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Abstract 29 

 30 

The capacity of the honey bee to produce three phenotypically distinct organisms or castes 31 

(queen, sterile female worker and a haploid male drone) from one genotype represents one 32 

of the most remarkable examples of developmental plasticity in any phylum. The queen-33 

worker morphological and reproductive divide is environmentally controlled during post-34 

embryonic development by differential feeding. Previous studies have implicated metabolic 35 

flux acting via epigenetic regulation, in particular DNA methylation and microRNAs, in 36 

establishing distinct patterns of gene expression underlying caste-specific developmental 37 

trajectories. We produce the first genome-wide maps of chromatin structure in the honey 38 

bee at a key larval stage where developmental canalization into queen or worker is virtually 39 

irreversible. We find extensive genome-wide differences in H3K4me3, H3K27ac and 40 

H3K36me3, many of which correlate with caste-specific transcription. Furthermore, we 41 

identify H3K27ac as a key chromatin modification, with caste-specific regions of intronic 42 

H3K27ac directing the worker caste. We suggest that these regions harbour the first 43 

examples of caste-specific enhancer elements in the honey bee. Our results demonstrate a 44 

key role for chromatin modifications in the establishment and maintenance of caste-specific 45 

transcriptional programmes in the honey bee. We show that at 96hrs of larval growth the 46 

queen-specific chromatin pattern is already established, whereas the worker determination 47 

is not, thus providing experimental support for the perceived timing of this critical point in 48 

developmental heterochrony in two types of honey bee females. In a broader context, our 49 

study provides novel data on environmentally-regulated organismal plasticity and the 50 

molecular foundation of the evolutionary origins of eusociality. 51 

 52 

 53 

 54 

 55 

 56 
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Introduction 57 

 58 

Eusociality is an intriguing evolutionary invention found in many species of Hymenoptera 59 

(e.g. bees, wasps and ants), termites and even some mammals (Jarvis 1981; Gordon 2002; 60 

Nalepa 2015). In true eusocialism, large self-organising colonies are formed out of 61 

individuals partitioned into reproductive and non-reproductive types known as castes, each 62 

representing an organism with a distinct repertoire of morphological, physiological and 63 

behavioural characteristics. In some species this phenotypic divide is epigenetically rather 64 

than genetically determined consistent with the environmental impact by which these 65 

differences are implemented.  66 

Insect pollinators such as the honey bee (Apis mellifera) play a crucial role in most 67 

ecosystems and strongly influence ecological relationships, for example by helping to 68 

maintain genetic variation in flowering plants. Furthermore, in farmed areas, the honey bee 69 

is used extensively for the commercial pollination of a variety of cultivated crops. Honey 70 

bees live in complex societies comprising tens of thousands of individuals, in which there is 71 

a division of labour that can be separated into two broad categories. The first is a 72 

reproductive distinction; each colony contains two diploid female castes comprising a single 73 

queen who is specialised for reproduction and thousands of sterile female worker bees 74 

(Winston 1991). The second distinction relates to the division of tasks performed by the 75 

worker caste which changes during the course of adult life from nurse through to forager, in 76 

a process termed behavioural maturation which results in two worker sub-castes (Winston 77 

1991). A third main caste, which develops from unfertilised eggs, is a haploid male drone. 78 

The key feature in the establishment of these different female developmental trajectories 79 

and subsequent maintenance during adulthood, is nutrition. For the first 72h after hatching, 80 

both queen and worker larvae receive a certain amount of nutritious jelly, although the 81 

worker jelly contains lower concentration of sugars and a few other ingredients than the 82 

queen food known as royal jelly (Wang et al. 2016; Maleszka 2018). Drone larvae not only 83 

receive a distinct diet, but also in larger quantities compared to that of worker larvae. This 84 
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suggests that similarly to queens, nutrition provides important cues for their proper 85 

development (Hrassnigg and Crailsham 2007). After this, larvae developmentally destined to 86 

be workers or drones are then switched to a diet comprised of nectar and pollen, in contrast 87 

to larvae destined to become queens, which remain on a royal jelly diet. After 96h, larval 88 

chambers are capped and no further feeding occurs until after pupation. Differential feeding 89 

continues throughout adulthood, resulting in distinct but genetically indistinguishable 90 

organisms/castes. The honey bee genome therefore exemplifies environmentally driven 91 

phenotypic plasticity, where diet dictates the ability of different phenotypes to arise from a 92 

single genome and represents one of the most striking examples of developmental plasticity 93 

in any phylum. 94 

The establishment, maintenance and modulation of transcriptional programmes such as 95 

those during development are reliant on the inherent plasticity of chromatin and recent 96 

evidence indicates that chromatin-based epigenetic mechanisms direct nutrition-mediated 97 

caste differentiation in the honey bee. RNAi knock-down of the putative de novo DNA 98 

methyltransferase DNMT3 in newly hatched larvae has been shown to lead to royal jelly-like 99 

effects on developmental trajectory, resulting in a significantly high proportion of queens with 100 

fully developed ovaries (Kucharski et al. 2008). The potential role of differential DNA 101 

methylation in influencing alternate developmental outcomes of queens and workers has 102 

been confirmed by genome-wide mapping of methylated CpGs in both castes at 96hrs of 103 

larval growth (Foret et al. 2012).  While the exact function of this common epigenomic 104 

modification in the honey bee remains poorly understood several studies have shown that 105 

differential DNA methylation correlates with alternative splicing and modulation of gene 106 

expression in a context-dependent manner (Lyko et al. 2010; Foret et al. 2012; Kucharski et 107 

al. 2016; Wedd et al. 2016). More recently, using proteomic approaches, we have 108 

demonstrated that honey bee histone proteins are extensively post-translationally modified 109 

and show caste-specific signatures (Dickman et al. 2013). Given the conservation of both 110 

histone sequences and epigenetic machinery in the honey bee, we hypothesise that histone 111 

post-translational modifications (PTM) are also pivotal in determining developmental 112 
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trajectory in response to nutrition in this organism. Furthermore, a direct link between a 113 

component of royal jelly and potential caste-specific histone PTM changes has been 114 

provided by a biochemical study of a fatty acid, (E)-10-hydroxy-2-decenoic acid (10-HDA), 115 

which comprises up to 5% of royal jelly. 10-HDA has been shown to be a histone 116 

deacetylase inhibitor and can reactivate the expression of epigenetically silenced genes in 117 

mammalian cells (Spannhoff et al. 2011).  118 

Given that hundreds of genes have been implicated in queen-worker differentiation (Barchuk 119 

et al. 2007; Foret et al. 2012) we reasoned that their coordinated differential expression has 120 

to be regulated at the level of chromatin. Chromatin structure has not previously been 121 

studied in the honey bee and for the first time, we have determined the genome-wide 122 

distribution of three histone H3 modifications (H3K4me3, H3K27ac and H3K36me3) in both 123 

queen and worker female castes, at a crucial development time point that has been shown 124 

to be critical for caste determination with both types of females essentially committed to a 125 

specific trajectory (Weaver 1966; Maleszka 2018). We sequenced chromatin 126 

immunoprecipitation (ChIP) and RNA samples from 96h larval heads and have identified 127 

thousands of genomic regions that show caste-specific chromatin states, many of which are 128 

linked to caste-specific gene transcription.  129 

 130 

Results 131 

 132 

Histone post-translational modifications in the honey bee associate with transcribed 133 

regions 134 

We have previously identified over 20 different histone PTM states in queen and worker 135 

honey bee castes using mass spectrometry (Dickman et al. 2013; P Hurd, unpublished). In 136 

order to study chromatin structure in honey bees, for the first time we determined the 137 

genome-wide distribution of three histone PTMs that are associated with transcription and 138 

active cis-elements in other organisms; H3K4me3, H3K27ac and H3K36me3 (Pokholok et 139 

al. 2005; Heintzman et al. 2007; Guenther et al. 2007; Négre et al. 2011; Simola et al. 2013). 140 
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We profiled replicate pools of worker (W) and queen (Q) larval heads at 96h post-hatching 141 

by ChIP-seq (n = 50 per caste). Replicates show a very strong and significant correlation 142 

across all histone PTMs and castes (� � 0.96; p-value < 2.2 � 10���; Supplemental Fig. S1). 143 

We find enrichment of H3K4me3 and H3K27ac and depletion of H3K36me3 around the 144 

transcriptional start sites (TSS) of genes in both 96hW and 96hQ castes (Fig. 1A and 145 

Supplemental Fig. S2), similar to what has previously been reported in other organisms 146 

including vertebrates, invertebrates and plants (Pokholok et al. 2005; Heintzman et al. 2007; 147 

Guenther et al. 2007; Négre et al. 2011; Simola et al. 2013). H3K36me3 is mostly found 148 

downstream of TSSs (Fig. 1A) suggesting that it demarcates gene bodies. Overall, the 149 

majority of the 10,746 protein coding genes in the honey bee show high levels of enrichment 150 

(> 3-fold over input) for at least one of the three histone PTMs profiled (57.6% in 96hW and 151 

61.3% in 96hQ). Since each of these histone PTMs are mostly localised close to or within 152 

genes, we next investigated their correlation with transcription. We profiled gene expression 153 

in 96hW and 96hQ larval heads (n = 4 per caste) by RNA-seq. In both 96hW and 96hQ 154 

castes, genes marked uniquely by H3K4me3 or H3K36me3 show a significant (p-value < 155 

3.1 � 10��) increase in expression compared to background, while genes marked uniquely 156 

by H3K27ac do not show any significant association with expression (Fig. 1B). Furthermore, 157 

in both castes, genes marked by two or more histone PTMs also show significant increases 158 

in expression compared to background (p-value < 0.047). Thus, in both worker and queen 159 

honey bee castes; H3K4me3, H3K36me3 and H3K27ac when occurring in combination, 160 

associate with actively transcribed regions and therefore have the potential to regulate 161 

caste-specific gene expression.  162 

 163 

Caste-specific chromatin patterns correlate with differential gene expression  164 

Having established that within each caste, H3K4me3, H3K27ac and H3K36me3 are 165 

significantly enriched at transcribed regions, we next wanted to determine whether these 166 

three histone PTMs show caste-specific distributions. To investigate this, we called 167 

differences between 96hW and 96hQ castes for H3K4me3, H3K27ac and H3K36me3 (Fig. 168 
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2A). For H3K4me3, we identify 1,834 unique genomic regions that are significantly more 169 

enriched in 96hW and 3,333 in 96hQ (adjusted p-value < 0.01 and |�
���������| � 3). For 170 

H3K27ac, we identify 2,027 unique genomic regions that are significantly more enriched in 171 

96hW and 489 in 96hQ (adjusted p-value < 0.01 and |�
���������| � 3). Finally, for 172 

H3K36me3 we identifiy 1,196 unique regions that are significantly more enriched in 96hW 173 

and 3,285 in 96hQ (adjusted p-value < 0.01 and |�
���������| � 3). Gene ontology 174 

analysis of those genes that show any significant caste-specific chromatin marks reveal a 175 

distinct developmental separation of castes at 96h. In 96hQ, overrepresented GO terms 176 

significantly associate with physio-metabolic functions and processes, such as the structural 177 

constituents of ribosome (GO:0003735) and biological processes including cellular amide 178 

metabolic processes (GO:0043603), cytoplasmic translation (GO:0002181) and peptide 179 

metabolic processes (GO:0006518), suggesting that at 96h, queen developmental trajectory 180 

is established (Fig. 2B and Supplemental Table S1). In stark contrast, 96hW GO terms 181 

associate with development and transcriptional programming, including the molecular 182 

functions of transcription factor activity and binding (GO:0003700) along with biological 183 

processes of anatomical structure morphogenesis (GO:0009653), system development 184 

(GO:0048731) and developmental processes (GO:0032502). Importantly, this suggests that 185 

relative to the 96hQ, worker caste developmental trajectory is not yet established at 96h 186 

(Fig. 2B, Supplemental Fig. S3 and Supplemental Table S2). Since caste-specific DNA 187 

methylation patterns have previously been reported (Lyko et al. 2010; Foret et al. 2012), we 188 

asked whether the observed caste-specific differences in histone PTM enrichment correlated 189 

with differentially DNA methylated positions (DMPs). We reanalysed the 96h larval DNA 190 

methylation data of Foret et al using Fisher’s exact test and detected a total of 24,663 DMPs 191 

(adjusted BH p-value < 0.05) and then analysed the enrichment of these DMPs with each of 192 

our differential histone PTMs. We find only a strong enrichment in H3K36me3 (permutation 193 

test; p-value < 0.001; Fold Enrichment = 15). However, this is driven by an overlap in 194 

genome distribution rather than a strong functional association (see Supplemental Figs. S4 195 

and S5). This suggests that DNA methylation and histone PTMs provide different signals in 196 
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the process of caste determination. We next wanted to determine whether the observed 197 

caste-specific differences in histone PTM enrichment, correlated with any differential gene 198 

expression between castes. Unsupervised multi-dimensional scaling analysis of our RNA-199 

seq data reveal a strong separation of the two castes (see Supplemental Fig. S6). We 200 

identify a total of 1,060 significant differences (genome wide adjusted p-value < 0.01) in 201 

transcript levels between 96hW and 96hQ (Fig. 2C), with 386 transcripts showing an 202 

increase in expression in the 96hW and 674 showing an increase in the 96hQ (see 203 

Supplemental Fig. S7 and Supplemental Tables S3 and S4). To confirm that we were 204 

robustly measuring differences between castes, we compared these differentially expressed 205 

transcripts to previously published RNA-seq data taken from whole 96hW and 96hQ larvae 206 

((Ashby et al. 2016); see Supplemental Fig. S8). We find a strong correlation (� � 0.51; p-207 

value < 5.3 � 10���) between the transcriptional differences detected in our experiment and 208 

that of Ashby et al. We find that genes differentially enriched with H3K4me3 (� � 0.28; p-209 

value = 2.7 � 10���) and H3K36me3 (� � 0.15; p-value = 4.6 � 10��) show significant 210 

correlation with transcriptional differences, suggesting that caste-specific H3K4me3 and 211 

H3K36me3 patterns associate with caste-specific transcriptional profiles (Fig. 2D). In 212 

contrast, genes differentially enriched with H3K27ac show a non-significant correlation with 213 

caste-specific transcriptional differences (� � 0.04; p-value = 0.074). To investigate the 214 

function of genes which show consistent caste-specific changes in both gene expression 215 

and histone PTM enrichment, we performed gene ontology analysis. We observe that these 216 

genes reveal a distinct developmental separation of castes at 96h. In 96hQ, we again find 217 

significant GO terms for biological processes and functions that associate with physio-218 

metabolic processes such as translation (GO:0006412 and GO:0002181) and peptide 219 

biosynthetic processes (GO:0043043) (Fig. 2E and Supplemental Table S5). In stark 220 

contrast, GO terms for system development (GO:0048731), nervous system development 221 

(GO:0007399), generation of neurons (GO:0048699) and neuron differentiation 222 

(GO:0030182) are enriched in 96hW (Fig. 2E, Supplemental Fig. S9 and Supplemental 223 
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Table S6). In agreement with our earlier analyses, this again suggests that at 96h and 224 

relative to worker, queen development is set while the worker-specific developmental 225 

programme (which will determine a distinct phenotype) is yet to be established. 226 

Representative examples of two genes that show some of the most significant caste-specific 227 

changes in both gene expression and histone PTM enrichment are shown in Fig. 3. Pyruvate 228 

kinase (PYK; 552007) is shown as an example of a physio-metabolic 96hQ-specific gene, 229 

where H3K27ac and H3K4me3 enrichment differences associate with the TSS and 230 

H3K36me3 over the gene body (Fig. 3A and Supplemental Fig. S10). Similarly, the 96hW-231 

specific gene Ten-eleven translocation (TET; 412878), also shows TSS and gene body 232 

differences in H3K4me3, H3K27ac and H3K36me3. However, TET also has significant 233 

96hW-specific differences in H3K27ac in the intronic region between two alternative TSSs 234 

(Fig. 3B). Notably, the longer transcript containing caste-specific intronic H3K27ac 235 

(XM_006561197) shows not only the highest level of expression but also the most significant 236 

caste-specific difference in expression (LogFC = 0.38; p-value = 0.0075). Taken together, 237 

these data indicate that aged-matched worker and queen honey bee castes exhibit distinct 238 

patterns of histone PTMs. Furthermore, patterns of H3K4me3 and H3K36me3 correlate with 239 

caste-specific gene expression and reveal that at this crucial time point and relative to the 240 

queen, the worker-specific developmental pathway is not yet established.  241 

 242 

Intronic H3K27ac regions most readily define the worker caste and are enriched for 243 

transcription factor binding sites 244 

Previously, we observed a strong correlation between caste-specific H3K4me3 and 245 

H3K36me3 patterns and transcriptional profiles but not for H3K27ac. However, at the TET 246 

locus, an alternative longer transcript containing 96hW-specific intronic H3K27ac did 247 

correlate strongly with caste-specific transcription, whereas a shorter transcript with caste-248 

specific H3K27ac around the TSS did not. This led us to examine more closely the 249 

distribution of H3K27ac caste differences and to this end, we plotted unique ChIP-seq 250 

regions relative to TSSs. In both castes, the majority of unique H3K4me3 regions are 251 
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similarly located around the TSS. For H3K36me3, the majority of unique regions are in gene 252 

bodies with the distribution in 96hW more downstream than 96hQ. In contrast, differences in 253 

H3K27ac have a much more pronounced caste-specific distribution (Fig 4A). An increase in 254 

enrichment of H3K27ac in 96hQ is almost exclusively located within 0-1kbp of TSSs 255 

whereas in 96hW, enrichment is mostly located outside these regions (Fig. 4A). 256 

Furthermore, in comparison to H3K4me3 and H3K36me3, there is significantly more caste-257 

specific intergenic H3K27ac (16% in 96hW and 15% in 96hQ; see Fig. 4B). In order to 258 

further define the caste-specific distribution of intragenic H3K27ac, we mapped differences 259 

to either exons or introns. We observe a stark difference in the location of 96hW and 96hQ -260 

specific intragenic H3K27ac, with 83% of all 96hQ-specific enrichments occurring within 261 

exons while conversely, over 53% of 96hW-specific differences occur within introns (Fig. 262 

4B). We then asked whether there was any correlation between these distinct caste-specific 263 

intronic H3K27ac regions and expression of the associated gene. In agreement with our 264 

previous observations at the TET locus, genes which are significantly more expressed in 265 

96hW show highly significant enrichment for 96hW intronic H3K27ac (1.75-fold enrichment; 266 

p-value < 0.001) while those genes significantly more expressed in 96hQ are actually 267 

depleted for 96hQ intronic H3K27ac (2.06-fold depletion; p-value < 0.001; see Fig. 4C). 268 

However, in both castes, intronic H3K27ac is associated with gene expression 269 

(Supplemental Fig. S11). It is also likely that H3K27ac acts at distal regulatory elements and 270 

therefore we determined the average expression of genes at various distances from 271 

H3K27ac enriched regions, revealing a specific peak of gene expression at a distance of 272 

130-140kbp (Supplemental Figs. S12 and S13). In order to try and gain a better 273 

understanding of the functional significance of caste-specific intronic H3K27ac, we 274 

performed motif enrichment analysis on these regions using CentriMo from the MEME suite 275 

software package (Bailey and MacHanick 2012). Using transcription factor motifs annotated 276 

in Drosophila melanogaster, we identify highly significant enrichment for Trithorax-like (Trl; 277 

p-value < 1.3 �  10��) and Mothers against dpp (Mad; p-value < 3.2 � 10��), which 278 

accounts for 70% of all 96hW-specific regions of intronic H3K27ac (Fig. 4D). In contrast, 279 
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66% of all 96hQ-specific intronic H3K27ac regions are enriched in motifs for Brinker (Brk; p-280 

value < 2.3 � 10��), Hairy (H; p-value �  1.3 � 10��) and Mothers against dpp (Mad; p-value 281 

< 5.9 � 10��) (Fig. 4D). Analysis of Trl and Mad binding sites in relation to peaks of intronic 282 

96hW-specific H3K27ac, reveals highly significant motif enrichment flanking peaks of 283 

H3K27ac, most likely a reflection of nucleosome displacement associated with transcription 284 

factor binding (Fig. 4E). Conversely, binding sites for Brk, H and Mad are centred on peaks 285 

of 96hQ-specific H3K27ac (Fig. 4E). Given the enrichment for Trl and Mad transcription 286 

factor binding sites, the presence of the enhancer associated histone modification H3K27ac, 287 

the intronic genomic locations and increased gene expression, these results suggest that 288 

96hW-specific H3K27ac enriched regions are marking active enhancers and play an 289 

important role in worker and queen honey bee caste determination. 290 

 291 

Discussion 292 

 293 

We have used ChIP-seq to provide the first description of genome-wide caste-specific 294 

chromatin patterns in the honey bee and furthermore, the first between Hymenoptera castes 295 

that show a reproductive division of labour. Combined with RNA-seq analysis and at a 296 

crucial developmental stage when developmental trajectory has been shown to be 297 

irreversible (Weaver 1966), we identify numerous queen and worker -specific chromatin 298 

differences many of which correlate with caste-specific transcription. Importantly, regions of 299 

the genome which show the most robust caste-specific differences are suggestive of 300 

previously unidentified enhancer regions that are important in specifying the worker caste 301 

development from that of the queen.  302 

We hypothesized that in order for the honey bee genome to specify two different female 303 

castes, different chromatin patterns and transcriptional programmes have to be established 304 

during development. Previous work has mainly focused on the role of caste-specific DNA 305 

methylation patterns in adult honey bees (Lyko et al. 2010), where differentially methylated 306 

regions are mainly localized to exons and are thought to mediate alternative splicing (Foret 307 
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et al. 2012). More recently, proteomic analysis of histone modifications (Dickman et al. 2013) 308 

and miRNAs (Ashby et al. 2016) have also suggested potential roles in caste-determination. 309 

Since chromatin structure has not previously been studied in the honey bee, we first 310 

established that within each caste H3K4me3, H3K27ac and H3K36me3 were associated 311 

with transcribed regions in a manner consistent in other organisms. Importantly, this also 312 

suggested that these highly conserved histone modifications could have the potential to 313 

regulate the widely reported caste-specific transcription of the honey bee genome (Evans et 314 

al. 1999; Evans and Wheeler 2000; Barchuk et al. 2007; Foret et al. 2012; Chen et al. 2012; 315 

Cameron et al. 2013; Ashby et al. 2016). We found that in both worker and queen castes, 316 

H3K4me3 and H3K36me3 strongly correlated with transcription whereas H3K27ac alone, 317 

did not. Importantly, worker and queen castes had contrasting chromatin patterns for all 318 

three histone PTMs at 96h post-hatching and these genomic regions were strongly 319 

suggestive of fundamentally different caste developmental states. In queen, enrichment for 320 

genes involved in body growth suggested developmental trajectory is established whereas in 321 

worker, there was a strong enrichment for processes concerned with continued development 322 

and specialisation. This was further supported by transcriptome analysis which also showed 323 

strong developmental separation of worker and queen caste at 96h in agreement with other 324 

studies (Barchuk et al. 2007; Ashby et al. 2016). Moreover, we found that for H3K4me3 and 325 

H3K36me3, caste-specific chromatin signatures correlated with caste-specific transcription 326 

suggesting that histone PTMs play a role in determining alternate developmental 327 

trajectories. Furthermore, analysis of these regions again highlighted contrasting caste-328 

specific developmental stages at 96h. Biological processes associated with body growth in 329 

the queen is in sharp contrast to worker development where neurogenesis is strongly 330 

evident. This is consistent with previous observations that queen and worker development is 331 

distinct for neurogenesis (Ashby et al. 2016), possibly due to the fact that workers show 332 

remarkable behavioural complexity in adult life and would therefore be expected to require a 333 

more complex nervous system.  334 
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In contrast to H3K4me3 and H3K36me3, we found that caste-specific H3K27ac did not 335 

correlate with caste-specific transcriptional differences. Whilst the distribution of caste-336 

specific differences for H3K4me3 and H3K36me3 occurred mainly over similar genomic 337 

locations, H3K27ac showed a much more pronounced caste bias. Queen-specific H3K27ac 338 

was localized mainly within exons and close to transcriptional start sites whereas 339 

conversely, worker-specific H3K27ac was more pervasive and most frequently located within 340 

introns. Furthermore, genes with caste-specific regions of intronic H3K27ac correlated with 341 

higher levels of caste-specific expression suggesting that these regions may play important 342 

cis-regulatory roles. Enhancers are cis-acting elements that are frequently found in 343 

noncoding regions of genomes and are characterized by nucleosome-free regions enriched 344 

in transcription factor binding sites (Calo and Wysocka 2013; Li et al. 2016). Activation of 345 

enhancers most commonly requires the repositioning of nucleosomes through the activity of 346 

ATP-dependent chromatin remodellers followed by transcription factor binding and 347 

recruitment of coactivators which modify adjacent nucleosomes most often at H3K27ac 348 

(Creyghton et al. 2010; Rada-Iglesias et al. 2011). The transcriptional co-activator CREB 349 

binding protein (CBP) is the main histone acetyltransferase that catalyses H3K27ac (Tie et 350 

al. 2009; Jin et al. 2011) and honey bees have a single CBP enzyme (726332) that is 351 

differentially DNA methylated in A. mellifera larvae (Foret et al. 2012). H3K27ac, 352 

transcription factor binding motifs and CBP occupancy have been widely used to 353 

successfully map enhancers in numerous cell types, tissues and organisms (Visel et al. 354 

2009; Rada-Iglesias et al. 2011; Simola et al. 2013; Koenecke et al. 2016; Négre et al. 355 

2011).  356 

Therefore, in the absence of any previous enhancer annotation in the honey bee genome, 357 

we analysed regions of caste-specific intronic H3K27ac for conserved transcription factor 358 

binding motifs. Trl (552090; GAGA factor in mammals) and Mad (409301; SMAD1 in 359 

mammals) motifs accounted for 70% of all worker-specific intronic H3K27ac. Trl/GAGA 360 

factor is a multifunctional transcriptional regulator that is differentially DNA methylated in A. 361 

mellifera larvae (Foret et al. 2012). Trl/GAGA factor activates transcription by promoting 362 
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chromatin remodelling at enhancers, primarily by recruiting the nucleosome remodelling 363 

factor (NURF) (Okada and Hirose 1998; Kwon et al. 2016) before associating with, or 364 

allowing, other proteins to modulate transcription including CBP (Philip et al. 2015; Boija et 365 

al. 2017). NURF can also directly interact with ecdysone receptor (EcR; 406084) in order to 366 

potentially target different enhancer regions (Badenhorst et al. 2005). In our present study, 367 

EcR shows highly significant worker-specific chromatin and expression patterns (LogFC 368 

relative to queen = 0.24), suggesting that NURF-mediated transcriptional activation of 369 

enhancers could also be directed via this crucial developmental steroid hormone signalling 370 

pathway in honey bees. Mad/SMAD1 is also an enhancer-associated transcription factor that 371 

mediates the bone morphogenetic protein (BMP) signalling cascade, acting downstream of 372 

decapentaplegic (dpp) (Deignan et al. 2016). Mad/SMAD1 has been demonstrated to 373 

interact directly with CBP (Pearson et al. 1999), co-localise with regions of H3K27ac at 374 

enhancers (Koenecke et al. 2016) and affect gene expression in a CBP-dependent manner 375 

(Waltzer and Bienz 1999). In our study, Magu (411502; LogFC 0.12), BMP receptor 1B 376 

(408442; LogFC 0.12) and Mad/SMAD1 (LogFC 0.19) show a significant worker-caste bias 377 

in gene expression compared to queen and are all differentially DNA methylated in larvae 378 

(Foret et al. 2012), suggesting that BMP signalling via Mad-mediated enhancer activation 379 

may also play an important role in worker-caste determination.  380 

In contrast to worker, motifs for the transcriptional repressors Brk and Hairy (410468; HES1 381 

in mammals) showed the most significant enrichment in queen and accounted for 66% of 382 

96hQ-specific H3K27ac regions. Brk and Hairy have been demonstrated to bind enhancers 383 

and mediate transcriptional repression (Campbell and Tomlinson 1999; Jaźwińska et al. 384 

1999). Although Hairy can directly recruit the Sirt1 histone deacetylases to repress 385 

transcription (Rosenberg and Parkhurst 2002; Takata and Ishikawa 2003), both Hairy and 386 

Brk associate with the co-repressors Groucho (Gro; TLE in mammals) and C-terminal 387 

binding protein (CtBP) (Paroush et al. 1994; Poortinga et al. 1998; Hasson et al. 2001; 388 

Zhang et al. 2001; Morel et al. 2001; Barolo et al. 2002; Nagel et al. 2005). Groucho 389 

functions downstream of key signalling pathways such as Wg/Wnt and Dpp/TGF-beta and 390 
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mediates deacetylation of histones through recruitment of HDAC1. In A. mellifera it is also a 391 

differentially DNA methylated gene (Foret et al. 2012). CtBP is an NAD(H)-regulated 392 

transcription factor that functions through the recruitment of a variety of histone modification 393 

enzymes or via the inhibition of CBP in order to repression transcription (reviewed in 394 

(Chinnadurai 2007)), although there is evidence that CtBP can also activate transcription in 395 

certain contexts (Phippen et al. 2000; Fang et al. 2006). Significantly and in stark contrast to 396 

worker, in 96hQ-specific H3K27ac regions transcription factor motifs were centred on peaks 397 

of H3K27ac, indicating the presence of a nucleosome and therefore potentially preventing 398 

accessibility and subsequent repressor function. This was equally true for Mad/SMAD1 399 

motifs which were also enriched in 27% of 96hQ-specific H3K27ac regions. In Drosophila, 400 

Mad and Brk mediate opposing transcriptional effects in the BMP signalling pathway, in part 401 

by competing for binding to overlapping sites at certain enhancers during different 402 

development stages (Kirkpatrick et al. 2001). Previous studies have demonstrated 403 

enrichment of Brinker sites at regions of H3K27ac in dorsal ectoderm enhancers during 404 

development and that they are occupied by Mad (Koenecke et al. 2016), therefore Mad may 405 

function in a similar way at queen intronic H3K27ac regions.  406 

Taken together, we speculate that 96hW-specific intronic H3K27ac regions bear all the 407 

hallmarks of active enhancers. Furthermore, the majority of worker genes that are enriched 408 

for intronic H3K27ac are also transcription factors, suggesting further downstream gene 409 

expression cascades during worker caste development. 96hQ-specific regions could also be 410 

caste-specific enhancers but require further characterisation. Therefore, we conclude that it 411 

is highly likely that H3K27ac and CBP play an important role at this key developmental stage 412 

in honey bee caste development through differential enhancer activation. This is further 413 

supported by elegant studies in the carpenter ant Camponotus floridanus, where CBP-414 

catalysed H3K27ac has been shown to be essential in establishing different worker castes 415 

and behaviours (Simola et al. 2013, 2016).  We conclude that chromatin modifications play a 416 

crucial role in defining worker and queen honey bee castes by establishing and orchestrating 417 
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caste-specific transcriptional networks and that furthermore, it is the worker developmental 418 

pathway that is actively switched on from a default queen developmental programme.  419 

 420 

Methods 421 

 422 

Age-matched larvae collection 423 

To obtain worker larvae of known age, frames containing eggs and larvae were removed 424 

from healthy hives and placed as soon as possible in an incubator at 35°C and ~80% 425 

humidity, in a warm room (at least 30°C). After removal from the incubator, frames were 426 

closely examined and an acetate sheet was laid over the patches of newly hatched larvae. 427 

The position of the sheet was marked on the edges of the frame to ensure accurate 428 

replacement at the time of collection. The locations of individual newly hatched larvae were 429 

marked on the sheet and the frames were immediately returned to their original hives. The 430 

exact time was recorded. After 96h, the frames were transferred back to a warm room and 431 

the larvae were collected with blunt nose soft forceps using the acetate sheet positioned 432 

over the frame according to the previously marked reference points. To obtain queen larvae 433 

of known age, standard queen raising techniques were used (Evans et al. 2013). Double 434 

grafting gave improved results and priming the queen cups with warm (35°C) royal jelly 435 

increased yield.  436 

 437 

Chromatin preparation  438 

Chromatin was extracted from the larval heads (approximately 1.6 mm of the frontal end 439 

dissected in PBS) containing brain, optic and retinular ganglia, neurosecretory cells, glands 440 

(corpora allata, corpora cardiaca), suboesophageal ganglion, a small number of fat bodies, 441 

the maxillae, labium and mandibles, segmented imaginal antennae developing in 442 

hypodermal pockets, the openings of silk glands ducts at the tip of the labium-hypopharynx, 443 

trachea and cuticle. The rest of the larval body is predominantly occupied by a large 444 

digestive system filled with processed food and bacteria (larvae do not defecate), a tracheal 445 
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network and reproductive parts that at this stage of development are already large in queens 446 

and rudimentary in workers. Chromatin was cross-linked in fixation buffer (50 mM HEPES 447 

pH 7.9 / 1 mM EDTA pH 8 / 0.5 mM EGTA pH 8 / 100 mM NaCl / 1.8% formaldehyde) for 15 448 

minutes. Reactions were quenched by washing twice in stop solution (125 mM glycine / 449 

0.01% Triton X-100 / PBS). Afterwards, fixed larval heads were washed four times with wash 450 

buffer 1 (10 mM HEPES pH 8 / 10 mM EDTA pH 8 / 0.5 mM EGTA pH 8 / 0.25% Triton X-451 

100), followed by four washes with wash buffer 2 (10 mM HEPES pH 8 / 1 mM EDTA pH 8 / 452 

0.5 mM EGTA pH 8 / 0.01% Triton X-100 / 200 mM NaCl). Larval heads were homogenised 453 

and centrifuged (1200 �g / 10 min). All buffers from this step onwards contained Complete 454 

protease inhibitors cocktail (Roche) and 2.5 mM sodium butyrate. Pellets were suspended in 455 

5 ml of lysis buffer 1 (2.5% glycerol / 50 mM Tris-HCl pH 8.0 / 140 mM NaCl / 0.5% IGEPAL 456 

/ 0.25% Triton X-100 / 1 mM EDTA) and incubated for 30 min on a rotator mixer at 4˚C. 457 

Lysates were then centrifuged (1200 �g / 10 min) and pellets were suspended in 5 ml of 458 

lysis buffer 2 (10 mM Tris-HCl pH 8.0 / 200 mM NaCl / 1 mM EDTA) and incubated for 459 

another 30 min on a rotator mixer at 4˚C. Lysates were centrifuged (1200 �g / 10 min) and 460 

pellets were suspended in 900 µl of sonication buffer (10 mM Tris-HCl pH 8.0 / 0.5% SDS / 1 461 

mM EDTA). Chromatin was sonicated using a Bioruptor (3 �15 min cycles [30 s on / 30 s 462 

off] at high power). Lysates were cleared by centrifugation (20000 �g / 10 min) and 463 

sonication checked by agarose gel electrophoresis. 464 

 465 

Chromatin immunoprecipitation and ChIP-seq library preparation 466 

Chromatin was concentrated using a Millipore Amicon concentrator (3 kDa cut-off). 50 µl 467 

chromatin aliquots were diluted 10-fold with ChIP dilution buffer (0.01% SDS / 1.1 % Triton 468 

X-100 / 1.2 mM EDTA / 16.7 mM Tris-HCl pH 8.0 / 167 mM NaCl). Antibodies (H3K4me3 469 

[Active Motif, 39159]; H3K27ac [Active Motif, 39133] and H3K36me3 [Abcam, ab9050]) were 470 

added according to manufacturers’ instructions and samples were incubated overnight on a 471 

rotator mixer at 4˚C. 30 µl of magnetic protein A Dynabeads (Invitrogen) were added to each 472 
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reaction and samples were incubated for 4 h on a rotator mixer at 4˚C. Beads were washed 473 

twice with 500 µl of wash buffer A (50 mM Tris-HCl pH 8.0 / 150 mM NaCl / 1mM EDTA / 474 

0.1% SDS / 1% NP-40 / 0.5% sodium deoxycholate), and once with 500 µl of wash buffer B 475 

(50 mM Tris-HCl pH 8.0 / 500mM NaCl / 1mM EDTA / 0.1% SDS / 1% NP-40 / 0.5% sodium 476 

deoxycholate) and wash buffer C (50 mM Tris-HCl pH 8.0 / 250 mM LiCl / 1mM EDTA / 1% 477 

NP-40 / 0.5% sodium deoxycholate). After these washes, DNA was eluted from the beads 478 

by incubation in 200 µl of elution buffer (1% SDS / 100 mM NaHCO3) for 40 min at 65˚C in a 479 

ThermoMixer. 50 µg of RNase A was added and samples were incubated for 15 min at 480 

37˚C. NaCl was then added to a final concentration of 500 mM. Afterwards, the samples 481 

were incubated overnight with 40 µg of proteinase K at 65˚C in a ThermoMixer. DNA was 482 

purified with GeneJET PCR Purification columns (ThermoFisher). NEBNext Ultra II DNA 483 

Library Prep Kit for Illumina (NEB) was used to make sequencing libraries from 0.5-1 ng of 484 

DNA following manufacturer’s instructions. 75bp SE next generation DNA sequencing was 485 

carried out by the Queen Mary University of London Genome Centre on the Illumina 486 

NextSeq 500 platform. 487 

 488 

RNA isolation and RNA-seq library preparation  489 

Larval heads were dissected and individually snap frozen in liquid nitrogen. Total RNA from 490 

individual heads was isolated using the TRIzol method, followed by the use of RNA Clean-491 

up & Concentration kit (Zymo Research). mRNA was isolated with poly(A) mRNA Magnetic 492 

Isolation Module (NEB) from 1 µg of total RNA. RNA-seq libraries were constructed using 493 

the NEBNext Ultra Directional RNA Library Prep Kit for Illumina (NEB) following 494 

manufacturer’s instructions. 100bp PE next generation sequencing was carried out by the 495 

Queen Mary University Genome Centre on the Illumina NextSeq 500 platform. 496 

 497 

ChIP-seq analysis 498 

The genome assembly Amel_4.5 (GCF_000002195.4) was downloaded from the NCBI and 499 

indexed using Bowtie 2 (v2.2.8) (Langmead and Salzberg 2012). ChIP-seq samples were 500 
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mapped to this indexed genome using Bowtie 2 with default parameters. Detailed mapping 501 

statistics for each sample is available in Supplemental Table S7. Reads were counted into 502 

windows of width 100bp with a spacing of 50bp (each window therefore overlaps 2 other 503 

windows) using csaw (Lun and Smyth 2015).  Duplicate reads were included in the analysis, 504 

mapping quality was restricted to >=20 and each read was extended to 250bp. Input reads 505 

were counted using the same parameters except each region was expanded to 5000bp (+/- 506 

2450bp). Windows which could not be expanded (e.g. those at the end of contigs) were 507 

removed from analysis. The count value of each window ����  for each sample, �, was then 508 

normalized to the background counts ��	� using equation 1 509 

 510 

 �� �
�� 	

�	 �

 

      Equation 1 511 

where  � is the total number of reads sequenced for each sample, �, and  	 is the total 512 

number of reads sequenced in the appropriate input sample. To determine differential 513 

windows, we computed moderated t-statistics using empirical Bayes moderation of the 514 

standard errors with the limma R package (Ritchie et al. 2015).  515 

 516 

RNA-seq analysis  517 

The cDNA of reference transcripts and ncRNA were downloaded from EnsemblMetazoa in 518 

FASTA format using genome version GCA_000002195.1. These two FASTA files were 519 

concatenated and supercontigs were removed using linux command grep with the following 520 

string “supercontig|'"$genome_version"':[^1-9XMY]”. Kallisto (Bray et al. 2016) was used to 521 

build an index for further mapping using default parameters. Each sample’s FASTQ file was 522 

mapped using Kallisto quant with default parameters except for increasing the number of 523 

bootstrap samples to 100 and setting the strand specific nature of the reads using 524 

parameters “-b 100 --rf-stranded”.  Detailed mapping statistics for each sample is available 525 

in Supplemental Table S8. To determine differential expression, the resulting files from the 526 
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mapping were used with the R program sleuth (Pimentel et al. 2017). Default parameters 527 

were used throughout analysis. Sleuth uses a likelihood ratio test and hence we tested for 528 

those genes whose abundance is significantly better explained when caste is included in the 529 

model compared to a reduced model in which a single parameter is fitted for each gene.  530 

 531 

Gene Ontology analysis 532 

Drosophila melanogaster GO terms were downloaded from FlyBase [http://flybase.org]. 533 

Each D. melanogaster gene was mapped to its A. mellifera orthologue using 534 

HymenopteraMine [http://hymenopteragenome.org/hymenopteramine/begin.do]. GO 535 

analysis was performed using the R package; topGO (Alexa and Rahnenfuhrer 2016).  536 

Transcription Factor motif analysis 537 

Transcription factor motif analysis was performed using CentriMo (Bailey and MacHanick 538 

2012) which is part of the MEME suite tools. Individual peaks of H3K27ac were extended to 539 

5kbp from the centre of the called peak. 540 

 541 

Data Access 542 

ChIP-seq and RNA-seq data from this study have been submitted to the National Centre for 543 

Biotechnology Information (NCBI) Gene Expression Omnibus 544 

(GEO, http://www.ncbi.nlm.nih.gov/geo) under accession number [GEO:GSE110642].  545 
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 740 

Figure Legends 741 

 742 

Figure 1. H3K4me3, H3K27ac and H3K36me3 are associated with transcribed regions in 743 

honey bee castes. (A) Plots of the average ChIP-seq enrichment above input around the 744 

TSS (+/- 2kbp) of genes profiled across 96hW (upper panel) and 96hQ (lower panel). The 745 

green and yellow lines represent the two replicates performed for each ChIP-seq experiment 746 

and the grey line represents the input. (B) The expression distribution (shown by a coloured 747 

half-bean) of transcripts enriched by > 3-fold change above input for all possible 748 

combinations of H3K4me3, H3K27ac and H3K36me3, compared to a random sampling of 749 
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genes (grey half-bean). The mean of either distribution is shown by a solid black line. 96hW 750 

is shown in the top panel and 96hQ in the bottom panel. n is the number of transcripts. 751 

 752 

Figure 2. At 96h, worker and queen larvae show caste-specific differences in the enrichment 753 

of H3K4me3, H3K27ac and H3K36me3 that correlate with differential gene expression. (A) A 754 

volcano plot of the difference in enrichment between 96hW and 96hQ castes against the 755 

negative log p-value for H3K4me3, H3K27ac and H3K36me3. In grey are regions which fall 756 

below the genome wide threshold of significance (p > 0.01). In blue (96hW) and red (96hQ) 757 

are those regions which reach genome wide significance (p <= 0.01) and have a larger than 758 

3-fold difference in enrichment above input between castes. (B) The negative log p-value for 759 

the top 5 biological process GO terms for those genes which show increased enrichment for 760 

H3K4me3, H3K27ac or H3K36me3 in 96hW compared to 96hQ (left panel) and for those 761 

which show an increased enrichment in 96hQ compared to 96hW (right panel). (C) A 762 

volcano plot of the log fold change (LogFC) in transcript expression by RNA-seq between 763 

96hW and 96hQ castes against the negative log p-value. In grey are transcripts which fall 764 

below the genome wide threshold of significance (p > 0.01) and in blue are those transcripts 765 

which reach genome wide significance (p <= 0.01) and are more expressed in 96hW and in 766 

red are those transcripts which reach genome wide significance (p <= 0.01) and are more 767 

expressed in 96hQ. (D) A scatter plot of the difference in significant ChIP-seq enrichment 768 

between 96hQ and 96hW (x-axis) against the LogFC of transcript expression between 96hQ 769 

and 96hW castes (y-axis). (E) The negative log p-value for the top five biological process 770 

GO terms for those transcripts which show both increased expression and increased 771 

enrichment in H3K4me3, H3K27ac or H3K36me3 in 96hQ compared to 96hW (left panel) 772 

and for those which show both increased expression and increased enrichment in 96hQ 773 

compared to 96hW (right panel). 774 

 775 

Figure 3. Profiles of two genes that show a significant difference in both ChIP-seq 776 

enrichment and transcript expression between castes. (A) Pyruvate kinase (PYK; 552007). 777 
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Regions are shown which reach genome wide significance (p < = 0.01) and have a larger 778 

than 3-fold difference in enrichment over input between 96hW (blue) and 96hQ (red). The 779 

expression profile is shown in the right panel. (B) Ten-eleven translocation (TET; 412878). 780 

Regions are shown which reach genome wide significance (p < = 0.01) and have a larger 781 

than 3-fold difference in enrichment over input between 96hW (blue) and 96hQ (red) for both 782 

TET transcripts, XM_016915488 (upper transcript) and XM_006561197 (lower transcript). 783 

The expression profile is also shown for transcripts XM_016915488 (left panel) and 784 

XM_006561197 (right panel). 785 

 786 

Figure 4. Intronic H3K27ac regions define the worker caste and are enriched for 787 

transcription factor binding sites. (A) A bar plot showing the percentage of unique H3K4me3, 788 

H3K27ac and H3K36me3 ChIP-seq regions and their location relative to the nearest TSS in 789 

96hW (blue) and 96hQ (red). (B) A bar plot showing the percentage of unique H3K4me3, 790 

H3K27ac and H3K36me3 ChIP-seq regions within intergenic or intragenic locations. 791 

Intragenic distributions are further defined as either exonic or intronic. Blue bar represents 792 

regions with higher enrichment in 96hW and red bar are those regions with higher 793 

enrichment in 96hQ. (C) In the top panel, the vertical blue line shows the number of 794 

differentially expressed genes that contain at least one peak of intronic H3K37ac and are 795 

more expressed in 96hW compared to 96hQ. A background distribution (shown in grey) was 796 

calculated by randomly selecting an identical number of genes and calculating how many of 797 

these contain at least one peak of intronic H3K27ac. This was repeated 1000 times. In the 798 

bottom panel, the vertical red line shows the number of differentially expressed genes that 799 

contain at least one peak of intronic H3K27ac and are more expressed in 96hQ compared to 800 

96hW. A background distribution (shown in grey) was calculated as previously and repeated 801 

1000 times. (D) A bar plot of the adjusted p-value for enrichment of transcription factor 802 

binding motifs located within caste-specific intronic H3K27ac regions. (E) A motif probability 803 

graph showing the probability of transcription factor binding motifs in relation to caste-804 

specific intronic H3K27ac (centered at 0bp). 805 










