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In order to cope with the instability of the method of fundamental solutions (MFS), which 

caused by source offset, or source location, or fictitious boundary, a generalized method of 

fundamental solutions (GMFS) is proposed. The crucial part of the GMFS is used a 

generalized fundamental solution approximation (GFSA), which adopts a bilinear 

combination of fundamental solutions to approximate, rather than the linear combination of 

the MFS. Then the numerical solution of the GMFS is decided by a group of offsets 

corresponding to an intervention-point diffuse (IPD), instead of the MFS’ only offset of a 

single source. To demonstrate the effectiveness of the proposed approach, four numerical 

tests are given. The results have shown that the GMFS is more accurate, stable, and better 

convergence than the traditional MFS. 
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1. Introduction 

In recent years the method of fundamental solutions (MFS), a boundary meshless method, 

has attracted great attention for solving homogeneous differential equations [1–9]. The MFS is 

quite simple, efficient and easy for implementation, and has avoided the singular integrals 

which is necessary in certain boundary meshless methods, such as BNM [10], LBIE [11], 

HBNM [12], BCM [13], BFM [14]. Furthermore, it could be highly accurate and convergent 

rapidly when an appropriate offset is selected [15]. 

However, despite the effectiveness and simplicity of the MFS, there are still some 

outstanding theoretical and numerical issues to be addressed [16-18]. One of the main issues 

yet to be resolved is the optimal choice of the offset. In the MFS, a fictitious boundary outward 

offset to the real boundary with a distance parameter d is required in order to define the source 

points outside the domain. The offset d is sensitive and vital to the accuracy of the MFS. It is 

possible that we could set a reasonable range for the offset based on the experience. However, 

it is not always effective, because a good offset for a certain problem could be bad for another 

problem. Despite the intensive research, this “offset dilemma” has been an outstanding research 

topic in the MFS [19, 20]. 

In the past, various approaches have been proposed to alleviate this difficulty in the MFS 

such as the BKM [21-23] and BCM [24, 25]. Instead of using the singular fundamental solutions 

as used in the MFS, these methods use a non-singular kernels or general solutions. As such, the 

source points can be located on the physical /real boundary, and the fictitious boundary is not 

needed. However, it is difficult to find the non-singular kernels or general solutions for some 

practical problems. Even though the non-singular kernels or general solutions can be found, the 

accuracy is normally not very impressive. 

Another proposed method worthy to mention is the non-singular method of fundamental 

solution (NMFS) [26, 27]. For the method, a desingularization technique is used to regularize 

the singularity of the fundamental solution, so the source points can be located at the real 

boundary, and the fictitious boundary is not necessary. Nevertheless, the boundary nodes should 

be distributed regularly, an available desingularization for arbitrary problems is still a problem, 

and the tedious desingularization procedure is somewhat at the expense of its simplicity. 

The singular boundary method (SBM) [28-32] uses an origin intensity factor (OIF) to 

substitute the singularity. In this way, the source points can be located on the physical boundary, 

and the fictitious boundary is thus not necessary. But, the method should decide the OIFs which 

is not trivial, and the given problem should be solved twice. 

Moreover, a boundary distributed source (BDS) method [33] should be noticed too. For the 



BDS method, the source points may not be offset, but should be distributed. The singular 

fundamental solution is integrated firstly over the distributed source which covering the source 

points. If the distributed source with a simple shape, such as a circle, then the singular integrals 

could be evaluated analytically. However, the singular integrals are not always analytical, and 

the solution is inaccurate near the boundary regions. An improved BDS method [34, 35] uses a 

boundary-integral technique to determine the singular integrals. But, it is necessary to directly 

calculate the singular integrals, correspondingly. 

In some sense the above mentioned efforts overcome the old challenge of the MFS at a price 

of creating more or less new problems. From our understanding, the tenacious barrier of the 

MFS is still open for efforts. So, we will try to give another option for the issue of the MFS. 

2. Generalized fundamental solution approximation 

The MFS uses a fundamental solution approximation (FSA), which was first proposed by 

Kupradze and Aleksidze [36-38], as the basis function for solving homogeneous equations. It 

is notable that, another independent work with the same concept was also proposed by Wen [39] 

which is called the point intensity method (PIM). Let  u x  be a field variable in a given 

domain   bounded by . The basic ideas of FSA is to express  u x  as a linear combination 

of fundamental solutions: 
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where      , ,J J Jr   x s x s is the fundamental solution, 
2J Jr  x s  the Euclidean 

norm between the measuring point x  and the source point 
Js , 

Ja  the intensity coefficient 

at
Js , and   U . 

   Being different from the FSA, the generalized fundamental solution approximation (GFSA) 

uses a bilinear combination of fundamental solutions to approximate  u x as follows: 
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where  ps   is the intervention-point diffuse (IPD) of the source node 
Jx [40], pN  its 

point number, 
J  the diffuse domain centered at 

Jx  which is sheared off by the boundary 

 , as shown in Fig.1 (a). Note that we use a superscript “J” in the function   to denote a 

correspondence with the source node
Jx . 



 

Fig. 1. Schematics of the GFSA: (a) Regional IPD; (b) Linear IPD. 

Note that the diffuse domain 
J  could be arbitrary selected outside the domain. For 

efficiency, we can also linearly diffuse the IPD, such as  p Jns , as shown in Fig. 1(b) where 

Jn  is the outward normal at
Jx , pd  is the offset of an intervention point ps , as 

2p p Jd  s x ,  1,2, , pp N L .                  (3) 

In this paper, a diffuse scheme to choose  p Jns  is our focus. The appropriate choice of 

pN (5 is suggested) and offsets  pd  is necessary. Tentatively, we choose pN = 5, and 

   0.3, 0.5, 0.7, 0.9, 1.2pd R  ,   for an outer boundary,         (4) 

   0.1, 0.3, 0.5, 0.7, 0.9pd R  ,   for an inner boundary,         (5) 

whereR  is defined as the normalized parameter for the boundary dimension  
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in which the subscript “i” is the component signal of the coordinates, D is the number of 

dimensions. By default, the selection of  pd  in Eqs. (4) and (5) will be applied in the later 

section of numerical tests. 

   Obviously, when pN =1, the GFSA is equivalent to the FSA. In other words, the GFSA is 

a generalized FSA. So we use a term of “generalized” to denote the novel approximation and 

the corresponding numerical method. Furthermore, the concept of the GMFS just fit the spirit 

of a saying, “Don't put all your eggs in the same basket”. 

3. Generalized method of fundamental solutions (GMFS) 

Consider the following Laplace equation in a 2D domain  bounded by  : 



 2 0u x ,   x ,                           (7) 

subject to boundary conditions (BCs): 
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where 
u is the Dirichlet boundary, 

t  the Neumann boundary, 
u t   U , 

  u tI , n the outward normal of the boundary, and u  and q are the known functions 

on the boundary. The fundamental solution   for the Laplacian is given by: 
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Fig. 2. Schematics of the GMFS and the MFS: (a) GMFS; (b) MFS. 

The configuration of IPD (source-point cloud) of the GMFS is shown in Fig. 2(a). In 

contrast, the sources of the MFS are shown in Fig. 2(b). The target node 
Ix  is indexed for 

constructing the discrete system equations. We will first try to use the variation method. The 

functional variation is given as 
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Let 
2 0  , then the BCs given by Eqs. (8) and (9) are satisfied. Then a GMFS1-type system 

of equations is obtained 

K a F                                 (12) 

whereK  is the whole “stiffness” matrix,F  the whole “load” matrix, and  1 2, , ,
T

Na a aa L  

the unknown intensity coefficients introduced in Eq. (2). Furthermore,  
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On the other hands, we can also directly solve the potential problems using the collocation 

method, and then a GMFS2-type system equation is obtained 

K a F                                 (16) 

where the “stiffness” matrix K and the “load” matrix F  are defined in Eqs. (14) and (15). 

   From Eq. (12) or (16), the unknown a  can be obtained. Then using the GFSA defined by 

Eq. (2), the potential field u  for all x  can be attained. 

4. Numerical tests 

In this section, several numerical examples of 2D potential problems are presented to 

demonstrate the effectiveness of the proposed GMFS. In this section, the traditional MFS will 

be only considered for comparative analysis. In all of the examples in this section, the units of 

geometrical dimensions and field variables are assumed to be non-dimensional. 

4.1 A circular domain with Dirichlet BCs 

We first consider the Laplace equation in a circular domain with radius 1 and center at origin, 

and Dirichlet BCs is imposed on the boundary based to the following analytical solution: 

         , cos cosh sin sinhu x y x y x y  .                 (17) 

Initially, we apply the GMFS to give a tentative solution for this problem. For numerical 

implementation, we use only 20 boundary nodes and adopt two nodal distribution scheme, 

uniformly distributed nodes and random nodes, as shown in Fig. 3. Then we solve it by the 

GMFS1 method with the given 20 boundary nodes, and show numerical results in Fig. 4. We 

observe that, the GMFS method can get good solution with a small number of boundary nodes. 



  

Fig. 3. Nodal distribution for the circular domain problem: (a) regular nodes; (b) random nodes.  

     

Fig. 4. Solution results on domain for the circular domain problem: (a) numerical results; (b) analytical results. 

 

Fig. 5. Comparing numerical solutions on an analytical path with a bad offset for the circular domain problem. 

  Next, we test the numerical stability of the GMFS. In tentative computation, the MFS is 

inaccurate when the offset is near to the boundary. Then we use d=0.07R  for the MFS. And 

we embed the bad offset in the offsets of the GMFS, as {dp}={0.07, 0.5, 0.7, 0.9, 1.2}R . 



Furthermore, we solve the problem with the 20 uniformly distributed boundary nodes, and give 

the results on a circular analytical path of P = 0.99R with 80 measuring points, as shown in Fig. 

5. It can be seen that the MFS has failed to achieve reasonable solution, but the GMFS is still 

stable, when the bad offset is used in both. 

Finally, we test the numerical convergence of the GMFS. We choose a circle of P = 0.5R 

as the analytical path, and use 80 test points to evaluate the numerical errors. An average relative 

error is defined as 
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where m is the number of the test points. Let 
num

k  and 
ana

k  denote the numerical and  

analytical solution at the k-th test point, respectively. To compare the accuracy, we select the 

average mid-value of the GMFS’ offsets {dp} as the MFS’ offset d; i.e., 

    max min 2p pd d d  . 

In the comparison test, both the uniform-node scheme and random-node scheme are 

considered, and the results are shown in Fig. 6. It can be seen that the GMFS is highly accurate 

in this problem. But, the GMFS doesn’t show a distinct advantage in terms of accuracy and 

convergence when comparing to the MFS. In particular, GMFS1 is less accurate using random-

node scheme. It is easy to see that, in this example, the MFS gets a good offset value, but the 

values of the GMFS’s offsets are not so good. 

 

Fig. 6. Comparing numerical errors for the circular domain problem. 

4.2 An epitrochoid domain with mixed BCs 

Next, the Laplace equation for an epitrochoid domain with mixed Dirichlet and Neumann 



BCs is considered. The parametric equation of epitrochoid boundary is defined as 

       
2

1 2 cosa b a b a b                          (19) 

where the shape parameters are taken as a=3, b=1. The upper boundary of 0      is 

imposed as Dirichlet condition while  < <2  is imposed as Neumann condition. The 

analytical solution is given by: 

     , exp cos ,         ( , ) . u x y x y x y                    (20) 

 

Fig. 7. Nodal distribution for the epitrochoid domain problem. 

Initially, we will use the GMFS with 30 boundary nodes to give a tentative solution. The 

boundary nodes are shown in Fig. 7, and the numerical and analytical results are shown in Fig. 

8. Obviously, the GMFS method can give quite reasonable solution with small number of 

boundary nodes. 

    

Fig. 8. Solution results on domain for the epitrochoid domain problem: (a) numerical results; (b) analytical 

results. 

Next, we test the numerical stability. Since the condition number of the GMFS’ system 

matrix is mainly effected by the max value of its offsets, and then we take the max value dm as 



the MFS’ offset, and give a comparing solution. Moreover, since the condition number is 

fluctuating with the number of the boundary nodes N, so N = 100 and N = 200 are both 

considered in the comparing solution. The results are shown in Fig. 9. We observe that the 

GMFS always attains a better condition number comparing with the MFS, while the max offset 

value is used in both methods. Therefore, we can say that the GMFS is more stable than the 

MFS in terms of “condition number”. In addition, we find an interesting phenomenon: 

GMFS1’s condition number is better than that of GMFS2’s for denser nodes (N=200), but it is 

opposite for sparser nodes (N=100). This is an indication that the GMFS1 is preferable, but not 

always. 

 

Fig. 9. Comparing condition numbers of the system matrix for the epitrochoid domain problem. 

 

Fig. 10. Comparing numerical errors for the epitrochoid domain problem. 

Additionally, we test the numerical convergence. We choose an analytical path as P = 0.9

 , and use 80 test points to evaluate the numerical errors. Similarly, we select the average mid 



value of the GMFS’ offsets {dp} as the MFS’ offset. The results are shown in Fig. 10. It can be 

seen that, the GMFS could be highly accurate, and the GMFS2 is clearly superior than the 

GMFS1. Based on this and previous tests, GMFS2 is the method of choice. Moreover, the MFS 

with an appropriate offset shows good accuracy and convergence, but, its instability is evidently 

observed with N > 300 in this test. 

Finally, we test the effectiveness of the diffuse density. For a stationary size /range of the 

GMFS’ offsets, choosing as (0.1~0.5), we use an interval hp to diffuse, as {dp}=(0.1: hp: 0.5)R . 

We choose hp =0.1, 0.05, 0.01, 0.005, 0.001, which denotes the diffuse density. The numerical 

errors are shown in Fig. 11, on the analytical path P = 0.9  with the 80 test points. Number of 

the boundary nodes N = 60 and 120 are both considered in the comparing solution. It shows 

that the GMFS has a diffuse-density convergence. 

 

Fig. 11. Numerical errors with the diffuse interval for the epitrochoid domain problem. 

4.3 An amoeba-like domain with multi boundaries and mixed BCs 

An amoeba-like domain with multi-boundaries and mixed Dirichlet and Neumann boundary 

conditions is considered. The inner boundary is a circle with r=0.2 and center (x, y) = (0.5,0.5). 

The circular boundary is imposed with Dirichlet condition. The outer amoeba-like boundary is 

imposed Neumann condition. The parametric equation of the amoeba-like boundary is defined 

as follows: 

           2 2exp sin sin 2 exp cos cos 2       ,              (21) 

which is shown in Fig. 12. The analytical solution on the domain is given as 

     
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Fig. 12. Nodal distribution for the amoeba-like domain problem. 

Initially, we use the GMFS method with 30 boundary nodes to give a tentative solution for 

this problem. The distribution of boundary nodes is shown in Fig. 12, and the numerical and 

analytical results on the domain are shown in Fig.13. Obviously, the GMFS method can give 

quite reasonable solution with small number of boundary nodes. 

   

Fig. 13. Solution results on domain for the amoeba-like domain problem: (a) numerical results; (b) analytical 

results. 

Next, we will test the numerical stability. For the MFS, we use a bad outset value of d=0.001, 

then embed the bad value in the GMFS’ offsets. We solve the problem with the initial 30 

boundary nodes, and give the results on an analytical path of P=0.5   with 80 measuring points, 

as shown in Fig. 14. It can be seen that the MFS is obviously inaccurate, but the GMFS is still 

accurate. This further illustrates that the GMFS is more stable than the MFS. 

Finally, we will test the numerical convergence. We choice an analytical path as P=0.5  , 

and use 80 measuring points to evaluate the numerical errors. Similarly, we select the average 

mid value of the GMFS’ offsets as the MFS’ offset. The results are shown in Fig. 15. It can be 

seen that, the GMFS2 shows best convergence, but GMFS1 shows rather lower convergence. 



 

Fig. 14. Comparing numerical solutions with a bad offset for the amoeba-like domain problem.  

 

Fig. 15. Comparing numerical errors for the amoeba-like domain problem. 

4.4  A biharmonic problem with Robin BCs 

Consider a biharmonic problem as an extended potential problem, which is defined as 

   4 2 2 0u u    x ,     x ,                (23) 

subject to the Robin BCs: 

   u ux x ,     2u Q x x ,     x ,            (24) 

or 

   u ux x ,     ,n
u qx x ,     x ,            (25) 

and the field is defined in a L-shaped domain as shown in Fig. 16. The boundary condition u  

is given as: 



  2 3,u x y x y                           (26) 

 

Fig. 16. Nodal distribution for the biharmonic problem. 

 

Fig. 17. Solutions on the analytical path for the biharmonic problem. 

and 
2Q u  , or ,nq u  is correspondingly used. Note that the exact solution is not available 

in this example. For solving the problem, some special technique should be adopted, detailed 

in [19, 41]. Based on the Maximum Principle [19, 41-43], the maximum error will occur on the 

boundary. Hence, we can measure the error on the boundary where the boundary condition is 

known. We solve the problem with 40 boundary nodes, as shown in Fig. 16, and only the 

GFMS2 is used. We choose an analytical path “stepping perimeter” as that, beginning at the 

left-bottom-corner point and stepping forward to a counterclockwise direction on the boundary. 

Then we give the numerical results with 160 measuring points in the Fig. 17 ({dp}=(0.02~0.1)

R , Eq.(24) BCs). 

   Next, we give a comparing of numerical errors for the GMFS and the MFS. Using the BCs 



by Eq. (24), and a 0.01 interval for {dp} diffused, and taking the mid value of {dp} as the offset 

for the MFS, then the results are shown in Tab. 1. Using the BCs by Eq.(25), and a 0.001 interval 

for {dp} diffused, and the mid value of {dp} for the MFS, then the results are shown in Tab. 2. 

Evidently, the GMFS is stable and accurate, but the MFS is unstable and less accurate. In 

addition, we noticed that the GMFS showed a convergence with increasing range (diffuse-size 

convergence) in this computation. This is another advantage for the GMFS. 

Tab. 1. Comparing of numerical errors (Er) for GMFS and MFS: Eq.(24) BCs 

Range of {dp} GMFS MFS 

(0.01~0.1)R  1.0777e-04 1.1608e-04 

(0.01~0.2)R  9.6753e-05 1.0908e-04 

(0.01~0.3)R  8.9717e-05 1.0606e-04 

(0.01~0.4)R  8.4983e-05 collapsed (warning) 

(0.01~0.5)R  8.1330e-05 9.7136e-04 

 

Tab. 2. Comparing of numerical errors (Er) for GMFS and MFS: Eq.(25) BCs 

Range of {dp} GMFS MFS 

(0.001~0.1)R  1.4784e-04 4.6663e-04 

(0.001~0.2)R  1.2072e-04 1.5907e-04 

(0.001~0.3)R  1.0564e-04 2.2991e-04 

(0.001~0.4)R  9.6537e-05 1.0964 (warning) 

(0.001~0.5)R  9.0233e-05 6.3016e-04 

 

5. Conclusions 

In our opinion, the real problem of the MFS is that: the success and failure for the solution 

are entirely depending on a single offset for a target node. That will put the method in an 

unstable state, and even in a crisis of collapse. The GMFS uses the GFSA to approximate, which 

blasts the source node into an intervention-point diffuse (IPD). Though the offset concept still 

exists, the solution performance of the GMFS is decided by a series of offsets, rather than the 

single one. That helps the GMFS being more stable and better convergence, and supports the 

method showing the diffuse-density convergence and diffuse-size convergence. Moreover, this 

improvement is simple and cheap, and no other problems apparently surfacing. Theoretically, 

there are few barriers for the GMFS to be applied to other common boundary value problems, 

only if the fundamental solution is available. 

There are 2 algorithms presented for the GMFS, GMFS1 and GMFS2. We had expected 

that the GMFS1 to be more stable, but we do have the numerical result to support such 



expectation. Hence, we would like to recommend the GMFS2 as the standard algorithm here. 

But, the further examination of the GMFS1 is still open. Moreover, we have given a preliminary 

standard offsets for the GMFS, as in the Eqs. (4) and (5). But, it should be tested and corrected 

further. In addition, a regional IPD, as shown in Fig. 1(a), is another option for the GMFS, its 

effect is also a topic for further research. 
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