
xDGP: A Dynamic Graph Processing System with Adaptive
Partitioning

Luis M. Vaquero
Queen Mary University of

London
luis.vaquero@ieee.org

Félix Cuadrado
Queen Mary University of

London
felix@eecs.qmul.ac.uk

Dionysios Logothetis
Telefonica Research

dl@tid.es

Claudio Martella
VU University Amsterdam

c.martella@vu.nl

ABSTRACT
Many real-world systems, such as social networks, rely on
mining efficiently large graphs, with hundreds of millions
of vertices and edges. This volume of information requires
partitioning the graph across multiple nodes in a distributed
system. This has a deep effect on performance, as travers-
ing edges cut between partitions incurs a significant perfor-
mance penalty due to the cost of communication. Thus,
several systems in the literature have attempted to improve
computational performance by enhancing graph partition-
ing, but they do not support another characteristic of real-
world graphs: graphs are inherently dynamic, their topology
evolves continuously, and subsequently the optimum parti-
tioning also changes over time.

In this work, we present the first system that dynamically
repartitions massive graphs to adapt to structural changes.
The system optimises graph partitioning to prevent perfor-
mance degradation without using data replication. The sys-
tem adopts an iterative vertex migration algorithm that relies
on local information only, making complex coordination un-
necessary. We show how the improvement in graph parti-
tioning reduces execution time by over 50%, while adapting
the partitioning to a large number of changes to the graph in
three real-world scenarios.

Categories and Subject Descriptors
G.2.2 [Mathematics of Computing]: Graph Theory, Graph
heuristics; H.3.4 [Systems and Software]: Distributed Sys-
tems

Keywords
Dynamic graphs, large-scale graphs, graph processing, adap-
tive graph partitioning, distributed heuristic

1. INTRODUCTION
Many critical analytical tasks in real-world systems, such

as ranking and recommending online content or discovering
groups of correlated stocks, depend on the ability to mine

graphs of hundreds of millions of vertices and billions of
edges. The importance of managing graphs of that scale is
evidenced by the emergence of numerous distributed graph
storage and graph processing systems in recent years [9, 29,
1, 7, 35, 21, 18, 38].

Most graph processing systems adopt a batch job model,
greatly influenced by Pregel [22]: A static graph is loaded
in the memory of a distributed system to cope with its very
large scale. Computations are performed in multiple itera-
tions that involve per-vertex processing and messaging ex-
change between neighbouring vertices. Graph partitioning
is crucial to performance in these systems: Balanced graph
partitioning helps with load balancing, and minimising the
number of cuts between partitions improves communication
cost between neighbouring vertices [22].

These systems process static graphs, but many real-world
graphs are dynamic (the graph structure changes over time)
and several analytical applications require near real-time re-
sponse to graph changes. For instance, the Twitter graph
may receive thousands of updates per second at peak rate [3]
that can potentially indicate new trending topics. Topic rec-
ommendation systems must reflect these changes within min-
utes, otherwise they become irrelevant. Similarly, telecom-
munications operators must detect fraud by mining the Call
Detail Record (CDR) graph in real-time [44]. In addition
to the existing batch processing systems, there is a need for
frameworks that simplify continuous processing of dynamic
massive graphs.

Supporting dynamic graphs brings new challenges. As the
graph structure changes over time, if partitions were not up-
dated, performance would constantly be degraded due to ad-
ditional communication overhead and unbalanced partitions
(processing bottlenecks). However, these are often conflict-
ing requirements that make optimisations difficult and more
so when rapid responses are needed.

In this paper, we present a system for processing large-
scale dynamic graphs. We have addressed the performance
challenges described above by implementing a scalable par-
titioning heuristic with minimum overhead. Our heuristic
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is based on decentralised, iterative vertex migration. The
heuristic migrates vertices between partitions trying to min-
imise the number of cut edges, while at the same time keep-
ing partitions balanced upon structural changes at run time.
Updates in the graph topology trigger the iterative vertex mi-
gration process that adapts partitioning to the new topology.

This paper presents the following contributions:

1. We report how changes in the structure of a graph im-
pact the quality of the graph partitioning, as even high
quality initial partitioning strategies failing to adapt to
graph dynamics.

2. We describe a system that processes continuously large-
scale dynamic graphs, automatically adapting to struc-
tural changes on the graph for improved performance.

3. We present a highly scalable, completely decentralised
heuristic based on label propagation. The heuristic
improves graph partitioning in the event of dynamic
changes in the topology of the graph relying only on
local information.

4. We present extensive evaluation of the heuristic through
system deployments, using synthetic and real datasets.
Experiments show the effectiveness of the heuristic in
adapting to graph changes, the associated performance
improvement, and the observed impact in different real
scenarios.

The rest of the paper is organised as follows. Section 2
presents the motivation for addressing partitioning of dy-
namic graphs. In Section 3, we describe our heuristic in
more detail. Section 4 describes some relevant pitfalls that
need to be overcome when realising the heuristic into a real
system. The heuristic is then tested at scale in a series of lab
experiments and real-world use cases in Section 5. Section 6
compares our contributions to the related work. We present
the main conclusions and discussion in Section 7.

2. DYNAMISM IN GRAPH PARTITIONING
The number of cut edges in a distributed graph process-

ing system directly impacts the communications overhead
of computations across the whole graph, up to the point of
becoming a key performance factor [22]. The performance
impact of graph partitioning has led to several optimisations
at the beginning of the processing, right when the graph is
being loaded in memory. For instance, popular heuristics
for content ranking converge faster if initialised with smarter
graph partitioning heuristics [40]. At load time, clever parti-
tioning heuristics to improve performance in massive graphs
have also been employed [42, 34, 37]. None of them is ca-
pable of preventing performance degradation arising from
changes to the graph structure over time.

To illustrate the impact of dynamism in graph partition-
ing, we built a call graph from mobile CDR data (more de-
tails are shown in Section 5). The graph was partitioned
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Figure 1: Evolution of the ratio of cuts over time on a
dynamic graph generated by processing CDR data on a
call window.

using three different techniques: modulo hash (HSH), the
most popular technique because of its high scalability to
produce balanced partitions, results in high communication
overheads [17]; a state of art streaming partition technique
(deterministic greedy, DTG) [37]; and our adaptive reparti-
tioning heuristic, as described below, (ADP). Figure 1 shows
the evolution of the partitioning (expressed in the percentage
of edges that cut across different partitions). As the graph
evolves over time, a static or streaming partitioning solution
cannot cope with the changes and, consequently, the quality
of the partitioning (and the system performance) degrades
over time.

Current approaches either allow partitioning to degrade as
the graph changes or require graph re-partitioning, which is
a very costly process on large-scale graphs. Both of them ef-
fectively increase processing time. While this problem does
not deeply affect batch processing systems, it can greatly im-
pact the throughput and latency of graph processing systems
requiring faster response times.

To enable graph mining applications in real-world envi-
ronments, such as online social networks, we need scalable
partitioning heuristics that take the dynamic nature of the
graphs into consideration. This requires the ability to quickly
adapt the partitioning as the graph changes to prevent perfor-
mance degradation.

3. ADAPTIVE ITERATIVE PARTITIONING
In this section the iterative heuristic for improved dynamic

graph partitioning is presented. Before we describe the heuris-
tic, the next subsection describes the problem and context
that any solution should address.

3.1 Problem Statement

Definition (Dynamic Graph Partitioning) A dynamic graph
G(t) = (V (t),E(t)) is a graph whose vertices V and edges
E can change over time t, either with addition or removal
of elements. Let P(t) be the set of partitions on V at time
t and Pi(t) the individual partition i, with |Pi| = k. These
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partitions will be such that
k⋃
i,t

Pi(t) =V and Pi(t)∩P j(t) = /0

for any i 6= j. The edge cut set Ec ⊆ E is the set of edges
which endpoint vertices belong to different partitions.

A distributed graph processing system splits the partitions
between nodes. Every vertex belonging to the graph has an
assigned partition. At time t = 0, the graph is loaded with an
initial partitioning. New vertices appearing at t > 0 also have
to be assigned to a partition according to a strategy.The most
commonly used strategy in large-scale graph processing sys-
tems is hash partitioning. Given a hashing function H(v), a
vertex is assigned to partition Pi(0) if H(v) mod k = i. This
strategy is effective as it is lightweight, it does not require
a global lookup table, and, depending on the characteris-
tics of the vertex IDs, it can scatter the vertices uniformly
across the partitions. Unfortunately, it introduces many cut
edges. In addition, this method does not guarantee adapta-
tion to changes in the topology of the graph, since its initial
partitioning is never updated.

The goal of repartitioning is to minimise the number of
cut edges across partitions, while keeping the partitions bal-
anced in order to improve application performance. Re-
ducing the number of cut edges diminishes the communi-
cations overhead of computations across the whole graph,
while load balancing can have a significant impact on overall
processing time [22]. The characteristics of dynamic graphs
and the context of application also bring several challenges
that must be considered for any solution:

• Graph structure changes are not predictable. It is not
possible to know beforehand the nature of the changes,
or the impact they will have in performance, unless
working on a specific use case. Therefore, partition op-
timisation should apply to any change to the graph, and
must be able to run continuously if the graph changes
all the time.

• The computational overhead from the partitioning op-
timisation must be low. As the objective is to improve
application performance, the selected technique must
be lightweight and scalable to work over large graphs.

• Synchronising distributed state at a large scale is very
costly in a dynamic environment. Computations will
have a partitioned view of the complete system state.
Propagating global information across the network in-
curs a significant overhead, which must be considered
for every repartitioning technique.

3.2 Greedy Vertex Migration
We have defined a heuristic for dynamically adapting graph

partitions that considers the challenges above. The heuristic
is based on label propagation [31], adapting the approach of
performing iterative computations based on per-vertex neigh-
bour information. Label propagation was first proposed as

an efficient method for learning missing categories in semi-
supervised learning scenarios. Unlabelled nodes iteratively
adopt the label of the majority of their neighbours until no
new labels are assigned (convergence is reached). The tech-
nique has been adopted in the literature for supporting adap-
tive migrations on static graphs[42].

The iterative heuristic works as follows. On every itera-
tion t1 after the initial partitioning, each vertex will make a
decision to either remain in the current partition, or to mi-
grate to a different one. Migration decisions are only based
on local information available to the vertex, where the goal
is to “get neighbours together” in order to minimise the num-
ber of cut edges |Ec|. At the end of the iteration, all vertices
who decided to migrate will change to their desired parti-
tions. Video 12 shows how the heuristic evolves evolves par-
titioning over time in a 2d slice of a 3d cube of a 106 vertices
mesh graph, where every vertex is physically surrounded by
its neighbours. As time goes, the initial hash partitioning
across 9 partitions (represented with a different colour each)
is improved by increasing the number of neighbours placed
together.

Dynamism comes natively in this iterative approach. New
vertices are initially assigned a partition according to an strat-
egy (we opted for hash modulo) and the heuristic will at-
tempt automatically to move them closer to their neighbours.

For vertex migration decisions we evaluated multiple al-
ternatives based on local information [37, 30]. We chose a
greedy heuristic that had the lowest computational cost while
yielding strong results regarding minimising cut edges. The
heuristic works as follows: At each iteration, a vertex will
decide to migrate to the partition with the highest number of
neighbour vertices. With this premise, the candidate parti-
tions for each vertex are those where the highest number of
its neighbours are located. Formally, for a vertex v, the list
of candidate partitions is derived as follows: cand(v, t) =
{Pi(t) ∈ P(t),∃ w, w ∈ (Pi(t)∩Γ(v, t))}, where Γ(v, t) is the
set of v plus its neighbours at iteration t. Since migrating a
vertex potentially introduces an overhead, the heuristic will
preferentially choose to stay in the current partition if it is
one of the candidates.

The heuristic relies on local information, as each vertex v
only needs to know the location of its neighbours in order to
choose its destination. In a real system, that information will
already be available at each partition (in order for vertices
to communicate with their neighbours). The heuristic does
not need of additional coordination mechanisms for sharing
further information, which might hamper scalability.

3.3 Maintaining Balanced Partitions
The greedy nature of the presented heuristic will naturally

1Note that we measure time in number of iterations, decoupling
the heuristic from implementation considerations. The actual time
taken by an iteration to complete will depend on the system and the
specific load of the system at that iteration.
2https://dl.dropbox.com/u/5262310/reducedCuts.avi
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cause higher concentration of vertices in some partitions. We
refer to this phenomenon, common to general label propaga-
tion algorithms [31], as node densification. As our goal is to
obtain a balanced partitioning, we set a capacity limit for
every partition.

Definition (Partition Capacity). Let Ci be the capacity con-
straint on each partition. At all times t, for each partition i,
|Pi(t)| ≤Ci.

In order to control node densification, vertices need to be
aware of the maximum partition capacities capacity Ci. The
remaining capacity of each partition i at iteration t is Ci(t) =
Ci−|Pi(t)|. These values change every iteration, forcing to
relax our local information constraint.

The local and independent nature of migration decisions
make these capacity limits difficult to enforce. At iteration
t the decision of a vertex to migrate can only be based on
the capacities Ci(t) computed at the beginning of the itera-
tion. These capacities will not be updated during the itera-
tion, which implies that without further restrictions all ver-
tices will be allowed to migrate to the same destination, po-
tentially exceeding the capacity limit.

We ensure these limits will not be surpassed by indepen-
dent decisions by working on a worst case basis. We split the
available capacity for each partition equally and we use these
splits as quotas for the other partitions. Hence, the maximum
number of vertices that can migrate from partition i to par-
tition j over an iteration t is defined as: Qi, j(t) = C j(t)

|P(t)|−1 ;
j 6= i. See Section 4 for system implementation details

Quotas can defer migration decisions, which has a side
effect on the real system performance. On a real system,
vertex migrations are a costly activity than can affect appli-
cation performance: They involve messaging across parti-
tions, object creation/destruction, and memory reservation,
incurring on significant overhead. A lesser number of mi-
grations per iteration reduces the extra load imposed by the
migration decisions to the system, as well as the maximum
overhead imposed to the system in a single iteration.

This strategy to manage partition capacity introduces min-
imum coordination overhead. Vertices base their decision on
the location of their neighbours, and the partition-level cur-
rent capacity information, which must be available locally to
every node. Propagating capacity information is scalable, as
it is proportional to the total number of partitions k.

3.4 Ensuring Convergence
The independent nature of the migration decisions endan-

gers convergence of the heuristic. Local symmetries in the
graph may cause pairs (or higher cardinality sets) of neigh-
bour vertices independently decide to “chase each other” in
the same iteration, as the best option is to join its neighbour.

We have addressed these issues by introducing a random
factor to the migration decisions. At each iteration, each
vertex will decide whether to migrate with probability s,
0 < s < 1. A value of s = 0 causes no migration whatso-
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Figure 2: Effect of s into Convergence and Number of
Cuts (normalised to the total number of edges in the
graph). Average of 10 experiments performed over two
graphs: 64kcube (A) and Epinions(B) from Table 1, par-
titioning over 9 nodes.

ever, while s= 1 allows vertices to migrate on every iteration
they attempt to. Intermediate values in the range address the
chasing effect, but lower values also affect the overall con-
vergence time.

We explored the effect of different values of s with an
extensive set of experiments on different graphs, assessing
convergence time and node densification. Details about the
selected graphs are provided in Section 5.1. We assumed
full convergence when the number of vertex migrations was
zero for more than 30 consecutive iterations. Figure 2 shows
the effect of s on convergence time and normalised number
of cuts for two different graphs. In both cases, there was no
statistical difference in the number of cuts achieved by the
heuristic, regardless of the value of s. Similar results were
obtained for the remaining graphs used in our study, shown
in Table 1.

However, s can have a significant impact on convergence
time. Low values of s limit the number of migrations exe-
cuted per iteration, potentially increasing the time required
for convergence. On the other side, high values fail to fully
compensate the neighbour chasing effect, introducing wasted
migrations per iteration that delay convergence and increase
computation time. This is particularly evident in Figure 2
(B). From our experience, a constant intermediate value (s =
0.5) will have adequate performance over a variety of graphs:
the reduced message overhead makes processing differences
(due to variations in s) negligible. This is specially true in
the context of long running (continuous) processing systems.

4. SYSTEM DESIGN
In this section, we present xDGP, our large-scale dynamic

graph processing system. We provide an overview about the
system computation model, the distributed system architec-
ture, and finally detail how we have integrated the iterative
adaptation heuristic.
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4.1 Computation Model
xDGP takes Pregel’s computational model (“think like a

vertex”) as inspiration and expands it to a continuous dy-
namic graph processing model, instead of focussing on batch
jobs. Computation is composed of iterations, where the same
function is executed for each vertex. A job defines a function
applied to each vertex, synchronising messages at the end of
every iteration.

A job starts processing an initial graph, which is loaded
into the system with an initial partitioning. The system also
provides an external API for modifying the topology of the
graph at any time. Functions allow adding and removing
vertices and edges from the graph. API topology change
requests are added to a change queue, and are processed at
the end of every iteration (or potentially, after n iterations, as
shown in the CDR case (Section 5.3).

At the start of every computing iteration, an iteration of
the adaptive migration heuristic runs over the graph, poten-
tially triggering decisions to adapt the updated graph to the
last changes to the graph.

4.2 Vertex Migration Support
In this subsection we provide the main insights derived

from our experience implementing xDGP.

Deferred Vertex Migration.
At any iteration t, vertices take independent migration de-

cisions, and potentially send messages to be processed by
their neighbours. At t, a vertex does not know the destina-
tion of neighbour vertices at t + 1 (this would require im-
mediate notification to their neighbours of the migration de-
cision, that would need to be received and processed in the
same iteration, increasing the overhead from the migration
process). Migrating a vertex at the next iteration after its
decision would require one of the following adaptations to
avoid losing messages (see Figure 3 (top)): either forward-
ing the incoming messages to the new destination of the ver-
tex, or updating the messages in the outgoing queues of the
other workers with the updated destination. However, these
solutions require additional synchronisation and coordina-
tion capabilities that would challenge the scalability of the
heuristic.

Instead, we solved this coordination problem with no ad-
ditional overhead: We force vertices to wait for one iteration
before they migrate. At the end of iteration t, at which the
vertex requested the migration, the host worker sends a mes-
sage to the other workers about the upcoming migration, so
that they will have been notified at the start of the following
iteration t + 1, and the new messages produced during iter-
ation t + 1 can be sent directly to the new destination (see
Figure 3 (bottom)). This way the computation is not directly
affected by the migrations.

Worker to Worker Capacity Messaging.
The heuristic requires the system to maintain an extra el-
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Figure 3: Deferred Vertex Migration to Ensure Message
Delivery. Top: Failed message delivery due to incorrect
synchronisation. Bottom: Correct delivery. The dashed-
red circle indicates when the vertex is in a “migrating”
state waiting for one iteration (step) before actually mi-
grating.

ement of global information: Each worker must notify the
|Ci(t)| of its partitions to the other workers. We implemented
these communications using the scalable messaging form
our computation model, with the restriction that messages
will only be received and processed by the next iteration.
Therefore, when using this mechanism, workers send infor-
mation about their capacity at iteration t + 1, ensuring par-
tial freshness. The predicted capacity will be Ci(t + 1) =
Ci(t)−V i

out(t +1)+V i
in(t +1), where V i

in(t)⊂V are the ver-
tices migrating to i in t + 1, and V i

out(t) ⊂ V are the ver-
tices migrating from i to other partitions in t +1. V i

out(t +1)
is known by the worker as it is based on local decisions.
V i

in(t + 1) is also known by the worker at iteration t + 1 as
deferred vertex migration ensures that the workers will be
aware of this value.

4.3 System Implementation
xDGP is implemented in Java, and has as main design

goals support for dynamic graph adaptation, failure toler-
ance, and intermediate results snapshot. Following the Bulk
Synchronous Processing [43] model, the main system blocks
are Master and Workers, as shown in Figure 4. Master and
workers communicate synchronously (RMI) to enforce the
global synchronisation barrier. Similarly to Pregel, xDGP
implements an abstract Vertex class that hides all the com-
plexity to the user, with the system orchestrating the vertex-
level computations in parallel across the workers. An exe-
cution controller creates a number of threads, depending on
the number of CPUs available.

Workers keep input and output message queues for inter-
worker vertex communications, sending messages through
a loosely coupled asynchronous delivery method (we used
RabbitMQ and ZeroMQ as interchangeable message han-
dlers). xDGP also provides a generalisable message aggre-
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gation mechanism (grouping messages sharing same source
and destination workers, in order to reduce the routing inef-
ficiency introduced by RabbitMQ).

Snapshots (for failure-tolerance or for keeping the output
of the running heuristic) are stored on a distributed-column
store cluster (replicated configuration), keeping balance be-
tween writing speed and consistency. xDGP tries to find
the right balance between failure-tolerance and high write
throughput (so as not to delay computation). Frequent snap-
shotting and high write-throughput are specially important
for dynamic graphs, since intermediate analysis results must
be kept for the external applications to show the output and
its evolution.

The system supports two types of messages. Applica-
tion (vertex to vertex) messages contain data related to the
computation, and system messages (worker to worker) sup-
port information exchange (e.g. notifying current capacity to
other workers). While system messages routing is straight-
forward, dynamic vertex migration makes routing of appli-
cation messages more complicated. A Vertex Locator in
each of the workers helps to find the current location of that
vertex.

When new vertices are added, the partitioner of each of
the worker nodes is in charge of properly allocating them to
one of the workers. This decision is important to reduce con-
vergence time: a random placement strategy works just as
well since that new vertex would be migrated around until it
finds most of its neighbours are local. This approach is pre-
ferred to more complex placements (that involve more coor-
dination messages and delay the migration process that oc-
curs in between two iterations). Buffers (distributed queues)
are in charge of dampening new requests to add/delete graph
elements. Queues for vertex or edge deletion/addition can
be prioritised.

5. EVALUATION
In this section, we present the evaluation experiments we

have undertaken for testing the dynamic graph adaptation ca-
pabilities of the proposed system and heuristic. First, we val-
idate the capabilities of the heuristic through a set of micro-
benchmarks, looking at different aspects of adaptive migra-
tion (quality of the partitioning, convergence time and distri-
bution of migrations, and absorption of graph changes). Sec-
ond, we demonstrate through three use cases how the sys-
tem and heuristic can improve the processing of real scenar-
ios, namely real-time social network analysis, online queries
from CDR records, and large-scale biomedical simulations.

5.1 Datasets
We have selected a diverse collection of graphs (see Table

1), including synthetic graphs and real-world graphs, of mul-
tiple sizes (up to 300 million edges) and edge distributions:
homogeneous finite-element meshes (FEM) and power-law
degree distribution.

Regarding the synthetic graphs, the synthetic meshes have

a 3d regular cubic structure, modelling the electric connec-
tions between heart cells [39]. Power law synthetic graphs
have been generated with networkX [13], using its power
law degree distribution and approximate average clustering
[14]; the intended average degree is D= log(|V |), with rewiring
probability p = 0.1.

When required, we mimicked dynamic changes to the syn-
thetic graphs by adding nodes and vertices using the well-
known “forest fire” model [19], and updating the graph with
these additions in a single step.

Table 1: Summary of the evaluation datasets.
Name |V | |E| Type Source
1e4 10000 27900 FEM synth

64kcube 64000 187200 FEM synth
1e6 1000000 2970000 FEM synth
1e8 108 2.97∗108 FEM synth
3elt 4720 13722 FEM [36]
4elt 15606 45878 FEM [36]

plc1000 1000 9879 pwlaw synth
plc10000 10000 129774 pwlaw synth
plc50000 50000 1249061 pwlaw synth
wikivote 7115 103689 pwlaw [20]
epinion 75879 508837 pwlaw [32]

livejournal 4847571 68993773 pwlaw [2]

In addition to these graphs, we also used two real-world
sources of dynamic data:

1. We processed tweets from Twitter’s streaming API in
real-time for a week, generating nodes from users and
edges from user mentions in tweets;

2. We processed one-month data of anonymised calls in a
mobile European operator. We fed these data chrono-
logically, building a dynamic graph of call interactions,
consisting of 21 million vertices, 132 million recipro-
cated social ties.

5.2 Microbenchmarks
The goal of these experiments is to understand the qual-

ity, performance and cost of the adaptive migration heuristic.
For quality, we adopted the cut ratio, i.e. the ratio of edges
cutting across different graph partitions. From the applica-
tion performance point of view, the lower the cut ratio the
lower the number of communication messages that will be
sent across the distributed system.

We estimate the runtime overhead of the heuristic by char-
acterising how the heuristic triggers migration of vertices
over multiple iterations.

Finally, we compare our estimations with the measured
performance of the heuristic (average computation time of
an iteration).

We provide for comparison the results obtained by run-
ning the same experiments in our system, without adaptive
partitioning. All the experiments shown below are the mean
of n = 10 repetitions. Variability is reported in the form of
standard deviation in the error bars.

6



Figure 4: xDGP overview. Small grey dots represent the vertices and the vertical lines under the Vertex Executor box
indicate that several concurrent executors run in parallel in a multi-core host.

5.2.1 Quality of partitioning
As we mentioned above, some systems just optimise the

initial loading of the graph in memory, but provide no later
adaptation to cope with structural changes in dynamic graphs.
Different initial partitioning techniques split the graph in dif-
ferent ways that may affect the way our heuristic behaves
during run time adaptations.

In this experiment we used different graphs and studied
if our heuristic could lead to further improvements in per-
formance on nine partitions. We tested several initial parti-
tioning strategies: 1) Hash Partitioning (HSH): the destina-
tion partition is computed by hashing vertexId with modulo
number of partitions; 2) Pseudorandom Partitioning (RND):
vertices were assigned to partitions through a pseudoran-
dom generator, still ensuring balanced partitions; 3) Deter-
ministic Greedy (DGR): stream-based “linear deterministic
greedy” as presented in [37]; 4) Minimum Number of Neigh-
bours (MNN): applies the same stream-based approach to
the “minimum number of neighbours” heuristic presented in
[30]. After initialising the partitions with one of four differ-
ent initial strategies, we ran our adaptive iterative heuristic
until convergence.

Figure 5 provides the results obtained for each graph on
average of 10 experiments. Each group of four bars shows
the results for a different graph, partitioned with the four
initial partitioning strategies. The graph overlaps the bars for
the cut ratio of both the initial partitioning (dashed colour
fill), and the improved final partitioning after running the
adaptive heuristic (filled colour). The improvement obtained
by the iterative heuristic (if any) from the initial partitioning
is represented by the visible dashed colour bar.

Looking at HSH initial partitioning, the iterative heuris-
tic significantly improves the cut ratio for FEM graphs (the
five leftmost bar groups), with greater than 0.6 improve-

ment. Adaptive partitioning also provides substantial im-
provements for RND and MNN partitioning strategies. When
applying it to a state-of-the-art initial partitioning technique
(DGR), it only slightly improves the cut ratio, since the heuris-
tics have a very similar (greedy) nature. It is worth not-
ing that for large-scale graphs, DGR and MNN require full
graph knowledge, which poses significant limits to its scala-
bility and its applicability to real deployments [42]. For real
use cases we have used hash, as it is the de facto standard
used by most other large-scale partitioning systems. How-
ever, we believe these results show that the adaptive heuristic
is compatible with state-of-the-art partitioning techniques,
and would optimise the partitioning when graph dynamism
is required (see Figure 1).

Looking now at power law graphs (the four rightmost bar
groups), non-DGR initial partitioning is also improved by
the iterative heuristic. For these types of graphs the final cut
ratio is higher than the levels achieved on FEM graphs. The
results show that DGR could not provide either a low cut
ratio for these graphs, showing that they are more difficult to
partition.

5.2.2 Convergence Study
We study how the adaptive heuristic converges to a par-

tition distribution. To this end, we collected the number of
migrations between vertices at each iteration, as well as the
evolution of the ratio of cut edges. Figure 6 shows cut ra-
tio (red), and ratio of migrations completed (blue) for the
Livejournal graph. The graph was partitioned using modulo
hash. Cumulative vertex migrations are triggered rapidly in
the initial iterations, with more than 50% of the moves com-
pleted at the tenth iteration. During this stage the cut ratio is
also improved to less than 0.7 from the initial 0.9. The rate
of migrations slows down rapidly, and it takes to iteration 47
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Figure 5: Ratio of cut edges for each graph after run-
ning the iterative heuristic over four different initial par-
titioning strategies. Clearer bars show the ratio with the
initial partitioning

for the heuristic to migrate 90% of the vertices. At this stage,
90% of the ratio of cuts improvement has been achieved.

We observed similar behaviour in the improvement of cut
ratio and triggered number of migrations with different graphs
and partitioning strategies. The first iterations of the heuris-
tic trigger the majority of the movements, as well as a signif-
icant part of the improvement in the partitioning. This has an
important impact in the system performance. As the cut ratio
is reduced, computation performance will improve thanks
to the reduced communications cost. However, migrating
vertices brings an additional overhead that might cause per-
formance bottlenecks if too many migrations happen at the
same iteration. The dampening factor of s, migration quotas
and the deferred migration technique help to smoothen the
initial peak of migrations.

It can be predicted that from a performance point of view
the initial iterations will be affected the most by the ad-
ditional overhead. In this setting iteration execution times
quickly go down as the cut ratio improves and later iter-
ations will quickly improve computation execution perfor-
mance, as both the overhead from vertex migrations goes
down and the quality of partitioning quickly improves, there-
fore optimising computation execution time. We present the
observed relationship between migrations, quality of the par-
titioning and performance in the following subsection.

5.2.3 Performance of Adaptation to Dynamic Changes
We evaluate the performance (in iteration time) of the sys-

tem can adapt to controlled changes in the graph. We loaded
the Livejournal graph to our system, partitioned initially with
modulo hash, and calculated the estimated diameter, with the
heuristic used in [17]. Every 50 iterations we injected to the
running graph a burst of new vertices (based on a forest-
fire expansion), each addition increasing the current graph
size by 1, 2, 5 and 10%, respectively. The graph was con-
tinuously processed to compute the diameter of the graph.
Figure 7 shows the average time per step (in minutes) on
LiveJournal with a static approach (hash partitioning - blue)
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Figure 6: Accumulated migrations and cut ratio evolu-
tion on Livejournal graph.

and our dynamic heuristic (red). Time is divided in five re-
gions, where we can observe the adaptation of the heuristic
to the initial partitioning, and each one of the changes to the
graph.

At the initial stage (0%), we can observe the performance
impact of the convergence behaviour of the algorithm we
just discussed. Over the initial 10 iterations, where 50% of
migrations take place, the overhead from migrations signif-
icantly affects computation performance, with the first five
running almost 80% slower than the hash baseline, and the
following five at roughly the same time. The next five itera-
tions show a substantial improvement, with the average time
going down to 54% of the time required by the hash base-
line. The following iterations show considerably smaller im-
provements in the iteration execution time.

We can conclude that the performance overhead from the
heuristic is strongly dependent on vertex migrations. The de-
cision part of the heuristic is executed at every iteration, and
does not seem to overweights the benefits from an improved
partitioning. For performance reasons, it will be worth to
adapt the graph when computations will take place for an
extended number of iterations. Otherwise, it is possible that
the initial overhead will cancel any benefits form achieving
a improved partitioning.

Now let us observe the changes on execution time when
we inject graph changes. First, looking at the static parti-
tioning, execution time increases, growing up to an increase
over 50% from the initial time. On the other hand, the adap-
tive heuristic shows similar behaviour for each graph injec-
tion. Initially execution time degrades due to the migrations
overhead, but quickly the graph is adapted and the execution
time returns to figures almost identical to the ones obtained
with the initial graph (0%). Larger additions to the graph
inflict higher performance degradation over the first subse-
quent iterations, although after 10 iterations the heuristic has
returned to values close to the optimal. The exact nature of
the migrations overhead is heavily system dependent, but it
becomes more taxing to the system the more abrupt changes
occur.
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Figure 7: Execution time evolution after injecting
changes to the Livejournal graph.
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Figure 8: Throughput and performance obtained by pro-
cessing the incoming stream of tweets originated from
London. Each point represents the average of 10 min
of streaming data.

5.3 Real-Word Use Cases
We validated our system with a set of real-world use cases.

We aimed at testing the scalability of the system, and the ca-
pability to cope with dynamic graphs in different scenarios.
We believe that the diversity in the workloads of each appli-
cation helps to support the general validity of our approach.

In all three cases, we ran the same experiments on two de-
ployments of our system. One with the adaptive partitioning
heuristic, and one with static hash partitioning.

Adaptation in Real-Time Social Network Analysis.
Our first use case evaluates the capability of the system to

analyse a dynamic graph modelled after a continuous stream
of information. We aim to assess the adaptation capabilities
of the heuristic, with respect of the evolution in the quality
of the partitioning, and the impact in execution time.

We captured tweets in real-time from Twitter Streaming
API, and built a graph where edges are given by mentions
of users. Over this power law graph, we continuously esti-
mated the influence of certain users by using the TunkRank
heuristic [41]. In this test, execution time is bound by the
number of messages sent over the network at any point in
time (over 80% of the iteration time)

We ran the experiment simultaneously in two separate clus-
ters: One cluster used the adaptive heuristic, while the other
used static hash partitioning instead. In Figure 8 we can ob-
serve the average results from processing tweets collected in
the London area over a whole day (Friday, 5th Oct 2012),
after running continuously for 4 days. The red line shows
the rate at which tweets are received and processed by the
system, while the blue and orange lines show average exe-
cution times per iteration, with and without adaptation, re-
spectively. The sudden drop in throughput and iteration time
is due to a failure in one of the workers that led to the trig-
gering of xDGP recovery mechanism.

As can be observed, the average execution time is sig-
nificantly improved when applying the adaptive heuristic,
(mean of 0.5 secs instead of 2.5 secs, including the added
overhead). Importantly, the optimisation of the partitioning
with only local information significantly lessens variability
in execution times, by reducing the impact of network com-
munications (more neighbours are local).

Adaptation in Mobile Network Communications.
The second use case shows how xDGP can support on-

line querying over a large-scale dynamic graph. We used a
dataset from a mobile operator, with one month of mobile
telephone calls. The dynamic graph was created by apply-
ing a sliding window to the incoming stream of calls as fol-
lows: Nodes represent users and calls are modelled as edges
between these users. Therefore, new calls add nodes and
vertices to the graph and both are removed from the graph
if they are inactive for more than the window length (one
week). The window size yielded weekly addition/deletion
rates of 8 and 4%, respectively, which is higher than those
reported in previous studies due to the shorter period of anal-
ysis [10].

Over this graph, we continuously computed the maximum
cliques of each node. The maximum clique was obtained
as follows: In the first iteration, each vertex sends its lists
of neighbours to all its neighbours. On the next iteration,
given a vertex i and each of its neighbours j, i creates j
lists containing the neighbours of j that are also neighbours
with i. Lists containing the same elements reveal a clique.
As these lists can get large, this heuristic produces heavy
messaging overhead for large graphs, especially if these are
dense, and not negligible CPU costs, although not as much
as the biomedical use case described later. The main prob-
lem of applying the iterative heuristic to this use case is that
optimising message passing in iteration 1 places neighbours
together and creates hotspots (all the members of a clique
will be calculating the same cliques in parallel on the same
host). To reduce duplicate calculations (reduce “hot zones”)
only lists for j > i are created and only neighbours of neigh-
bours with ID j > i are added to those lists.

In contrast with the previous scenario, this application re-
quires freezing the graph topology until a result is obtained,
therefore buffering all the graph changes until the compu-
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Figure 9: Evolution of the ratio of cuts (Left) and average
iteration (step) time (Right) during the 4 weeks of avail-
able data. The experiments were performed in a cluster
of 5 workers (96GB RAM, 10 GbE, 12 cores).

tation finishes (for two iterations instead of one). Mean-
while, adaptation occurs at every iteration.This characteris-
tic makes the scenario more challenging than the previous
one, as every iteration will trigger the adaptation to a batch
set of changes to the graph. Call data was streamed into the
system with a speed up factor of 15, to increase the amount
of buffered changes per cycle , further testing the adaptation
capabilities of the heuristic.

We run the clique finding application in two separate clus-
ters, with and without the adaptive heuristic. Figure 9 shows
the weekly results in both cases. It can be seen that the adap-
tive partitioning maintained a stable number of cuts, result-
ing in consistently higher throughput (more than twice the
throughput provided by hash portioning). Moreover, weekly
trends show that the static scenario experiences further per-
formance degradation over time due to the higher cut ratio.

Adaptation in Biomedical Simulations.
The final scenario assesses the suitability of the proposed

system and heuristic for implementing large scale biomedi-
cal simulations. Biomedical simulations require long-running
computations, with heavy CPU usage. Simulations are often
implemented on specialised clusters, using message-passing
libraries such as MPI. The use case presents a different type
of application (long-running simulations), that operates at a
considerably higher scale than the previous scenarios.

The input graph is a 100 million vertex/300 million edges
FEM representing the cellular structure of a section of the
heart. Each vertex computes more than 32 differential equa-
tions on one hundred variables representing the way cardiac
cells are excited to produce a synchronised heart contraction
and blood pumping [39]. The graph state occupies a total
of 3TB in memory among the 63 worker machines running
the simulation. Using static hash partitioning (without the
adaptive heuristic), simulation time is still dominated by the
exchange of messages (more than 80% of the time), even
though CPU time is not negligible (more than 17%). The it-
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Figure 10: Accumulative execution time after expanding
the heart cell FEM using a forest fire model (extra 107

vertices and 3 ∗ 107 edges. Results were obtained in a
cluster of 63 workers (64GB RAM, 10GbE and 12 Cores)

.
erative heuristic works in this use case similarly to the other
experiments, achieving a final speedup of 2.44 after conver-
gence.

At a certain point in the simulation, we mimic the ef-
fect that adding stem cells differentiating into cardiac tissue
would have. These new cells are injected to the graph as an
additional 10M vertices and 30M edges, joining the tissue in
the border of the infarcted region, based on preferential at-
tachment. These changes bring the total memory usage close
to full occupation in the cluster.

We show in Figure 10 the cumulative execution time, from
the instant changes were added to the graph structure, for
both a static hash partitioning (blue) and our iterative heuris-
tic (red). As expected, the first iterations are affected by
the overhead from the triggered vertex migrations, but in the
long term the improved partitioning significantly shortens
simulation time. Comparing these results with previous use
cases the heuristic performs better on continuously chang-
ing graphs. It will be worth to adapt to abrupt changes in the
graphs only when facing long-running computations, such
as biomedical simulations.

6. RELATED WORK
To the best of our knowledge, there is no system that

continuously processes large-scale dynamic graphs, while
adapting the internal partitioning to the changes in graph
topology. Our system adapts to large-scale graph changes
by repartitioning while 1) greatly reducing the number of cut
edges to avoid communication overhead, 2) producing bal-
anced partitioning with capacity capping for load balancing,
and 3) relying only on decentralised coordination based on a
local vertex-centric view. The heuristic is generic and can be
applied to a variety of workloads and application scenarios.

6.1 General Partitioning
The idea of partitioning the graph to minimise network

communication is not new and it has inspired several tech-
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niques to co-locate neighbouring vertices in the same host
[5, 28, 16, 25, 6, 4, 11]. These approaches try to exploit
the locality present in the graphs, whether due to the ver-
tices being geographically close in social networks, close
molecules establishing chemical bonds, or web pages re-
lated by topic or domain, by placing neighbouring vertices
in the same partition. The parallel version of METIS [15],
ParMETIS [27], leverages parallel processing for partition-
ing the graph, through multilevel k-way partitioning, adap-
tive re-partitioning, and parallel multi-constrained partition-
ing schemes, but requires a global view of the graph that
greatly reduces its scalability [34]. Other techniques have
been explored that study graph properties projected onto a
small subset of vertices [19, 11]. These may be effective in
some particular contexts, but they are not broadly applicable.

6.2 Changing Graph Structure at Runtime
Beyond these fixed techniques for static graphs, the need

to continuously adapt to changes to the graph structure with-
out the overhead of re-loading an updated snapshot of the
graph or re-partitioning from scratch, has been recently re-
ported in practical [33, 23, 12] and more theoretical [26]
studies. Few systems can cope with run time changes in
structure [24, 45, 9]. However, these cannot handle struc-
tural graph changes, either degrading partition quality or fully
triggering the partitioning process.

6.3 Initial Partitioning Strategies
Some techniques try to alleviate performance degradation

by optimising partitioning during the initial loading of the
graph in memory (i.e. they do not adapt in run time). For
instance, in [37] authors evaluate a set of simple heuristics
based on the idea of exploiting locality, and apply them on a
single streaming pass over a graph, with competitive results
and low computation cost. The authors show the benefits of
this approach in real systems. In addition to adaptations to
changes in structure, some systems dynamically adapt the
partitioning of the graph to the bandwidth characteristics of
the underlying computer network to maximise throughput
[8]. Mizan [17] ignores the graph topology and instead op-
timises the system by performing runtime monitoring and
load balancing. The graph processing system finds hotspots
in specific workers and migrates vertices to a paired worker
who have the highest number of outgoing messages in an
attempt to balance the load.

GPS [34] applies the technique most similar to ours from
the heuristic point of view, but system implementation limits
its application to static graphs. There are two main differ-
ences: 1) they allow vertices to move while an iteration is
still running, while we move vertices between two consecu-
tive steps; 2) to simplify location of a migrated vertex, they
modify the ID. This prevents adding new elements, since
their ID may conflict with one of a previously loaded and
migrated vertex. We preserve de ID of the vertex by using
a more complex vertex localisation mechanism, which en-

ables near real-time changes in the topology and subsequent
optimisations to increase vertex locality.

Initial partitioning strategies only optimise the starting graph,
with several of these techniques requiring some extent of
global information. This poses significant scalability prob-
lems [42], whereas our approach relies only on local in-
formation. Additionally, as shown in Figure 1, these ap-
proaches cannot cope with changes that alter the structure of
the elements already loaded (e.g. node and vertex deletion)
or keeping optimal partitioning as the graph changes.

6.4 Dynamic Adaptation beyond Initial Parti-
tioning

In addition to adapting the initial partitioning of the graph,
some systems attempt to keep a small overhead when pro-
cessing changing graph structures. In [42], partitioning was
optimised in slowly changing graphs, with changes being
applied the next time the graph was loaded. The authors
employ a label propagation mechanism enhanced with ge-
ographical information to improve graph partitioning. The
process involves linear programming, being computation-
ally very expensive (reported calculations of 100 CPU days)
and implying global aggregation of local (vertex-level) util-
ity functions.

Sedge [45] is a dynamic replication mechanism (as op-
posed to a re-partitioning one). Sedge keeps a fixed set of
non overlapping partitions and then dynamically creates new
ones or replicates some of them in different machines to cope
with variations in workload. Replicated systems are more
focused at providing low latency to multiple concurrent and
short-lived queries. Our system tries to keep a few long-
lasting (continuous) queries which results are modified as a
consequence of changes in the information or the topology
of the graph.

7. CONCLUSIONS
Real world graphs are dynamic, and mining information

from graphs without considering the evolution of their struc-
ture over time can have a significant impact on system per-
formance.

In this work we have focussed on adapting to graph changes
in a highly scalable way, while working under the challenges
of migrating vertices in a distributed system. The presented
heuristic adapts the graph partitioning to graph dynamics at
the same time as computations take place. We show through
our experiments that the heuristic improves computation per-
formance (with higher than 50% reduction in iteration exe-
cution time), adapting to both continuous and abrupt changes.

A key performance factor for adapting to graph changes
is the tradeoff between the additional overhead incurred by
repartitioning the graph, and the effective performance im-
provement from a better graph partitioning. We have found
vertex migration to be the predominant source of overhead
(specially when migrating a high number of vertices), and
we will work on further system optimisations for efficient
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vertex creation and migration.
We believe this work contributes a first step towards the

study of the performance of systems based on dynamic graphs,
but there is significant work ahead. The space of dynamic
graphs is still not well known, neither from models that char-
acterise the structure and temporal dimensions of their growth,
nor from deeply characterising the performance implications,
finding better techniques to decide when and how to adapt to
changes.
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