Supplement to Bayesian mode and maximum estimation and accelerated rates of contraction

WILLIAM WEIMIN YOO*1

¹Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands E-mail: yooweimin0203@gmail.com and

SUBHASHIS GHOSAL²

²Department of Statistics, North Carolina State University, 4276 SAS Hall, 2311 Stinson Drive, Raleigh, North Carolina 27695-8203, USA E-mail: sghosal@ncsu.edu

The supplementary file contains detailed proofs of Corollary 4.2, Proposition 5.1 and Corollary 8.4. in the main paper Yoo and Ghosal [4].

Proof of Corollary 4.2. From the proof of Theorem 4.1 before, we know that $\boldsymbol{\mu} - \boldsymbol{\mu}_0 = \boldsymbol{H} f_0(\boldsymbol{\mu}^*)^{-1} (\nabla f_0(\boldsymbol{\mu}) - \nabla f_0(\boldsymbol{\mu}_0))$. Noting that $\nabla f_0(\boldsymbol{\mu}_0) = \nabla f(\boldsymbol{\mu}) = \boldsymbol{0}$ by Assumption 2, we can use the fact $\|\boldsymbol{A}\boldsymbol{b}\|^2 \ge \lambda_{\min}(\boldsymbol{A}^T\boldsymbol{A})\|\boldsymbol{b}\|^2$ to write

$$\begin{split} \|\boldsymbol{\mu} - \boldsymbol{\mu}_0\| &\geq \sqrt{\lambda_{\max}^{-2} \{ \boldsymbol{H} f_0(\boldsymbol{\mu}^*) \} \| \nabla f_0(\boldsymbol{\mu}) - \nabla f_0(\boldsymbol{\mu}_0) \|} \\ &\geq \lambda_1^{-1} \| \nabla f_0(\boldsymbol{\mu}) - \nabla f(\boldsymbol{\mu}) \|, \end{split}$$

by posterior consistency of μ^* as established in the proof of Theorem 5.2. Let $\delta_n \to 0$ be some sequence. Then for some small enough constant h > 0 to be determined below, we have

$$\Pi(\|\boldsymbol{\mu}-\boldsymbol{\mu}_0\| \le h\epsilon_n | \boldsymbol{Y}) \le \Pi(\|\nabla f_0(\boldsymbol{\mu}) - \nabla f(\boldsymbol{\mu})\| \le \lambda_1 h\epsilon_n, \|\boldsymbol{\mu}-\boldsymbol{\mu}_0\| \le \delta_n | \boldsymbol{Y}) + \Pi(\|\boldsymbol{\mu}-\boldsymbol{\mu}_0\| > \delta_n | \boldsymbol{Y}).$$

Since the posterior of $\boldsymbol{\mu}$ is consistent, the second term is $o_{P_0}(1)$. Using the definition of continuity of $\boldsymbol{x} \mapsto \|\nabla f_0(\boldsymbol{x}) - \nabla f(\boldsymbol{x})\|$ at $\boldsymbol{\mu}_0$ and by taking *n* large enough (so that δ_n is small enough), we see that

$$\Pi(\|\boldsymbol{\mu}-\boldsymbol{\mu}_0\| \le h\epsilon_n|\boldsymbol{Y}) \le \Pi[\|\nabla f_0(\boldsymbol{\mu}_0) - \nabla f(\boldsymbol{\mu}_0)\| \le 2\lambda_1 h\epsilon_n|\boldsymbol{Y}] + o_{P_0}(1).$$

To obtain the same rate as the upper bound presented in (4.3) of Theorem 4.1, we then need the lower bound point-wise version of Theorem 9.1, namely for some constant

W. W. Yoo and S. Ghosal

 $m_0 > 0$ and for any $\boldsymbol{x} \in [0, 1]^d$,

$$\sup_{\|f_0\|_{\boldsymbol{\alpha},\infty} \le R} \mathbb{E}_0 \Pi \left(|D^{\boldsymbol{r}} f(\boldsymbol{x}) - D^{\boldsymbol{r}} f_0(\boldsymbol{x})| \le m_0 n^{-\alpha^* \{1 - \sum_{k=1}^d (r_k/\alpha_k)\}/(2\alpha^* + d)} \middle| \boldsymbol{Y} \right) \to 0.$$
(1)

One can proceed to establish such lower bound directly since we have analytical expression for the Gaussian posterior distribution. By taking $\mathbf{r} = \mathbf{e}_k$ and $h \leq m_0/(2\lambda_1)$, we conclude that $\epsilon_n^2 = \sum_{k=1}^d n^{-2\alpha^*(1-\alpha_k^{-1})/(2\alpha^*+d)} \geq \max_{1\leq k\leq d} n^{-2\alpha^*(1-\alpha_k^{-1})/(2\alpha^*+d)}$. As a result, if one adds an extra lower bound assumption (4.5), we have the lower bound:

$$\mathbb{E}_0 \Pi \left(\left\| \boldsymbol{\mu} - \boldsymbol{\mu}_0 \right\| \ge h n^{-\alpha^* \{ 1 - (\min_{1 \le k \le d} \alpha_k)^{-1} \} / (2\alpha^* + d)} \right| \boldsymbol{Y} \right) \to 1,$$

for a small enough constant h > 0. For the posterior lower bound of M, let μ^* be some point in between μ and μ_0 . We Taylor expand f_0 around μ_0 , add and subtract M and use the reverse triangle inequality to write

$$\begin{split} |M_0 - M| &\geq |f_0(\boldsymbol{\mu}) - f(\boldsymbol{\mu})| + 0.5(\boldsymbol{\mu} - \boldsymbol{\mu}_0)^T \boldsymbol{H} f_0(\boldsymbol{\mu}^*)(\boldsymbol{\mu} - \boldsymbol{\mu}_0) \\ &\geq |f_0(\boldsymbol{\mu}) - f(\boldsymbol{\mu})| - 0.5\lambda_1 \|\boldsymbol{\mu} - \boldsymbol{\mu}_0\|^2, \end{split}$$

by the extra assumption and posterior consistency of $\boldsymbol{\mu}^*$. Choose $m_n = \sqrt{\log \log n}$ and define the set $\mathcal{T} := \{ \|\boldsymbol{\mu} - \boldsymbol{\mu}_0\| \leq m_n \epsilon_n \}$. Then for $\omega_n := n^{-\alpha^*/(2\alpha^* + d)}$ and a small enough constant h > 0 to be determined below,

$$\begin{aligned} \Pi(|M_0 - M| \le h\omega_n | \mathbf{Y}) \le \Pi\left(|f_0(\boldsymbol{\mu}) - f(\boldsymbol{\mu})| - 0.5\lambda_1 \| \boldsymbol{\mu} - \boldsymbol{\mu}_0 \|^2 \le h\omega_n, \mathcal{T} | \mathbf{Y} \right) \\ + \Pi(\mathcal{T}^c | \mathbf{Y}) \\ \le \Pi(|f_0(\boldsymbol{\mu}) - f(\boldsymbol{\mu})| \le h\omega_n + 0.5\lambda_1 m_n^2 \epsilon_n^2 | \mathbf{Y}) + o_{P_0}(1), \end{aligned}$$

where the last term follows from (4.3) of Theorem 4.1. Using the continuity argument as before for $\boldsymbol{x} \mapsto |f_0(\boldsymbol{x}) - f(\boldsymbol{x})|$ and the fact that $h\omega_n \gg \lambda_1 m_n^2 \epsilon_n^2$ when $\min_{1 \le k \le d} \alpha_k > 2$, we can further bound the right hand side above by

$$\Pi(|f_0(\boldsymbol{\mu}) - f(\boldsymbol{\mu})| \le 2h\omega_n |\boldsymbol{Y}) + o_{P_0}(1),$$

for large enough n. By setting $\mathbf{r} = \mathbf{0}$ in (1) above, we conclude that the first term is $o_{P_0}(1)$ when $h \leq m_0/2$ and the second posterior statement on M is established. \Box

Proof of Proposition 5.1. By the triangle inequality, $|\tilde{\sigma}_*^2 - \sigma_0^2| \leq |\tilde{\sigma}_1^2 - \sigma_0^2| + |\tilde{\sigma}_2^2 - \sigma_0^2|$. By (a) of Proposition 9.5, the first term is $O_{P_0}(\max\{n^{-1/2}, n^{-2\alpha^*/(2\alpha^*+d)}\})$. To bound the second term, let $\boldsymbol{U} = (\boldsymbol{Z}\boldsymbol{V}\boldsymbol{Z}^T + \boldsymbol{I}_n)^{-1}$. By equation (33) of page 355 in Searle [2],

$$|\mathrm{E}(\widetilde{\sigma}_{2}^{2}|\boldsymbol{\theta}_{0}) - \sigma_{0}^{2}| = |n^{-1}\sigma_{0}^{2}\mathrm{tr}(\boldsymbol{U}) - \sigma_{0}^{2}| + n^{-1}(\boldsymbol{F}_{0} - \boldsymbol{Z}\boldsymbol{\xi})^{T}\boldsymbol{U}(\boldsymbol{F}_{0} - \boldsymbol{Z}\boldsymbol{\xi})$$

$$\lesssim n^{-1}[\mathrm{tr}(\boldsymbol{I}_{n} - \boldsymbol{U}) + (\boldsymbol{F}_{0} - \boldsymbol{Z}\boldsymbol{\theta}_{0})^{T}\boldsymbol{U}(\boldsymbol{F}_{0} - \boldsymbol{Z}\boldsymbol{\theta}_{0}) + (\boldsymbol{Z}\boldsymbol{\theta}_{0} - \boldsymbol{Z}\boldsymbol{\xi})^{T}\boldsymbol{U}(\boldsymbol{Z}\boldsymbol{\theta}_{0} - \boldsymbol{Z}\boldsymbol{\xi})], \qquad (2)$$

where we have used $(\boldsymbol{x} + \boldsymbol{y})^T \boldsymbol{G}(\boldsymbol{x} + \boldsymbol{y}) \leq 2\boldsymbol{x}^T \boldsymbol{G} \boldsymbol{x} + 2\boldsymbol{y}^T \boldsymbol{G} \boldsymbol{y}$ for any matrix $\boldsymbol{G} \geq \boldsymbol{0}$ (Cauchy-Schwarz and the geometric-arithmetic inequalities). Let $\boldsymbol{P}_{\boldsymbol{Z}} = \boldsymbol{Z}(\boldsymbol{Z}^T \boldsymbol{Z})^{-1} \boldsymbol{Z}^T$ be the orthogonal projection matrix. For matrices $\boldsymbol{Q}, \boldsymbol{C}, \boldsymbol{T}, \boldsymbol{W}$, the binomial inverse theorem (see Theorem 18.2.8 of Harville [1]) says that

$$(Q + CTW)^{-1} = Q^{-1} - Q^{-1}C(T^{-1} + WQ^{-1}C)^{-1}WQ^{-1}.$$

Applying the above twice to \boldsymbol{U} yields

$$(ZVZ^{T} + I_{n})^{-1} = I_{n} - Z(Z^{T}Z + V^{-1})^{-1}Z^{T} = I_{n} - P_{Z} + M,$$
(3)

where $\boldsymbol{M} = \boldsymbol{Z}(\boldsymbol{Z}^T\boldsymbol{Z})^{-1}[\boldsymbol{V} + (\boldsymbol{Z}^T\boldsymbol{Z})^{-1}]^{-1}(\boldsymbol{Z}^T\boldsymbol{Z})^{-1}\boldsymbol{Z}^T \geq \boldsymbol{0}$. Hence the first term in (2) is $n^{-1}\text{tr}(\boldsymbol{P}_{\boldsymbol{Z}} - \boldsymbol{M}) \leq n^{-1}\text{tr}(\boldsymbol{P}_{\boldsymbol{Z}}) = (W+1)/n$. Note that $\boldsymbol{U} \leq \boldsymbol{I}_n$ since $\boldsymbol{Z}\boldsymbol{V}\boldsymbol{Z}^T \geq \boldsymbol{0}$, and the second term in (2) is bounded by

$$n^{-1} \| \boldsymbol{U} \|_{(2,2)} \| \boldsymbol{F}_0 - \boldsymbol{Z} \boldsymbol{\theta}_0 \|^2 \le \| \boldsymbol{F}_0 - \boldsymbol{Z} \boldsymbol{\theta}_0 \|_{\infty}^2 \lesssim \sum_{k=1}^d \delta_{n,k}^{2\alpha_k},$$

in view of (8.3). By (3) and $(\boldsymbol{I} - \boldsymbol{P}_{\boldsymbol{Z}})\boldsymbol{Z} = \boldsymbol{0}$, the last term in (2) is $n^{-1}(\boldsymbol{\theta}_0 - \boldsymbol{\xi})^T [\boldsymbol{V} + (\boldsymbol{Z}^T \boldsymbol{Z})^{-1}]^{-1}(\boldsymbol{\theta}_0 - \boldsymbol{\xi}) \leq n^{-1} \sum_{j=0}^W \boldsymbol{\delta}_n^{\boldsymbol{i}_j}(\boldsymbol{\theta}_{0,\boldsymbol{i}_j} - \boldsymbol{\xi}_{\boldsymbol{i}_j})^2 = O_{P_0}(n^{-1})$, since $\delta_{n,k} = o(1), k = 1, \ldots, d, \ \theta_{0,\boldsymbol{i}_j} = O_{P_0}(1)$ and $\boldsymbol{\xi}_{\boldsymbol{i}_j} = O(1)$ by assumption on the prior for any $0 \leq j \leq W$. Combining the three bounds established into (2), we obtain $|\mathbf{E}(\tilde{\sigma}_2^2|\boldsymbol{\theta}_0) - \sigma_0^2| \leq n^{-1} + \sum_{k=1}^d \delta_{n,k}^{2\alpha_k}$.

We write $n\widetilde{\sigma}_2^2 = (\mathbf{F}_0 - \mathbf{Z}\boldsymbol{\xi})^T \mathbf{U}(\mathbf{F}_0 - \mathbf{Z}\boldsymbol{\xi}) + 2(\mathbf{F}_0 - \mathbf{Z}\boldsymbol{\xi})^T \mathbf{U}\boldsymbol{\varepsilon} + \boldsymbol{\varepsilon}^T \mathbf{U}\boldsymbol{\varepsilon}$ by substituting $\mathbf{Y} = \mathbf{F}_0 + \boldsymbol{\varepsilon}$. Observe that $\boldsymbol{\varepsilon}$ and $\boldsymbol{\theta}_0$ are independent by definition. Using the inequality $\operatorname{Var}(A_1 + A_2) \leq 2\operatorname{Var}(A_1) + 2\operatorname{Var}(A_2)$ (from Cauchy-Schwarz and geometric-arithmetic inequalities), we conclude that $\operatorname{Var}(\widetilde{\sigma}_2^2|\boldsymbol{\theta}_0)$ is bounded up to a constant multiple by

$$n^{-2}[(\boldsymbol{F}_0 - \boldsymbol{Z}\boldsymbol{\theta}_0)^T \boldsymbol{U}^2(\boldsymbol{F}_0 - \boldsymbol{Z}\boldsymbol{\theta}_0) + (\boldsymbol{Z}\boldsymbol{\theta}_0 - \boldsymbol{Z}\boldsymbol{\xi})^T \boldsymbol{U}^2(\boldsymbol{Z}\boldsymbol{\theta}_0 - \boldsymbol{Z}\boldsymbol{\xi}) + \operatorname{Var}(\boldsymbol{\varepsilon}^T \boldsymbol{U}\boldsymbol{\varepsilon})].$$
(4)

In view of (8.3) and $\boldsymbol{U} \leq \boldsymbol{I}_n$, the first term is bounded by $n^{-2} \|\boldsymbol{U}\|_{(2,2)}^2 \|\boldsymbol{F}_0 - \boldsymbol{Z}\boldsymbol{\theta}_0\|^2 \leq n^{-1} \|\boldsymbol{F}_0 - \boldsymbol{Z}\boldsymbol{\theta}_0\|_{\infty}^2 \lesssim n^{-1} \sum_{k=1}^d \delta_{n,k}^{2\alpha_k}$. Observe that since $\boldsymbol{V} \geq \boldsymbol{0}$,

$$Z^{T}M^{2}Z = [V + (Z^{T}Z)^{-1}]^{-1}(Z^{T}Z)^{-1}[V + (Z^{T}Z)^{-1}]^{-1}$$

$$\leq [V + (Z^{T}Z)^{-1}]^{-1} \leq Z^{T}Z.$$
(5)

Using (3), idempotency of $I_n - P_Z$ and $(I_n - P_Z)Z = 0$, the second term in (4) is $n^{-2}(\theta_0 - \boldsymbol{\xi})^T Z^T (I_n - P_Z + M)^2 Z(\theta_0 - \boldsymbol{\xi})$, which is

$$n^{-2}(\boldsymbol{\theta}_0 - \boldsymbol{\xi})^T \boldsymbol{Z}^T \boldsymbol{M}^2 \boldsymbol{Z}(\boldsymbol{\theta}_0 - \boldsymbol{\xi}) \le n^{-2}(\boldsymbol{\theta}_0 - \boldsymbol{\xi})^T \boldsymbol{Z}^T \boldsymbol{Z}(\boldsymbol{\theta}_0 - \boldsymbol{\xi}),$$
(6)

in view of (5). By (8.4) in the proof of Lemma 8.1, we can write $\mathbf{Z}^T \mathbf{Z} = n_2 \Delta \mathbf{A} \Delta$ where $\mathbf{\Delta} = \text{diag}\{\boldsymbol{\delta}_n^{\boldsymbol{i}_j}: j = 0, \dots, W\}$ and $\mathbf{A} \to \mathbb{E}\mathbb{U}\mathbb{U}^T$ in probability entry-wise, where $\mathbb{U} = (\mathbf{U}^{\boldsymbol{i}_0}, \dots, \mathbf{U}^{\boldsymbol{i}_W})^T$ for $\mathbf{U} = (U_1, \dots, U_d)^T \sim \text{Uniform}[-1, 1]^d$. This gives $\|\mathbf{A}\|_{(2,2)} \to$ $\|\mathbb{EUU}^T\|_{(2,2)}$ in probability. The entries of \mathbb{EUU}^T are mixed moments of $\mathrm{Uniform}[-1,1]$ and hence the matrix is nonsingular with $\|\mathbb{EUU}^T\|_{(2,2)} < \infty$. Since $\|\mathbf{\Delta}\|_{(2,2)} = 1$ and $n_2 \leq n$, the right of (6) is bounded by

$$n_2 n^{-2} \|\boldsymbol{A}\|_{(2,2)} \|\boldsymbol{\Delta}\|_{(2,2)}^2 \|\boldsymbol{\theta}_0 - \boldsymbol{\xi}\|^2 = O_{P_0}(n^{-1}),$$

because $\|\boldsymbol{\theta}_0 - \boldsymbol{\xi}\| \leq \|\boldsymbol{\theta}_0\| + \|\boldsymbol{\xi}\| = O_{P_0}(1)$. By Lemma A.10 of Yoo and Ghosal [3] with $\|\boldsymbol{U}\|_{(2,2)} \leq 1$ and Gaussian errors by Assumption 1, the last term in (4) is O(1/n). Combining this with the three bounds established above, we obtain $\operatorname{Var}(\tilde{\sigma}_2^2|\boldsymbol{\theta}_0) = O_{P_0}(1/n)$. Therefore, the mean square error is $\operatorname{E}_0(\tilde{\sigma}_2^2 - \sigma_0^2)^2 = \operatorname{E}\{\operatorname{E}[(\tilde{\sigma}_2^2 - \sigma_0^2)^2|\boldsymbol{\theta}_0]\} \lesssim n^{-1} + \sum_{k=1}^d \delta_{n,k}^{4\alpha_k}$.

To prove (b), observe that $E(\sigma^2|\mathbf{Y}) \leq n^{-1} + \tilde{\sigma}_*^2$ and $Var(\sigma^2|\mathbf{Y}) \leq n^{-3} + n^{-1}\tilde{\sigma}_*^4$. Therefore by Markov's inequality, the second stage posterior of σ^2 concentrates around the second stage empirical Bayes estimator $\tilde{\sigma}_*^2$, and thus (b) will inherit the rate from (a) as established above.

Proof of Corollary 8.4. By (8.7), we have

$$\|D^{\boldsymbol{r}}f_{\boldsymbol{\theta}} - D^{\boldsymbol{r}}f_{\boldsymbol{\theta}_{0}}\|_{\infty} = \sup_{\boldsymbol{x}\in\mathcal{Q}} |D^{\boldsymbol{r}}f_{\boldsymbol{\theta}}(\boldsymbol{x}) - D^{\boldsymbol{r}}f_{\boldsymbol{\theta}_{0}}(\boldsymbol{x})|$$
$$\lesssim |\theta_{\boldsymbol{r}} - \theta_{0,\boldsymbol{r}}| + \sum_{\boldsymbol{r}\leq \boldsymbol{i}\leq \boldsymbol{m}_{\alpha}, \boldsymbol{i}\neq \boldsymbol{r}} |\theta_{\boldsymbol{i}} - \theta_{0,\boldsymbol{i}}|\boldsymbol{\delta}_{n}^{\boldsymbol{i}-\boldsymbol{r}}.$$
(7)

Hence, the upper bound (8.8) is applicable and uniformly over $||f_0||_{\boldsymbol{\alpha},\infty} \leq R$, we will have $\mathcal{E}_0 \sup_{\sigma^2 \in \mathcal{K}_n} \mathcal{E}[||D^r f_{\boldsymbol{\theta}} - D^r f_{\boldsymbol{\theta}_0}||_{\infty}^2 | \mathbf{Y}, \sigma^2] \lesssim \delta_n^{-2r} (n^{-1} + \sum_{k=1}^d \delta_{n,k}^{2\alpha_k})$. Moreover, since the bound in (8.9) is uniform for all $\mathbf{x} \in \mathcal{Q}$, this implies that $\mathcal{E}_0 ||D^r f_{\boldsymbol{\theta}_0} - D^r f_{0,\mathbf{z}}||_{\infty}^2 \lesssim \sum_{k=1}^d \delta_{n,k}^{2\alpha_k - 2r_k}$. Therefore, we conclude that uniformly over $||f_0||_{\boldsymbol{\alpha},\infty} \leq R$,

$$\begin{split} & \operatorname{E}_{0} \sup_{\sigma^{2} \in \mathcal{K}_{n}} \operatorname{E}[\|D^{\boldsymbol{r}}f_{\boldsymbol{\theta}} - D^{\boldsymbol{r}}f_{0,\boldsymbol{z}}\|_{\infty}^{2}|\boldsymbol{Y},\sigma^{2}] \\ & \lesssim \operatorname{E}_{0} \sup_{\sigma^{2} \in \mathcal{K}_{n}} \operatorname{E}[\|D^{\boldsymbol{r}}f_{\boldsymbol{\theta}} - D^{\boldsymbol{r}}f_{\boldsymbol{\theta}_{0}}\|_{\infty}^{2}|\boldsymbol{Y},\sigma^{2}] + \operatorname{E}_{0}\|D^{\boldsymbol{r}}f_{\boldsymbol{\theta}_{0}} - D^{\boldsymbol{r}}f_{0,\boldsymbol{z}}\|_{\infty}^{2} \\ & \lesssim \boldsymbol{\delta}_{n}^{-2\boldsymbol{r}}\left(\frac{1}{n} + \sum_{k=1}^{d} \delta_{n,k}^{2\alpha_{k}}\right). \end{split}$$

The empirical and hierarchical posterior contraction rates then follow from (8.10) and (8.11) with absolute values replaced by sup-norms.

References

- Harville, D. A. (1997). Matrix Algebra from a Statistician's Perspective. Springer-Verlag New York, Inc.
- [2] Searle, S. R. (1982). Matrix Algebra Useful for Statistics. John Wiley and Sons, Inc.

- [3] Yoo, W. W. and Ghosal, S. (2016). Supremum norm posterior contraction and credible sets for nonparametric multivariate regression. *Ann. Statist.*, 44(3):1069–1102.
- [4] Yoo, W. W. and Ghosal, S. (2018). Bayesian mode and maximum estimation and accelerated rates of contraction. To apppear in Bernoulli.