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Abstract

We make use of the black hole holograph construction of [I. Rácz, Stationary black holes
as holographs, Class. Quantum Grav. 31, 035006 (2014)] to analyse the existence of Killing
spinors in the domain of dependence of the horizons of distorted black holes. In particular, we
provide conditions on the bifurcation sphere ensuring the existence of a Killing spinor. These
conditions can be understood as restrictions on the curvature of the bifurcation sphere and
ensure the existence of an axial Killing vector on the 2-surface. We obtain the most general
2-dimensional metric on the bifurcation sphere for which these curvature conditions are
satisfied. Remarkably, these conditions are found to be so restrictive that, in the considered
particular case, the free data on the bifurcation surface (determining a distorted black hole
spacetime) is completely determined by them. In addition, we formulate further conditions
on the bifurcation sphere ensuring that the Killing vector associated to the Killing spinor is
Hermitian. Once the existence of a Hermitian Killing vector is guaranteed, one can use a
characterisation of the Kerr spacetime due to Mars to identify the particular subfamily of
2-metrics giving rise to a member of the Kerr family in the black hole holograph construction.
Our analysis sheds light on the role of asymptotic flatness and curvature conditions on the
bifurcation sphere in the context of the problem of uniqueness of stationary black holes. The
Petrov type of the considered distorted black hole spacetimes is also determined.
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1 Introduction

In [34] it is shown that the 4-dimensional geometry of a spacetime admitting a pair of expansion-
and shear-free null hypersurfaces H1 and H2 intersecting on a two-surface Z ⌘ H1 \ H2 can
uniquely be determined in the domain of dependence of H1 [H2, once suitable data —consisting
of three complex functions— has been prescribed on Z = H1 \H2. This set-up provides a basis
for the use of the characteristic initial value problem in the investigation of a variety of black
hole configurations by inspecting the freedom in the specification of the data on the bifurcation
surface Z of the horizons only. In the following, we will often refer to this set-up as Rácz’s black
hole holograph construction. In fact, the set-up introduced in [33, 34] is suitable to host all of
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the stationary distorted electrovacuum black hole spacetimes —within the class of solutions to the
Einstein-Maxwell equations with non-zero cosmological constant.

As it was proposed already in [33, 34] the black hole holograph construction should open
a new avenue in the black hole uniqueness problem. To this end note that the Kerr-Newman
family of solutions (describing a charged, rotating black hole) is an example of a family of exact
solutions to the Einstein-Maxwell equations satisfying these conditions, and so it belongs this
class of distorted black hole solutions. Thus, one can naturally ask what further conditions are
necessary to impose on the horizons in order to single out the Kerr-Newman family from the
more general class, and how restrictive these conditions are.

In the present article, we make use of a characterisation of the Kerr solution by Killing spinors
to to identify the appropriate set of conditions on the data at the bifurcation sphere Z. Killing
spinors are known to represent hidden symmetries of a spacetime, and the existence of such a field
on the Kerr spacetime is directly related to the existence of the Carter constant, which allows
the geodesic equations to be completely integrated [4] —see also [6, 39]. In recent work, it has
been shown that the existence of a Killing spinor on a spacetime, along with the assumption
of asymptotic flatness, can be used to identify the spacetime as a member of the Kerr or Kerr-
Newman families [7]. These ideas have been used in previous work to determine whether initial
data corresponds to exact Kerr data. The assumption on the existence of a Killing spinor can be
recast as an initial value problem, producing a set of Killing spinor initial data equations that
must be satisfied on a spacelike initial hypersurface. These constraint equations can be used,
for example, to determine whether the initial data set on the hypersurface corresponds to initial
data for the exact Kerr spacetime. In a similar way, in the present article, we show it is possible
to guarantee the existence of a Killing spinor on the domain of dependence D(H1 [ H2) of the
intersecting expansion and shear-free horizons H1 [H2 by prescribing data for the Killing spinor
and, in accordance with the black hole holograph construction, this data need only be given on
the intersection surface Z. The only restriction on the background spacetime is the prescription
of the only gauge invariant Weyl spinor component  2 in terms of this initial data.

In this article, we consider the vacuum case and set the goal of identifying the Kerr family of
solutions to the Einstein equations from the general class of stationary distorted vacuum black
hole spacetimes. We give a set of conditions which must be satisfied on the bifurcation sphere Z
to ensure the existence of a Killing spinor on the domain of dependence D(H1 [H2) of H1 [H2

—which is nothing but the interior of the black hole region in the smooth setting, whereas it
also contains the domain of outer communication if analyticity is allowed— and describe further
conditions which must be given there to single out the Kerr solution. Our main results can be
described as follows:

(i) We identify the conditions that need to be imposed on the initial data surface —comprised
by two expansion- and shear-free horizons intersecting on a two-surface Z— to ensure the
existence of a Killing spinor in the domain of dependence of the horizons, H1 [H2. These
conditions are stated in Lemmas 1, 2, 3, 4 and 5. These conditions set restrictions on both
the free specifiable data for the Killing spinor on H1 [ H2 and on the components of the
Weyl spinor and some of the spin connection coe�cients.

(ii) We show that the conditions obtained in (i) can be imposed by satisfying a set of Killing
spinor constraints at the bifurcation sphere Z. In particular, it turns out that the whole
Killing spinor data can be propagated along H1 [H2 from some basic Killing spinor data
on Z. The Killing spinor constraints on Z are given in Proposition 4.

(iii) Using Rácz’s black hole holograph construction, it follows that if the Killing spinor con-
straints are satisfied, then one can ensure the existence of a Killing spinor everywhere in
the domain of dependence of the horizons of distorted black hole. This result is stated more
precisely in Theorem 3.

(iv) All of the above results are local —i.e. independent of the topology of Z. Note, however, if
one restrict considerations to black holes, in virtue of Hawking’s black hole topology theorem
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[15, 16] (see also Corollary 4.2 of [33] relevant for generic distorted black holes) Z has to
have the topology of a 2-sphere. Using this assumption, it is shown that the Killing spinor
constraints imply, in particular, that the Killing vector field —that always comes together
with the existence of a generic Killing spinor— gives rise to be an axial Killing vector field
on the bifurcation surface. This result is given in Proposition 7.

(v) We show how to encode, in terms of further constraints on Z, that the Killing vector field
determined by the Killing spinor is Hermitian (i.e. real) in the domain of dependence of
H1 [H2. The relevant conditions are spelled out in full details in Lemma 12.

(vi) We determine the most general (regular) two-metric and associated curvature scalar on the
bifurcation sphere Z ensuring that the Killing spinor constraints are satisfied. This result is
presented in Proposition 6.

(vii) Notably, the aforementioned Killing spinor constraints, can be seen to be geometrically
equivalent to the freedom one has in choosing initial data in Rácz’s black hole holograph
construction. The corresponding results are presented in Section 6.1.

(viii) It is also shown that the existence of the Killing spinor, in the generic case, implies that
the domain of dependence of H1 [H2 must be of Petrov type D. This result is presented in
Subsection 6.3 (see also Corollary 1).

(ix) Finally, we also give a clear identification of that subclass of basic initial data on Z which
gives rise to a member of the Kerr family of spacetimes in the domain of dependence of H1[
H2. The basic idea behind this calculation is to make use of Mars’s invariant characterisation
of the Kerr spacetime that is summarised in Theorem 1. The conditions on the freely
specifiable data leading to a development isomorphic to Kerr are spelled out in Proposition
9.

Remark 1. The integrability conditions for the Killing spinor equation readily imply that a
vacuum spacetime endowed with a Killing spinor must have a Weyl tensor which is of Petrov
type D or has more special algebraic type —see e.g. [29]. In [21] all vacuum Petrov type D
spacetimes have been described and expressed in terms of some local coordinates. Kinnersley’s
solution’s posess, at least, two Killing vectors. Unfortunately, a priori, it is very hard to transform
these expressions into the gauge used in Rácz’s holograph construction as, in general, there need
not exist more than a horizon Killing vector field in that setup. Therefore, the interrelation of
the aforementioned two representations of Petrov D type solutions can only be done after all the
implications of the existence of a non-trivial Killing spinor are explored —see Sections 6–10 below
for more details.

Overview

This paper is structured as follows: in Section 2, we recall the results of [7], illustrating how the
existence of a Killing spinor can be used to characterise the Kerr spacetime. This is done in the
form of a local result requiring the evaluation of two constants.

In Section 3, we summarise the construction of the characteristic problem in [34], used to
define the class of distorted black holes to be considered in this article.

In Section 4, we decompose the wave equation for the Killing spinor into equations intrinsic to
the horizons, providing a system of transport equations for the components of the Killing spinor.
Furthermore, by finding a system of homogeneous wave equations for a collection of zero-quantity
fields and imposing appropriate initial data for the system, we find further conditions (di↵erential
and algebraic constraints) for the components of the Killing spinor and their first derivatives on
the bifurcate horizon H1 [H2 —the Killing spinor data conditions on Z.

In Section 5, we investigate these constraints. We show that the conditions intrinsic to the
bifurcation sphere Z imply a specific form for the components of the Killing spinor. We also
show that the constraints intrinsic to H1 or H2 satisfy ordinary di↵erential equations along the
generators of the relevant horizons, and so can be replaced with conditions on the bifurcation
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sphere, or become redundant. In this way, conditions on the extended horizon construction are
reduced to conditions only on the bifurcation surface Z.

In Section 7 it is shown that the Killing spinor data conditions on Z imply that the bifurcation
sphere is an axially symmetri 2-surface.

In Section 9 further conditions on Z are obtained which ensure that the Killing vector asso-
ciated to the Killing spinor is a Hermitian (i.e. real) vector.

Section 8 discusses the more general solution to the constraints on Z. This solution fixes
the Gaussian curvature of the bifurcation sphere Z and, in turn, also the functional form of the
metric of the 2-surface and the spin coe�cient ⌧ . Using this metric one can use Rácz’s black hole
holograph construction to (locally in a neighbourhood of Z) obtain the most general family of
vacuum (with vanishing cosmological constant) distorted black holes with Killing spinors.

Section 10 is devoted to the task of identifying the Kerr out of the class of spacetimes con-
structed in the previous section. The main tools for this is a characterisation of Kerr spacetime in
terms of Killing spinors based on a more general result by Mars [24] —see Theorem 1 in Section
2.

We provide some concluding remarks in Section 11.

Notation and conventions

In what follows (M, g) will denote a vacuum spacetime. The metric g is assumed to have signature
(+,�,�,�). The Latin letters a, b, . . . are used as abstract tensorial spacetime indices. The script
letters A, B, . . . are used to denote angular coordinates. The Latin capital letters A, B, . . . are
used as abstract spinorial indices.

We make systematic use of the standard Newman-Penrose (NP) formalism as discussed in,
say, [28, 37]. Standard NP notation and conventions will be used —see e.g. [37]. In particular, if
⌘ is a smooth scalar on a 2-surface Z with spin-weight s, the action of the g and g operators on
is defined by

g⌘ = �⌘ + s (↵� �) ⌘ , g⌘ = � ⌘ � s (↵� �) ⌘ . (1)

One also has that
(gg� gg) ⌘ = sKG ⌘ , (2)

where KG denotes the Gaussian curvature of Z.

We shall also make use of the representation of g and g operators following the construction in
Section 4.14 of [28]. In particular, by choosing an arbitrary holomorphic function z the 2-metric
� on Z can be given as

� = � 1

PP

�
dz ⌦ dz + dz ⌦ dz

�
, (3)

where P is a complex function on Z. If Z was the unit sphere S2, then the coe�cient P would
have the form P = 1

2 (1 + zz).

The operators g and g—acting on a scalar ⌘ of spin-weight s—are defined as (see (4.14.3)-
(4.14.4) in [28])

g⌘ ⌘ PP
�s

@

@z

�
P

s

⌘
�
, g⌘ ⌘ PP s

@

@z

�
P�s⌘

�
. (4)

As the complex coordinates z and z have no spin-weight direct calculations readily verify that

gz = P, gz = 0 ,

and that
gP = 0 , gP = 0 .

Note, finally, that in the generic setup for the characteristic initial value problem the initial
data is given on a pair of intersecting null hypersurfaces H1 and H2. The solution to the Ein-
stein’s equations is known to exist in certain domains. We shall denote the domain of dependence
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H2H1

O

Z

Figure 1: The possible extents of the domain of dependence of the initial data surface, comprised
by a pair of null hypersurfaces H1 and H2 intersecting on a two-surface Z = H1 \ H2 in the
characteristic initial value problem, is indicated.

of H1 [ H2 by D(H1 [ H2). The extent of D(H1 [ H2) is known to depend on the techniques
used in verifying the existence of solutions. According to the claims in [35] it is covering only
a neighbourhood O of the spacelike 2-surface Z (indicated by the blue coloured area on Fig.1).
Nevertheless, when techniques of energy estimates are used, as e.g. in [23], the domain of depen-
dence can be seen to be larger covering (at least certain) neighbourhood of the two intersecting
null hypersurfaces H1 and H2. Hereafter, we shall refer to the domain of dependence without
explicit mentioning of its extent. This is done to simplify the presentation. The size of this
domain does not play a significant role in our discussions.

2 An invariant characterisation of the Kerr spacetime

In this section we provide a brief overview of a characterisation of the Kerr spacetime by means
of Killing spinors.

2.1 Killing spinors

A Killing spinor is a symmetric rank 2 spinor 
AB

= (AB) satisfying the Killing spinor equation

r
A

0(ABC) = 0. (5)

Given a spinor 
AB

, the spinor
⇠
AA

0 ⌘ rP

A

0
AP

(6)

is the spinorial counterpart of a (possibly complex) Killing vector. Thus, it satisfies the equation

r
AA

0⇠
BB

0 +r
BB

0⇠
AA

0 = 0.

Conditions on a spacelike hypersurface S ensuring the existence of a Killing spinor on the
future domain of dependence of S, D+(S), have been analysed in [2, 13]. In view of the subsequent
discussion it will be convenient to define the following zero quantities:

H
A

0
ABC

⌘ 3r
A

0(ABC) ,

S
AA

0
BB

0 ⌘ r
AA

0⇠
BB

0 +r
BB

0⇠
AA

0 .

A straightforward consequence of the Killing spinor equation is the wave equation

⇤
AB

+  
ABCD

CD = 0, (7)

where  
ABCD

denotes the Weyl spinor.

A calculation then yields the following:
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Proposition 1. Let 
AB

be a solution to equation (7). Then the spinor fields H
A

0
ABC

and
S
AA

0
BB

0 satisfy the system of wave equations

⇤H
AA

0
BC

= 4
�
 (AB

PQH
C)PQA

0 +r(A
Q

0
S
BC)Q0

A

0
�
, (8a)

⇤S
AA

0
BB

0 = �r
AA

0( 
B

PQRH
B

0
PQR

)�r
BB

0( 
A

PQRH
A

0
PQR

)

+2 
AB

PQS
PA

0
QB

0 + 2 
A

0
B

0
P

0
Q

0
S
AP

0
BQ

0 . (8b)

Remark 2. As the above equations constitute a system of homogeneous linear wave equations for
the fields H

A

0
ABC

and S
AA

0
BB

0 , it follows that they readily imply conditions for the existence of a
Killing spinor in the development of a given initial value problem for the Einstein field equations.

2.2 The Killing form and the Ernst potential

In this section let ⇠
AA

0 denote the spinorial counterpart of a real Killing vector ⇠a. Accordingly,
⇠
AA

0 is assumed to be Hermitian. The spinorial counterpart of the Killing form of ⇠a, namely,

H
ab

⌘ r[a⇠b] = r
a

⇠
b

is given by
H

AA

0
BB

0 ⌘ r
AA

0⇠
BB

0 .

As a consequence of the antisymmetry in the pairs
AA

0 and
BB

0 , the latter can be decomposed
into irreducible parts as

H
AA

0
BB

0 ⌘ ⌘
AB

✏
A

0
B

0 + ⌘
A

0
B

0✏
AB

,

where ⌘
AB

is a symmetric spinor. In the following we will make use of the self-dual part of
H

AA

0
BB

0 , denoted by H
AA

0
BB

0 , and defined by

H
AA

0
BB

0 ⌘ H
AA

0
BB

0 + iH⇤
AA

0
BB

0 .

It follows readily that
H

AA

0
BB

0 = 2⌘
AB

✏
A

0
B

0 .

The spinor ⌘
AB

can be expressed in terms of ⇠
AA

0 as

⌘
AB

=
1

2
r

AA

0⇠
B

A

0
.

If, moreover, ⇠
AA

0 is obtained from a Killing spinor 
AB

using formula (6), then one has that

⌘
AB

= �3

4
 

ABCD

CD.

For later use we also define
H2 ⌘ H

ab

Hab = 8⌘
AB

⌘AB .

The Ernst form of the Killing vector ⇠a is defined as

�
a

= 2⇠bH
ba

.

It is well-known that in vacuum, the Ernst form closed and thus, locally exact. Therefore, there
exists a complex function, the Ernst potential �, that satisfies

�
a

= r
a

�.

A calculation then readily yields that

�
AA

0 = 4⌘
AB

⇠B
A

0 = 3CF  
ABCF

r
DA

0DB .
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2.3 Mars’s characterisation of the Kerr spacetime

In [24] is has been shown that the Kerr spacetime can be characterised in terms of an alignment
condition of the Weyl tensor and the Killing form of the stationary Killing vector of the spacetime.
This invariant characterisation admits both local and semi-global versions. In [7] it has been
shown that the alignment condition follows if the spacetime is assumed to have a Killing spinor.
More precisely, one has the following:

Theorem 1. Let (M, g) denote a smooth vacuum spacetime endowed with a Killing spinor 
AB

satisfying 
AB

AB 6= 0, such that the spinor ⇠
AA

0 ⌘ rB

A

0
AB

is Hermitian. Then there exist
two complex constants l and c such that

H2 = �l(c� �)4. (9)

If, in addition, c = 1 and l is real positive, then (M, g) is locally isometric to the Kerr spacetime.

3 The characteristic initial value problem on expansion and
shear-free hypersurfaces

In [34], by adopting and slightly generalising results of [11], a systematic analysis of the null
characteristic initial value problem for the Einstein-Maxwell equations in terms of the Newman-
Penrose formalism was carried out. In particular, it was shown how to obtain a system of reduced
evolution equations forming a first order symmetric hyperbolic system of equations. Moreover,
it was shown that the solutions to these evolution equations imply, in turn, a solution to the
full Einstein-Maxwell system provided that the inner (constraint) equations on the initial null
hypersurfaces hold. For this type of setting, the theory for the characteristic initial value problem
developed in [35] applies and ensures the local existence and uniqueness of a solution of the
reduced evolution equations.

The general results described in the previous paragraph were then used to investigate elec-
trovacuum spacetimes (M, g,F ) possessing a pair of null hypersurfaces H1 and H2 generated
by expansion and shear-free geodesically complete null congruences, with intersection on a two
dimensional spacelike hypersurface Z ⌘ H1 \ H2. The configuration formed by H1 and H2

constitute a bifurcate horizon. In general, the freely specifiable data on Z do not possess any
symmetry in addition to the horizon Killing vector (implied by the non-expanding character of
these horizons). Thus, these spacetimes constitute the generic class of stationary distorted elec-
trovacuum spacetimes. The key observation resulting from the analysis in [34] is, for the vacuum
case, summarised in the following:

Theorem 2.

(i) Suppose that (M, g) is a vacuum spacetime with a vanishing Cosmological constant possess-
ing a pair of null hypersurfaces H1 and H2 generated by expansion and shear-free geodesically
complete null congruences, intersecting on a 2-dimensional spacelike surface Z ⌘ H1 [H2.
Then, the metric g is uniquely determined (up to di↵eomorphisms) on a neighbourhood O
of Z contained in the domain of dependence D(H1 \ H2) of H1 and H2, once a complex
vector field ⇣A determining the induced metric � on Z and the spin connection coe�cient
⌧ are specified on Z.

(ii) Conversely, given a Riemannian metric � and a complex scalar field ⌧ defined on a 2-
dimensional surface Z generated as the intersection of two null hypersurfaces H1 and H2,
there is a neighbourhood O of Z contained in the domain of dependence D(H1 [H2) where
there exists a 4-dimensional metric g solution of the vacuum Einstein field equations with
vanishing Cosmological constant such that the hypersurfaces H1 and H2 are generated by
expansion and shear-free congruences.

(iii) Two pairs of basic data (�, ⌧) and (�0, ⌧ 0) on Z give rise to metrics g and g0 which are
isometric on O if and only if � and � are isometric and there exists a real function # over
Z such that ⌧ 0 = ⌧ + g log #.
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3.1 Summary of the construction

In the remainder of this article we will require further information concerning the construction
in [34]. Throughout, let (M, g) denote a vacuum spacetime and let H1 and H2 denote two null
hypersurfaces in (M, g) intersecting on a spacelike 2-surface Z.

Remark 3. In the remaining of this section, the topology of Z will not be relevant in the
discussion. The situation will, however, change when we attempt to single out the Kerr spacetime.

Let na denote a smooth future-directed null vector on Z tangent to H2, which is extended to
H2 by requiring it to satisfy nbr

b

n
a

= 0 on H2. Moreover, let u be an a�ne parameter along
the null generators of H2, so that u = 0 on Z and Z

u

are the associated 1-parameter family of
smooth cross sections of H2. We choose a further null vector la as the unique future-directed
null vector field on H2 which is orthogonal to the 2-dimensional cross sections Z

u

and satisfies
the normalisation condition n

a

la = 1. Consider now the null geodesics starting on H2 with
tangent la. Since H2 is assumed to be smooth and the vector fields na and la are smooth on
H2 by construction, these geodesics do not intersect in a su�ciently small open neighbourhood
O ⇢ M of H2. Let now r denote the a�ne parameter along the null geodesics starting on H2

with tangent la, chosen such that r = 0 of H2. By construction one has that la = (@/@r)a. The
a�ne parameter defines a smooth function r : O ! R. The function H2 ! R defined by the
a�ne parameter of the integral curves of na can be extended to a smooth function u : O ! R by
requiring it to be constant along the null geodesics with tangent la.

The construction of the previous paragraph is complemented by choosing suitable coordinates
(xA) on patches of Z and extending them to O by requiring them to be constant along the integral
curves of the vectors la and na. In this manner one obtains a system of Gaussian null coordinates
(u, r, xA) on patches of O. In each of these patches the spacetime metric g takes the form

g = g00du⌦ du+ (du⌦ dr + dr ⌦ du) + g0A(du⌦ dxA + dxA ⌦ du) + gABdxA ⌦ dxB, (10)

where g00, g0A, gAB are smooth functions of the coordinates (u, r, xA) such that

g00 = g0A = 0, on H2, (11)

and gAB is a negative definite 2 ⇥ 2 matrix. Observe that by construction in O the u = 0 and
r = 0 hypersurfaces coincide with H1 and H2, respectively.

In the following it will be convenient to consider the components of the contravariant form
of the metric associated to the line element (10). A calculation shows that components of the
contravariant metric gab in the Gaussian null coordinates (u, r, xA) can be given as

gab ⌦

0

@
0 1 0
1 g11 g1B

0 gA1 gAB

1

A .

The metric functions g11, g1A and gAB can be conveniently parametrised in terms of real-valued
functions U , XA and complex-valued functions !, ⇣A on O such that

g11 = 2(U � !!), g1A = XA � (!⇣A + !⇣
A
), gAB = �(⇣A⇣

B
+ ⇣B⇣

A
).

Accordingly, setting

la = (@
r

)a, na = (@
u

)a + U (@
r

)a +XA (@
x

A)a, ma = !(@
r

)a + ⇣A (@
x

A)a,

one obtains a complex (NP) null tetrad {la, na, ma, ma} in O. As a result of the conditions in
(11) one has that

U = XA = ! = 0, on H2.

It follows from the previous discussion that ma and ma are everywhere tangent to the sections
Z

u

of H2. In general, the complex null vectors ma and ma are not parallelly propagated along
the null generators of H2.

9



Associated to the NP null tetrad {la, na, ma, ma} in O one has the directional derivatives

D =
@

@r
,

� =
@

@u
+ U

@

@u
+XA @

@xA ,

� = !
@

@r
+ ⇣A

@

@xA .

Remark 4. By construction, one has that D is an intrinsic derivative to H1 pointing along the
null generators of this hypersurface. Similarly, � is intrinsic to H2 and points in the direction of
its null generators. Finally, {ma, ma} are di↵erential operators which on H2 are intrinsic to the
sections of constant u, Z

u

. Observe, however, that while � restricted to H1 is still intrinsic to the
null hypersurface, it is not intrinsic to the sections of constant r.

The NP null tetrad constructed in the previous paragraph can be specialised further to simplify
the associate spin-connection coe�cients. By parallelly propagating {la, na, ma, ma} along the
null geodesics with tangent la one finds that

 = ⇡ = ✏ = 0, (12a)

⇢ = ⇢, ⌧ = ↵+ �, everywhere on O. (12b)

Moreover, from the condition nbr
b

na = 0 on H2 it follows that

⌫ = 0 on H2. (13)

Also, using that u is an a�ne parameter of the generators of H2 one finds that � + � = 0 along
these generators. One can specialise further by suitably rotating the vectors {ma, ma} so as to
obtain

� = 0, on H2. (14)

3.1.1 Solving the NP constraint equations

The NP Ricci and Bianchi identities split into a subset of intrinsic (constraint) equations to
H1 [ H2 and a subset of transverse (evolution) equations. In [34] the gauge introduced in the
previous subsection was used to systematically analyse the constraint equations on H1 [ H2

with the aim of identifying the freely specifiable data on this pair of intersecting hypersurfaces
under the assumption that it is expansion and shear-free. The results from this analysis can be
conveniently presented in the form of a table —see Table 1.

Remark 5. As already mentioned, in what follows we will mostly be interested in the situation
where Z is di↵eomorphic to a unit 2-sphere, i.e. Z ⇡ S2. From the definition of the operators g
and g as given in (1), along with those of the NP spin connection coe�cients ↵ and �, it follows
that the connection on Z is encoded in the combination ↵ � �. As discussed in [34], given the
freely specifiable data ⇣A and ⌧ one can readily compute the NP coe�cients ↵, �. These, in turn,
can be used, together with the NP Ricci equation

 2 = ��↵+ �� + ↵↵� 2↵� + � � (15)

to determine the Weyl spinor component  2 on Z. From the latter it is straightforward to deduce

2Re( 2) =  2 +  2 = �� (↵� � )� � (↵� � ) + 2 (↵� � ) (↵� � ) (16)

which implies that the real part of  2 —in accordance with the fact that �2Re( 2) is the Gaus-
sian curvature KG of Z (see, i.e. Proposition 4.14.21 in [28])— depends only on the combination
↵�� which is completely intrinsic to Z. Analogously, by making use of (15) ⌧ and the imaginary
part of  2 can be seen to be closely related to each other via

2 i Im( 2) =  2 �  2 = �⌧ � �⌧ � 2
�
� ⌧ � � ⌧

�
. (17)
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H1 Z H2

D⇣A = 0 ⇣A (data) �⇣A = 0

! = �r ⌧ ! = 0 ! = 0 (geometry)

XA = r [⌧ ⇣
A
+ ⌧ ⇣A] XA = 0 XA = 0 (geometry)

U = �r2
⇥
2 ⌧ ⌧ + 1

2

�
 2 + 2

�⇤
U = 0 U = 0 (geometry)

⇢ = 0 ⇢ = 0 ⇢ = u
�
�⌧ � 2↵ ⌧ � 2

�

� = 0 � = 0 � = u ( �⌧ � 2� ⌧ )

D⌧ = 0 ⌧ (data) �⌧ = 0

D↵ = D� = 0 ↵,�, ⌧ = ↵+ � �↵ = �� = 0

� = r ( ⌧ ↵+ ⌧ � + 2 ) � = 0 � = 0 (gauge)

µ = r 2 µ = 0 µ = 0

� = 0 � = 0 � = 0

⌫ = 1
2 r2

�
� 2 + ⌧  2

�
⌫ = 0 ⌫ = 0 (gauge)

 0 = 0  0 = 0  0 = 1
2 u2 (�2 2 � (7 ⌧ + 2�) � 2 + 12 ⌧2 2)

 1 = 0  1 = 0  1 = u ( � 2 � 3 ⌧  2 )

D 2 = 0 ⇣A, ⌧ ! ↵,�, 2 � 2 = 0

 3 = r � 2  3 = 0  3 = 0

 4 = 1
2 r2

⇣
�
2
 2 + 2↵ � 2

⌘
 4 = 0  4 = 0

Table 1: The full initial data set on the intersecting null hypersurfaces H1 [H2.

4 The Killing spinor data conditions for a characteristic
initial problem

In this section we adapt the analysis of Killing spinor initial data in [2] to the setting of a
characteristic initial data set —see also [14].

4.1 Construction of the Killing spinor candidate

In this section we investigate the characteristic initial value problem for the wave equation,
equation (7), governing the evolution of the Killing spinor candidate 

AB

. An approach to the
formulation of the characteristic initial value problem for wave equations on intersecting null
hypersurfaces H1 and H2 has been analysed in [35]. Our discussion follows the ideas of this
analysis closely.

4.1.1 Basic set-up

Let {oA, ◆A} denote a spin dyad normalised according to o
A

◆A = 1. The spinor 
AB

can be
written as


AB

= 2oAoB � 21o(A◆B) + 0◆A◆B .

so that
0 ⌘ 

AB

oAoB , 1 ⌘ 
AB

oA◆B , 2 ⌘ 
AB

◆A◆B .

It can be readily verified that the scalars 2, 1 and 0 have, respectively, spin weights �1, 0, 1
— i.e. they transform as


j

7! e�2(j�1)i#
j

under a rotation {oA, ◆A} 7! {ei#oA, e�i#◆A}.
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A direct decomposition of the wave equation (7) using the NP formalism readily yields the
following equations for the independent components 0, 1 and 2 of the spinor 

AB

:

D�2 + �D2 � ��2 � ��2

+(µ+ µ+ 3� � �)D2 � (⇢+ ⇢)�2 + (⌧ � 3↵� �)�2 + (↵� 5� + ⌧)�2

+( 2 + 2↵↵� 8↵� � 2�� � 2�⇢+ 2µ⇢� 2�⇢+ 2�� + 2↵⌧ + 2�⌧ + 2D� � 2�↵� 2��)2

+( 4 � 4�µ)0 = 0, (18a)

D�1 + �D1 � ��1 � ��1

�2⌧D2 + (µ+ µ� � � �)D1 + 2⌫D0 � (⇢+ ⇢)�1 + 2⇢�2 + (↵� � + ⌧)�1

�2��2 + 2��2 + (↵� � + ⌧)�1 � 2µ�0

+(� 1 � ↵⇢+ 3�⇢+ ↵� + ��⇢⌧ � �⌧ �D⌧ + �⇢��)2

+(� 3 + ↵�+ ��+ 3↵µ� �µ� ⌫⇢� ⌫⇢+ �⌧ + µ⌧ +D⌫ � ��� �µ)0 = 0, (18b)

D�0 + �D0 � ��0 � ��0

+(µ+ µ� 5� � �)D0 � (⇢+ ⇢)�0 + (5↵� � + ⌧)�0 + (↵+ 3� + ⌧)�0

+( 2 � 2↵↵� 8↵� + 2�� + 2�⇢+ 2µ⇢+ 2�⇢+ 2�� � 2↵⌧ � 2�⌧ � 2D� + 2�↵+ 2��)0

+( 0 � 4⇢�)2 = 0. (18c)

The above expressions are completely general: no assumption on the spacetime (other than
satisfying the vacuum field equations) or the gauge has been made.

Remark 6. In the sequel we investigate the consequences of these equations on the hypersur-
faces H1 and H2. For this we consider a spin dyad {oA, ◆A} adapted to the NP null tetrad
{la, na, ma,ma} —if {lAA

0
, nAA

0
, mAA

0
,mAA

0} denote the spinorial counterparts of the null
tetrad, one has the correspondences

lAA

0
= oAoA

0
, nAA

0
= ◆A◆A

0
, mAA

0
= oA◆A

0
, mAA

0
= ◆AoA

0
,

and the gauge conditions (12a)-(12b), (13) and (14) hold when computing the corresponding NP
spin-connection coe�cients by means of derivatives of the spin dyad.

4.1.2 The transport equations on H1

Consider now the restriction of equations (18a)-(18c) to the null hypersurface H1 with tangent
la. It follows then that D is a directional derivative along the null generators of H1, while � is
a directional derivative transversal to H1. Using the NP commutator [D,�] equation to rewrite
�D0, �D1, �D2 in terms of D�0, D�1 and D�2, equations (18a)-(18c) take the form:

2D�0 � ��0 � ��0 + (↵+ 3�)�0 + (5↵� �)�0 + (µ+ µ� 4�)D0 + 4⌧D1

+21D⌧ + ( 2 � 2↵↵� 8↵� + 2�� � 2↵⌧ � 2�⌧ � 2D� + 2�↵+ 2��)0 = 0, (19a)

2D�1 � ��1 � ��1 � 2⌫D0 + (µ+ µ)D1 + 2⌧D2 + (↵� �)�1 + 2µ�0 + (↵� �)�1

+( 3 � 3↵µ+ �µ� µ⌧ �D⌫ + �µ)0 � 2 21 + 2D⌧ = 0, (19b)

2D�2 � ��2 � ��2 � 4⌫D1 + (4� + µ+ µ)D2 � (3↵+ �)�2 + 4µ�1 + (↵� 5�)�2

+( 2 + 2↵↵� 8↵� � 2�� + 2↵⌧ + 2�⌧ + 2D� � 2�↵� 2��)2

+(2↵µ� 2 3 + 2�µ� 2µ⌧ � 2D⌫ + 2�µ)1 +  40 = 0. (19c)

If the value of the components 0, 1, 2 are known on H1, then the above equations can be read
as a system of ordinary di↵erential equations for the transversal derivatives

�0, �1, �2,

along the null generators of H1. Initial data for these transport equations is naturally prescribed
on Z.
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4.1.3 The transport equations on H2

Similarly, one can consider the restriction of equations (18a)-(18c) to the null hypersurface H2

with tangent na. Thus, � is a directional derivative along the null generators of H2, � and �
are intrinsic derivatives while D is transversal to H2. In this case one uses the NP commutator
[D,�] to rewrite D�0, D�1, D�2 in terms of �D0, �D1, �D2 and lower order terms
so that equations (18a)-(18c) take the form

2�D0 � ��0 � ��0 � (⇢+ ⇢)�0 + 4⌧D1 + (5↵� � + 2⌧)�0 + (↵+ 3� + 2⌧)�0

+4��1 � 4⇢�1 + ( 2 � 2↵↵� 8↵� + 2�� � 2↵⌧ � 2�⌧ + 2�↵+ 2��)0

+(2↵⇢+ 2�⇢+ 6↵� � 2�� � 2⇢⌧ + 2�⌧ + 2D⌧ � 2�⇢� 2�� � 2 1)1

+( 0 � 4⇢�)2 = 0, (20a)

2�D1 � ��1 � ��1 � (⇢+ ⇢)�1 + 2⌧D2 + (↵� � + 2⌧)�1 + (↵� � + 2⌧)�1

�2⇢�2 + 2��2 � 2 21

+( 1 � ↵⇢� 3�⇢� ↵� � �� � ⇢⌧ + �⌧ +D⌧ � �⇢� ��)2 = 0, (20b)

2�D2 � ��2 � ��2 � (⇢+ ⇢)�2 + (2⌧ � 3↵� �)�2 + (↵� 5� + 2⌧)�2

+( 2 + 2↵↵� 8↵� � 2�� + 2↵⌧ + 2�⌧ � 2�↵� 2��)2 = 0. (20c)

If the values of 0, 1, 2 are known on H2 then the above equations can be read as a system of
ordinary di↵erential equations for the transversal derivatives

D0, D1, D2,

along the null generators of H2. Initial data for these transport equations is naturally prescribed
on Z.

4.1.4 Summary: existence of the Killing spinor candidate

The discussion of the previous subsections combined with the methods of [35] —see also [20]—
allows to formulate the following existence result:

Proposition 2. Let (M, g) denote a spacetime satisfying the assumptions of Theorem 2. Then,
given a smooth choice of fields 0, 1 and 2 on H1 [H2, there exists a neighbourhood O of Z
in D(H1 [H2) on which the wave equation (7) has a unique solution 

AB

.

Remark 7. The assumption of smoothness of the fields 0, 1 and 2 require, in particular, that
the limits of these fields as one approaches to Z on either H1 or H2 coincide.

4.2 The NP decomposition of the Killing spinor data conditions

The conditions on the initial data for the Killing spinor candidate 
AB

constructed in the previous
section which ensure that it is, in fact, a Killing spinor follow from requiring that the propagation
system (8a)-(8b) of Proposition 1 has as a unique solution —the trivial (zero) one.

The purpose of this section is to analyse the characteristic initial value problem for the Killing
spinor equation propagation system (8a)-(8b).

4.2.1 Basic observations

We are interested in solutions to the system (8a)-(8b) ensuring the existence of a Killing spinor
on D(H1 [H2). The homogeneity of these equations on the fields H

AA

0
BC

and S
AA

0
BB

0 allows
to formulate the following result:

Proposition 3. Let (M, g) denote a spacetime satisfying the assumptions of Theorem 2. Assume
that initial data 0, 1, 2 on H1 [H2 for the wave equation (7) can be found such that

H
AA

0
BC

= 0, S
AA

0
BB

0 = 0 on H1 [H2.

Then there exists a neighbourhood O of Z on the domain of dependence of H1[H2 where H
AA

0
BC

and S
AA

0
BB

0 vanish and the resulting Killing spinor candidate 
AB

is, in fact, a Killing spinor.
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Proof. The result follows from using the methods of Section 4.1 on the equations (8a)-(8b), and
the uniqueness of the solutions to the characteristic initial value problem.

Remark 8. A standard computation shows that the condition

H
AA

0
BC

= 0

is equivalent to the equations

D0 � 2✏0 + 21 = 0, (21a)

�0 � 2�0 + 2�1 = 0, (21b)

�0 + 2D1 � 2⇡0 � 2↵0 + 21⇢+ 22 = 0, (21c)

�0 + 2�1 + 2�2 � 2µ0 + 2⌧1 � 2�0 = 0, (21d)

D2 + 2�1 + 2⇢2 � 2�0 � 2⇡1 + 2✏2 = 0, (21e)

�2 + 2�1 + 2⌧2 + 2�2 � 2µ1 � 2⌫0 = 0, (21f)

�2 + 2↵2 � 2�1 = 0, (21g)

�2 + 2�2 � 2⌫1 = 0. (21h)

Remark 9. Using the notation

⇠
AA

0 = ⇠110oAoA0 + ⇠100oA◆A0 + ⇠010◆AoA0 + ⇠000◆A◆A0 ,

equation (6) takes the form

⇠110 = �1 � �2 � 2�2 + ⌧2 + 2µ1 � ⌫0, (22a)

⇠100 = D2 � �1 + 2✏2 � ⇢2 � 2⇡1 + �0, (22b)

⇠010 = �1 � �0 + 2�0 � µ0 � 2⌧1 + �2, (22c)

⇠000 = �0 �D1 � 2↵0 + ⇡0 + 2⇢1 � 2. (22d)

If ⇠
AA

0 is required to be Hermitian so that it corresponds to the spinorial counterpart of a
real vector ⇠a then one has the reality conditions

⇠000 = ⇠000, ⇠110 = ⇠101, ⇠010 = ⇠100, ⇠100 = ⇠001

A further calculation shows that the equation S
AA

0
BB

0 = 0 takes, in NP notation the form

D⇠000 � ⇠000✏� ⇠000✏� ⇠100� ⇠010 = 0, (23a)

�⇠110 + ⇠110� + ⇠110� + ⇠010⌫ + ⇠100⌫ = 0, (23b)

D⇠110 + �⇠000 � ⇠000� � ⇠000� + ⇠110✏+ ⇠110✏+ ⇠010⇡ + ⇠100⇡ � ⇠100⌧ � ⇠010⌧ = 0, (23c)

�⇠110 � �⇠010 + ↵⇠110 + ⇠110� + ⇠010� � ⇠010� + ⇠100�+ ⇠010µ� ⇠000⌫ + ⇠110⌧ = 0, (23d)

�⇠010 + ⇠010↵� ⇠010� + ⇠000�� ⇠110� = 0, (23e)

�⇠000 �D⇠010 � ⇠000↵� ⇠000� + ⇠010✏� ⇠010✏+ ⇠110� ⇠000⇡ � ⇠010⇢� ⇠100� = 0, (23f)

�⇠110 � �⇠100 + ⇠110↵+ ⇠110� � ⇠100� + ⇠100� + ⇠010�+ ⇠100µ� ⇠000⌫ + ⇠110⌧ = 0, (23g)

�⇠100 + ⇠100↵� ⇠100� + ⇠000�� ⇠110� = 0, (23h)

�⇠100 + �⇠010 � ⇠010↵� ⇠100↵+ ⇠100� + ⇠010� + ⇠000µ+ ⇠000µ� ⇠110⇢� ⇠110⇢ = 0, (23i)

�⇠000 �D⇠100 � ⇠000↵� ⇠000� � ⇠100✏+ ⇠100✏+ ⇠110� ⇠000⇡ � ⇠100⇢� ⇠010� = 0. (23j)

In the remainder of this section we investigate these conditions on H1 [H2.
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4.2.2 The condition H
AA

0
BC

= 0 on Z

On Z = H1 \H2 equations (21a)-(21h) reduce to:

D0 = 0, (24a)

�2 = 0, (24b)

�0 � 2�0 = 0, (24c)

�0 + 2�1 + 2⌧1 = 0, (24d)

2�1 + �2 + 2�2 + 2⌧2 = 0, (24e)

2D1 + �0 � 2↵0 = 0, (24f)

D2 + 2�1 = 0, (24g)

�2 + 2↵2 = 0. (24h)

In what follows, we regard equations (24c) and (24h) as intrinsic to Z. Making use of the
operators g and g (see (1) for their explicit form) these conditions can be concisely rewritten as

g0 = ⌧0, (25a)

g2 = �⌧2. (25b)

Remark 10. Equations (24a)-(24h) do not constrain the value of the coe�cient 1 on Z. Instead,
given an arbitrary (smooth) choice of 1 and coe�cients 0 and 2 satisfying the equations in
(25a)-(25b), we regard equations (24b), (24d) and (24e) as prescribing the initial values of the
derivatives �0, �1 and �2 that need to be provided for the transport equations (19a)-(19c)
along H1. Similarly, we use equations (24a), (24f) and (24g) to prescribe the initial values of
the derivatives D0, D1 and D2 which are used, in turn, to solve the transport equations
(20a)-(20c) along H2.

4.2.3 The condition H
AA

0
BC

= 0 on H1 and on H2

On H1 equations (21a)-(21h) reduce to:

D0 = 0, (26a)

�2 � 2⌫1 + 2�2 = 0, (26b)

�0 � 2�0 = 0, (26c)

�0 + 2�1 � 2(� + µ)0 + 2⌧1 = 0, (26d)

2�1 + �2 + 2(� + ⌧)2 � 2µ1 � 2⌫0 = 0, (26e)

2D1 + �0 � 2↵0 = 0, (26f)

D2 + 2�1 = 0, (26g)

�2 + 2↵2 = 0. (26h)

Equations (26a), (26f) and (26g) are interpreted as propagation equations along the null generators
of H1 which are used to propagate the initial values of 0, 1 and 2 at Z. In order to understand
the role equations (26c) and (26h) we consider the expressions

D(�0 � 2�0), D(�2 + 2↵2).

A direct computation using the NP commutators shows that

D(�0 � 2�0) = �20D� D(�2 + 2↵2) = 22D↵� 2(↵� �)�1 � 2�
2
1.

Evaluating the Ricci identities on H1 one finds that D↵ = D� = 0 —see also Table 1. Thus, it
follows that

D(�0 � 2�0) = 0, D(�2 + 2↵2) = �2g21.
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Accordingly, equation (26c) holds along H1 if it is satisfied on Z —this is equivalent to requiring
condition (25a) on Z. Observe, however, that in order to obtain the same conclusion for equation

(26h) one needs g21 = 0 on H1.

It remains to consider equations (26b), (26d) and (26e). These prescribe the value of the
transversal derivatives �0, �1 and �2. Recall, however, that from the discussion of Section 4.1
these derivatives satisfy transport equations along the generators ofH1. Thus, some compatibility
conditions will arise. Substituting the value of �0, given by equation (26d) into the transport
equation (19a), and then using the NP commutators, NP Ricci identities and equations (26a),
(26f) and (26g) to simplify one obtains the condition

 20 = 0.

Similarly, substituting the value of �1 given by equation (26e) into the transport equation (19b)
and proceeding in similar manner one finds the further condition

 30 = 0.

Finally, the substitution of the value of �2 as given by equation (26b) eventually leads to the
condition

 40 + 2 31 � 3 22 = 0.

One can summarise the discussion of this subsection as follows:

Lemma 1. Assume that equations (26a), (26f) and (26g) hold along H1 with initial data for 0
and 2 on Z satisfying equations (25a) and (25b), respectively, and that, in addition,

g21 = 0,  20 = 0,  30 = 0,  40 + 2 31 � 3 22 = 0, on H1.

Then, one has that
H

A

0
ABC

= 0 on H1.

On H2 equations (21a)-(21h) reduce to:

D0 = 0, (27a)

�2 = 0, (27b)

�0 � 2�0 + 2�1 = 0, (27c)

�0 + 2�1 + 2⌧1 + 2�2 = 0, (27d)

2�1 + �2 + 2(� + ⌧)2 = 0, (27e)

2D1 + �0 � 2↵0 + 2⇢1 = 0, (27f)

D2 + 2�1 + 2⇢2 = 0, (27g)

�2 + 2↵2 = 0. (27h)

In analogy with the analysis on H1, in what follows we regard equations (27b), (27d) and (27e)
as propagation equations for the components 0, 1 and 2 along the generators of H2. Initial
data for these equations is naturally prescribed on Z. Proceeding in an analogous manner to H1

one obtains the following:

Lemma 2. Assume that equations (27b), (27d) and (27e) hold along H2 with initial data for 0
and 2 on Z satisfying conditions (25a) and (25b), respectively, and that, in addition,

g21+2��+
3

2
��2+↵�2 = 0,  22 = 0,  12 = 0,  02+2 11�3 20 = 0, on H2.

Then, one has that
H

A

0
ABC

= 0 on H2.
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Remark 11. One can show that the curvature conditions in Lemmas 1 and 2 are in fact com-
ponents of the equation

 (ABC

F
D)F = 0.

The other components of this equation are trivially satisfied. As this is a basis independent ex-
pression, the curvature conditions are satisfied in all spin bases, not just the parallelly propagated
one. One can check this by considering Lorentz transformations and null rotations about la and
na, and show that these conditions are preserved. The equation above can be shown to be an
integrability condition for the Killing spinor equation, so it is unsurprising to find components of
it arising naturally from the analysis.

4.2.4 The condition S
AA

0
BB

0 = 0 at Z

Using the properties of Z, as given explicitly in Table 1, together with the conditions (24a)-(24h)
implied by the equation H

AA

0
BC

= 0 on Z, equations (22a)-(22d) reads as

⇠110 = �3

2
(g2 + ⌧2) , (28a)

⇠100 = �3g1 , (28b)

⇠010 = 3g1 , (28c)

⇠000 =
3

2
(g0 � ⌧0) , (28d)

while on Z equations (23a)-(23j) reduce to

D⇠000 = 0, (29a)

�⇠110 = 0, (29b)

D⇠110 + �⇠000 � ⌧⇠100 � ⌧⇠010 = 0, (29c)

�⇠010 � �⇠110 � 2⌧⇠110 = 0, (29d)

�⇠010 + (↵� �)⇠010 = 0, (29e)

D⇠010 � �⇠000 + ⌧⇠000 = 0, (29f)

�⇠100 � �⇠110 � 2⌧⇠110 = 0, (29g)

�⇠100 + (↵� �)⇠100 = 0, (29h)

�⇠100 + �⇠010 � (↵� �)⇠100 � (↵� �)⇠010 = 0, (29i)

D⇠100 � �⇠000 + ⌧⇠000 = 0. (29j)

Equations (29e), (29h) and (29i) can be read as intrinsic equations for ⇠010 and ⇠100 . Expressing
these in terms of the g and g operators, observing that the spin-weight of ⇠010 and ⇠100 are
respectively �1 and 1, one has that

g⇠010 = 0, (30a)

g⇠100 = 0, (30b)

g⇠100 + g⇠010 = 0. (30c)

Substituting conditions (28b)-(28c) into conditions (30a)-(30b) above yield the simple conditions

g21 = 0, g21 = 0 , (31)

whereas (30c)—as 1 is of zero spin-weight quantity—reduces to the commutation relation

gg1 � gg1 = 0 .

Remark 12. The above expressions indicate that the component 1 has a very specific multipolar
structure. Note, however, that the g and g above are not the ones corresponding to S2 but of a
2-manifold di↵eomorphic to it. Thus, in order to further the discussion one needs to consider the
conformal properties of the operators.
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Crucially, one can also show that equations (29a)-(29d), (29f)-(29g) and (29j) are implied by
equations (24a)-(24h), the Ricci equations, and the conditions of Lemmas 2 and 3 (which must
be satisfied on Z = H1 \H2. Summarising:

Lemma 3. Assume that equations (24a)-(24h) hold on Z and that, in addition,

g21 = 0, g21 = 0, on Z.

Then one has that
S
AA

0
BB

0 = 0 on Z.

4.2.5 The Killing vector equation on H1 and on H2

On H1, equations (23a)-(23j) reduce to:

D⇠000 = 0, (32a)

�⇠110 + (� + �)⇠110 + ⌫⇠010 + ⌫⇠100 = 0, (32b)

D⇠110 + �⇠000 � ⌧⇠100 � ⌧⇠010 � (� + �)⇠000 = 0, (32c)

�⇠010 � �⇠110 � (� � � + µ)⇠010 + ⌫⇠000 � 2⌧⇠110 = 0, (32d)

�⇠010 + (↵� �)⇠010 = 0, (32e)

D⇠010 � �⇠000 + ⌧⇠000 = 0, (32f)

�⇠100 � �⇠110 � (� � � + µ)⇠100 + ⌫⇠000 � 2⌧⇠110 = 0, (32g)

�⇠100 + (↵� �)⇠100 = 0, (32h)

�⇠100 + �⇠010 + (µ+ µ)⇠000 � (↵� �)⇠100 � (↵� �)⇠010 = 0, (32i)

D⇠100 � �⇠000 + ⌧⇠000 = 0. (32j)

Substituting the components ⇠000 , ⇠010 , ⇠100 and ⇠110 , as given by (22a)-(22d), into these rela-
tions (being careful not to discard the � derivatives of quantities which vanish on H1), and using
equations (26a)-(26h) and the Ricci equations, one finds that (32a)-(32j) reduce to:

g21 = 0(�µ+ µ⌧), (33a)

g21 = 0, (33b)

 20 = 0, (33c)

 30 = 0, (33d)

 40 + 2 31 � 3 22 = 0. (33e)

Remark 13. The conditions (33b)-(33e) are exactly the conditions of Lemma 2. The additional
condition (33a) must be satisfied on all of H1. Note, however, that after some manipulations the
condition

D
�
g21 � 0(�µ+ µ⌧)

�
= �2�( 20) + 4� 20 = 0

can be shown to hold, where in the last step (33c) was used. Accordingly, it su�ces to guarantee
(33a) on Z as then it is satisfied on the whole of H1 if condition (33c) holds on H1. Furthermore,
on Z the spin coe�cient µ vanishes, so (33a) reduces to g21 = 0 on Z. Note that this is one of
the conditions appearing in Lemma 3.

Summarising, we have the following lemma:

Lemma 4. Assume that equations (26a)-(26h) hold on H1, and the conditions of Lemmas 1 and
3 are satisfied. Then one has that

S
AA

0
BB

0 = 0 on H1.
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On H2, equations (23a)-(23j) reduce to:

D⇠000 = 0, (34a)

�⇠110 = 0, (34b)

D⇠110 + �⇠000 � ⌧⇠100 � ⌧⇠010 = 0, (34c)

�⇠010 � �⇠110 � 2⌧⇠110 = 0, (34d)

�⇠010 + (↵� �)⇠010 � �⇠110 = 0, (34e)

D⇠010 � �⇠000 + ⌧⇠000 + �⇠100 + ⇢⇠010 = 0, (34f)

�⇠100 � �⇠110 � 2⌧⇠110 = 0, (34g)

�⇠100 + (↵� �)⇠100 � �⇠110 = 0, (34h)

�⇠100 + �⇠010 � (↵� �)⇠100 � (↵� �)⇠010 � 2⇢⇠110 = 0, (34i)

D⇠100 � �⇠000 + ⌧⇠000 + �⇠010 + ⇢⇠100 = 0. (34j)

Substituting the components ⇠000 , ⇠010 , ⇠100 and ⇠110 , as given by (22a)-(22d), into these relations
(being careful not to discard the D derivatives of quantities which vanish on H2), and using
equations (27a)-(27h) and the Ricci equations, one finds that (34a)-(34j) reduce to:

g21 + 2�� +
3

2
��2 + ↵�2 = 0, (35a)

g21 + 2�� � 1

2
��2 � 3↵2� �  12 = 0, (35b)

 12 = 0, (35c)

 22 = 0, (35d)

 02 + 2 11 � 3 20 = 0. (35e)

The conditions (35a) and (35c)-(35e) are exactly the conditions of Lemma 3. The additional
condition (35b) must be satisfied on all of H2. Summarising, we have the following lemma:

Lemma 5. Assume that equations (27a)-(27h) hold on H2, the conditions of Lemma 2 are
satisfied, and that in addition,

g21 + 2�� � 1

2
��2 � 3↵2� �  12 = 0 on H2.

Then one has that
S
AA

0
BB

0 = 0 on H2.

5 Analysis the constraints on Z
In this section we analyse the constraints on Z obtained in the previous section.

5.1 Determining 2 on Z
Consider now the restrictions we have concerning 2 on Z. To satisfy the condition  22 = 0 on
H2, applied in Lemma 3, we have that  22 = 0 has to vanish on Z ⇢ H2, as well. Consistent
with this condition the following subcases can be seen to arise:

i. Assume first that 2 is nowhere vanishing on Z. In this case  2 must vanish throughout
Z. Note also that in virtue of Table 1 all the other Weyl spinor components vanish on Z, and
thereby

 
ABCD

|Z = 0 .

As shown in Table 1,  0 and  1 vanish on H1, and  3 and  4 vanish on H2, respectively.
Further, observe that the Bianchi identities imply the following relations on H1:

D 2 = 0,

D 3 = � 2,

D 4 = 2↵ 3 + � 3.
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As  2 vanishes on Z and D is the directional derivative along the geodesics generating H1, the
first of these equations imply that  2 = 0 on H1. By the same argument, because the right hand
side of the second of the above relations has shown to vanish on H1, we have that  3 = 0 on H1.
In turn, this also implies that  4 = 0 on H1 as a consequence of the last relation. Therefore,
along with the vanishing of  0 and  1 on H1 all the Weyl spinor components vanish there —that
is one has

 
ABCD

|H1 = 0 .

Similarly, the Bianchi identities imply the following relations on H2:

� 0 = � 1 � (4⌧ + 2�) 1 + 3� 2,

� 1 = � 2 � 3⌧ 2,

� 2 = 0.

As  2 vanishes on Z, and � is the directional derivative along the geodesics generating H2, the
third of these equations imply that  2 = 0 on H2. Thus, the right hand side of the second of the
above relations vanishes on H2, and by the same argument we must have  1 = 0 on H2. The
first relation then implies that  0 = 0 on H2. Therefore, along with the vanishing of  3 and  4

on H2 all the Weyl spinor components vanish there. Thus, one has that

 
ABCD

|H2 = 0 .

Summarising, the non-vanishing of 2 on Z implies that all the Weyl spinor components vanish
identically on the union of Z, H1 and H2. This, in the vacuum case, implies that all components
of the Riemann curvature tensor vanish on H1 [H2. It follows then that the spacetime obtained
in Theorem 2 is di↵eomorphic to a portion of the Minkowski spacetime and the pair intersecting
null hypersurfaces has to contains a bifurcate Killing horizon corresponding to a choice of a boost
Killing vector field.

ii. 2 vanishes on a (non-empty) open subset of Z. It follows from the discussion in the
previous subsection that, unless the spacetime is Minkowski, 2 must vanish somewhere on Z. It
turns out that that if this is the case, then 2 must vanish on some open subset of Z —this fact
can readily verified by a contradiction argument together with the condition  22 = 0. Keeping
the latter observation in mind, it follows from (25b), and from equation (4), that

g2 = �⌧ 2 ,

can be written as
PP @

z

(P�12) = �⌧ P (P�1 2) (36)

implying, in turn, that 2 has to be of the form

2 = P · exp
✓
�
Z
⌧ P

�1
dz + '(z)

◆
, (37)

where '(z) is an arbitrary holomorphic function. This, however, in virtue of the non-vanishing
of P , implies that 2 cannot vanish on an open subset of Z unless it is identically zero on Z, i.e.

2|Z = 0

as we intended to show. Note also that the condition (27b) requires then the vanishing of 2
along the generators of H2, thereby we have

2|H2 = 0 .

Summarising, in this subsection we have shown the following:

Lemma 6. Assume that
 2 2 = 0 on Z.

Then, if 2 is nowhere vanishing on Z, then the solution to the characteristic initial value problem
must be di↵eomorphic to the Minkowski spacetime in the domain of dependence of D(H1 [H2).
Otherwise, 2 = 0 holds on Z, and then it is also identically zero on H2.
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5.2 Determining 0 on Z
The analysis of the previous section can be adapted, mutatis mutandi, to the component 0 by
noting that the vanishing of  20 on H1, one of the conditions in Lemma 1, can be traced back to
the vanishing of  20 on Z. Indeed, it can be shown that unless the spacetime is Minkowski 0
must vanish on a non-empty subset of Z. The only di↵erence in the analysis lies on the analogue
of equation (36). From equations (25a) and (4) along with the fact that 0 is of spin weight �1,
it follows that

g0 = ⌧ 0 ,

can be written as
PP @

z

(P
�1
0) = ⌧ P (P

�1
0) (38)

which implies, in turn, that 0 has to be of the form

0 = P · exp
✓Z

⌧ P�1 dz + &(z)

◆
, (39)

where &(z) is an arbitrary antiholomorphic function on Z. From here, by an argument analogous
to that used for 2 one concludes that

0|Z = 0

and, moreover, as a consequence of equation (26a), also that

0|H1 = 0.

Summarising:

Lemma 7. Assume that
 2 0 = 0 on Z.

Then, if 0 is nowhere vanishing on Z, then the solution to the characteristic initial value problem
must be di↵eomorphic to the Minkowski spacetime in the domain of dependence of D(H1 [H2).
Otherwise, 0 = 0 holds on Z, and then it is also identically zero on H1.

5.3 Eliminating redundant conditions on H1 and H2

The first condition in Lemma 1 was

g21 = 0 on H1.

In theory, one would have to solve this constraint on the whole of H1. However, one can show
that on H1

D(g21) =� 1

2
���0 +

3

2
⌧��0 + �0

✓
�↵2 � 4↵� � �

2
+

5

2
�↵+

1

2
��

◆

+ 0
�
2↵�⌧ � 2↵�↵� 3��↵� ↵�� + ��↵

�
.

Note that as 0 vanishes on H1 (under the assumption that the spacetime is not di↵eomorphic
to Minkowski), the right hand side of this equation also vanishes on H1. Therefore, if 1 satisfies

g21 = 0 on Z, then it also satisfies the same condition on the whole of H1. This was a condition
on Z already present from the requirement that S

AA

0
BB

0 |Z = 0. Summarising:

Lemma 8. If 0|H1 = 0 and g21|Z = 0, then the condition g21|H1 = 0 from Lemma 1 is
automatically satisfied.

A similar procedure can be performed on H2. The first condition from Lemma 2 was

g21 + 2�� +
3

2
��2 + ↵�2 = 0
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which must be satisfied on H2. As we already we have shown that necessarily 2|H2 = 0 unless the
spacetime is di↵eomorphic to the Minkowski spacetime. Therefore, the aforementioned condition
reduces to

g21 = 0 on H2.

Now, one can show that on H2,

�
�
g21

�
=� 1

2
���2 �

3

2
⌧��2 + �2

�
�↵2 � ↵� + 2�2 � 2�↵� 4��

�

+ 2 (�↵�↵+ ��↵� 2↵�� + 2��� � ��↵� 2���) .

The requirement that 2 vanishes on H2 means that the right hand side of this equation also
vanishes on H2. Therefore, if 1 satisfies g21 = 0 on Z, then it also satisfies the same condition
on the whole of H2. This was a condition on Z already present from the requirement that
S
AA

0
BB

0 |Z = 0.

Finally, the condition from Lemma 5 says that

g21 + 2�� � 1

2
��2 � 3↵2� �  12 = 0 on H2

which reduces to g21 = 0 due to the fact that 2|H2 = 0 when the spacetime is not di↵eomorphic
to the Minkowski solution. One can show that on H2

�
⇣
g21

⌘
= �2

✓
1

2
�⌧ � �⌧

◆
+ 2

�
�6↵2� � 6↵�� � 2↵�↵+ ↵�↵

+5��↵+ 2↵�↵+ ��↵+ 7↵�� + 2��� + ��↵� ��↵� 2���
�
.

The requirement that 2 vanishes on H2 means that the right hand side of this equation also

vanishes on H2. So if 1 satisfies g21 = 0 on Z, then it also satisfies the same condition on the
whole of H2. This was a condition already present from the requirement that S

AA

0
BB

0 |Z = 0.
Summarising, we have

Lemma 9. If 2|H2 = 0 and g21|Z = g21|Z = 0, then the conditions
✓
g21 + 2�� � 1

2
��2 � 3↵2� �  12

◆
|H2 = 0,

✓
g21 + 2�� +

3

2
��2 + ↵�2

◆
|H2 = 0,

applied in Lemmas 2 and 5, are automatically satisfied.

The only remaining condition on H1 to be considered is from Lemma 1, which reduces to

(2 31 � 3 22) |H1 = 0 (40)

due to the requirement that 0|H1 = 0. One can also use this requirement to show that

D2 (2 31 � 3 22) |H1 = 0.

In fact, the right hand side of this expression can be shown to be homogeneous in 0 and deriva-
tives of 0 intrinsic to H1. This can be thought of as a second order ordinary di↵erential equation
along the geodesic generators of H1. Therefore, equation (40) is equivalent to the vanishing of
(2 31 � 3 22) and its first D-derivative on Z. This combination vanishes on Z if 2|H2 = 0
as it follows from Table 1 that  3|Z = 0. The vanishing of the first derivative on Z can be shown
to be equivalent to

�
�
31 2

�
|Z = 0 . (41)

In a similar way, the only remaining condition on H2 to be analysed is from Lemma 2. This
condition reduces to

(2 11 � 3 20) |H2 = 0 (42)
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due to the requirement that 2|H2 = 0. One can also use this requirement to show that

�2 (2 11 � 3 20) |H2 = 0.

In fact, the right hand side of this can be shown to be homogeneous in 2 and derivatives of
2 intrinsic to H2. This can be thought of as a second order ordinary di↵erential equation
along the geodesic generators of H2. Therefore, equation (42) is equivalent to the vanishing of
(2 11 � 3 20) and its first � derivative on Z. This combination vanishes on Z if 0|H1 = 0
as, following 1, one has that  1|Z = 0. The vanishing of the first derivative on Z can be shown
to be equivalent to

�
�
31 2

�
|Z = 0 . (43)

It follows then from equations (43) and (41),

K ⌘ 31 2 (44)

is constant K 2 C on Z.

Summarising the discussion of this section one has that:

Lemma 10. Assume that 0|H1 = 2|H2 = 0. Then K ⌘ 31 2 is constant on Z if and only if

(2 31 � 3 22) |H1 = 0,

(2 11 � 3 20) |H2 = 0.

Remark 14. Note that

DK|H1 =
3

2
 2

2
1

�
��0 + 2↵0

�
|H1

= 0

where we have used equation D 2|H1 = 0 from Table 1, equation (26f) and the requirement that
0|H1 = 0. Similarly,

�K|H2 =
3

2
 2

2
1 (��2 � 2(� + ⌧)2) |H2

= 0

where we have used equation � 2|H2 = 0 from Table 1, equation (27e) and the requirement
that 2|H2 = 0. Thus, K is constant not merely on Z but on the whole of H1 [ H2. Since
the Newman-Penrose reduced system coupled to the wave equation for 

AB

, equation (7), is a
well-posed hyperbolic system we also have that K is, in fact, constant throughout the domain of
dependence of H1 [H2.

5.4 Summary

Collecting all the previous results together one obtains the following:

Proposition 4. Assume that the spacetime obtained from the characteristic initial value problem
in D(H1[H2) is not di↵eomorphic to the Minkowski spacetime. Then the following two statements
are equivalent:

(i) Given a spin basis {oA, ◆A} on Z, there exist a constant K 2 C such that

0 = 0 , g21 = g21 = 0 , 2 = 0 and 31 2 = K on Z .

(ii) H
A

0
ABC

= 0, S
AA

0
BB

0 = 0 everywhere on H1 [H2.

Recall that the vanishing of the spinors H
A

0
ABC

and S
AA

0
BB

0 on H1 [H2 are precisely the
conditions of Proposition 3, which along with the assumptions of Theorem 2 imply that the
Killing spinor candidate 

AB

is in fact a Killing spinor in the causal future (or past) of Z. By
summing up these observations we get:
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Theorem 3. Let (M, g) be a vacuum spacetime satisfying the conditions of Theorem 2. Given
a spin basis {oA, ◆A} on Z, assume that there exist a constant K 2 C such that the conditions

0 = 0, g21 = g21 = 0 , 2 = 0 and 31 2 = K (45)

hold on Z. Then the corresponding unique solution 
AB

to equation (7) is a Killing spinor
everywhere on the domain of dependence of H1 [H2.

Remark 15. Condition (45) is a strong restriction on the form of the Weyl spinor component
 2 —and thus, also of the curvature of the 2-surface Z. As it will be seen in Section 8, it fixes
its functional form up to some constants. As already discussed in Remark 5 the Weyl spinor
component  2 is not a basic piece of initial data. In view of (17) condition (45), ultimately leads
to restrictions on ⌧ and ⇣A.

6 On the role of 1

The purpose of this section is to discuss some of the consequences of the existence of a Killing
spinor field. The extent of these implications is remarkable.

6.1 Restrictions on the initial data of distorted black holes

Note first that once 1 is fixed on Z, the component  2 gets also to be determined by the relation
(44) as

 2 = K�3
1 (46)

where K is some complex number. In turn, we also get restrictions on the free data —comprised
by the complex vector field ⇣A and the spin coe�cient ⌧ on Z— as given in Rácz’s black hole
holograph construction in [33, 34].

Now, observe that once  2 is known, the metric � is restricted in a great extent. To see this
recall first the definition of g and g given by (4) in terms of the function P on Z. By applying
the commutation relation relevant for P , that is of spin-weight one, we get

(g g� g g)P = ( 2 +  2)P ,

which by using gP = 0, and also by using explicit z- and z-derivatives (16) can be seen to take
the form

PP @
z

@
z

�
log(PP )

�
= �2Re( 2) . (47)

Similarly, (17) can be seen to impose very strong restrictions on the spin-coe�cient ⌧ . Indeed,
using the above notation (17) takes the form

P (@
z

⌧)� P (@
z

⌧)�
�
⌧ P (@

z

logP )� ⌧ P (@
z

logP )
�
= �2 i Im( 2) . (48)

By applying the substitutions ⌧ 7! ⌧1 + i ⌧2, P 7! P1 + iP2 and z 7! z1 + i z2 we get, by a
direct calculation, that the real part of (48) reduces to a homogeneous linear equation for ⌧1
and ⌧2, whereas the vanishing of the imaginary part can be seen to be a first order linear partial
di↵erential equation for the variables ⌧1 and ⌧2 on R2, with coordinates (z1, z2). Once, say, ⌧1 is
eliminated by the linear algebraic relation, the corresponding linear partial di↵erential equation
can always be solved for ⌧2. This completes then the verification of the claim that whenever a
Killing spinor exists on a distorted vacuum black hole spacetime, the specification of 1 on the
bifurcation surface is equivalent to the freely specifiable data comprised by ⇣A and ⌧ there.

Remark 16. It is worth mentioning that under a boost transformation

la 7! # la, na 7! #�1na,

where # is a smooth positive real function on Z, the spin connection coe�cient ⌧ transforms as

⌧ 7! ⌧ + � log #.
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H1 Z H2

0 = 0 0 = 0 0 = �2u (g1 + ⌧ 1)

1 = 1|Z 1 : g21 = g21 = 0 1 = 1|Z
2 = �2 r g1 2 = 0 2 = 0

Table 2: The components of the Killing spinor field AB on the null hypersurface H1 [H2.

H1 Z H2

⇠110 = �3 r (⌧ g1 � ⌧ g1) ⇠110 = 0 ⇠110 = 0

⇠100 = �3 g1 ⇠100 = �3 g1 ⇠100 = �3 g1

⇠100 = 3 g1 ⇠100 = 3 g1 ⇠100 = 3 g1

⇠000 = 0 ⇠000 = 0 ⇠000 = �3u (⌧ g1 � ⌧ g1)

Table 3: The components of the Killing vector field ⇠AA0 on the null hypersurface H1 [H2.

This gauge freedom has been left open in the black hole holograph construction [33, 34]. Thereby,
by solving the first-order quasilinear partial di↵erential equation

⌧1 +Re(� log #) = 0

for #, the real part of ⌧ could be transformed out to the expense of having the imaginary part
changing as

⌧2 7! ⌧2 + Im(� log #).

For a simple application of such a gauge transformation see the argument below (64) in Section
10.

6.2 The explicit form of AB and ⇠AA0
= rP

A0AP on the horizon

It is also instructive to compute the explicit form of the Killing spinor 
AB

and the associated
Killing vector field ⇠

AA

0 = rP

A

0
AP

on the horizon H1 [H2.

As for the explicit form of the Killing spinor note first that, in virtue of Theorem 3, on Z we
have

0 = 0, g21 = g21 = 0 , 2 = 0 . (49)

Using then (26a), (26f) and (26g), and by commuting D and � derivatives, we get that on H1

0 = 0, 1 = 1|Z , 2 = �2 r g1 . (50)

Analogously, by (27b), (27d) and (27e), and by commuting � and � derivatives, we get on H2

0 = �2u (g1 + ⌧ 1), 1 = 1|Z , 2 = 0 . (51)

These observations are summarised in Table 2.

In exactly the same way, the components of the Killing vector field ⇠
AA

0 = rP

A

0
AP

can
be determined by equations (28a)-(28d) on Z, by (32a), (32c), (32f) and (32j) on H1, as well
as, by (34b), (34c), (34d) and (34g) on H2, along with commuting derivatives on H1 and H2,
respectively. The corresponding explicit formulas are collected in Table 3.

Remark 17. In order to proceed with the interpretation of the above expressions recall, first,
that any of the the distorted black hole configurations was shown [33, 34] to admit a horizon
Killing vector field of the form

Ka =

(
�r (@/@r)a , on H1 ,

u (@/@u)a , on H2 .
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Note also, in Gaussian null coordinates (u, r, xA) the coordinate functions u and r are a�ne
parameters along he generators of H1 and H2, respectively. Accordingly, the components ⇠110
and ⇠000 of the Killing vector field are not constant in these coordinates. They would be constant if
they were to be expressed in terms of the associated Killing parameters instead of the a�ne ones.
Notably, this behaviour of ⇠

AA

0 on the horizon H1[H2 resembles that of the asymptotically time
translational Killing vector field (@/@t)a of the Kerr solution. Recall that the orbits of (@/@t)a

repeatedly and periodically intersect the generators of the horizons H1 and H2, respectively, and
also that (@/@t)a reduces to an axial Killing vector field on the bifurcation surface.

6.3 The Petrov type of the domain of dependence

It has been known for long [39] (see also [28]) that the existence of the Killing spinor 
AB

satisfying
(5) imposes strong restrictions on the self-dual Weyl spinor  

ABCD

via the integrability condition

 (ABC

F
D)F = 0 .

Namely, if neither  
ABCD

nor 
AB

vanishes there exist some scalar  such that

 
ABCD

=  (AB


CD) ,

implying, in particular, that  
ABCD

must be of Petrov type D or N. It is also known that if the
Killing spinor field 

AB

is generic, i.e. 
AB

= ↵(A�B), for some ↵
A

6= �
A

spinors,  
ABCD

is of
Petrov type D.

As this integrability condition had been used (see Remark 11) in the previous sections in
identifying the conditions on the initial data for 

AB

on H1 [H2, and both 
AB

and  
ABCD

are
known to satisfy wave equations that are linear and homogeneous in these variables (see e.g. [2, 27])
the integrability condition immediately holds everywhere in the domain of dependence of H1[H2.

Note also that, as for the Killing spinor field 
AB

= 2oAoB � 21o(A◆B) + 0◆A◆B holds,
whenever 1 is non identically zero (which could only happen in the flat case) 

AB

is guaranteed
to be generic. All these observations verify the following :

Corollary 1. Let (M, g) be a vacuum spacetime satisfying the conditions of Theorem 2. If 1
is not identically zero on the bifurcation surface Z then the corresponding distorted black hole
spacetime is of Petrov type D everywhere in the domain of dependence of H1 [H2.

Remark 18. As mentioned in the introduction, in [21] all vacuum Petrov type D spacetimes
have been described and expressed in terms of some local coordinates. The di�culty of bringing
these explicit solutions into the gauge used in Rácz holograph construction motivate much of the
rest of this article.

7 Axial symmetry of the bifurcation surface Z ⇡ S2

As argued below, whenever the bifurcation surface Z possesses the topology of a two-sphere, S2,
the conditions in (45) immediately imply the existence of an axial Killing vector field on Z.

7.1 Existence of a Killing vector on Z
We begin by observing that as a consequence of equations (28a) and (28d) then if 0 = 2 = 0
then necessarily ⇠000 = ⇠110 = 0. Thus, under the assumptions of Theorem 3, the Killing vector
⇠
AA

0 is tangent to Z —i.e. its only non-vanishing components are ⇠010 and ⇠100 . As we have seen
in Subsection 4.2.4 the existence of a (possibly complex) Killing vector field on Z is equivalent
to (30a)-(30c) on Z which had also been seen to be equivalent to the vanishing of S

AA

0
BB

0 =
r

AA

0⇠
BB

0+r
BB

0⇠
AA

0 on Z. Thereby, the conditions of Theorem 3 are equivalent to the existence
of a (possibly complex) Killing vector field on Z.
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Remark 19. As all the geometric quantities including the spin coe�cients, as well as, the
Weyl spinor components  

ABCD

are constructed from the metric g, given by (10), and ⇠
AA

0 =
rP

A

0
AP

is known to be a Killing vector field everywhere in D(H1 [H2) we immediately have
that

⇠AA

0r
AA

0⌧ = 0 , ⇠AA

0r
AA

0 2 = 0

and, in virtue of (44) and the argument in Remark 14 above, that

⇠AA

0r
AA

01 = 0

everywhere in D(H1 [H2). Thus we shall use from now on, without loss of generality, that ⌧, 2

and 1, when they are restricted to Z, they all respect the axial symmetry of the metric on Z.

7.2 The axial Killing vector

By our assumption on the underlying smoothness of the setting the Killing vector field ⇠
AA

0 is
smooth on Z. If ⇠

AA

0 was also Hermitian—i.e.

⇠010 = ⇠100 ,

would hold, then, by appealing to the hairy ball theorem this Killing vector field vanished at some
point, say at p 2 Z. As —apart from the trivial case when 1 is constant on Z— ⇠

AA

0 was not
identically zero on Z, and by applying the argument of Wald—see pages 119-120 in [38]—⇠

AA

0

had to be an axial Killing vector field on Z with closed orbits, with some fixed periodicity, around
the fixed point p 2 Z.

In returning now to the generic case note that the argument just outlined applies to the real
and imaginary parts of ⇠

AA

0 , separately. Thereby, whenever ⇠
AA

0 is non-Hermitian the metric
on Z has to admit both ⇠

AA

0 + ⇠
AA

0 and i (⇠
AA

0 � ⇠
AA

0) as real Killing vector fields. If both of
the are non-trivial they either vanish at the same location on Z or not. If both vanish at p 2 Z
they must be proportional and the factor of proportionality is determined by the ration of their
individual periodicities. If their vanishing occurs at two di↵erent points of Z then ⇠

AA

0 + ⇠
AA

0

and i (⇠
AA

0 � ⇠
AA

0) must be linearly independent real axial Killing vector fields on Z implying,
in virtue of (45), that 1 = const and, in turn, that  2 = const and ⌧ = 0 which implies then
that the metric � on Z is spherically symmetric.

We can summarise the discussion of this section in the following:

Proposition 5. Assume that the spacetime obtained from the characteristic initial value problem
in D(H1 [H2) admits a Killing spinor 

AB

such that (45) hold on Z. Then ⇠
AA

0 = rP

A

0
AP

gives rise to a (possibly complex) axial Killing vector field on Z.

8 Determining 1 on Z
As we have seen in Section 7, once Z is assumed to have the topology of a 2-sphere, the spinor
⇠
AA

0 is guaranteed to be an axial Killing vector field on Z. By restricting our considerations to
this case, the purpose of this section is to explicitly determine 1 satisfying the equations

g21 = 0 , g21 = 0 . (52)

This can be done in the most e↵ective way by using coordinates adapted to the axial symmetry of
� as done in [9]. Therefore, for the sake of completeness, we shall outline the argument applied
Section IV of [9] in the following subsection. We note the use of these coordinates can be traced
back to [36] —see also [10] for a further application of this method.
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8.1 Coordinates adapted to axial symmetry

Recall, first, that by assumption the 2-dimensional manifold Z has the topology of the 2-sphere
S2. Thus, by the Riemann mapping theorem the metric � is conformal to the standard round
metric of S2. Taking into account the assumption of axial symmetry one writes then

� = $2
�
d✓ ⌦ d✓ + sin2 ✓d'⌦ d'

�
(53)

where (✓,') are standard spherical coordinates on S2 and $ = $(✓) is a suitable conformal factor
depending only on the colatitude ✓. If � is a smooth metric, then the conformal factor is also a
strictly positive scalar field over Z. The key idea behind the explicit integration of the equations
in (52) is to introduce a new coordinate  given by the condition

d =
$2

R2
sin ✓d✓,

where R is the area radius defined by

4⇡R2 =

Z

Z
$2 sin ✓d✓ ^ d'

= R2

Z

Z
d ^ d' = 2⇡R2( 1 �  0).

Setting, without loss of generality,  0 = �1 one has that  1 = 1 —these coordinate values
correspond, respectively, to the North and South poles of Z defined by the conditions ✓ = 0 and
✓ = ⇡. Thus, the coordinate  is defined on the range [�1, 1]. Defining, for convenience, the
function Q = Q( ) by

Q2 ⌘ $2 sin2 ✓

R2
, (54)

the metric (53) takes, in terms of the coordinates ( ,�) the form

� = R2

✓
1

Q( )2
d ⌦ d +Q( )2d'⌦ d'

◆
. (55)

In particular, from (54) we have that

Q(�1) = Q(1) = 0. (56)

A direct computation then shows that the Levi-Civita connection of � —encoded in the
combination ↵� � [see e.g. (1)]— is given in terms of the function Q by

↵� � = � 1p
2R

@
 

Q ⌘ � 1p
2R

Q0. (57)

8.2 Integration of the equations for 1

We now make use of the coordinates introduced in the previous subsection to integrate the
equations in (52).

Consistent with the discussion in Section 7 we look for solutions which are axially symmetric.
To this end we observe that, in terms of the coordinates ( ,'), the directional derivatives � and
� acting on scalars are given by

� =
1p
2R

✓
Q@

 

+
i

Q
@
'

◆
, � =

1p
2R

✓
Q@

 

� i

Q
@
'

◆
.

As it follows from the argument applied in Remark 19 1 is also axially symmetric, i.e. @
'

1 = 0.

Therefore the two conditions g21 = 0 and g21 = 0 are no longer independent (in fact they are
equivalent!). Then, in virtue of (1),

g21 =

✓
1p
2R

Q@
 

� 1p
2R

@
 

Q

◆✓
1p
2R

Q@
 

1

◆

=
Q2

2R2
@2
 

1 = 0 ,
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from which one readily obtains the solution

1 = c + b, c, b 2 C. (58)

From this solution, recalling the relation (44) one readily obtains the following expression for  2:

 2 =
K

(c + b)3
. (59)

Remark 20. Observe that in view of the linearity of the Killing spinor equation, there is a
freedom in the choice of the normalisation of the solution (58). In contexts where there is an
asymptotic end present, there exist a natural choice for the normalisation —namely, choosing it
so that the associated Killing vector is, to leading order, @

t

. In the present context we do not
have this natural normalisation. However, one can always use this freedom to make the constant
b equal to any arbitrary (non-zero) real constant. Accordingly, the solution (58) actually only
contains one essential complex constant —i.e. two real parameters.

8.2.1 The Gauss-Bonnet condition

The Weyl scalar is related to the Gaussian curvature of 2-surfaces —see [28], Section 4.14. In
particular, for the 2-surface Z one has that it is given by KG = �2Re 2. It follows then that
the Gauss-Bonnet formula applied to Z ⇡ S2 implies

Z

Z
 2dS = �2⇡ (60)

—see equation (4.14.44) in [28]. Taking into account the line element (55) one finds that

Z

Z
 2dS = R2

K

Z 1

�1

Z 2⇡

0

d'd 

(b+ c )3

=
4⇡R2

Kb

(b2 � c

2)2
.

Thus, from (60) one obtains the condition

2R2
Kb

(b2 � c

2)2
= �1. (61)

Remark 21. Condition (61), being a consequence of the Gauss-Bonnet formula, is a necessary
condition for �2Re 2 to be the Gaussian curvature of a smooth 2-surface. It, can be used to fix
the value of the radius R. Observe, also that it implies that the combination

Kb

(b2 � c

2)2

must be real. It will be seen in Subsection 10.2 that for the Kerr spacetime one necessarily has
that K must be real and c pure imaginary. If this is the case, then b must also be real.

8.3 Integrating the function Q

Equation (16) can be used to compute the explicit form of the function Q appearing in the line
element (55). Taking into account (57) and (59), equation (16) implies then

(QQ0)0 =
KR2

(b+ c )3
+

KR2

(b+ c )3
.

This expression can be readily integrated to get

Q2 = C2 + C1 +
KR2

c

2(b+ c )
+

KR2

c

2(b+ c )
(62)
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with C1 and C2 some real integration constants which are fixed using the conditions in (56). A
direct computation shows then that

C1 =
KR2

c(b2 � c

2)
+

KR2

c(b
2 � c

2)
, (63a)

C2 = � KR2
b

c

2(b2 � c

2)
� KR2

b

c

2(b
2 � c

2)
. (63b)

Remark 22. The constants R, K, b and c in (62) and (63a)-(63b) are subject to the constraint
(61) arising from the Gauss-Bonnet identity.

Remark 23. In order to ensure the regularity of the function Q and of the associated curvature
of Z, it is necessary that the ratio �b/c 2 C \ [�1, 1] —that is, �b/c can lie in any point of the
complex plane except the interval [�1, 1] on the real axis. Moreover, in order for the expression
(62) to be well defined, the constants R, K, b and c have to be such that the left hand side of the
expression is non-negative for  2 [�1, 1].

Remark 24. Note that by writing out equation (17) explicitly, and by making use of the present
setup —along with the explicit  dependence of Q and  2—the imaginary part of ⌧ gets to be
uniquely determined as

Im(⌧) = �
p
2R

Q( )

Z
 

�1
Im( 2( 

0))d 0 . (64)

Note, finally, that by making use of the gauge freedom we have in the black hole holograph
construction —for a related discussion and an application see the last paragraph of Subsection
6.1— the real part of ⌧ can be set to zero by performing an axially symmetric boost transformation
with parameter # = #( ) given by

# = exp

 
�
p
2R

Q( )

Z
 

�1
Re(⌧( 0)) d 0

!
. (65)

Remarkably, the axial symmetry of the setup guarantees that Im(� log #) = 0 and, in turn, that the
imaginary part of ⌧ remains unchanged. This, in particular, implies that (64) holds independently
of the choice made for the axially symmetric boost transformation or, equivalently, for the real
part of ⌧ .

8.4 Summary: distorted black holes with Killing spinors

Summarising the discussion of the previous section we get the following:

Proposition 6. There exists a four (real) parameter family of smooth axial symmetric 2-metrics
� on Z ⇡ S2 such that 1 is a solution to the constraints

g21 = 0 and g21 = 0 ,

and such that the curvature condition
31 2 = K

also holds.

Remark 25. By appealing now to the general black hole holograph construction [34], as sum-
marised in Theorem 2, it follows then that from the four parameter family of initial data—
comprised by the metrics referred to in Proposition 6, along with pertinent form of ⌧ determined
by (64)—on Z, there exists a four parameter family of distorted black hole configurations the
members of which are uniquely determined everywhere in the domain of dependence of the initial
data surface, H1 [H2. This figure is consistent with the count of independent constants found
in Kinnersley’s analysis of vacuum Petrov type D solutions—see [21].
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Remark 26. An extensive study of spacetimes admitting Petrov type D isolated null surfaces
have also been carried out recently [8, 9, 22]. Notably, using our notation, the basic equations
therein, relevant for a pair of such intersecting Petrov type D surfaces in the pure vacuum case,
were found to take the form

g2 �1/3
2 = 0 and g2 �1/3

2 = 0 .

The authors in [8, 9, 22] also claimed that if the intersection of the two null hypersurfaces is
a topological 2-sphere, the 4-metric (determined only on these null hypersurfaces) can uniquely
parametrized by the horizon area and angular momentum. It is not clear then where the other
two-parameters —from among those four ones characterizing generic Petrov type D solutions
[21]— are lost in arriving to this conclusion.

9 Enforcing the Hermiticity of the Killing vector

In Theorem 1, the assumption that the spinor ⇠
AA

0 constructed from the Killing spinor 
AB

is
Hermitian is needed in order to show that the spacetime is isometric to the Kerr solution. Recall
that using equations (22a)-(22d) the components of ⇠

AA

0 can be expressed in terms of derivatives
of the Killing spinor components 0,1 and 2. Accordingly, the Hermiticity condition leads to
further restrictions on the components 0,1 and 2. A consequence of the following proposition
is that it su�ces to impose restrictions only on the hypersurfaces H1 and H2.

Proposition 7. Let 
AB

be a solution to equation (7). Then the spinor field ⇠
AA

0 satisfies the
wave equation

⇤⇠
AA

0 = � 
A

BCDH
A

0
BCD

(66)

Proof. Follows by commuting derivatives, and using (7).

An immediate consequence of this result is that

⇤
�
⇠
AA

0 � ⇠
AA

0
�
=  

A

0
B

0
C

0
D

0
H

AB

0
C

0
D

0 �  
A

BCDH
A

0
BCD

(67)

Assuming that the conditions of Lemmas 1 and 2 are satisfied and H
A

0
ABC

vanishes H1[H2.
Then, in virtue of (67), ⇠

AA

0 � ⇠
AA

0 must also vanish everywhere on the domain of dependence
of H1 [H2, guaranteeing thereby that the vector ⇠

AA

0 is Hermitian there.

This verifies then the following:

Proposition 8. Assume that the spacetime obtained from the characteristic initial value problem
in D(H1 [H2) admits a Killing spinor 

AB

such that conditions (45) and

g(1 + 1) = 0

hold on Z. Then ⇠
AA

0 = rP

A

0
AP

is a real axial Killing vector field on Z.

9.1 Some immediate restrictions

The Hermiticity of the Killing vector ⇠
AA

0 is equivalent to the relations

⇠000 = ⇠000 , ⇠010 = ⇠100 , ⇠100 = ⇠010 , ⇠110 = ⇠110 . (68)

These conditions will be imposed on H1 and H2 separately.

Conditions on H1. On H1, using the explicit expressions (22a)-(22d), the first condition in (68)
is trivially satisfied, and the remaining conditions can be shown to be equivalent to

�(1 + 1) = 0, (69a)

�(1 + 1) = 0, (69b)

�1 + ⌧2 real, (69c)
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on H1. In fact, it is straightforward to show that on H1

D�(1 + 1) = D�(1 + 1) = 0 .

Thus, it su�ces to impose conditions (69a)-(69b) only on Z. In other words, the Hermiticity
condition on H1 is equivalent to

Re(1) constant on Z,

�1 + ⌧2 real on H1.

Conditions on H2. Secondly, on H2, the last condition in (68) is trivially satisfied and the
remaining conditions are equivalent to

�(1 + 1) = 0, (70a)

�(1 + 1) = 0, (70b)

D1 real, (70c)

on H2. Again, it is straightforward to show that on H2

��(1 + 1) = ��(1 + 1) = 0.

Consequently, it su�ces to impose conditions (70a)-(70b) on Z.

Combining the discussion of the previous two paragraphs one concludes that the spinor field
⇠
AA

0 is Hermitian on H1 [H2 if and only if we have

1 + 1 = const on Z, (71a)

�1 + ⌧ 2 real on H1, (71b)

D1 real on H2. (71c)

9.2 Hermiticity in terms of conditions at Z
In this section it is shown that conditions (71b)-(71c) can be replaced by restrictions on Z.

Analysis on H2. Start by considering condition (71c). From the transport equation (20b) on
H2, and equation (24g), we have that

2�D1 = ��1 + ��1 + 4⌧�1 � (3↵+ �)�1 � (3↵+ �)�1 + 2 21

on H2. Taking a further �-derivative we obtain

2��D1 = �(�� + ��)1 + 4⌧��1 � (3↵+ �)��1 � (3↵+ �)��1 + 2 2�1.

We can commute the �-derivative with the � and � derivatives to obtain

2��D1 = (�� + ��)�1 + 4⌧��1 � (3↵+ �)��1 � (3↵+ �)��1 + 2 2�1.

Note that all the terms on the right are proportional to intrinsic derivatives of �1, which by
(27e) is proportional to 2 and its intrinsic derivatives on H2. As shown in subsection 5.1, unless
our spacetime is the Minkowski solution, the component 2 must vanishes on H2. It follows then
that

��D1 = 0 on H2 .

This is a second order ordinary di↵erential equation along the generators of H2. Therefore, the
requirement that D1 is real on H2 is equivalent to requiring that D1 and �D1 are real on Z.

Analysis on H1. An analogous argument apply in case of condition (71b). Take first a D-
derivative along the generators of H1 and use the transport equation (19b) on H1, along with the
assumption that 0 vanishes in H1 to obtain

2D(�1 + ⌧2) = ��1 + ��1 � (↵� �)�1 � (↵� �)�1 + 2 21.

32



Taking a further D-derivative one gets

2DD(�1 + ⌧2) = D(�� + ��)1 � (↵� �)D�1 � (↵� �)D�1 + 2 2D1. (72)

By commuting the D derivatives with the � and � derivatives, we obtain

2DD(�1 + ⌧2) =(�� + ��)D1 � (3↵+ �)�D1 � (3↵+ �)�D1

+
�
�⌧ + �⌧ + 4↵↵+ 2↵� + 2↵� + 2 2

�
D1.

Note that all terms on the right hand side are proportional to � and � derivatives of D1, which
by (26f) are proportional to 0 and its � and � derivatives on H1. Therefore, again, unless our
spacetime is the Minkowski solution, 0 = 0 holds on H1. Accordingly one has that

DD (�1 + ⌧2) = 0 on H1.

Again, the latter is a second order ordinary di↵erential equation along the generators of H1, and
so the requirement that �1 + ⌧2 is real on H1 is equivalent to requiring that �1 + ⌧2 and
D (�1 + ⌧2) are real on Z.

Summarising the results of this section we have:

Lemma 11. The spinor field ⇠
AA

0 is Hermitian on H1 [ H2, and thereby on the domain of
dependence of H1 [H2, if and only if the conditions

1 + 1 = const ,

D(1 � 1) = 0 ,

�D(1 � 1) = 0 ,

�(1 � 1) + ⌧ 2 � ⌧ 2 = 0,

D (�(1 � 1) + ⌧ 2 � ⌧ 2) = 0 ,

are satisfied on Z.

Note that some of these conditions are redundant. For example, we know that D1 vanishes
on Z due to equation (26f) and the vanishing of 0, and so clearly D(1 � 1) also vanishes on
Z. A similar argument using equation (27e) can be used to show that �(1 � 1) + ⌧2 � ⌧2
vanishes on Z. We can also use the requirement that Re(1) is constant on Z to show that the
other two conditions are equivalent. Indeed, we have that

D (�(1 � 1) + ⌧2 � ⌧2) = D�(1 � 1)� 2⌧�1 + 2⌧�1

= �D(1 � 1) + ⌧�(1 � 1) + ⌧�(1 � 1)� 2⌧�1 + 2⌧�1

= �D(1 � 1)

where (24g), the commutator [�, D], and the vanishing of D⌧ (see Table 1), along with the
conditions �1 = ��1 and �1 = ��1, have been used. We compute now �D1. Eliminating
D2 by using (26g) the transport equation (20b) on Z can be seen to reduce to

2�D1 = (�� + ��)1 � (3↵+ �)�1 � (3↵+ �)�1 � (2↵+ 2�)D2 + 2 21

= (�� + ��)1 � (3↵+ �)�1 + (↵+ 3�)�1 + 2 21 .

Replacing � and � derivatives with the g and goperators we obtain

2�D1 = (gg+ gg)1 � (2↵+ 2�)g1 + (2↵+ 2�)g1 + 2 21 .

The imaginary part of this equation is given by

2�D(1 � 1) =
�
gg+ gg

�
(1 � 1) + 2 21 � 2 21

= 2
h�
gg1 + 2 21

�
�
�
gg1 + 2 21

�i
,

where in the second step the constancy of Re(1) on Z, along with the commutator (2) applied
to the spin weight zero quantity 1, was used.

Summarising, we have that:
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Lemma 12. The spinorial field ⇠
AA

0 is Hermitian on H1 [H2 if and only if on Z we have

1 + 1 = const , (73a)

gg1 + 2 21 is real. (73b)

10 Identifying the Kerr spacetime

In this section we make use of Theorem 1 to identify the values of the parameters K, b and c

defining the coe�cient 1 on Z which correspond to the Kerr solution. To this end, we first
identify conditions ensuring that the Killing vector associated to the Killing spinor is Hermitian.

10.1 Imposing the Hermiticity of ⇠AA0

Recall that the conditions ensuring the Hermiticity of the spinor ⇠
AA

0 have been given in Lemma
12. Accordingly, we now proceed to evaluate conditions (73a)-(73b) in the explicit solution (58).

Condition (73a). From (58) it readily follows that

1 + 1 = (c+ c) + (b+ b).

Thus, condition (73a) requires that c+ c = 0 so that one can write

c = ic, c 2 R.

Accordingly, expression (58) simplifies to

1 = ic + b

so that

 2 =
K

(b+ ic )3
. (74)

Condition (73b). A direct computation shows that

gg1 =

✓
1p
2R

Q@
 

+
1p
2R

@
 

Q

◆✓
1p
2R

Q@
 

1

◆

=
Q2

2R2
@2
 

1 +
Q

R2
@
 

Q@
 

1.

=
Q

R2
@
 

Q@
 

1,

where in the last line it has used that the expression for 1 given by (58) satisfies @2
 

1 = 0. As
@
 

1 = ic, it readily follows that

gg1 + 2 21 =
ic

R2
QQ0 +

2K

(b+ ic )2
.

Thus, condition (73b) implies that

(Q2)0 =
2iR2

K

c(b+ ic )2
� 2iR2

K

c(b� ic )2
. (75)

As a consequence of the solution (62), the above expression is automatically satisfied so that
condition (73b) does not add any further restrictions.

Lemma 13. For the family of 2-metrics on Z given by Proposition 6, the spinor ⇠
AA

0 associated
to the Killing spinor 

AB

is Hermitian if and only if the coe�cient 1 on Z is of the form

1 = b+ ic .
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10.2 Applying Mars’s characterisation

If the spinor ⇠
AA

0 is Hermitian, then the associated Killing form is well defined and on Z the
norm of the self-dual Killing form, H2, associated to the Killing spinor 

AB

is given by

H2 = �3621 2
2.

Moreover, the Ernst potential � takes on Z, up to a (possibly complex) constant x 2 C, the form

� = x� 1821 2.

Making use of the relation (44) to eliminate  2 one obtains

H2 = �36K2

41
, � = x� 18K

1
.

Now, in order to identify the Kerr spacetime via Theorem 1, we set x = 1 so that

1� � =
18K

1

from which, in turn, one readily obtains that

(1� �)4 =
184 K4

41

= �
✓
184K2

36

◆
H2.

The previous expression allows to identify the constant l in Theorem 1 given, in terms of the
parameters used above, as

l ⌘ 36

184 K2
.

Thus, in order to have the Kerr spacetime l must be real and positive which can only be satisfied
if K is non-zero and real, i.e. K = K 2 R \ {0}. Finally, a direct computation using the constraint
(61) shows that b = b 2 R —cfr. Remark 61.

We summarise the discussion in the following:

Proposition 9. The members of the family of 2-metrics given in Proposition 6 giving rise to
solutions to the vacuum Einstein field equations on D(H1[H2), which are isometric to a member
of the 2-parameter Kerr family of metrics are characterised by the conditions

b, K 2 R, c 2 C \ R.

These conditions fix the value of the component of the Weyl tensor  2 on Z.

10.2.1 Relation to the standard parameters of the Kerr family

From the previous discussion it follows that one can write

 2 =
K

(b+ i c )3
, b, c, K 2 R . (76)

Clearly,  2 as given above is regular everywhere on Z —and accordingly, also the Gaussian
curvature of Z. Now, observing that b is an arbitrary normalisation constant of the Killing
spinor we conclude that the representation of the Kerr family of spacetimes has two independent
constants —as it should be expected!

In order to relate the real parameters b, c, K with the standard mass (m) and angular momen-
tum (a) parameters of the Kerr family, we recall that in a dyad {oA, ◆A} consisting of principal
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spinors of  
ABCD

, the only non-zero component of the Weyl spinor is given, in terms of standard
Boyer-Lindquist coordinates, by

 2 = � m

(r � ia cos ✓)3

—see e.g. [1]. In this dyad the Killing spinor takes the form


AB

=
2

3
(r � ia cos ✓)o(A◆B).

The normalisation in the above expression of the Killing spinor is chosen so that the associated
Killing vector has the form

⇠a = (@
t

)a.

In Boyer-Lindquist coordinates the bifurcation sphere is determined by the condition

r = r+, r+ ⌘ m+
p
m2 � a2.

Thus, at the bifurcation sphere the component  2 of the Weyl tensor takes the form

 2 = � m

(r+ � ia cos ✓)3
. (77)

Now, in order to make contact with the framework of Rácz’s holograph construction we observe
that although the spin dyad associated to the null tetrad {la, na, ma, na} introduced in Section
3 is, in general, not aligned with the principal directions of the Weyl tensor, it happens to be
aligned at the bifurcation sphere Z. As the component  2 is invariant under spin-boosts one can
readily identify the expressions (76) and (77) —that is, one has

K

(b+ i c )3
= � m

(r+ � ia cos ✓)3
,

so that, essentially, the constants K, c and b correspond, respectively, to the values of the mass
parameter, angular momentum parameter and the value of the radial Boyer-Lindquist coordinate
at the event horizon.

11 Final remarks

As mentioned earlier, all the distorted electrovaccum black hole spacetimes can be represented
within Rácz’s black hole holograph construction [33, 34]. In this paper a systematic investigation
of a specific subset of these spacetimes was carried out. This subset was chosen by requiring the
existence of a Killing spinor field in the pure vacuum case. The primary aim was to identifying
the freedom we have in choosing initial data for the Killing spinor on the horizon of the underlying
distorted vacuum black hole. In accordance with Rácz’s black hole holograph construction by
fixing merely one of the Killing spinor components on the bifurcation surface the Killing spinor
gets to be uniquely determined everywhere in the domain of dependence of the horizons.

The motivation for the use of a Killing spinor field can be traced back to the following con-
ceptual issue raised already in [33, 34]: Recall first that the Kerr family of vacuum black holes
represents only a critical point in the space of the distorted vacuum black hole spacetimes. It
is natural to ask then, what sort of geometric selection rule, imposed only on the space bifur-
cation surface, singles out the only asymptotically flat stationary vacuum black hole spacetimes
distinguished by the black hole uniqueness theorems?

To get a clearer perspective of the results of the present paper it is worth recalling some of the
details of the black hole uniqueness proofs. Note, first, that asymptotic flatness as an assumption
is a completely natural requirement if one is interested in the properties of black holes which are
completely isolated in space. It is not surprising then that the black hole uniqueness theorems (see
e.g. Refs. [5, 6, 3, 16]) all assume asymptotic flatness of the domain of outer communications of
the selected vacuum spacetimes. Indeed, the black holes uniqueness proofs —using the black hole
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rigidity theorem of Hawking [15, 16] (claiming that an asymptotically flat stationary electrovac
black hole spacetime is either static or stationary axisymmetric)— can be traced back to proving
the uniqueness of solutions to an elliptic boundary value problem [18, 19, 5, 6, 26, 3]. The relevant
elliptic equations are derived from the Einstein’s equations on “t = const” hypersurfaces (or—
based on Hawking’s black hole rigidity theorem—on a suitable factor space of them), whereas the
boundary conditions are specified at the bifurcation surface and at spacelike infinity [3].

In view of the great detail of information on the geometry of the bifurcation surface provided
by the presented investigations, one may ask which part of them were actually used in the black
hole uniqueness proofs. The short answer is that almost none. More precisely, it was only assumed
that the geometry at the bifurcation surface is regular and that the “t = const” hypersurfaces
smoothly extend to this surface. The validity of this latter assumption had been verified in a
series of papers either for generic metric theories of gravity [30, 31] or in general relativity with the
inclusion of various matter fields [12, 32]. Nevertheless, the assumptions concerning the geometry
were never as detailed as given in the present paper. One might be puzzled by this, but from the
perspective of the black hole holograph construction [33, 34] it becomes clear immediately that
in identifying the Kerr family of black hole solutions in the black hole holography construction
one cannot refer to the asymptotic properties. Accordingly, all the information we may use must
be restricted to the bifurcation surfaces which plays the role of “holograms”, as these compact
two-dimensional carriers store all the information concerning the geometry of the associated four-
dimensional stationary black hole spacetimes.

After having the selection rules identified in case of vacuum configurations it is of obvious
interest to get them also in the electrovaccum case. In this way a completely new, quasi-local,
type of black hole uniqueness proofs can be established in the four dimensional case. Note,
however, that—as it was also proposed in [33, 34]— in virtue of the large variety of stationary
black hole, black ring and other type of “black” objects in higher dimensions it would be even
more important to generalize the techniques and concepts applied here to higher dimensions. The
corresponding investigations and constructions would definitely deserve further attention.
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[14] A. Garćıa-Parrado & J. A. Valiente Kroon, Killing spinor initial data sets, J. Geom. Phys.
58, 1186 (2008).

[15] S.W. Hawking: Black holes in general relativity, Commun. Math. Phys. 25, 152 (1972)

[16] S.W. Hawking and G.F.R. Ellis: The large scale structure of space-time, Cambridge Univer-
sity Press (1973)

[17] S. Hollands, A. Ishibashi and R.M. Wald: A higher dimensional stationary rotating black
hole must be axisymmetric, Commun. Math. Phys. 271, 699 (2007)

[18] W. Israel: Event horizons in static vacuum space-times, Phys. Rev. 164, 1776 (1967)

[19] W. Israel: Event horizons in static electrovac space-times, Commun. Math. Phys. 8, 245
(1968)

[20] J. Kánnár, On the existence of C1 solutions to the asymptotic characteristic initial value
problem in general relativity, Proc. Roy. Soc. Lond. A 452, 945 (1996).

[21] W. Kinnersley, Type D vacuum metrics, J. Math. Phys. 10, 1195 (1969).

[22] J. Lewandowski, & A. Szereszewski, The axial symmetry of Kerr without the rigidity theorem,
Phys. Rev. D 97, 124067 (2018)

[23] J. Luk, On the Local Existence for the Characteristic Initial Value Problem in General
Relativity, Int. Math. Res. Not., 2012, 4625 (2012).

[24] M. Mars, Uniqueness properties of the Kerr metric, Class. Quantum Grav. 17, 3353 (2000).
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