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a b s t r a c t 

A metamorphic linkage is capable of changing its motion branches and can be used as 

mechanisms for reconfigurable robots for various tasks. This paper presents two novel 

metamorphic linkages as the spherical-planar 6R metamorphic linkage and the Bennett- 

spherical 6R metamorphic linkage both of which have three various distinguished motion 

branches. Having established the close-loop equation of the spherical-planar 6R metamor- 

phic linkage, the paper reveals the conditions of various motion branches and a set of 

transformations for switching motion branches. The paper further uses to reveal the in- 

herent properties of this over-constrained metamorphic 6R linkage that is able to perform 

both spherical and planar motion with mobility one. Because of geometrical constraints 

at bifurcation points, the linkage is able to reconfigure to the deployed spherical motion 

branch, the planar motion branch and the folded spherical motion branch. The two spher- 

ical motion branches could be seen on both a large sphere that presents the deployed 

spherical motion and a small sphere that presents the folded spherical motion. This leads 

to the revelation of the novel Bennett-spherical 6R metamorphic linkage that has the tran- 

sition from one deployed Bennett configuration branch to a spherical configuration branch 

and then to another folded Bennett configuration branch. Given the geometric parameters 

of both metamorphic linkages, it reveals that these linkages are special cases of Bricard 

line-symmetric 6R linkage. 

© 2018 Published by Elsevier Ltd. 

 

 

 

 

 

 

1. Introduction 

Over-constrained linkages are a kind of special linkages that mobility does not satisfy the Grübler–Kutzbach [1] formula.

6R close-loop linkages with mobility one are typical over-constrained linkages. The world first over-constrained 6R linkage

was Sarrus linkage [2] . Bricard [3,4] investigated a group of 6R linkages that can be classified into line-symmetric octahedral,

plane-symmetric octahedral, doubly collapsible octahedral cases and general line-symmetric, plane-symmetric and trihedral 

6R linkages and proved mobility of the first three linkages is one with all axes in a linear complex. Myard [5] presented

a 6R linkage by combining two complementary Bennett linkages [6] . Schatz [7] presented an over-constrained linkage that

was widely used in industrial mixing machines. Goldberg [8] gave a group of 6R linkages that are classified into series,
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L-shaped, generalized 6R linkages. Altman [9] identified a 6R linkage which is a special case of Bricard linkage. Waldron

[10] investigated a hybrid 6R linkage as the combination of two Bennett linkages on a common joint by constraining the

relative position of joints. Baker [11] analyzed all kinds of Bricard linkages and provided the close loop equations for all these

linkages. Wohlhart presented a 6R linkage [12] that exists a line intersecting all joint axes by combining two Goldberg 5R

linkages as the double-Goldberg linkage. Chen and You [13] presented a 6R linkage in the same way. Cui and Dai [14] put

forward a double-center 6R linkage and gave the axis constraints for this kind of linkages. Zhang and Dai [15] analyzed

an over-constrained 6R linkage with 2-fold rotational symmetry and they regarded it as a case of Bricard linkage. Kong

[16] presented a method to design over-constrained 6R linkages using symmetric planar 4R linkage and spherical 4R linkage.

All these linkages are classical over-constrained 6R linkages and have only one motion branch. Though the 6R linkage with

2-fold rotational symmetry [15] has two motion branches, but no method is given for designing the linkage with more than

one motion branch. 

Reconfigurable linkages were revealed in 1990s. There were two kinds of reconfigurable linkages then as kinemetatropic

linkages presented by Wohlhart [17] and metamorphic linkages proposed by Dai and Rees Jones [18] . They are reconfig-

urable when they run to bifurcation or multifurcation points. In metamorphic linkages, it was found that some linkages can

change their topologies as origami arts act where the transformation of metamorphic linkages can be described by a matrix

method [19] . In this century, Galletti and Fanghella [20] presented four single loop kinemetatropic linkages and put forward

a synthesis method for this kind of linkages. Yan and Liu [21] presented linkages with variable topologies as a type of re-

configurable linkages. Lee and Hervé [22] proposed a type of linkages with discontinuous degree of freedom. In the past

ten years, with the development of reconfigurable rT joint [23] and vA joint [24], metamorphic parallel mechanisms were

proposed and some single loop reconfigurable linkages [25,26] were proposed. Ye et al. [ 27 ] used the discontinuous degree

of freedom linkage as a compound joint to investigate a reconfigurable parallel mechanism. Zhang and Dai [28] presented

a metamorphic linkage with a trifurcation point by making one limb as Sarrus linkage concurrent. Qin et al. [29] extended

the bifurcation points to multi-furcation points and therefore extended the concept of reconfigurable linkages. Synthesis for

metamorphic linkages was proposed in [30,31] . 

It is found that constraint singularity often provides furcation points. As indicated by Hunt [32] Sugimoto et al. [33] ,

some special points where the linkages were not determinate, that implicitly indicating that motion could be changed at

these points. Zlatanov et al [34] therefore put the linkages into a configuration space that is divided into distinct regions by

constraint singularity points. Müller [35] put forward that the higher derivatives of the configuration of a rigid body system

that reflects motion-change characteristics of a linkage. 

The reconfigurable parallel mechanisms [23,24,27] and the reconfigurable single loop linkages [25,26,28,29] are the prac-

tical cases of reconfigurable mechanisms and they are analyzed using screw theory. The method [30,33–35] for analyzing the

singularity and bifurcation of mechanisms are all based on screw theory [36] . This leads us to use screw theory to design

and analyze reconfigurable over-constrained 6R linkages. 

With all above development, reconfiguration of 6R over-constrained linkages has not yet been thoroughly revealed and

the potential nature of reconfiguration in these linkages has not been identified with new 6R over-constrained linkages still

to be revealed. This paper presents two novel metamorphic 6R linkages, the spherical-planar metamorphic linkage and the

Bennett-spherical metamorphic 6R linkage. The former is extracted from a kirigami fold while the latter is reveled from

the study of the transition index. The paper analyzes these 6R metamorphic linkages and provides the transition index to

describe the reconfiguration between motion branches. Section 2 deals with the spherical-planar metamorphic linkage from

a kirigami and its close-loop equation. Three motion branches in both deployed and folded spherical motion branches and in

planar motion branch are found and their corresponding geometrical constraints are given. Section 3 to Section 5 deal with

the motion and reconfiguration of the three motion branches. From spherical motion branches to planar motion branch,

motion and reconfiguration are analyzed. The transformation of the linkage and the close path of a point are given. The

transition index is used to describe the reconfiguration of the linkage and to design a new 6R metamorphic linkage. This

leads to the novel Bennett-spherical 6R metamorphic linkage, with its deployed and folded Bennett configuration branches

and with its spherical motion branch in Section 6 . The three motion branches and the close-loop transformation are given

in this section. 

2. Spherical-planar 6R metamorphic linkage and its close loop equation 

Taking creases as revolute joints and rigid panels as links based on the principle set up in [18] , the folded Kirigami in

Fig. 1 equates to a closed-loop mechanism, which is termed spherical-planar metamorphic 6R linkage here. 

2.1. From a kirigami fold to the spherical-planar metamorphic linkage 

As shown in Fig. 1 (a), the kirigami fold is cut out of a piece of paper in square shape with side length l . O is the center

of the square and ϕ1 is the angle between OA 

′ and the side. The two lines OA and OA 

′ are symmetric with respect to OO 1 ,

thus | OA | equals to | OA 

′ | . The points O 1 , O 

′ 
1 

and O 

′′ 
1 

are on a circle with center O and radius a , meaning | O O 1 | , | O O 1 
′ | and

| O O 

′′ 
1 | equal to a, respectively. The creases OB and O 1 C are parallel and perpendicular to O 1 O 1 

′ while the creases OD and O 

′′ 
1 E

are parallel and perpendicular to O 1 O 

′′ 
1 

. The geometry of the kirigami is defined by a and ϕ1 . Attaching O 1 
′ A and O 

′′ 
1 

A 

′ , we

obtain a closed-loop kirigami in Fig. 1 (b). 
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Fig. 1. The kirigami fold and its dimensions. (a). The open-loop kirigami. (b) The close-loop kirigami. 

 

 

 

 

 

 

Taking the panels as links and creases as revolute joints, a linkage is extracted as shown in Fig. 2 . Since creases O 1 
′ A and

O 

′′ 
1 

A 

′ are aligned to each other in the closed-loop form of the kirigami in which O 1 
′ is coincide with O 

′′ 
1 

, the axis of revolute

joint S 4 of the extracted linkage represents the jointed axes of S 4 
′ and S ′′ 4 . 

According to the parameters of the kirigami in Fig. 1 , the D-H parameters of the linkage in Fig. 2 (a) are given by 

a 23 = a 56 = a cos 

(
ϕ 1 

2 

− π

8 

)
, a 12 = a 34 = a 45 = a 61 = 0 

α12 = α34 = α45 = α61 = 

ϕ 1 

2 

− π

8 

, α23 = α56 = 0 

d 1 = d 4 = a, d 2 = d 5 = 0 , d 3 = d 6 = −a sin 

(
ϕ 1 

2 

− π

8 

)
(1) 

2.2. Close loop equation of the spherical-planar metamorphic linkage 

The kinematic model of the linkage is shown in Fig. 3 . The fixed coordinate frame is set with origin O located at the

intersection of joints S 1 and S 2 , z axis aligned to axis of joint S 1 , x axis normal to both S 1 and S 2 and y axis following the

right-hand rule. The moving coordinate frame is attached to link L 4 with the origin O m 

located at the intersection of joints

S 4 and S 5 , z m 

axis aligned to axis of joint S 4 , x m 

axis normal to both joint S 4 and joint S 5 and y m 

axis decided by right-hand

rule. 

In the limb with joints S 2 , S 3 and S 4 in Fig. 3 (a), the transformation matrix of moving coordinate frame is given by 

T 1 = T 12 T 23 T 34 (2) 

where 

T i j = 

⎡ 

⎢ ⎣ 

1 0 0 a i j 

0 cos αi j − sin αi j 0 

0 sin αi j cos αi j 0 

0 0 0 1 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎣ 

cos θ j − sin θ j 0 0 

sin θ j cos θ j 0 0 

0 0 1 d j 
0 0 0 1 

⎤ 

⎥ ⎦ 

(3) 

in which αi j , a i j , d j are the D-H parameters in Eq. (1) , θ j is the angle of joint j . 
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Fig. 2. The spherical-planar metamorphic linkage from kirigami and its parameters. (a)The parameters of the extracted kinematic chain. (b). The spherical- 

planar linkage corresponding to the closed-loop kirigami. 

 

 

 

 

 

 

 

From the limb of S 1 , S 6 and S 5 in Fig. 3 (b), the homogeneous transformation is given by 

T 2 = T 16 T 65 T 54 (4)

where 

T kl = 

⎡ 

⎢ ⎣ 

cos θk sin θk 0 0 

− sin θk cos θk 0 0 

0 0 1 −d k 
0 0 0 1 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎣ 

1 0 0 −a lk 
0 cos αlk sin αlk 0 

0 − sin αlk cos αlk 0 

0 0 0 1 

⎤ 

⎥ ⎦ 

(5)

in which αlk , a lk , d k are the D-H parameters in Eq. (1) , θk is the angle of joint i . 

Because two transformation matrices describe the same moving coordinate frame O m 

- x m 

y m 

z m 

, T 1 and T 2 are equal and

a closed-loop equation can be obtained as 

T 12 T 23 T 34 = T 16 T 65 T 54 (6)

For a physical model, we choose a = 

√ 

2 l 
5 and ϕ 1 = 

3 
4 π . Thus, all the parameters of the linkage are given. Substituting them

into Eq. (6) , we can obtain the homogenous transformation matrix. The translational part of the matrix on the left side is 

r O m = 

⎛ 

⎝ 

l 
5 
( cos θ2 + sin ( θ2 + θ3 )) √ 

2 l 
10 

( sin θ2 − cos ( θ2 + θ3 ) √ 

2 l 
10 

( sin θ2 − cos ( θ2 + θ3 ) 

⎞ 

⎠ (7)

The matrix on the right side is derived as 

r O m = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

l 
5 

(
− cos θ6 cos θ1 + 

√ 

2 
2 

sin θ6 sin θ1 + 

√ 

2 
2 

sin θ1 

)
l 
5 

(
cos θ6 sin θ1 + 

√ 

2 
2 

sin θ6 cos θ1 + 

√ 

2 
2 

cos θ1 

)
l 
5 

(
−

√ 

2 
2 

−
√ 

2 
2 

sin θ6 

)
⎞ 

⎟ ⎟ ⎟ ⎠ 

(8)
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Fig. 3. Geometric model of two limbs. (a). Limb of joints 2, 3 and 4. (b). Limb of joints 1, 6 and 5. 

 

According to Eqs. (7) and (8) , we have 

l 

5 

( cos θ2 + sin ( θ2 + θ3 )) = 

l 

5 

(
− cos θ6 cos θ1 + 

√ 

2 

2 

sin θ6 sin θ1 + 

√ 

2 

2 

sin θ1 

)
(9) 

√ 

2 l 

10 

( sin θ2 − cos ( θ2 + θ3 )) = 

l 

5 

(
cos θ6 sin θ1 + 

√ 

2 

2 

sin θ6 cos θ1 + 

√ 

2 

2 

cos θ1 

)
(10) 

√ 

2 l 

10 

( sin θ2 − cos ( θ2 + θ3 )) = 

l 

5 

(
−

√ 

2 

2 

−
√ 

2 

2 

sin θ6 

)
(11) 

The D-H parameters in Eq. (1) and the closed-loop equation reveals that the linkage in Fig. 2 (b) is a special case of

Bricard line-symmetric 6R linkage. According to Baker [37] , the joint angles satisfy the following equation ( 

θ1 

θ2 

θ3 

) 

= 

( 

θ4 

θ5 

θ6 

) 

(12) 

Eliminating θ2 and θ3 , it derives 

cos θ6 sin θ1 + 

√ 

2 

2 

sin θ6 cos θ1 + 

√ 

2 

2 

cos θ1 = −
√ 

2 

2 

−
√ 

2 

2 

sin θ6 (13) 

Eq. (13) is then rewritten as 

cos 
θ1 

2 

(
sin 

θ6 

2 

+ cos 
θ6 

2 

)(
2 sin 

θ1 

2 

(
cos 

θ6 

2 

− sin 

θ6 

2 

)
+ 

√ 

2 cos 
θ1 

2 

(
sin 

θ6 

2 

+ cos 
θ6 

2 

))
= 0 (14) 
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Fig. 4. The configuration of deployed spherical motion branch and its geometric model. (a). Deployed spherical motion branch. (b). Geometric model of 

deployed spherical motion branch with S3, S6 geometrically locked. 

 

 

 

 

Solving Eq. (14) , it yields 

sin 

θ6 

2 

+ cos 
θ6 

2 

= 0 (15)

cos 
θ1 

2 

= 0 (16)

2 sin 

θ1 

2 

(
cos 

θ6 

2 

− sin 

θ6 

2 

)
+ 

√ 

2 cos 
θ1 

2 

(
sin 

θ6 

2 

+ cos 
θ6 

2 

)
= 0 (17)

Each of Eqs. (15) –(17) gives the geometric constrain for the joint angles of the linkage. These constraints further indicate

there are three motion branches. 
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3. Deployed spherical motion branch and its reconfiguration 

3.1. Motion analysis of deployed spherical motion branch 

With the constraints in Eq. (15) , it derives θ6 = −π
2 , meaning joint S 6 is geometrically locked and joint S 1 can move

independently. Hence, the linkage changes to a deployed spherical motion branch, of which the physical model and corre-

sponding kinematic model are illustrated in Fig. 4 (a) and Fig. 4 (b) respectively. Substituting θ6 = −π
2 into Eq. (12) , it gives

θ3 = −π
2 . Thus, joint S 3 is geometrically locked and only joints 1, 2, 4 and 5 can rotate in the deployed spherical motion

branch. 

The direction of S 1 is 

s 1 = (0 , 0 , 1) 
T 

(18) 

Thus 

S 1 = ( 0 , 0 , 1 , 0 , 0 , 0 ) 
T (19) 

According to Dai [38–40] , S 6 is obtained using screw operator as 

S 6 = 

[
R z, −θ1 

0 

[ ( −d 1 z ) ×] R z, −θ1 
R z, −θ1 

][
R x , −α61 

0 

[ ( −a 61 x ) ×] R x , −α61 
R x , −α61 

]
( 0 , 0 , 1 , 0 , 0 , 0 ) 

T (20) 

where (0 , 0 , 1 , 0 , 0 , 0) T is the original screw before operation, [ ( −d 1 z ) ×] and [ ( −a 61 x ) ×] are the skew symmetry matrices

of −d 1 z and −a 61 x , x and z are vectors corresponding x axis and z axis, R z, −θ1 
is the rotation matrix around z axis and the

angle is −θ1 , R x , −α61 
is the rotation matrix around x axis and the angle is −α61 . From Euler-Rodrigues formulas, we have 

R v ,α = I + sin α[ v ×] + ( 1 − cos α) [ v ×] 
2 (21) 

where I is 3 × 3 unit matrix, [ v ×] is the skew symmetry matrix of vector v , α is the rotation angle. Substituting all the

parameters of the linkage into Eq. (20) , we obtain 

S 6 = 

(√ 

2 

2 

sin θ1 , 

√ 

2 

2 

cos θ1 , 

√ 

2 

2 

, 
l 

5 

cos θ1 , − l 

5 

sin θ1 , 0 

)T 

(22) 

For deployed spherical motion branch, joint 6 is geometrically locked at θ6 = −π
2 and this gives 

S 5 = 

(√ 

2 

2 

sin θ1 , 

√ 

2 

2 

cos θ1 , 

√ 

2 

2 

, 0 , 0 , 0 

)T 

(23) 

For S 2 , we have 

S 2 = 

[
R x , α12 

0 

[ ( a 12 x ) ×] R x , α12 
R x , α12 

]
(0 , 0 , 1 , 0 , 0 , 0) T (24) 

Substituting all the parameters of the linkage into Eq. (24) , we obtain 

S 2 = 

(
0 , −

√ 

2 

2 

, 

√ 

2 

2 

, 0 , 0 , 0 

)T 

(25) 

For S 3 and S 4 , we have 

S 3 = 

(
0 , −

√ 

2 

2 

, 

√ 

2 

2 

, 
l 

5 

sin θ2 , −
√ 

2 l 

10 

cos θ2 , −
√ 

2 l 

10 

cos θ2 

)T 

(26) 

S 4 = 

(
−

√ 

2 

2 

cos θ2 , −1 

2 

sin θ2 − 1 

2 

, −1 

2 

sin θ2 + 

1 

2 

, 0 , 0 , 0 

)T 

(27) 

Regarding link L 4 as the moving platform and link L 1 as the base of the linkage, we have two limbs for the linkage. One

limb consists of S 2 , S 3 and S 4 , and the other limb consists of S 1 , S 6 and S 5 . According to Dai [39,40] , Dai et al. [41] , the

sub-chain motion-screw systems are 

S l1 = { S 1 , S 6 , S 5 } (28) 

S l2 = { S 2 , S 3 , S 4 } (29) 
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The sub-chain constraint-screw systems are 

S 
r 
l1 = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

S r 11 = ( 0 , 0 , 1 , 0 , 0 , 0 ) 
T 

S r 12 = 

(
0 , 0 , 0 , −

√ 

2 
2 

cos θ1 , 
√ 

2 
2 

sin θ1 , 0 

)T 

S r 13 = 

(√ 

2 
2 

sin θ1 , 
√ 

2 
2 

cos θ1 , 
√ 

2 
2 

, 0 , 0 , 0 

)T 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

(30)

and 

S 
r 
l2 = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

S r 21 = 

(
0 , −

√ 

2 
2 

, 
√ 

2 
2 

, 0 , 0 , 0 

)T 

S r 22 = 

(
0 , 0 , 0 , 

√ 

2 
2 

sin θ2 , − 1 
2 

cos θ2 , − 1 
2 

cos θ2 

)T 

S r 23 = 

(
−

√ 

2 
2 

cos θ2 , − 1 
2 

sin θ2 − 1 
2 
, − 1 

2 
sin θ2 + 

1 
2 
, 0 , 0 , 0 

)T 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎭ 

(31)

Eqs. (30) and (31) give the common constraint-screw multiset 

〈 S c 〉 = 

〈
S 

r 
l1 

〉
∩ 

〈
S 

r 
l2 

〉
= ∅ (32)

The output-link constraint-screw multiset is 

〈 S r 〉 = S 
r 
l1 	 S 

r 
l2 = 〈 S r 11 , S 

r 
12 , S 

r 
13 , S 

r 
21 , S 

r 
22 , S 

r 
23 〉 (33)

Eqs. (32) and (33) give the complementary constraint-screw multiset 

〈 S r c 〉 = 〈 S r 〉 − 〈 S c 〉 = 〈 S r 11 , S 
r 
12 , S 

r 
13 , S 

r 
21 , S 

r 
22 , S 

r 
23 〉 (34)

Thus, Eq. (33) can be decomposed as 

〈 S r 〉 = ∅ ︸︷︷︸ 
〈 S c 〉 

	 { S r 11 , S 
r 
12 , S 

r 
13 , S 

r 
21 , S 

r 
22 } ︸ ︷︷ ︸ 

S r c 

	 { S r 23 } ︸ ︷︷ ︸ 
〈 S r v 〉 

(35)

where 〈 S c 〉 is the common constraint-screw multiset in Eq. (32) , S r c is the complementary constraint-screw system and it is

the maximum linear independence group of 〈 S r c 〉 , 〈 S r v 〉 is the redundant constraint-screw multiset and 〈 S r v 〉 = 〈 S r c 〉 − S 
r 
c . 

The mobility of this linkage is 

m = b(n − g − 1) + 

g ∑ 

i =1 

f i + card 〈 S r c 〉 − dim S 
r 
c + m l (36)

where b is the mobility coefficient and equals 6 − dim S 
c . According to Eq. (32) , b = 6. n is the number of the links and it is

6 for the linkage. g is the number of joints and it is 6. f i is the mobility of joint i and it is 1 for revolute joint. card〈 S r c 〉 is
the cardinal number of multiset 〈 S r c 〉 and it is 6. dim S 

r 
c is the dimension of set S r c and it is 5 for the linkage. m l is the local

mobility of the linkage and it is 0 for the linkage. Substituting all the numbers into Eq. (36) , we have 

m = 1 (37)

Further, the platform motion-screw system is 

S f = 

{ (
−

√ 

2 

2 

sin θ1 cos θ2 , −
√ 

2 

2 

sin θ1 cos θ2 , −sin θ1 sin θ2 + 

√ 

2 

2 

cos θ1 cos θ2 , 0 , 0 , 0 

)T 
} 

(38)

According to Eqs. (19) , (23) , (25) and (27) , it proves that the linkage is a spherical 4R linkage formed by joints 1, 2, 4 and

5. Eq. (38) gives the rotation axis of link L 4 . 

3.2. Reconfiguration analysis of the deployed spherical motion branch 

For deployed spherical motion branch, the intersection of S 1 and S 6 is O 1 . The intersection of S 3 and S 4 is O 1 
′ . When the

distance between O 1 and O 

′ 
1 equals zero, there is another spherical motion branch formed by joints 1, 3, 4 and 6. Because

S 5 , S 6 are parallel and S 2 , S 3 are parallel, when S 5 and S 2 are collinear, there is a planar motion branch formed by joints 2,

3, 5 and 6. 

The intersection O 1 is 

O 1 = 

(
0 , 0 , −

√ 

2 l 

5 

, 1 

)T 

(39)
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Fig. 5. The configuration of planar motion branch and its geometric model. (a). Planar motion branch. (b). Geometric model of planar motion branch with 

S1, S4 geometrically locked. 

 

According to Dai [38–40] , the intersection O 

′ 
1 can be obtained 

O 1 
′ = 

[
R x , α12 

a 12 x 

0 

T 1 

][
R z, θ2 

d 2 z 

0 

T 1 

][
R x , α23 

a 23 x 

0 

T 1 

][
R z, 0 d 3 z 

0 

T 1 

]⎛ 

⎜ ⎝ 

0 

0 

0 

1 

⎞ 

⎟ ⎠ 

(40) 

Substituting all the parameters of the linkage into Eq. (40) , we have 

O 1 
′ = 

(
l 

5 

cos θ2 , 

√ 

2 l 

10 

sin θ2 + 

√ 

2 l 

10 

, 

√ 

2 l 

10 

sin θ2 −
√ 

2 l 

10 

, 1 

)T 

(41) 

The distance between O 1 and O 

′ 
1 

is 

| O 1 O 1 
′ | = 

1 

5 

l 
√ 

2 (1 +sin θ2 ) (42) 

We mark δ as the angle between joint 2 and joint 5. Then 

δ = arccos ( s 2 · s 5 ) (43) 

where s i is the direction vector of S i . From Eqs. (23) and (25) , we have s 2 = 

(
0 , −

√ 

2 
2 , 

√ 

2 
2 

)T 

.and s 5 =(√ 

2 
2 sin θ1 , 

√ 

2 
2 cos θ1 , 

√ 

2 
2 

)T 

. Substituting them into Eq. (43) , it gives 

δ = arccos 

(
1 

2 

(1 − cos θ1 ) 
)

(44) 

When Eq. (42) equal zero 

θ2 = 

3 

2 

π (45) 

When Eq. (44) equal zero 

θ1 = π (46) 

at this configuration, | O 

′ 
1 O 

′′ 
1 | = 

2 
5 l. 

Using the structure of the link L 4 , the angle between S 4 and S 5 is π
4 . This results in 

s 4 · s 5 = 

√ 

2 

(47) 

2 
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From Eqs. (23) and (27) , we have s 4 = 

(
−

√ 

2 
2 cos θ2 , − 1 

2 sin θ2 − 1 
2 , − 1 

2 sin θ2 + 

1 
2 

)T 

and s 5 = 

(√ 

2 
2 sin θ1 , 

√ 

2 
2 cos θ1 , 

√ 

2 
2 

)T 

.

Substituting them into Eq. (47) , we obtain one kinematic equation of deployed spherical motion branch 

−1 

2 

sin θ1 cos θ2 −
√ 

2 

4 

cos θ1 sin θ2 −
√ 

2 

4 

cos θ1 −
√ 

2 

4 

sin θ2 −
√ 

2 

4 

= 0 (48)

It is noted that, Eqs. (45) and (46) can’t make Eq. (48) right. This indicates Eqs. (45) and (46) describe two different

reconfigurations for deployed spherical motion branch. When θ1 = π , the linkage runs to the planar motion branch. When

θ2 = 

3 
2 π , the linkage runs to the other spherical motion branch formed by joints 1, 3, 4 and 6. The two motion branches are

discussed in the next sections. 

4. Planar motion branch and its reconfiguration 

4.1. Motion analysis of planar motion branch 

When θ1 = π , the linkage runs to the planar motion branch in Fig. 5 . For planar motion branch, Eq. (16) is right and we

have 

θ1 = π (49)

Eq. (49) indicates joint 1 is geometrically locked. According to Eq. (12) , θ4 = π . Substituting Eq. (49) into Eqs. (9) and

(10) , we have 

cos θ2 + sin ( θ2 + θ3 ) = cos θ6 (50)

sin θ2 − cos ( θ2 + θ3 ) = −1 − sin θ6 (51)

Eliminating θ3 in Eqs. (50) and (51) , we obtain 

sin 

θ2 + θ6 

2 

(
sin 

θ2 + θ6 

2 

+ cos 
θ2 − θ6 

2 

)
= 0 (52)

One solution of Eq. (52) is 

θ2 + θ6 = 2 π (53)

Eq. (53) results in the linkage running with both joint 2 and joint 6 rotating. This is the condition for planar motion

branch. 

For the limb consisting of joints 1, 6 and 5, we have 

S 1 = ( 0 , 0 , 1 , 0 , 0 , 0 ) 
T (54)

S 6 = 

(
0 , −

√ 

2 

2 

, 

√ 

2 

2 

, 
l 

5 

, 0 , 0 

)T 

(55)

S 5 = 

(
0 , −

√ 

2 

2 

, 

√ 

2 

2 

, − l 

5 

− l 

5 

sin θ6 , −
√ 

2 l 

10 

cos θ6 , −
√ 

2 l 

10 

cos θ6 

)T 

(56)

For the other limb, we have 

S 2 = 

(
0 , −

√ 

2 

2 

, 

√ 

2 

2 

, 0 , 0 , 0 

)T 

(57)

S 3 = 

(
0 , −

√ 

2 

2 

, 

√ 

2 

2 

, 
l 

5 

sin θ2 , −
√ 

2 l 

10 

cos θ2 , −
√ 

2 l 

10 

cos θ2 

)T 

(58)

S 4 = 

(
s T 4 , s 

T 
40 

)T 
(59)

where 

s 4 = 

(√ 

2 

2 

sin ( θ2 + θ3 ) , −1 

2 

cos ( θ2 + θ3 ) − 1 

2 

, −1 

2 

cos ( θ2 + θ3 ) + 

1 

2 

)T 

(60)
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s 40 = 

(√ 

2 l 

10 

sin θ2 −
√ 

2 l 

10 

cos ( θ2 + θ3 ) , − l 

10 

cos θ2 − l 

10 

sin ( θ2 + θ3 ) + 

l 

10 

cos θ3 , (61) 

− l 

10 

cos θ2 − l 

10 

sin ( θ2 + θ3 ) − l 

10 

cos θ3 

)T 

(61) 

Substituting Eqs. (50) , (51) and (53) into Eq. (59) , we have 

S 4 = 

(
0 , − 1 , 0 , 

√ 

2 l 

10 

sin θ2 −
√ 

2 l 

10 

, 0 , − l 

5 

cos θ2 

)T 

(62) 

The sub-chain constraint-screw systems are 

S 
r 
l1 = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

S r 11 = 

(
0 , −

√ 

2 
2 

, 
√ 

2 
2 

, l 
5 
, 0 , 0 

)T 

S r 12 = ( 0 , 0 , 0 , 1 , 0 , 0 ) 
T 

S r 13 = 

(
0 , −

√ 

2 
2 

, 
√ 

2 
2 

, 0 , 0 , 0 

)T 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

(63) 

and 

S 
r 
l2 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

S r 21 = (0 , −
√ 

2 
2 

, 
√ 

2 
2 

, l 
5 

sin θ2 , −
√ 

2 l 
10 

cos θ2 , −
√ 

2 l 
10 

cos θ2 ) 
T 

S r 22 = ( 0 , 0 , 0 , 1 , 0 , 0 ) 
T 

S r 23 = 

(
0 , −

√ 

2 
2 

, 
√ 

2 
2 

, − l 
5 

− l 
5 

sin θ6 , −
√ 

2 l 
10 

cos θ6 , −
√ 

2 l 
10 

cos θ6 

)T 

⎫ ⎪ ⎬ 

⎪ ⎭ 

(64) 

The output-link constraint-screw multiset is 

〈 S r 〉 = S 
r 
l1 	 S 

r 
l2 

= 〈 S r 11 , S 
r 
12 , S 

r 
13 , S 

r 
21 , S 

r 
22 , S 

r 
23 〉 

= { S r 12 , S 
r 
22 } ︸ ︷︷ ︸ 

〈 S c 〉 

	 { S r 11 , S 
r 
13 , S 

r 
21 , S 

r 
23 } ︸ ︷︷ ︸ 

S r c 

	 ∅ ︸︷︷︸ 
〈 S r v 〉 

(65) 

Thus, b = 5, n = 6, g = 6. card〈 S r c 〉 = 4 and dim S 
r 
c = 4 . Substituting all the number into Eq. (36) , we have m = 1. The platform

motion-screw system is 

S f = 

{ 

(0 , 0 , 0 , −sin θ2 , 

√ 

2 

2 

cos θ2 , 

√ 

2 

2 

cos θ2 ) 

T 
} 

(66) 

It represents a pure translation motion along the direction 

(
−sin θ2 , 

√ 

2 
2 cos θ2 , 

√ 

2 
2 cos θ2 

)T 

. According to Eqs. (55) , (56) ,

(57) and (58) , the linkage is a planar 4R linkage with joints 2, 3, 5 and 6 rotating. 

4.2. Reconfiguration analysis of planar motion branch 

For planar motion branch, the points O and O 1 are 

O = (0 , 0 , 0 , 1) T (67) 

O 1 = 

(
0 , 0 , −

√ 

2 l 

5 

, 1 

)T 

(68) 

The intersection can be obtained using the intersection of two screws as 

P = 

(
s i 0 × s j0 , s j · s i 0 

)T 
(69) 

where P is the intersection of S i and S j , s i is the direction of S i and s i 0 is the secondary part of S i . Substituting Eq. (56) and

Eq. (62) into Eq. (69) and making the scalar unit 1, we have 

O 

′ = 

(
l 

5 

cos θ2 , 

√ 

2 l 

10 

sin θ2 −
√ 

2 l 

10 

, 

√ 

2 l 

10 

sin θ2 −
√ 

2 l 

10 

, 1 

)T 

(70) 

Substituting Eq. (58) and Eq. (62) into Eq. (69) and making the scalar unit 1, we have 

O 

′ 
1 = 

(
l 

5 

cos θ2 , 

√ 

2 l 

10 

sin θ2 + 

√ 

2 l 

10 

, 

√ 

2 l 

10 

sin θ2 −
√ 

2 l 

10 

, 1 

)T 

(71) 
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Fig. 6. One configuration of folded spherical motion branch and its geometric model. (a). Folded spherical motion branch. (b). Geometric model of folded 

spherical motion branch with S2, S5 geometrically locked. 

 

 

 

 

 

 

 

 

Thus, the distance between O and O 

′ is 

| OO 

′ | = 

1 

5 

l 
√ 

2( 1 − sin θ2 ) (72)

The distance between O 1 and O 

′ 
1 is 

| O 1 O 

′ 
1 | = 

1 

5 

l 
√ 

2(1+ sin θ2 ) (73)

According to Eqs. (72) and (73) , | OO 

′ | and | O 1 O 

′ 
1 
| can’t be zero at the same time. When | OO 

′ | = 0 , θ2 = 

π
2 and the linkage

runs to deployed spherical motion branch. When | O 1 O 

′ 
1 
| = 0 , θ2 = 

3 π
2 and the linkage runs to folded spherical motion branch

discussed in the next section. 

5. Analysis of folded spherical motion branch and motion branch transformation of the spherical-planar 

metamorphic linkage 

5.1. Motion and reconfiguration analysis of folded spherical motion branch 

When distance between O 1 and O 

′ 
1 

becomes zero for deployed spherical motion branch and the planar motion branch,

the linkage changes to folded spherical motion branch in Fig. 6 where δ′ is the angle between joint 3 and joint 6. 

For the folded spherical motion branch, Eq. (17) gives the kinematic equation between joint 1 and joint 6. According to

Eqs. (11) and (12) , θ2 = θ5 = −π
2 , indicating joint 2 and 5 are geometrically locked. 

For the limb consisting of joints 1, 6 and 5, we have 

S 1 = ( 0 , 0 , 1 , 0 , 0 , 0 ) 
T (74)

S 5 = 

(√ 

2 

2 

sin θ1 , 

√ 

2 

2 

cos θ1 , 

√ 

2 

2 

, 
l 

5 

cos θ1 + 

l 

5 

cos θ1 sin θ6 + 

√ 

2 l 

10 

sin θ1 cos θ6 , 

− l 

5 

sin θ1 − l 

5 

sin θ1 sin θ6 + 

√ 

2 l 

10 

cos θ1 cos θ6 , −
√ 

2 l 

10 

cos θ6 

)T 

(75)
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Fig. 7. Motion branch transformation of the spherical-planar metamorphic linkage. 

Fig. 8. Path of the point on joint 5. 

 

S 6 = 

(√ 

2 

2 

sin θ1 , 

√ 

2 

2 

cos θ1 , 

√ 

2 

2 

, 
l 

5 

cos θ1 , − l 

5 

sin θ1 , 0 

)T 

(76) 

For the other limb, we have 

S 2 = 

(
0 , −

√ 

2 

2 

, 

√ 

2 

2 

, 0 , 0 , 0 

)T 

(77) 

S 3 = 

(
0 , −

√ 

2 

2 

, 

√ 

2 

2 

, − l 

5 

, 0 , 0 

)T 

(78) 

S 4 = 

(
−

√ 

2 

2 

cos θ3 , −1 

2 

sin θ3 − 1 

2 

, −1 

2 

sin θ3 + 

1 

2 

, −
√ 

2 l 

10 

−
√ 

2 l 

10 

sin θ3 , 
l 

5 

cos θ3 , 0 

)T 

(79) 

Using the same method as deployed spherical motion branch and planar motion branch, the platform motion-screw

system is 

S f = 

{(
1 

2 

sin θ1 cos θ3 , −1 

2 

cos θ1 cos θ3 , −
√ 

2 

2 

sin θ1 sin θ3 + 

1 

2 

cos θ1 cos θ3 , 

−
√ 

2 l 

10 

cos θ1 cos θ3 , −
√ 

2 l 

10 

sin θ1 cos θ3 , 0 

)T 
} 

(80) 



X. Ma et al. / Mechanism and Machine Theory 128 (2018) 628–647 641 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is a rotation around the axis Eq. (80) decided. According to Eqs. (74) , (76) , (78) and (79) , joints 1, 3, 4 and 6 are

concurrent and the intersection is point O 1 . Thus, the linkage is a spherical 4R linkage formed by joints 1, 3, 4 and 6. 

According to Eq. (40) , we have 

O 

′ = 

(
− l 

5 

cos θ3 , −
√ 

2 l 

10 

−
√ 

2 l 

10 

sin θ3 , −
√ 

2 l 

10 

−
√ 

2 l 

10 

sin θ3 , 1 

)T 

(81)

Further 

| OO 

′ | = 

1 

5 

l 
√ 

2 (1 + sin θ3 ) (82)

The angle between S 3 and S 6 is 

δ′ = arccos ( s 3 · s 6 ) (83)

From Eqs. (76) and (78) , we have S 3 = 

(
0 , −

√ 

2 
2 , 

√ 

2 
2 

)T 

and S 6 = 

(√ 

2 
2 sin θ1 , 

√ 

2 
2 cos θ1 , 

√ 

2 
2 

)T 

. Substituting them into Eq. (83) ,

we obtain 

δ′ = arccos 

(
1 

2 

− 1 

2 

cos θ1 

)
(84)

Making | OO 

′ | = 0 , we have θ3 = 

3 π
2 . At that point the linkage runs to deployed spherical motion branch. When

Eq. (84) equals zero, we obtain θ1 = 

3 π
2 and the linkage runs to planar motion branch . 

5.2. Motion branch transformation and their close loop 

All three motion branches are deployed spherical motion branch, planar motion branch and folded spherical motion

branch. It is noted that the linkage runs from deployed spherical motion branch to planar motion branch. Then from planar

motion branch, it runs to folded spherical motion branch and back to the original configuration. Also, it can change from

deployed spherical motion branch to folded spherical motion branch directly. The process is shown in Fig. 7 . 

It is noted that during the transformation, | OO 

′ | and | O 1 O 

′ 
1 
| describe the condition for the deployed spherical motion

branch and folded spherical motion branch. δ and δ′ describe the conditions for planar motion branch. They can be used

as transition indexes to describe the transition. We will use the transition index in the next section and give a Bennett-

spherical 6R metamorphic linkage. 

Because the motion of the three motion branches, points on L 4 can transform from a sphere to a plane. The path of a

point on S 5 is 

r = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

(
−

√ 

2 
2 

g sin θ1 , −
√ 

2 
2 

g cos θ1 , −
√ 

2 
2 

g 

)T 

deployed spherical motion (
l 
5 

cos θ2 , 
√ 

2 l 
10 

sin θ2 −
√ 

2 l 
10 

+ 

√ 

2 
2 

g , 
√ 

2 l 
10 

sin θ2 −
√ 

2 l 
10 

−
√ 

2 
2 

g 

)T 

planar motion (
− l 

5 
cos θ3 −

√ 

2 
2 

g sin θ1 , −
√ 

2 l 
10 

−
√ 

2 l 
10 

sin θ3 −
√ 

2 
2 

g cos θ1 , 

−
√ 

2 l 
10 

−
√ 

2 l 
10 

sin θ3 −
√ 

2 
2 

g 

)T folded spherical motion 

(85)

where g is the distance from O to the point. When we choose one path from deployed spherical motion branch with θ1 ∈
[ 0 , π ] , one path from planar motion branch with θ2 ∈ [ π2 , 

3 π
2 ] and one path from folded spherical motion branch with

θ3 ∈ [ π2 , −π
2 ] , we obtained a close loop path. According to Eqs. (9) , (10) , (11) and (85) , the close loop path is shown in

Fig. 8 . There are a large sphere, a plane and a smaller sphere in Fig. 8 . O is the center of the large sphere and we mark it

as sphere O . O 1 is the center of the smaller sphere and we mark it as sphere O 1 . The plane is marked as P 1 .The close loop

path consists of three parts. One part is on the sphere O and one part is on plane P 1 . The last part is on the sphere O 1 .

Thus, the point can move from the lager sphere O to a plane and then back to the original point the by a different path on

the smaller sphere O 1 . O and O 1 are two motion centers of the linkage and the path can transform between the two paths

on the two spheres. 

6. Bennett-spherical 6R metamorphic linkage from deployed Bennett motion branch to spherical motion branch 

6.1. Bennett-spherical 6R metamorphic linkage 

Using the transition index and making it zero, we design a new linkage from the Bennett linkage. Fig. 9 (a). shows the

original Bennett linkage. The parameters of the original linkage are 
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Fig. 9. Original Bennett linkage and its converting to the metamorphic linkage. (a). Parameters of the original Bennett linkage. (b). Converting the Bennett 

linkage to the Bennett-spherical 6R metamorphic linkage. 

 

 

 

 

 

a 13 = a 34 = a 46 = a 61 = 2 l 

α13 = α46 = −3 π

4 

, α34 = α61 = 

3 π

4 

d 1 = d 3 = d 4 = d 6 = 0 (86) 

they satisfy the condition 

a 13 = a 46 = a, a 34 = a 61 = b 
α13 = − α61 = α, α34 = − α46 = β

sinα

a 
= 

sinβ

b 

(87) 

Eq. (87) is the condition for Bennett linkage. Fig. 9 (b) is the geometric relationship of the joints by adding two screws,

where distance between O 

′ 
1 

and O 

′′ 
1 

can be used to check reconfigurability. O 1 is the intersection of joints 1 and joint 4. O 2 

is the intersection of joint 3 and joint 6. We add two joints S 2 and S 5 to the original linkage. S 2 is concurrent with S 3 at

point O 

′′ 
1 and S 5 is concurrent with S 6 at point O 

′ 
1 . Link L 13 is replaced by L 12 and L 23 . Link L 46 is replaced by L 45 and L 56 .

The new linkage is shown in Fig. 10 (a). The D-H parameters of this new metamorphic linkage are 

a 12 = a 45 = l , a 23 = a 56 = 0 , a 34 = a 61 = 2 l 

α12 = α45 = − arccos( −
√ 

6 
4 

) , α23 = α56 = 

π
6 
, α34 = α61 = 

d 1 = d 4 = 

√ 

6 l 
5 

, d 2 = d 5 = 

14 l 
5 

, d 3 = d 6 = −√ 

3 l 

3 π

4 

(88) 

where the parameters a 34 , a 61 , a 34 and a 61 are the same with the parameters in Fig. 9 (a), the others are in Fig. 10 (b). From

the D-H parameters in Eq. (88) , the linkage is a special case of Bricard line-symmetric 6R linkage. 

During the deployed Bennett motion branch, the distance | O 1 
′ O 1 

′′ | changes. When it equals zero, the linkage runs to

spherical motion branch. 
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Fig. 10. The new 6R metamorphic linkage, its parameters and the geometric relationship of joints. (a). The new 6R metamorphic linkage. (b). Parameters 

of the new linkage. (c). Geometric model of the new metamorphic linkage and its Bennett motion branch with S2, S5 geometrically constrained. 

 

 

6.2. Reconfiguration analysis from the deployed Bennett motion branch to the spherical motion branch 

For the new metamorphic linkage, the coordinate frame is set on link L 61 in Fig. 10 (c). The axis of joint 1 is z axis and

the direction of the common perpendicular line from joint 6 to joint 1 is x axis. y axis is decided by right-hand rule. Origin

O is the intersection of joint 1 and the common perpendicular line from joint 6 to joint 1. 
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Fig. 11. One configuration of spherical motion branch and its geometric model. (a). Spherical motion branch. (b). Geometric model of special motion branch 

with S1, S4 being geometrically constrained to form a four-bar spherical linkage branch. 

 

 

 

The coordinate of O 

′ 
1 is 

O 

′ 
1 = 

[
R x , −α61 

−a 61 x 

0 

T 1 

][
I −d 6 z 

0 

T 1 

]⎛ 

⎜ ⎝ 

0 

0 

0 

1 

⎞ 

⎟ ⎠ 

(89) 

Substituting the parameters of the linkage into Eq. (89) , we have 

O 

′ 
1 = (−2 l, 

√ 

6 l 

2 

, −
√ 

6 l 

2 

, 1) T (90) 

For O 

′′ 
1 , we have 

O 

′′ 
1 = 

[
R z, θ1 

d 1 z 

0 

T 1 

][
R x , α12 

a 12 x 

0 

T 1 

][
I d 2 z 

0 

T 1 

]⎛ 

⎜ ⎝ 

0 

0 

0 

1 

⎞ 

⎟ ⎠ 

(91) 

Thus 

O 

′′ 
1 = 

((
cos θ1 − 7 

√ 

10 

10 

sin θ1 

)
l , 

(
sin θ1 + 

7 

√ 

10 

10 

cos θ1 

)
l , −

√ 

6 l 

2 

, 1 

)T 

(92) 

where θ1 is the joint angle as shown in Fig. 10 (b). 

The distance is 

| O 

′ 
1 O 

′′ 
1 | = l 

√ (
cos θ1 − 7 

√ 

10 

10 

sin θ1 + 2 

)2 

+ 

(
sin θ1 + 

7 

√ 

10 

10 

cos θ1 −
√ 

6 

2 

)2 

(93) 

When Eq. (93) equals zero, θ1 = arccos ( 7 
√ 

15 −20 
59 ) . According to Baker [35] , θ4 = θ1 = arccos ( 7 

√ 

15 −20 
59 ) . θ4 is the joint angle

as shown in Fig. 10 (b). This is the condition for the linkage running to spherical motion branch in Fig. 11 . 

6.3. The third motion branch and the motion branch transformation to the folded Bennett motion branch 

Except the original deployed Bennett motion branch and the spherical motion branch, there is another motion branch

formed by joints 1, 2, 4 and 5. When the deployed Bennett motion branch comes to the configuration to make joint 3
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Fig. 12. The configuration of folded Bennett motion branch formed by joints 1, 2, 4, 5 and its geometric model. (a). The transformation configuration 

between deployed Bennett motion branch and folded Bennett motion branch. (b). Folded Bennett motion branch formed by joints 1, 2, 4, 5. (c). Geometric 

model of the folded Bennett motion branch formed by joints 1, 2, 4, 5 with S3, S6 geometrically constrained. 
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Fig. 13. Motion branch transformation of the Bennett-spherical 6R metamorphic linkage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

parallel with joint 6 in Fig. 12 (a), it will turn to the folded Bennett motion branched in Fig. 12 (b). For this motion branch,

we have 

a 12 = a 45 = l = a ′ , a 24 = a 51 = l = b ′ 
α12 = − α45 = −arccos( −

√ 

6 
4 

) = α′ , α24 = − α51 = − arccos( −
√ 

6 
4 

) = β ′ 
sinα′ 

a ′ = 

sinβ ′ 
b ′ 

(94) 

where all the parameters are in Fig. 12 (d). 

Thus, this motion branch is folded Bennett motion branch, but it is different from the motion branch in Fig. 9 (a). For

this motion branch, when Eq. (93) equals zero, the linkage runs to the spherical motion branch. When | O 

′ 
1 
O 

′′ 
1 
| = 4 l making

joint 3 parallel with joint 6, Bennett motion branch formed by joints 1, 3, 4, 6 transforms to folded Bennett motion branch

formed by joints 1, 2, 4, 5. 

The transformation is shown in Fig. 13 . The three motion branches form a close loop. The linkage can run from the

deployed Bennett motion branch in Fig. 9 to the spherical motion branch in Fig. 11 , then to the folded Bennett motion

branch in Fig. 12 . Also, it can transform directly from the deployed Bennett motion branch in Fig. 9 to the folded Bennett

motion branch in Fig. 12 . 

7. Conclusions 

This paper presented two novel 6R metamorphic linkages as the spherical-planar metamorphic linkage and the Bennett-

spherical metamorphic linkage with each of them having three motion branches. The Spherical-planar 6R metamorphic

linkage was originated from a kirigami and has two deployed and folded spherical motion branches and one planar motion

branch. When the distance between two intersections of joint axes becomes zero, the linkage turns to a spherical motion

branch. When the angle between two groups of parallel joints becomes zero , the linkage turns to the planar motion branch.

The Bennett-spherical 6R metamorphic linkage is obtained by making the distance between two intersections of joint axes

zero, the linkage then has two deployed and folded Bennett motion branches and one spherical motion branch. The recon-

figuration analysis of both linkages was carried out and the geometrical constraints for motion branch transformations are

revealed. 

The paper further developed the close-loop equations, gave the kinematic equations for different motion branches and

used screw theory to analyze motion of each motion branch. It is found that when the close-loop equation has different

solutions, the linkage gives different motion branches. Using calculation, the transition index was obtained and used to

analyze the reconfiguration of the linkages. 

Between the deployed spherical and folded spherical motion branches in the spherical-planar 6R metamorphic linkage

and between the deployed Bennett and folded Bennett motion branches in the Bennett-spherical 6R metamorphic linkage,

it was found that the deployable motion branch has higher reconfigurability. 
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