B([−1, 1], %i) for i = 1, . . . , D.

Theorem 2.1. Let f : X → R have an analytic extension to some generalized Bern-
stein ellipse B(X , %) for some parameter vector % ∈ (1,∞)D with maxx∈B(X ,%) |f(x)| ≤
V <∞. Then

max
x∈X

∣∣f(x)− IN (f)(x)
∣∣ ≤ min{a(%,N,D), b(%,N,D)},
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where, denoting by SD the symmetric group on D elements,

a(%,N,D) = min
σ∈SD

D∑
i=1

4V
%−Niσ(i)

%i − 1
+

D∑
k=2

4V
%−Nkσ(k)

%σ(k) − 1
· 2k−1 (k − 1) + 2k−1 − 1∏k−1

j=1(1− 1
%σ(j)

)
,

b(%,N,D) = 2
D
2
+1 · V ·

 D∑
i=1

%−2Nii

D∏
j=1

1

1− %−2j

 1
2

.

Proof. The bound maxx∈X
∣∣f(x) − IN (f)(x)

∣∣ ≤ b(%,N,D) follows from Gaß et al.
(2017, Theorem 2) as extension of Sauter and Schwab (2004). We show maxx∈X

∣∣f(x)−
IN (f)(x)

∣∣ ≤ a(%,N,D) in Section 3 in Proposition 3.1. Combining both results ob-
viously yields the assertion of the theorem.

The examples below show that min{a(%,N,D), b(%,N,D)} improves both error
bounds a(%,N,D) and b(%,N,D). Noticing that both bounds are scaled with the
factor V , we set V = 1, moreover, we choose D = 2.

Example 2.2. For %1 = 2.3 and %2 = 1.8, and N1 = N2 = 10, we have b(%,N,D) =
0.0018 and a(%,N,D) = 0.0066. Therefore, in this example the error bound b(%,N,D)
is sharper.

Example 2.3. If we change slightly the setting from Example 2.2 to %1 = 2.3 and
%2 = 2.5, and N1 = N2 = 10, then the resulting error bounds are b(%,N,D) = 0.0017
and a(%,N,D) = 0.0011 and thus, the later is the sharper error bound.

As shown in Examples 2.2 and 2.3, slight changes in the domain of analyticity
and, thus, the radii of the Bernstein ellipses, may reverse the order of a(%,N,D)
and b(%,N,D). Figure 2.1 displays both error bounds a(%,N,D) and b(%,N,D) for
varying % with %1 = %2, N1 = N2 = 10. We observe that both error bounds intersect
at %1 = %2 ≈ 2.800882. For smaller values of %, the sharper error bound is b(%,N,D),
whereas for higher values a(%,N,D) is sharper. So far, the examples indicate that

2.6 2.7 2.8 2.9 3 3.1 3.2
̺1 = ̺2
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6

E
rr
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ou
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b(̺,N,D)
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Figure 2.1: Comparison of the error bounds b(%,N,D) (blue, dashed) and a(%,N,D) (red) by setting
%1 = %2 and N1 = N2 = 10. At %1 = %2 ≈ 2.800882 both error bounds intersect.

for a smaller radius of the Bernstein ellipse, b(%,N,D) tends to be the better error
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bound and that for higher radii of the Bernstein ellipses or for strongly differing
radii, a(%,N,D) tends to be the sharper error bound. Our last example is taken
from Gaß et al. (2017), where in finance application option prices are interpolated
in the parameters T , K and S on [T , T ]× [S0/K, S0/K] in order to approximate the

prices CallS0,K
T for values (T, S0,K) ∈ [T , T ] × [S0, S0] × [K,K] ⊂ (0,∞)3. In this

situation, the parameter of the Bernstein ellipses can be derived explicitly by fixing

setting P = [T , T ] × [S0/K, S0/K], ζ1 =
S0K+S0K

S0K−S0K
and ζ2 = T+T

T−T , then it holds for

the radii of the Bernstein ellipses %j ∈ (1, ζj +
√

(ζj)2 − 1) for j = 1, 2, see Gaß
et al. (2017, Remark 3). Setting [S0/K, S0/K] = [0.8, 1.2], [T , T ] = [0.5, 2] yields

ζ1 = 2.5
1.5 = 5

3 and ζ2 = 2
0.4 = 5. For %1 = 2.9 ∈ (1, 3) and %2 = 9.8 ∈ (1, 5 +

√
24),

we show in the following Example 2.4 how thanks to Theorem 2.1 less nodes are
required to guarantee a pre-specified accuracy.

Example 2.4. Let the radii of the Bernstein ellipse be %1 = 2.95 and %2 = 9.8.
Assuming V = 1, we are interested in achieving an accuracy of ε ≤ 2 · 10−4. To
achieve b(%,N,D) =≤ ε, we have to set N1 = 11 and N2 = 5. For achieving
a(%,N,D) ≤ ε, we have to set N1 = 8 and N2 = 4. Instead of 72 = (11 + 1) · (5 + 1)
nodal points applying error bound b(%,N,D), we only need to use 45 = (8+1) ·(4+1)
nodal points applying the error bound a(%,N,D).

Example 2.4 highlights the potential of using fewer nodal points to achieve a
desired accuracy by comparing both error bounds. Especially when the evaluation
of the interpolated function at the nodal points is challenging, this reduces the
computational costs noticeably. This particularly arises for Chebyshev interpolation
combined with Monte-Carlo simulation for high-dimensional parametric integration
as shown in Gaß et al. (2017).

Summarizing, Theorem 2.1 improves the error bounds a(%,N,D) and b(%,N,D)
significantly.

3 Proofs

In the following, we will present our approach to derive the error bound a(%,N,D)
in Theorem 2.1. Whereas in proof of Sauter and Schwab (2004, Lemma 7.3.3) an
orthonormal system of appropriately scaled Chebyshev polynomials has been used
and each %i is weighted equally, we will now extend the one-dimensional result in
Trefethen (2013, Theorem 8.2) by induction over the dimension D. In each iteration
step the interpolation in one additional variable is added consecutively.

Proposition 3.1. Let f : X → R have an analytic extension to some generalized
Bernstein ellipse B(X , %) for some parameter vector % ∈ (1,∞)D with
maxx∈B(X ,%) |f(x)| ≤ V <∞. Then

max
x∈X

∣∣f(x)−IN (f)(x)
∣∣

≤ min
σ∈SD

D∑
i=1

4V
%−Niσ(i)

%i − 1
+

D∑
k=2

4V
%−Nkσ(k)

%σ(k) − 1
· 2k−1 (k − 1) + 2k−1 − 1∏k−1

j=1(1− 1
%σ(j)

)
,

where SD denotes the symmetric group on D elements.

5



Proof. We show the statement for an arbitrary σ ∈ SD and for ease of notation
we use σ(i) = i for i = 1, . . . , D. Obviously, we can iteratively interpolate in
the parameter in such a way that the error bound is minimized by choosing the
corresponding σ ∈ SD.

We prove the assertion of the theorem via induction over the dimension D of
the parameter domain. We assume the function f is analytic in [−1, 1]D and is
analytically extendable to the open Bernstein ellipse B([−1, 1]D, %). For D = 1 and
X = [−1, 1] the proof of the assertion is presented in Trefethen (2013, Theorem
8.2). The generalization of the assertion to the case of a general parameter interval
X ⊂ R is elementary and follows from a linear transformation as described in Gaß
et al. (2017, Proof of Theorem 2.2).

The key idea of the proof is to use the triangle inequality to estimate the interpo-
lation error in D+ 1 components via the interpolation error in the D+ 1 component
of the original function and the interpolation in the D+ 1 component of the already
in D components interpolated function. Hereby, in both cases the issue is basically
reduced to an one-dimensional interpolation and the known theory from Trefethen
(2013, Theorem 8.2) can be applied. The crucial step is to derive the bound of the
in already in D components interpolated function on the corresponding Bernstein
ellipse.

Let us now assume the assertion is proven for dimension 1, . . . , D. Let XD+1 :=
[x1, x1] × . . . × [xD+1, xD+1] and let f : X → R have an analytic extension to
the generalized Bernstein ellipse B(XD+1, %D+1) for some parameter vector %D+1 ∈
(1,∞)D+1 and let maxx∈B(XD+1,%D+1) |f(x)| ≤ V . To set up notation, we write

xD1 = (x1, . . . , xD) and define in the following the Chebyshev interpolation operators.
For interpolation only in the i−th component with N Chebyshev points,

IiN (f)(xD+1
1 ) := IN (f(x1, . . . , xi−1, ·, xi+1, . . . , xD+1))(xi).

Analogously, interpolation only in j components with Nk1 , . . . , Nkj Chebyshev points
is denoted by

I
j1,...,jj
Nk1 ,...,Nkj

(f)(xD+1
1 ) := I

jj
Nkj
◦ . . . ◦ Ij1Nk1 (f)(xD+1

1 ),

and finally, the interpolation in all D+1 components with N1, . . . , ND+1 Chebyshev
points is

IN1,...,ND+1
(f)(xD+1

1 ) := ID+1
ND+1

◦ . . . ◦ I1N1
(f)(xD+1

1 ).

In the following the norm | · | denotes the∞−norm on [−1, 1]D+1. We are interested
in the interpolation error

|f(xD+1
1 )− IN1,...,ND+1

(f)(xD+1
1 )|

≤ |f(xD+1
1 )− ID+1

ND+1
(f)(xD+1

1 )|+ |ID+1
ND+1

(f)(xD+1
1 )− IN1,...,ND+1

(f)(xD+1
1 )|.

We first show that the first part as an one dimensional interpolation is bounded by,
Trefethen (2013, Theorem 8.2),

|f(xD+1
1 )− ID+1

ND+1
(f)(xD+1

1 )| ≤ 4V
%
−ND+1

D+1

%D+1 − 1
.(3.1)
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In order to derive (3.1), we have to show that the coefficients of the Chebyshev
polynomial interpolation are bounded. Following Trefethen (2013), the on xD+1

depending coefficient akD+1
is defined as

akD+1
:=

21kD+1>0

π

∫ 1

−1

f(xD+1
1 )TkD+1

(pD+1)√
1− x2D+1

dxD+1.

By using the same transformation as in the proof of Trefethen (2013, Theorem 8.1),
just adapted to the multidimensional setting, i.e.

xi =
zi + z−1i

2
, i = 1, . . . D + 1,

F (z1, . . . , zD+1) = F (z−11 , . . . , z−1D+1) = f(x1, . . . , xD+1),

we achieve for the estimation of the coefficient akD+1
,

|akD+1
| =

∣∣∣∣∣2−1kD+1=0

πi

∫
|zD+1|=%D+1

z
−1−kD+1

D+1 F (z1, . . . , zD+1)dzD+1

∣∣∣∣∣ .
Here, we use that F is bounded by the same constant as f , which is given by
assumption, |f(xD+1

1 )|B([−1,1]D+1,%) ≤ V . Therefore, analogously to Trefethen (2013,
Theorem 8.1), this leads to

|akD+1
| ≤ 2%

−kD+1

D+1 V.(3.2)

This estimation can be used to derive (3.1) applying Trefethen (2013, Theorem 8.2).
For the second part we use

|ID+1
ND+1

(f)(xD+1
1 )− IN1,...,ND+1

(f)(xD+1
1 )| = |ID+1

ND+1
(f − I1,...,DN1,...,ND

(f)(xD+1
1 ))(xD+1

1 )|.

At this point we again apply the triangle inequality and achieve

|ID+1
ND+1

(f − I1,...,DN1,...,ND
(f)(xD+1

1 ))(xD+1
1 )|

≤ |ID+1
ND+1

(f − I1,...,DN1,...,ND
(f)(xD+1

1 ))(xD+1
1 )− (f − I1,...,DN1,...,ND

(f)(xD+1
1 ))|(3.3)

+ |(f − I1,...,DN1,...,ND
(f)(xD+1

1 ))|.

The term (3.3) is basically an interpolation in the D + 1 component of the func-
tion (f − I1,...,DN1,...,ND

(f)(xD+1
1 )). An upper bound M(D) for this function is given in

Lemma 3.3. With this bound we can estimate the interpolation error of interpolating
(f(xD+1

1 )− I1,...,DN1,...,ND
(f)(xD+1

1 )) in the component D+1,

|ID+1
ND+1

(f − I1,...,DN1,...,ND
(f)(xD+1

1 ))(xD+1
1 )− (f − I1,...,DN1,...,ND

(f)(xD+1
1 ))|

≤ 4M(D)
%
−ND+1

D+1

%D+1 − 1

The term |(f(xD+1
1 ) − I1,...,DN1,...,ND

(f)(xD+1
1 ))| is the interpolation error in D di-

mensions and we assume, that this one is by our induction hypothesis bounded,
depending on D, i.e.

|(f − I1,...,DN1,...,ND
(f)(xD+1

1 ))| ≤ B(D), B(D) > 0.(3.4)
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Collecting all parts, we achieve for the error of our interpolation in D + 1 com-
ponents,

|ID+1
ND+1

(f − I1,...,DN1,...,ND
(f)(xD+1

1 ))(xD+1
1 )| ≤ 4V

%
−ND+1

D+1

%D+1 − 1
+B(D) + 4M(D)

%
−ND+1

D+1

%D+1 − 1
.

Finally, if we start with D = 1 and apply the presented procedure step-wise, we get
via straightforward induction ,

B(D) =
D∑
i=1

4V
%−Nii

%i − 1
+

D∑
k=2

4M(k − 1)
%−Nkk

%k − 1
.

Naturally, we can further estimate the error by using si
%i
< 1 and resp. (1− si

%i
) < 1

in the numerator,

B(D) ≤
D∑
i=1

4V
%−Nii

%i − 1
+

D∑
k=2

4V
%−Nkk

%k − 1
· 2k−1 (k − 1) + 2k−1 − 1∏k−1

j=1(1− sj
%j

)
.

Recalling the definition of si = 1 + ε with ε ∈ (0,minDj=1 %j − 1), the definition holds

for any ε ∈ (0,minDj=1 %j − 1) and therefore also for limε→0

B(D) ≤ lim
ε→0

D∑
i=1

4V
%−Nii

%i − 1
+

D∑
k=2

4V
%−Nkk

%k − 1
· 2k−1 (k − 1) + 2k−1 − 1∏k−1

j=1(1− 1+ε
%j

)

=
D∑
i=1

4V
%−Nii

%i − 1
+

D∑
k=2

4V
%−Nkk

%k − 1
· 2k−1 (k − 1) + 2k−1 − 1∏k−1

j=1(1− 1
%j

)
.

In the following lemmata, we use the following notation xM1 = (x1, . . . , xM ) and
the convention N

0 =∞, N ∈ N+.

Lemma 3.2. Let X 3 xM1 7→ f(xM1 ) be a real valued function that has an analytic
extension to some generalized Bernstein ellipse B(X , %) for some parameter vector
% ∈ (1,∞)M .
Then the Chebyshev polynomial interpolation I1N (f)(xM1 ) is given by,

I1N (f)(xM1 ) =
N∑
k=0

ak(x
M
2 )Tk(x1) +

∞∑
k=N+1

ak(x
M
2 )Tm(k,N)(x1),(3.5)

where m(k,N) = |(k+N−1)(mod2N)−(N−1)| and ak(x
M
2 ) = 2

π

∫ 1
−1 f(xM1 ) Tk(x1)√

1−x21
dx1

Proof. Following Trefethen (2013, Equation (4.9)), from aliasing properties of Cheby-
shev polynomials it results that

f(xM1 )− I1N (f)(xM1 ) =
∞∑

k=N+1

ak(x
M
2 )(Tk(x1)− Tm(k,N)(x1)).
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By writing the Chebyshev series for f(xM1 ), see Trefethen (2013), we get,

∞∑
k=0

ak(x
M
2 )Tk(x1)− I1N (f)(xM1 ) =

∞∑
k=N+1

ak(x
M
2 )(Tk(x1)− Tm(k,N)(x1)),

and rearranging terms yields (3.5).

Lemma 3.3. Let X 3 xM1 7→ f(xD+1
1 ) be a real valued function that has an analytic

extension to some generalized Bernstein ellipse B(X , %) for some parameter vector
% ∈ (1,∞)D+1. Then

sup
xD+1∈B([−1,1],%D+1)

|f(xD+1
1 )− I1,...,DN1,...,ND

(f)(xD+1
1 )| ≤ M(D)

:= 2DV

∑D
i=1

(
si
%i

)Ni+1
+
∑

σ∈{0,1}D\{0}D
∏
δ:σδ=0(1−

(
sδ
%δ

)Nδ+1∏
δ:σδ=1

(
sδ
%δ

)Nδ+1

∏D
j=1(1−

sj
%j

)

Proof. Starting with,

sup
xD+1∈B([−1,1],%D+1)

|f(xD+1
1 )− I1,...,DN1,...,ND

(f)(xD+1
1 )|,

we express the interpolation of f in D components as in Lemma 3.4,

sup
xD+1∈B([−1,1],%D+1)

∣∣∣∣f(xD+1
1 )−

∑
σ∈{0,1}D

D∑
δ=1

Nδ
1−σδ∑

kδ=(Nδ+1)·σδ

I(kD1 , xD+1)τ(kD1 , σ
D
1 , x

D
1 )

∣∣∣∣.
Following Trefethen (2013) and as used in Lemma 3.2, we can express f in the
following way,

f(xD+1
1 ) =

D∑
δ=1

∞∑
kδ=0

I(kD1 , xD+1)τ(kD1 , σ
D
1 = 0, xD1 ),

leading to,

sup
xD+1∈B([−1,1],%D+1)

|f(xD+1
1 )− I1,...,DN1,...,ND

(f)(xD+1
1 )|

= sup
xD+1∈B([−1,1],%D+1)

∣∣∣∣ D∑
δ=1

∞∑
kδ=0

I(kD1 , xD+1)τ(kD1 , σ
D
1 = 0, xD1 )

−
∑

σ∈{0,1}D

D∑
δ=1

Nδ
1−σδ∑

kδ=(Nδ+1)·σδ

I(kD1 , xD+1)τ(kD1 , σ
D
1 , x

D
1 )

∣∣∣∣.
In the next step, we use from the second summand the part σ = {0}D, subtract it
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from the subtrahend and use the triangle inequality.

sup
xD+1∈B([−1,1],%D+1)

|f(xD+1
1 )− I1,...,DN1,...,ND

(f)(xD+1
1 )|

= sup
xD+1∈B([−1,1],%D+1)

∣∣∣∣ D∑
i=1

 ∞∑
ki=Ni+1

D∑
j=1,j 6=i

∞∑
kj=0

I(kD1 , xD+1)τ(kD1 , σ
D
1 = 0, xD1 )


−

∑
σ∈{0,1}D\{0}D

D∑
δ=1

Nδ
1−σδ∑

kδ=(Nδ+1)·σδ

I(kD1 , xD+1)τ(kD1 , σ
D
1 , x

D
1 )

∣∣∣∣
≤ sup

xD+1∈B([−1,1],%D+1)

∣∣∣∣ D∑
i=1

 ∞∑
ki=Ni+1

D∑
j=1,j 6=i

∞∑
kj=0

I(kD1 , xD+1)τ(kD1 , σ
D
1 = 0, xD1 )

∣∣∣∣
+

∣∣∣∣ ∑
σ∈{0,1}D\{0}D

D∑
δ=1

Nδ
1−σδ∑

kδ=(Nδ+1)·σδ

I(kD1 , xD+1)τ(kD1 , σ
D
1 , x

D
1 )

∣∣∣∣
To estimate the supremum, we first need estimations for |I(kD1 , xD+1)| and
|τ(kD1 , σ

D
1 , x

D
1 )|.

|I(kD1 ,xD+1)| =
∣∣∣∣ D∏
i=1

21ki>0

π

∫
[−1,1]D

f(xD+1
1 )

D∏
j=1

Tkj (xj)√
1− x2j

d(xD1 )

∣∣∣∣
=

∣∣∣∣ D∏
i=2

21ki>0

π

∫
[−1,1]D−1

21k1>0

π

∫ 1

−1
f
Tk1(x1)√

1− x21
d(x1)

D∏
j=2

Tkj (xj)√
1− x2j

d(xD2 )

∣∣∣∣.
Analogously to deriving the estimation (3.2), we can estimate the integral with

respect to x1 as 2
1k1>0

π

∫ 1
−1 f

Tk1 (x1)√
1−x21

d(p1) ≤ 2V %−k11 . The remainingD−1 dimensional

integral can in a similar way be estimated as D − 1 one-dimensional integrals with
V = 1. Altogether, this results in the following estimation for |I(k1, . . . , kD)|,

|I(kD1 , xD+1)| ≤ 2DV
D∏
i=1

%−kii .

For |τ(kD1 , σ
D
1 = 0, xD1 )|, we make use of Bernstein’s inequality, using that the norm

of each Chebyshev polynomial is bounded by 1 on [−1, 1]. For each i = 1, . . . , D
we choose a Bernstein ellipse with radius si such that 1 < si < %i. Here, we define
si = 1 + ε and this yields for x : xi ∈ B([−1, 1], si), i = 1, . . . , D,

|τ(kD1 , σ
D
1 , x

D
1 )| =

∏
δ:σδ=0

Tkδ(xδ)
∏

δ:σδ=1

Tmδ(kδ)(xδ) ≤
∏

δ:σδ=0

skδδ

∏
δ:σδ=1

s
mδ(kδ)
δ .

By definition, it holds mδ(kδ) ≤ kδ. This leads to

|τ(kD1 , σ
D
1 = 0, xD1 )| ≤

D∏
i=1

skii .
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Using both estimates leads to

sup
xD+1∈B([−1,1],%D+1)

|f(xD+1
1 )− I1,...,DN1,...,ND

(f)(xD+1
1 )|

≤ sup
xD+1∈B([−1,1],%D+1)

∣∣∣∣ D∑
i=1

 ∞∑
ki=Ni+1

D∑
j=1,j 6=i

∞∑
kj=0

2DV
D∏
l=1

(
sl
%l

)kl∣∣∣∣
+

∣∣∣∣ ∑
σ∈{0,1}D\{0}D

D∑
δ=1

Nδ
1−σδ∑

kδ=(Nδ+1)·σδ

2DV
D∏
l=1

(
sl
%l

)kl ∣∣∣∣.
Due to si < %i we can apply the convergence results for the geometric series. This
leads to

sup
xD+1∈B([−1,1],%D+1)

|f(xD+1
1 )− I1,...,DN1,...,ND

(f)(xD+1
1 )|

≤ M(D) := sup
xD+1∈B([−1,1],%D+1)

∣∣∣∣2DV D∑
i=1

(
si
%i

)Ni+1

∏D
j=1(1−

sj
%j

)

∣∣∣∣
+

∣∣∣∣2DV ∑
σ∈{0,1}D\{0}D

∏
δ:σδ=0(1−

(
sδ
%δ

)Nδ+1∏
δ:σδ=1

(
sδ
%δ

)Nδ+1

∏D
j=1(1−

sj
%j

)

∣∣∣∣
= 2DV

∑D
i=1

(
si
%i

)Ni+1
+
∑

σ∈{0,1}D\{0}D
∏
δ:σδ=0(1−

(
sδ
%δ

)Nδ+1∏
δ:σδ=1

(
sδ
%δ

)Nδ+1

∏D
j=1(1−

sj
%j

)
.

Lemma 3.4. Let X 3 xM1 7→ f(xM1 ) be a real valued function that has an analytic
extension to some generalized Bernstein ellipse B(X , %) for some parameter vector
% ∈ (1,∞)M . ForD ≤M let

I(kD1 , x
M
D+1) =

D∏
i=1

21ki>0

π

∫
[−1,1]D

f(xM1 )
D∏
j=1

Tkj (xj)√
1− x2j

d(x1, . . . , xD),

τ(kD1 , σ
D
1 , x

D
1 ) =

∏
δ:σδ=0

Tkδ(xδ)
∏

δ:σδ=1

Tmδ(xδ),

then the interpolation of f(xM1 ) in D components is given by:

I1,...,DN1,...,ND
(f)(xM1 ) =

∑
σ∈{0,1}D

D∑
δ=1

Nδ
1−σδ∑

kδ=(Nδ+1)·σδ

I(kD1 , x
M
D+1)τ(kD1 , σ

D
1 , x

D
1 ).

Proof. We proof this lemma via induction over the dimension D. For D = 1 it
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follows from Lemma 3.2,

I1N1
(f)(xM1 ) =

N1∑
k1=0

21k1>0

π

∫
[−1,1]

f(xM1 )
Tk1(x1)√

1− x21
dx1Tk1(x1)

+
∞∑

k1=N1+1

21k1>0

π

∫
[−1,1]

f(xM1 )
Tk1(x1)√

1− x21
dx1Tm1(x1).

Embedded in the introduced notation we get for D = 1,

I1N1
(f)(xM1 ) =

∑
σ∈{0,1}

1∑
δ=1

Nδ
1−σδ∑

kδ=(Nδ+1)·σδ

I(k11, x
M
2 )τ(k11, σ

1
1, x

1
1).

For the induction step from D − 1 to D, we assume the interpolation in D − 1
components is given by

I1,...,D−1N1,...,ND−1
(f)(xM1 ) =

∑
σ∈{0,1}D−1

D−1∑
δ=1

Nδ
1−σδ∑

kδ=(Nδ+1)·σδ

I(kD−11 , xMD )τ(kD−11 , σD−11 , xD−11 ).

For the interpolation in D components we make use of

I1,...,DN1,...,ND
(f)(xM1 ) = IDND ◦ . . . ◦ I

1
N1

(f)(xM1 ) = IDND ◦ I
1,...,D−1
N1,...,ND−1

(f)(xM1 ).

As for D = 1 we apply Trefethen (2013, p.27) and this leads to

IN1,...,ND(f)(xD1 ) =

ND∑
kD=0

21kD>0

π

∫ 1

−1
I1,...,D−1N1,...,ND−1

(f)(xM1 )
TkD(xD)√

1− x2D
dxDTkD(xD)

+
∞∑

kD=ND+1

21kD>0

π

∫ 1

−1
I1,...,D−1N1,...,ND−1

(f)(xM1 )
TkD(xD)√

1− x2D
dxDTmD(xD).

By the induction hypothesis and the definitions of I(kD−11 , xMD ) and
τ(kD−11 , σD−11 , xD−11 ), we achieve,∫ 1

−1
I1,...,D−1N1,...,ND−1

(f)(xM1 )
TkD(xD)√

1− x2D
dxD

=

∫
[−1,1]

∑
σ∈{0,1}D−1

D−1∑
δ=1

Nδ
1−σδ∑

kδ=(Nδ+1)·σδ

I(kD−11 , xMD )τ(kD−11 , σD−11 , xD−11 )
TkD(xD)√

1− x2D
dxD

=

∫
[−1,1]

∑
σ∈{0,1}D−1

D−1∑
δ=1

Nδ
1−σδ∑

kδ=(Nδ+1)·σδ

D−1∏
i=1

21ki>0

π∫
[−1,1]D−1

f(xM1 )

D−1∏
j=1

Tkj (xj)√
1− x2j

d(x1, . . . , xD−1)
TkD(xD)√

1− x2D
dxD.
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Rearranging terms yields,

IN1,...,ND(f)(xM1 ) =

ND∑
kD=0

∑
σ∈{0,1}D−1

D−1∑
δ=1

Nδ
1−σδ∑

kδ=(Nδ+1)·σδ

D∏
i=1

21ki>0

π

∫
[−1,1]D

f(xM1 )

D∏
j=1

Tkj (xj)√
1− x2j

d(xD1 )
∏

δ:σδ=0

Tkδ(xδ)
∏

δ:σδ=1

Tmδ(xδ)TkD(xD)

+

∞∑
kD=ND+1

∑
σ∈{0,1}D−1

D−1∑
δ=1

Nδ
1−σδ∑

kδ=(Nδ+1)·σδ

D∏
i=1

21ki>0

π

∫
[−1,1]D

f(pM1 )

D∏
j=1

Tkj (xj)√
1− x2j

d(xD1 )
∏

δ:σδ=0

Tkδ(xδ)
∏

δ:σδ=1

Tmδ(xδ)TmD(xD).

This can be expressed as

I1,...,DN1,...,ND
(f)(xM1 ) =

∑
σ∈{0,1}D

D∑
δ=1

Nδ
1−σδ∑

kδ=(Nδ+1)·σδ

I(kD1 , x
M
D+1)τ(kD1 , σ

D
1 , x

D
1 ).(3.6)

4 Conclusion

In this article, we have provided an enhanced error bound for tensorized Chebyshev
polynomial interpolation in Theorem 2.1 and have shown several examples. Example
2.4 highlights the effect of the improved error bound. Here, less interpolation nodes
are required to guarantee a pre-specified accuracy. This significantly reduces the
computational time, especially if the evaluation of function f at the nodal points is
time-consuming.
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