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Abstract:  Grain-size strengthening of polycrystalline metals, the Hall-Petch effect, has 

been described for the past sixty years as a dependence of the strength of polycrystalline 

metals on the inverse square-root of grain size, d. The value of the coefficient of the 

dependence has been the subject of discussion throughout. Here, we find what known 

factors in the experiments may determine its value, by meta-analysis using maximum-

likelihood methods of the literature values of the coefficient in sixty-one datasets. No 

dependence of the coefficient is found on plastic strain, and a strong dependence is found 

on the average grain size of each study. Combining these and other factors accounts for 

the reported values of about 80% of the sixty-one coefficients. The grain-size dependence 

of the Hall-Petch coefficient is an artefact arising from fitting the data to an incorrect 

expression. An alternative grain-size effect described by a lnd/d function is consistent 

with the theory of dislocations dynamics and generation. The corresponding analysis of 

the coefficients of fits based on this theory shows that none of the factors investigated are 

statistically significant, confirming the correctness of this approach.  
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 1. Introduction 

 

The Hall-Petch equation expressing the inverse-square-root dependence of yield or flow 

strength of polycrystalline metals on the grain size was first proposed in 1951 by Hall [1] 

and confirmed in 1953 by Petch [2]. Since then, a large body of experimental data has 

been published in good agreement with this equation. Although it has frequently been 

challenged, as early as 1958 by Baldwin [3], it is presented in most elementary materials 

textbooks and university courses and used in industry to predict strength. Most authors 

consider that it has strong experimental support. Indeed, a conference was held in 2013 to 

celebrate its sixtieth anniversary [4], with a conference logo incorporating the Hall-Petch 

equation, 

 2/1

HP0

 dkY
 (1) 

In this expression, Y is the yield strength, but the equation has been used as often to 

describe the flow stress at a given plastic strain, (P), and in what follows we will not 

need to distinguish yield stress and flow stress [5, 6]. The constant 0 is the yield or flow 

stress of single-crystal or bulk large-grain-size polycrystalline material. It is expected to 

be largely dependent on the history and preparation of the specimen, apart from having, 

for each metal, a minimum value in ideal specimens due to the Peierls stress. The second 

term on the right-hand side of Eq.1 describes the dependence of yield or flow stress on 

grain size d. The notation dISR will be convenient below for the inverse square-root of 

grain size, d–½.  

 

The values of the parameter kHP for different metals have been of great interest 

throughout this period.  Experimentally, values reported in the literature even for the 

same metal are often very scattered.  Many authors have proposed theories consistent 

with the inverse square-root of d in Eq.1 and capable of explaining the experimental 

values of kHP. See, e.g., the early review of Li and Chou [7], the comprehensive review of 

experiments and theories of Cordero et al. [8], and references therein, and two modern 

discussions specifically of the value of the parameter kHP [9, 10].  Such attempts have 

been frustrated, either by the large scatter in the experimental values of kHP, or by lack of 

clarity as to the applicability of the predictions of the various theories to specific 

experimental situations. Thus, some theories predict a non-zero kHP for the yield point.  

Others predict kHP = 0 for the yield point and kHP proportional to plastic strain pl for the 

flow stress.  It is debated whether kHP is a derived quantity predictable from more 

fundamental material parameters, or whether it is a material parameter in its own right to 

be measured for each metal but not predictable from more basic considerations. Or, like 

0, it may be largely dependent on the history and preparation of the samples.  

 

In two previous papers, we have challenged Eq.1 [5, 6]. Following Baldwin [3], 

we found that the quality of fit of Eq.1 to many datasets was as good with exponents x 

from x = ¼ to x = 1 as it was with the x = ½ of Eq.1. Using dummy data sets and fitting 

for the value of the exponent x, we found that the least-square residuals fitting procedure 

is biased due to the random errors in grain-size estimation, and returns an exponent on 

average about half the true value.  We considered also the probability of the data being 

where it is under the different hypotheses of Eq.1 and alternative expressions. In the 

course of that work, we gathered sixty-one datasets from the literature that have been 
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considered to support Eq.1. In those papers, we concentrated on the raw data, (d), and 

whether they supported Eq.1 or were equally consistent with Eq.2 below. Here, we take 

the opposite approach, setting out to find whether the values of kHP obtained by fitting to 

(d) carry any message about the representation of the data by Eq.1 and the physical 

interpretation of kHP.  Note that in this meta-analysis of the sixty-one values of kHP we do 

not invoke any theories of the Hall-Petch effect.  Our purpose here is to find what factors 

in the experiments influence or determine the observed values of kHP.     

 

We find a clear dependence of kHP on anisotropy, and on stacking-fault energy, 

and we find no evidence of a dependence of kHP on plastic strain. We find weak 

dependences on composition (purity) and bulk strength, and on the material parameters 

determining elastic and plastic anisotropy.  Surprisingly, since the dependence of  on 

dISR in Eq.1 is already given explicitly, there is a strong dependence of kHP on dISR. That 

is, the coefficient kHP is not a constant with respect to grain size as it should be, but as the 

function kHP (d) it conceals within itself much of the true functional dependence of  on 

d. This and the similar dependence of kHP on the strength, are in fact predictions of the 

model that we proposed [5,6] in which the Hall-Petch effect is an example of the general 

size effect, obeying the general size-effect equation [6],   

 
d

d
kY

ln
DC0    (2) 

Consequently, we carry out the corresponding meta-analysis of the values of kDC found 

by fitting the same data to Eq.2. Here, we find no statistically significant dependence of 

kDC on any of the factors, as expected if this equation does govern the Hall-Petch effect. 

These outcomes have implications for the theories of Eq.1 for the Hall-Petch effect, 

which are discussed in Section 4, and provide independent corroboration for the theory 

underlying Eq.2.   

  

2. Meta-analysis of k values 

 

We apply meta-analysis to the sixty-one values of kHP and of kDC. While commonplace in 

social sciences and medicine, meta-analysis is relatively unusual in materials science and 

metallurgy (but see Deville et al. [11]). The purpose of meta-analysis is to take multiple 

studies and by combining their results to obtain a greater statistical significance for a 

result, or, less often, to obtain a result that the original studies did not consider. Meta-

analysis has dangers, which can introduce bias. This is well-documented in the medical 

literature. See the Appendix for a discussion of their relevance and their mitigation here.  

 

2.1. Data sources and selection. 

 

 We assembled a body of data consisting of data-sets that were fitted with Eq.1 by 

their authors or later authors. Citations, references and search engines led us to more data, 

as did helpful input from colleagues. We included more recent data when we found it, but 

our emphasis was on the early data that contributed towards the establishment of Eq.1. 

All the data-sets that we found, we use; that is, there has been no selection. The sixty-one 

that we use are distinguished from the unknown number in the literature only by the 

random accidents of the search processes. There is therefore no risk of selection bias (see 
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Appendix). We fitted all of the datasets ourselves with Eq.1 and with alternative 

expressions including Eq.2 [6]. 

 

Different authors gave more or less information on specimen characterisation, 

measurement techniques, and errors, but in any case such information was not used by 

the original authors to correct in any way the data values fitted with Eq.1 nor the 

parameter values obtained from the fits.  Consequently, it would be inappropriate – it 

would risk bias – to use any such information here.  We work with the raw data.  

 

2.2.  Meta-Analysis Factors 

 

Comparing the values of kHP and kDC across many studies requires considering 

several major factors which are expected from theory to affect values of kHP. Data from 

both tension experiments and indentation hardness testing are used. We divide the 

hardnesses by a factor of 2.8 for comparability with the tension data, and attribute the 

nominal value of plastic strain pl = 0.2 to these datasets. (While the Tabor factor may be 

less than 2.8 in some cases, particularly for strain-hardening, that is not expected to affect 

the meta-analysis significantly).  A number of different metals are used.  All of the 

theories of Eq.1 predict that kHP will depend on the elastic moduli cIJ of the metal and on 

its Burger’s vector b. We normalise stresses for different metals by dividing by the 

Young’s modulus to give elastic strains el. Similarly, the grain sizes are normalised to 

the size of the crystal unit cell, by dividing the values given by the lattice constant of each 

metal.  (This may be taken as a proxy for normalising to the Burgers vector, which would 

introduce uncertainties as to the appropriate projections of the vector onto relevant slip 

planes, etc.)  For details of the normalisations see Ref.6 and the Supplementary 

Information. Following these normalisations, the values of kHP and kDC are dimensionless.  

 

Other known factors in the experiments or theories may contribute to the values of 

kHP. Some datasets report yield stresses, which ideally would be at a plastic strain of pl = 

0 but may be at the conventional pl = 0.002 or at a lower or upper yield point, while 

others report flow stresses at various plastic strains pl up to 0.3. Different datasets use 

widely varying ranges of grain size. The metals studied vary in their purity, or number of 

metallurgically significant elements, from commercial brass and steel to high-purity 

aluminium.  The fitted bulk strength 0 may be treated as a factor. In addition, any known 

physical properties of the various metals can also be considered as factors. Different 

metals have different elastic and plastic anisotropies and this should affect how 

polycrystalline specimens behave. We test this by using as factors the elastic anisotropy 

and the anisotropy of the Schmid factor. We also tested the stacking-fault energy. Finally, 

the year of publication of the dataset may be relevant, since experimental techniques have 

changed with time in sensitivity and rigour. So while the year of publication will not be a 

causal factor, it may be correlated. This brings the total of factors considered here to 

eight.  

 

 In Ref.6, the data were first digitised, normalised as described above, and fitted 

with Eq.1 and Eq.2.  Full information on the datasets, normalisation and fitting are given 

in [6] and the raw data are given in the Supplementary Information. Here, to test the 
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effects of these eight factors, the values of kHP and kDC returned by the fits are plotted 

against each factor in turn, and tested for correlation with each of the eight factors by 

fitting the data to the function y = ax + b.  Independence of k of a given factor 

corresponds to fitted values of a consistent with zero within the statistical error bar. In 

almost every case we find a statistically significant non-zero a. So we then test the factors 

acting together.  

 

2.3 Statistical Methods 

 

In a standard analysis of experimental results, data are obtained as a function of 

experimental parameters in the light of theory.  There will be a predicted functional 

dependence and perhaps quantitative predictions of coefficients, and it is to test and 

refine these predictions that the experiments are performed.  Meta-analysis proceeds 

differently.  We have sets of reported data, here, values of kHP, and of kDC, and potential 

factor values, constituting a large matrix of numbers. The objective is to establish 

correlations within this matrix. The most powerful way to do this is factor analysis but for 

our purposes here it is preferable to use a less powerful but more transparent technique.  

 

We begin by inspecting the properties of the 61 normalised values of kHP. They 

have a mean of 0.155, but a wide distribution of values from –0.001 to 0.998 (Fig.1), so 

the mean is near the lower end of the range. The standard deviation about the mean is 

0.207. The kurtosis (fourth moment over second moment) is 11 and the skewness is 3, 

compared with the values 3  0.5 and 0  0.3 expected for a Gaussian distribution of 61 

numbers For log10kHP, the mean is –1.02, standard deviation 0.214, kurtosis 7.5 and 

skewness –1.  The values of kDC  have similar properties, with a distribution of values 

from 0 to 18, mean of 1.49, standard deviation 2.06, kurtosis 24 and skewness 4.3.  

 

The high values of kurtosis indicate that the distributions of the data are far from 

normal or lognormal.  Least-squares fitting methods assume that the residuals ri – the 

scatter of the data around the fitted model – are Gaussian-distributed i.i.d. (independently 

drawn from an identical distribution).  When that is not so, as here, least-squares methods 

discard much of the information in the data, and it is preferable to use other methods 

which make use of more of the information by using more appropriate probability 

distribution functions (pdf). We use Maximum Likelihood methods. For accessible 

introductions to these methods, see e.g. [12, 13].  

 

Fig.1 near here   

 

We proceed by selecting a suitable pdf by testing against dummy datasets. 

Suitable dummy datasets may be constructed as (i, ki) where i are random numbers in 

the range 0 to 1, and ki are the Hall-Petch parameters (i = 1 to 61). These also provide a 

benchmark for what we should expect when the Hall-Petch parameters have no 

dependence on, nor correlation with, a factor.  Using a least-squares procedure to fit these 

dummy data to ax + b, we expect, within error, a = 0 and kb   where k  = 0.155 is the 

mean value of our collection of kHP values. One such dataset gives a = –0.056  0.098, as 

expected consistent with zero within error, and b = 0.182  0.054  (Fig.1a). The value of 
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b should be the mean of the values of the data; however, it has an uncertainty because the 

correlation matrix for a and b has off-diagonal terms of about 0.9.  It is better to fit to the 

datasets ),( kkii  , and restore the average values after fitting.  This gives the same 

result for a, with b = ak   0.027 and the off-diagonal terms in the correlation matrix 

are now zero. In this way, we created 500 such dummy datasets.  The 500 values of a 

averaged to –0.002 and the standard deviation of the values of a was 0.055 (Table I). The 

value of b is no longer interesting, as the fit necessarily goes through the point ),( k , so 

there is only one free fitting parameter, a.    

 

[Table 1 near here. See page 21] 

 

Given the presence of excess kurtosis, the few datapoints at values of kHP up to 1 

or values of kDC up to 18 heavily distort the least-squares fits. A common procedure in 

such cases is to eliminate these datapoints, as outliers, and fit to the remaining points 

which have a much narrower and approximately Gaussian distribution. It is better not to 

delete any data, but to exploit all the information in the data using Maximum Likelihood 

methods, in which any probability distribution function (pdf) may be used as best fits the 

data. For any pdf P(r) for the residuals ri, the likelihood of each datum ki is P(ri), and the 

likelihood of the dataset under the model is  

    



n

i

i

n

i

i rPLrPL
11

lnln,  (3)  

Residuals are functions of the parameters a and b of the model, and for a normal 

distribution of residuals centred on zero, the standard deviation  of the Gaussian pdf is 

the third parameter of the model, with a and b. For the reader familiar with conventional 

least-squares (LS) but unfamiliar with maximum-likelihood (ML) analysis, it is worth 

expanding Eq.3 for a Gaussian pdf, 

 

 












n

i

i

r
i

n
rL

erP i

1

2

2

)2/(

2

2lnln2
22

1
ln

2

1
)(

22

 (4) 

Thus maximising lnL is the same thing as minimising the sum of the squares of the 

residuals.  Least-squares methods are simply maximum-likelihood methods under the 

assumption (usually false) that the residuals are i.i.d. from a Gaussian distribution. The 

likelihood L is the probability of the data given the model or hypothesis and it is the key 

term entering into the Bayes’ Theorem expression for the likelihood of the hypothesis 

given the data.  

 

Values of L can be very large or very small, depending on the width of the pdf. It 

is more convenient to sum the natural logarithms of P(ri) to calculate the log-likelihood, 

lnL. This is then maximised with respect to a, b and . Note that the absolute values of L 

or lnL have no intrinsic meaning: it is changes of these values between models that 

matter. Maximising lnL with the single dummy dataset mentioned above and a Gaussian 

pdf, we get a = –0.056, as above, and  = 0.29 which is not an error estimate for a or b 

but describes the variance (2) of the data with respect to the model. The log-likelihood is 
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lnL = 10. Error estimates for the fitting parameters can be found by varying each 

individually while leaving the others as free fitting parameters and looking for a reduction 

in lnL of 0.5. Here that gives a  0.096 in agreement with the least-squares method, as 

expected for a Gaussian pdf. The significance of lnL = 0.5 is that it corresponds to a 

one-sigma preference in traditional statistics [12, 13].  

 

 We calculate lnL with other pdf’s.  Given the large kurtosis, we are interested in 

fat-tailed distributions compatible with a significant proportion of apparent outliers in the 

dataset. The Lorentzian is suitable, with a width .  The maximum of lnL is found to be 

56.5 for a = – 0.018  0.024, with  = 0.034.  Thus a is found to be significantly closer to 

zero, by a factor of about three, than by the least-squares model (Fig.1a).  The increase in 

lnL is massively significant – with 0.5 in lnL corresponding to 1 in a Gaussian analysis, 

here we have an increase of 46.5, or 93. Moreover, we do not have to consider that the 

datapoints that are a long way from the fitted line are outliers to be discarded – on the 

contrary, they are accommodated by the Lorenztian pdf on a par with all the other 

datapoints.  

 

Other fat-tailed pdfs give similar results.  We can attribute the apparent outliers to 

a broad Gaussian pdf and the other data points to a narrow one about the line y = ax + b, 

so that we have a double-Gaussian pdf, referred to below as DG. Then, as well as looking 

for the values a, b and the -values of the two distributions, we look for the fraction f of 

the broad pdf and the fraction (1 – f) of the narrow pdf that maximizes lnL. Fitting with 

the two extra parameters, the width of the second Gaussian and the value of the fraction f, 

we obtain a = 0.010  0.025, f = 0.142  0.050, and the standard deviations of the narrow 

and broad distributions are 0.067 and 0.80 respectively.  That is, about one seventh of the 

data belong to the broad distribution, and the others form a distribution sharper by a 

factor of more than two than the single Gaussian pdf gave. The value of lnL is 61, 

substantially above the Lorentzian value. Each extra fitting parameter requires an 

increase in lnL of at least 1 to offset it (this corresponds to the Akaike information 

criterion [14]), so this model is only slightly preferable to the Lorentzian.  However, it 

provides a first insight into the number of apparent outliers – the fraction f of the data, or 

about ten datapoints that appear to belong to a different pdf.   

 

 Alternatively, we can consider that each datum has a probability f of being an 

outlier in this sense, and that the outliers have a flat distribution over a range of k values 

of width g, hence a flat pdf of magnitude fg–1 over the range. Then (1 – f) of a sharp 

Gaussian distribution is added to make the Gaussian plus flat (GF) pdf. Now, with g = 1, 

maximization of lnL yields a = 0.011  0.025, f = 0.158   0.056 and lnL = 68.5 (Fig.1a).  

Especially with one fewer parameter than the double Gaussian, this increase in lnL is 

significant – this is the preferable model. 

 

 Similar results are obtained by fitting to values of log10ki (Fig.1b).  The ordinary 

least-squares method works better here, as there is less skewness in this distribution, but 

still gives an error in the gradient nearly three times the gradient given by the GF pdf.  

The least squares lnL is –39, rising to –29.5 for the Lorentzian, –26 for the double-

Gaussian and –25 for the GF pdf. (Recall that the absolute value of lnL is not important; 
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it is lower here because the flat part of the GF pdf is spread more thinly on the y-axis 

from –3 to 0 instead of 0 to 1, corresponding to g = 3 in Table 1). The main difference is 

the much higher proportion of outliers attributed to the log10ki by the DG and GF pdfs.  It 

probably occurs because the true outliers are much closer to the main distribution, as seen 

in the DG results by the relative values of 1 and 2.  

 

What we have established in this Section is that the Maximum Likelihood 

methods are about four times more sensitive than the least-squares method for exposing a 

correlation or lack of correlation between the data, the experimental values of kHP, and the 

abscissa or factor against which they are plotted. The key benchmark is the standard 

deviation of the fitted values of the slope, a.  Using least-squares fitting, a slope a of 

0.096 (on a plot where the abscissa values have been normalized to the range 0–1) is not 

significant. Using Maximum Likelihood methods, this criterion is sharpened to about 

0.024. Of these methods, the flat distribution for the outliers with a Gaussian for the bulk 

of the data is the most probable model.  There is a consensus among the methods that 

about 15% of the data, or ten of them, are outliers. The GF pdf gives the highest log-

likelihoods and so it is results with this pdf that are reported below in Tables 2 and 3.  

The ki and the log10ki give very similar results, except that the outliers are probably over-

reported in the log10ki analysis.  

Similar results are obtained for kDC. This is not surprising, since the kurtosis and 

skewness are similar, so in what follows we use the same methods. For comparison with 

other fits below, the equivalent dataset to Fig.1a with a GF fit gives lnL = –89.   

 

3.  Fitting to the Experimental Factors 

 

The next step is to plot the data against the various physical factors reported by the 

original authors and to fit with ax + b as for the dummy datasets of the previous Section.  

 

3.1 Fitting to single factors   

 

In order to include all sixty-one data in every fit and maintain comparability between the 

lnL values, the missing values for plastic strain (brass), anisotropy (Ti) and the stacking 

fault energy (Cr) were allocated mid-range values (in italics in the Supplementary 

Information) which should not affect the gradients significantly. For comparability, the 

range of each factor is rescaled to the dimensionless range 0-1.  The resulting gradient a 

for each factor is given in Table 2a for the fits of kHP to each of the eight factors. The 

corresponding gradients  for fits to the real values of the factors are also given; where a 

is negative, we reverse the range of the factor, (1-0) to have a positive . It should be 

noted that the slopes  are dimensionless (except for stacking-fault energy and year of 

publication) because of our initial normalizations of yield or flow stress by division by 

the Young’s modulus to give yield or flow elastic strain, and grain size by division by the 

lattice constant to give a number per grain. These initial normalizations are essential if 

different metals are to be compared.  

Each fit reported here for Hall-Petch data from Eq.1 was also performed using the 

parameter values kDC and 0 returned by fitting the data to the  = 0 + kDC d
–1 lnd 



 9 

function corresponding to the general size effect theory [6]. The results are reported in 

Table 2b.     

 

Fig.2 near here  

  

The fits of kHP against the normalized plastic strain pl, are shown in Fig.2a (data 

from 0.2 to 1 not shown but included in the fit) and the fits to kDC in Fig.2b (data from 2 

to 20 not shown but included in the fit). The results with the two maximum-likelihood 

pdfs shown are very consistent in giving a positive slope marginally outside error at 1½.  

At less than 2, this might be interpreted as evidence for no effect of strain on the Hall-

Petch parameter, and the increase in the kHP log-likelihood to 70 (Table 2a) from the 

random-variable value of 68.5 (Table 1) offers scant support. The value of  for this fit 

is meaningful, and dimensionless because k and strain are both dimensionless. Similarly, 

for kDC the lack of change in lnL from the value of –89.3 for the random abscissa is not 

significant.  

 

To describe the purity or composition of the metals studied, given the 

complexities of metallurgy, we adopted the simple scheme of assigning the value p = 0 to 

a pure metal (four or five nines), p = 1 for the addition of an alloying element (as in 

brass) or purities around two nines, and p = 2 for anything more complicated, i.e. 

commercial iron and steel. There is a strong effect, with gradients a significant at over 4 

(Table 2). The jump in the kHP log-likelihood to 76 (Table 2a) is significant.  The value of 

 for this fit is not important because of our arbitrary quantification of purity p. Similarly, 

for kDC the increase in lnL to –82 (Table 2b) from the value of –89.3 for the random 

abscissa is quite significant. Alloy effects are not unexpected, because of the many other 

ways alloying can increase strength, potentially screening the grain-size effect, or, as 

here, apparently increasing it by increasing kHP.  

  

[Table 2 near here. See page 22] 

 

 For the bulk strength, we used the values of 0 obtained by fitting the data 

to Eq.1 (for kHP) and Eq.2 (for kDC) (see Supplementary Information). Because 0 is 

normalized as elastic strain, the value of  for this fit, , is dimensionless. For elastic 

anisotropy, we used a mid-range value for titanium, as the anisotropy factor is less well 

defined for hexagonal metals than it is for the cubic metals.  For the cubic metals, we 

used the standard definition that is based on the ratio of the two shear moduli,  C = 

2c44/(c11 – c12) – 1.  This has the advantage, compared with e.g. C = 2c44 – c11 + c12, of 

being already normalised for different metals.  It shows a stronger effect, at almost 5, 

but a fallback in lnL to 71 (Table 2). Because C is dimensionless, the value of  for this 

fit, C, is dimensionless. For kDC the lack of change in lnL from the value of –89 for the 

random abscissa shows that purity is not a significant factor here. 

 

Fig.3 near here  

  

Estimates of stacking-fault energies  were found in the literature for all the 

metals except Ti and Cr (see Supplementary Information). Their slope against  is 
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negative for both kHP and kDC, so for easier comparability with the other factors, we used 

the reverse of the stacking-fault energy, max – . The slopes  for this factor have units 

of m–2 mJ. For kHP, the slope a has the largest significance, at 6, and for both kHP and 

kDC the increases in lnL above the dummy value are the largest, at 15 and 8 respectively.  

 

For the plastic anisotropy, represented by the anisotropy M of the Schmid factor 

M, we have only the three values of M for BCC, FCC and HCP metals. So this factor 

may be a proxy for any other ways these classes of metals may differ, including 

propensity to develop texture, and any other effects correlated with crystal symmetry. 

The slope M for this factor is dimensionless. For kHP the lnL is only 69 for this factor 

(Table 2a) and for kDC, –87, scarcely above the random abscissa values; however, the 

gradients are non-zero to about 3.  

 

For the grain size (Fig.3), we take the mid-points of each dataset on the classic 

Hall-Petch plots, i.e. )(½ minmax

ISRISR

mean

ISR ddd  . Because the grain size is normalized to the 

number of lattice constants per grain, the value of  for this fit, d, is dimensionless. This 

characterization of d is motivated by consideration of what a d–1 dependence looks like 

on a Hall-Petch plot. It is a parabola, and the slope of a straight line fitted to data that 

follow the parabola would be approximately the gradient of the parabola at the mid-point 

of the data range.  Of course, any dependence of k on any measure of d would contradict 

Eq.1.  Yet this factor has strong effects for kHP, with a very significant slope, at 5, and 

with a jump in lnL to 74 (Table 2a). On the other hand, for kDC, the grain size gives a lnL 

of only –87, close to the random abscissa value (Table 2b).  

 

Data comes from papers with a wide range of publication dates, from 1919 

onwards. The slope a against year is negative; we reverse this for a positive  by plotting 

the data against the age (2018 minus publication year). The slope  has the units yr–1.  

Since the year can have no causal influence, it is not surprising that the slopes for kHP and 

kDC are both small, and not very significant. The lnL is among the lowest in both cases, 

and not very significantly above the random abscissa values.   

 

3.2.  Combining Factors   

 

Compared with the null hypothesis of Section 2.3.1, i.e. the hypothesis that there is no 

effect of these factors on the Hall-Petch parameter k so that random ordering would give 

the same results as ordering the k values by these factors, all eight of these models are 

supported by the data having gradients more or less significantly different from zero in 

fits to the data using kHP (Table 2a) and in fits using kDC (Table 2b). We should consider 

the effect of these factors acting together.  

 

 It is worth considering how this would work in the ideal case.  Suppose that these 

eight factors are the factors fully determining k, that they are independent, and that their 

linear (ax + b with b = 0) contributions to k simply sum.  Then in the fits to single factors 

so far discussed, the other seven factors contribute both the intercepts b and the scatter 

which gives the uncertainties in a in Table 2. If we suitably scale all eight factors and add 



 11 

their contributions to k, the intercept b should decrease and the uncertainties in a should 

decrease; a itself should increase. Keeping the abscissa normalized to the range 0 to 1, 

with all eight factors included, the slope a should be within error equal to the highest 

values of k not belonging to outliers, i.e. about 0.18 for kHP and about 2 for kDC, and 

perhaps more if some of the outliers are brought within the main distribution when all 

factors are considered. The remaining outliers will be the result of other large, rare 

perturbations due to unidentified factors.  

.  

 The combined abscissa with all positive coefficients  is  Y (2018 – Yr) + C C + 

d dISR +  pl + p p +  0 +  (max – )–1 + M M for kHP; the grain size term for 

kDC also becomes d (dISR max – dISR). For comparison with the foregoing single-factor fits 

and plots, we rescale this new abscissa again to the 0-1 range. The results of fitting to the 

kHP  dataset are given in Table 3.  The slopes a are much increased, to about 0.15 and 

1.75, nearly to the expected values of 0.18 and 2. Most significantly, the lnL increases 

sharply, for kHP, to 92 from the values 69 to 76 for the factors taken singly (Table 3a). 

This is a very much more preferable model than any of the eight factors taken alone. 

Similarly, in Table 3b, we see that combining the eight factors in the same way for kDC 

gives a substantial improvement, with lnL = –72 falling well above the range of the 

values of –89 to  –81 for the factors taken singly.  

 

However, we improve lnL further if we multiply the factors by weightings wi. 

Eight weights wi  are actually only seven new parameters, since the sum of the eight is not 

important – indeed either it or one of the weights has to be specified before the lnL can be 

maximized with respect to the eight weights wi as well as to a, b, f and .  For kHP, the 

optimum combined abscissa in Fig.4 uses the weightings of the third column of Table 3a. 

This gives another large increase in the log-likelihood to 101, a slope a of 0.156, and a 

very small intercept of b = 0.01  0.01. The errors on the weightings are obtained as 

above, by fitting with each weight fixed in turn at its optimized value plus or minus an 

offset, and looking for the value of the offset which reduces lnL for the fit by 0.5. In 

contrast, for kDC, the optimized weightings give no significant improvement in lnL over 

the equal weightings.  

 

[Table 3 near here. See page 23] 

 

[Fig.4 near here] 

 

Increasing the number of parameters by seven means that we cannot compare the 

values of lnL directly. Any extra parameter in fitting will normally give an improved fit, 

but multiplying parameters unnecessarily is to be discouraged. This is the purpose of the 

Akaike Information Criterion, AIC = 2n – 2lnL, and the Bayesian Information Criterion, 

BIC = nlnm – 2lnL, where n is the number of parameters and m is the number of data. 

With 61 data in our case, lnm = 4.1, so the BIC discourages extra parameters more 

strongly that the AIC. If adding an extra parameter does not decrease the AIC or BIC by 

more than 2, that parameter may be considered to be unnecessary. We can now find out 

which of our eight factors may be unnecessary by deleting each in turn (setting its weight 

to zero), and then maximizing lnL against the other parameters). Results are given in 



 12 

Table 3a for kHP. Deleting the year of publication as a factor leaves lnL unchanged and 

improves both the AIC and BIC significantly. Deleting the strain reduces lnL marginally, 

but the small changes in the AIC and BIC do not justify keeping this factor. Similarly for 

the other factors, except the elastic anisotropy and the grain size, and perhaps the 

stacking-fault energy. What is most dramatic here is that deleting the grain size causes a 

dramatic worsening of the BIC, an increase of 20. In terms of lnL alone, the decrease of 

lnL by 22 translates into a probability of the model including grain size which is ~e22 ~ 

3109 higher than the probability of any of the models kHP that do not include it as a 

factor.  

 

In contrast, the results given in Table 3b for kDC show that none of the parameters 

are necessary. Neither adding the weights, nor deleting each factor in turn by setting its 

weight to zero, affects the lnL significantly. Consequently, the AIC and BIC are 

uniformly worse (higher) by about 10 and 20 respectively compared with the fewer-

parameter equal-weight model. This shows that none of the factors are necessary in 

models of kDC.  

 

4. Discussion 

 

Several points stand out among the results presented here.  The random ordering of the 

datapoints on the abscissa of Fig.1 gives a slope a which is not significantly different 

from zero. About one-third of the possible random orderings will give a more than one 

standard deviation  from zero, and about one-twentieth will be more than 2 from zero.  

In contrast, of the orderings of the data given by the various factors, Table 2a shows that 

all but one give an a more than  from zero and all but two are more than 2 from zero.  

Clearly, there are meaningful correlations here between the factors and the reported 

values of kHP.  Correlation, however, is not causality.  These factors have correlations 

among themselves, both accidentally and intrinsically. Plastic strain pl and bulk strength 

0 provide an example of an intrinsic (positive) correlation arising through strain-

hardening. Year of publication and our purity factor p provide an example of an 

accidental (negative) correlation, because the metals to which we have given the highest 

p values are brass and steel, which were the first to be reported (1919 and 1951, 

respectively), while very pure metals, with the lowest p value, were reported much later.   

 

 Given these correlations, which are likely to link any of the factors considered to 

whatever factors are causally related to kHP and kDC, it is not surprising that most of the 

gradients a for single factors (Table 2) are significantly different from zero. Nor is it 

surprising that combining the factors improves the fits to the data (Table 3, columns 2) 

and that giving the additional degrees of freedom by variable weights can improve the fit 

further. The difference between seven and eight non-causal accidental correlations should 

not be large. It is not surprising that deleting a single factor generally has little effect on 

the lnL, AIC and BIC. The weights of the other factors can adjust to largely compensate 

for the deleted factor. In Table 3a, the only factor for which this is not true is the grain 

size. Deleting any of the other seven parameters leaves lnL, AIC and BIC values within 

the range of the equal-weighting (column 2) and optimized weighting (column 3) values. 

But deleting the grain size has a dramatic effect, leaving lnL, AIC and BIC all very 
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significantly worse. The conclusion is that the grain size is the only necessary factor, i.e. 

the only factor with a direct causal effect on the value of kHP. This is complete contrast to 

Table 3b, where any of the parameters including grain size can be deleted with little 

effect on the lnL, AIC and BIC.  

 

The necessary conclusion from the comparison of Tables 3a and 3b is that the 

grain size is an independent parameter entering into kHP but not into kDC. It will also enter 

into both through its accidental correlations with other factors determining both kHP and 

kDC, but its independent contribution to kHP invalidates Eq.1, the classic Hall-Petch 

equation.   

 

 That leaves the question of what other factors do give rise to the variations of kHP 

and kDC that are observed. Many theories of Eq.1, and the theory of Eq.2, have kHP and 

kDC as constants, when normalised as we do throughout this paper, and the theoretical 

constant value of kDC is close to the mode of the GF distribution [6]. So, finally, we 

consider why the reported values of both kHP and kDC are so widely scattered. There are 

two separate questions, why about 85% of the data are distributed from zero to 0.2 (kHP) 

and from zero to 2 (kDC), and why 15% are distributed up to 1 (kHP) and up to 18 (kDC). 

To address the first question, note that in very few of the 61 datasets is the strength  

varied by as much as a factor of two between the largest and smallest grain sizes, and 

often the range is much less than that.  In other words, the grain-size strengthening is 

generally much less than the bulk strength 0 in Eq.1 and Eq.2. The datasets are 

generated by preparing specimens with widely different grain sizes resulting from widely 

different annealing conditions. It is difficult to imagine that the bulk strength is 

unaffected by the annealing.  Depending on the metallurgical complexity of the 

specimens, annealing can cause softening or hardening independent of the grain growth. 

It would require only a small change in bulk strength, correlated with the grain growth, to 

change kHP dramatically.  In Ref.6, Fig.1 shows datasets for nickel and aluminium where 

the bulk flow or yield elastic stress exceeds 10–3 while the normalized grain size is around 

105. In the case of the aluminium, an increase of less than 10% in 0 under the conditions 

that take the normalized grain size from 4  104 to 7  105 would be sufficient to account 

for the fitted values of kHP being close to zero and even negative as observed.  In the case 

of the nickel, similarly, a still smaller softening under the conditions that take the 

normalized grain size from 6  104 to 2  105 would be sufficient to account for the fitted 

values of kHP being at the high end of the range, near 0.2 as observed.    

 

 To address the second question, from Fig.4, we note that the 15% of the data 

associated with the flat (F) of the GF pdf, which we may call outliers, are almost 

exclusively from commercial brass and steel, and from the early years of investigation of 

the Hall-Petch effect. These are the most complicated materials studied, metallurgically. 

The grain-size measurements were done on them by the classic but difficult techniques of 

revealing grain boundaries by polishing and etching and observing them under an optical 

microscope. We can only speculate that there were sometimes systematic errors (not 

always, for some of the brass and steel data are not outliers), i.e. failures to observe 

features of the microstructure smaller than the measured grain size but correlated with it.   
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The variation of reported (normalised) values of the Hall-Petch coefficient kHP 

that fall in the range 0 to 0.2 is largely accounted for by the various factors reported by 

the original authors – specifically, by the purity, the bulk strength and the grain size, and 

also by the material parameters, the elastic and plastic anisotropy and the stacking-fault 

energy. That the plastic strain is not required as a factor is significant for many theories of 

the Hall-Petch effect. But none of these factors except grain size enters in causally: there 

are only accidental correlations. That grain size itself is one of the factors that matters 

most, unambiguously demonstrates that fitting the data to Eq.1 is incorrect.  

Some comment can be made on the consequences of these conclusions for the 

various theories of the Hall-Petch effect.  It is now clear that the difficulties previously 

encountered in explaining the values of the Hall-Petch coefficient kHP of Eq.1 are due to 

trying to explain an incorrect equation.  The theories that invoke plastic strain will need 

to be reconsidered, perhaps in terms of the cluster of correlated factors more-or-less 

related to strength. The theories that do not invoke the factors found here, such as pile-up 

[1, 2, 15], are very restricted in their application, since they would account for an 

intercept on the ordinate of Fig.4, which here is zero within error. Grain size is the 

dominant factor for kHP, which is a clear demonstration that Eq.1 is incorrect. That the 

critical thickness theory constant kDC does not depend on any of the factors considered 

here, especially not grain size, strongly supports the theory of Eq.2, the critical thickness 

theory that invokes dislocation curvature or source size constraint. This theory is 

explained in detail elsewhere [6, 27, 28 and references therein]. In summary, it is based 

on the observation that any dislocation configuration under stress has curvatures 

proportional to the stress, so that if the configuration is rescaled to another size, the 

curvatures and the stresses vary with the inverse of the size. This can be applied to 

situations as diverse as the generation of misfit dislocations at a misfitting interface, and 

Frank-Read or spiral source operation in the strain gradient of a wire under torsion.  

The unexplained variations in the reported values of both kHP and kDC cannot be 

attributed to any known physical factors, but only to systematic errors in the experimental 

design, such as dependence of the bulk strength on annealing conditions.  

 

5. Conclusions 

 

Meta-analysis of a large amount of data purported to support the Hall-Petch 

equation, Eq.1, clearly shows that the Hall-Petch coefficient kHP is not a material 

constant, nor a function of experimental parameters such as plastic strain, but it is 

strongly dependent on grain size.  This demonstrates that the long-held HP relationship is 

not the correct description of grain-size strengthening in metals. An alternative 

relationship, Eq.2, is founded on the relationship between stress and curvature of 

dislocations and the constraints that size puts on curvature in dislocation configurations 

such as dislocation sources [27, 28]. This does give a sound description of the grain size 

strengthening with no interdependence of the terms in the equation, 0, kDC and d – each 

of which can be justified independently. 
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Appendix. Pitfalls of meta-analysis and of standard analysis 

  

 The purpose of meta-analysis is to take multiple studies and by combining their 

results to obtain a greater statistical significance for a result, or, as here, to obtain a result 

that the original studies did not consider.  A review by Walker et al. [17] identifies four 

critical issues for meta-analysis. They are discussed in more detail by Cooper et al. [18]. 

Counterparts arise in standard analysis, such as the effect of canonization discussed by 

Nissen et al. [23]. 

The file-drawer problem, or publication bias [19] is liable to occur when the 

meta-analysis is conducted to test the same hypothesis that the original authors were 

studying. Only, or predominantly, studies with positive outcomes are published, while all 

the studies with null outcomes languish unpublished in the filing-cabinet.  Then, all the 

meta-study achieves is to confirm the original prejudice according to which positive 

results were interesting and null results not.  That is not a risk here.  The original authors 

did not select for publication only those datasets which fitted well with Eq.2.  They might 

have rejected those that did not fit Eq.1, but that would not matter to us. What matters is 

that they did not – could not – select data for publication according the fit with the 

hypothesis that we are testing.   
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The comprehensiveness of the search for studies also matters for if it is not 

comprehensive there is scope for selection bias in the studies selected for inclusion in the 

meta-study. Walker et al. [17] do not emphasise, though, that if the search not 

comprehensive, but is random with respect to the hypothesis under test, having fewer 

studies merely lowers the statistical significance of the result of the meta-analysis but 

does not invalidate it in any other way. That is clearly the case here, for the same reason 

as this study does not risk publication bias.   

Canonization, or the inverse file-drawer problem, in standard analysis, occurs 

when a fact becomes taken for granted rather than treated as an open hypothesis [23]. It 

may be false but consistent with the reported data as the inverse square-root dependence 

of Eq.1. Yet subsequent reviewers may make it hard to publish interpretations that call it 

into question, or subsequent authors may prefer to use it than to challenge it for fear of 

the negative reaction of reviewers. Papers, too, can become canonized – this is related to 

the “often cited, rarely read” phenomenon, in which repeated citation without critical 

reading of the original leads to the paper being considered to demonstrate something 

which in fact it does not. A relevant case here is the highly-cited paper of Narutani and 

Takamura [24], a very nice study of the Hall-Petch effect, reporting resistivity 

measurements to access dislocation densities, as well as the usual stress-strain data. The 

paper supports the standard Hall-Petch expression, with the refinement of an increase in 

the exponent x from ½ at low plastic strains to 1 at high plastic strains in accordance with 

the Ashby equation; see e.g. Argon [25] and Brown [26].    

Actually, measurements such as those reported by Narutani and Takamura [24] 

are not able to determine the exponent x, let alone a change in it (see Baldwin [3]). Their 

Fig.12 is a Hall-Petch plot of their stress data, with linear guides to the eye drawn through 

the 0.2%, 2.5% and 5% strain data, and concave guides through the 10%, 15% and 20% 

data. The latter are quite convincing, but highly exaggerated, being approximately sixth-

degree polynomials rather than the parabolae expected for a d–1 dependence on a d–½ 

abscissa. In Fig.A1 we plot the data from their Fig.12, together with the three fits, using x 

= ½, 1 and with x as a free fitting parameter.  The fitted values are given next to each 

dataset. It is clear that these data cannot distinguish the three fits. Nor does the resistivity 

data, converted to stress using the information, the linear fits, in their Fig.5 and Fig.8 and 

shown in the Hall-Petch plot of Fig.A1, add anything.  They are in quite remarkable 

agreement with the stress-strain data at the smaller grain sizes, and consistent with the 

standard Hall-Petch exponent within about 1½ in the fitted exponent x. Given especially 

our finding above that plastic strain is not a significant factor, this shows well the pitfall 

in standard analysis of undue dependence upon a single paper compared with the 

overview that meta-analysis provides. 

 

[Fig. A1 near here] 

 

Heterogeneity of results, or not comparing like with like, risks burying a few 

positive results from well-focused studies under scattered results from many less relevant 

studies. That is not an issue here. All the datasets that we used (with one exception [24]) 

reported good fits to Eq.1.  

Availability of relevant information is the third key issue, and it does apply 

here. Among these datasets are of course wide variations of techniques such as grain-size 
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measurement and characterisation of texture. Such variations were not generally fully 

reported by the original authors and the data were not then and cannot now be corrected 

in any way for them. However, such variations did not affect the validity of the datasets 

as published or later used as support for Eq.1, and no more do they affect their validity 

under meta-analysis as evidence of a behaviour which refutes Eq.1. Indeed, selection or 

correction of the raw data is dangerous in meta-analysis because of the risk of introducing 

bias. Some authors gave information about, for example, measurement of grain size, 

while others did not. This is not a risk factor providing that (1) there is little likelihood 

that the reported information or lack of it is correlated any of the factors, and (2) that no 

attempt is made to correct some data in the light of this information while other data 

cannot be corrected for lack of the information.  

Analysis of data is a rather technical issue that does not concern us here, for it 

covers issues such as data-mining, in which a large body of data, tested for a very large 

number of correlations, will by chance give some false-positive outcomes among the very 

large number of true-negatives. Here we are looking for and finding specific outcomes 

predicted by theory.  

 Good physics: The previous point raises a final criticism of meta-analysis, made 

by a referee of a previous version of this paper: good physics does not arise out of 

statistical analyses of large datasets. Here, of course, the physics does not arise out of the 

statistical analysis.  The physics arises out of the Orowan-Matthews ideas about 

dislocation curvature, or out of the Eshelby-Frank-Nabarro pile-up ideas [27]. Statistics 

are used merely to choose between them, in as rigorous a way as possible.  It is for this 

reason that we do not use a coefficient of determination such as R2 to test Eq.1 or Eq.3, 

but consider, simply, the question, what model is most probable, given the data?   
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Table 1. Results of fitting randomized datasets with various Maximum Likelihood (ML) probability distributions, Gaussian (G), 

equivalent to a least-squares (LS) fit, Lorentzian (Lor), double-Gaussian (DG) and Gaussian plus flat (GF).     

 ML/MS G  ML Lor  ML DG  ML GF 

P(ri) 22 2/

22

1 



ire  
22

1





 ir
 

)(G)1(

)(G

2

1





f

f
 

)(G)1(  ffg  

500 LS 

dummies  

a: –0.003 

  0.092  

   

Dummy 

D1 

lnL: 10.0 

f: 0 

a: –0.056 

 0.096 

: 0.29 

lnL: 56.6 

f: 0 

a: –0.018 

 0.024 

: 0.034  

lnL: 61.2 

f: 0.14  0.5 

a: –0.010 

 0.025 

1: 0.07; 2: 0.8 

lnL: 68.5; g: 1 

f: 0.15  0.05 

a: –0.011 

 0.025 

: 0.062 

log10D1 lnL: –38.0 

f: 0 

a: –0.17 

 0.21 

: 0.65 

lnL: –29.2 

f: 0 

a: –0.072 

 0.11 

: 0.16  

lnL: –26.5 

f: 0.42  0.12 

a: –0.076 

 0.11 

1: 0.21; 2: 1.0 

lnL: –25.1 

f: 0.09  0.03; g: 3 

a: –0.078 

 0.12 

: 0.27 
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Table 2.  Fitting parameters for the various factors of Figs 2-4 using the Maximum Likelihood method with the Gaussian plus 

Flat pdf. The fraction of outliers is f and the maximum log-likelihood is lnL.  

 

a. Fits to the Hall-Petch inverse-square root equation 

Abscissa Slopes a Slopes  Outliers f lnL 

Year, Y aY = 0.032  0.050 Y = 3.310–4 yr–1    0.14  0.05 69 

Strain, pl a = 0.038  0.026  = 0.126  0.15  0.06 70 

Schmid factor anisotropy, m am = 0.039  0.038 m = 0.123 0.14  0.06 70 

Purity, p ap = 0.067  0.015 p = 0.033 0.16  0.06 76 

Bulk strength, 0 a = 0.059  0.023  = 20.3 0.15  0.06 72 

Anisotropy, C aC = 0.086  0.020 C = 0.0117 0.19  0.06 75 

Stacking fault energy,  a = 0.088  0.015  = 5.310–4 m2 mJ–1   0.14  0.05 84 

Grain size, dISR ad = 0.101  0.029 α d = 3.9 0.15  0.05 74 

b. Fits to the critical thickness log d over d equation 

Abscissa Slopes a Slopes  Outliers f lnL 

Year, Y aY = 0.85  0.55 Y = 8.610–3 yr–1    0.15  0.05 –89 

Strain, pl a = 0.40  0.28  = 1.34  0.15  0.05 –89 

Schmid factor anisotropy, M aM = 0.97  0.40 M = 3.1 0.15  0.05 –87 

Purity, p  ap = 0.71  0.17 p = 0.36 0.15  0.05 –82 

Bulk strength, 0 a = 0.45  0.33  = 110 0.15  0.05 –89 

Anisotropy, C aC = 0.81  0.26 C = 0.107 0.16  0.05 –86 

Stacking fault energy,    a = 0.81  0.18  = 4.810–3 m2 mJ–1   0.15  0.05 –81 

Grain size, dISR ad = 0.81  0.33 α d = 33 0.15  0.05 –87 
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Table 3.  Fitting parameters for weighted combinations of factors. Fixed fitting parameters are in bold.  In the first 

column, equal weights are given to all factors. In the second column, weights are optimized for the highest lnL. Then each 

factor in turn has been eliminated by giving a fixed weight of zero and lnL has been optimized with respect to the other 

weights. The final rows gives the Akaike Information Criterion (AIC) [15] and the Bayesian Information Criterion (BIC) 

[29] values for each model.   

a. Fits to the Hall-Petch inverse-square root equation 

Factors  wi wi wi wi wi wi wi wi wi 

Year 1 –0.5  1.4 0 –0.5 –1.0 –0.6 0.5 –0.7 –0.9 0.8 

Strain, pl 1 2.6  1.5 2.4 0 2.9 1.3 2.5 1.1 4.4 2.9 

Purity, p 1 0.6  0.4 0.6 0.7 0 0.6 0.9 0.7 1.0 1.2 

Bulk strength, 0 1 –1.0  1.0 –0.9 0.7 –1.2 0 –0.9 0.6 –2.1 0.4 

Anisotropy, C 1 1.1  0.4 1.1 1.1 1.3 1.1 0 1.4 1.2 1.9 

Stacking-fault energy,  1 0.9  0.5 0.8 0.7    1.1 0.7 1.7 0 1.5 2.0 

Schmid factor anisotropy, m 1 2.1  1.1 2.0 2.9 2.8 2.6 0.8 3.0 0 –1.1 

Grain size, dISR 1 2.2  0.5 2.1 2.4 2.1 2.2 2.5 2.0 2.8 0 

“Outliers”, f 0.19 0.15  0.15 0.15 0.15 0.15 0.15 0.18 0.15 0.28 

Slope, a 0.142 0.156  0.06 0.157 0.155 0.159 0.156 0.162 0.150 0.148  0.146 

Gaussian width,  0.024 0.023 0.023 0.024 0.024 0.023 0.025 0.022 0.024 0.017 

Log-Likelihood, lnL 92 101.4 101.4 99.8 99.7 100.9 97.5 98.4 100.1 89.3 

AIC = 2n – 2 lnL  –175 –181 –183 –180 –179 –182 –175 –177 –180 –159 

BIC = n ln61 – 2 lnL –167 –158 –162 –159 –158 –161 –154 –156 –159 –138 
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Table 3b.  Fitting parameters as Table 3a but for d–1lnd  

 

Factors wi wi wi wi wi wi wi wi wi wi 

Year, yr 1 1.0 ± 1.0 0 0.9 0.9 1.0 1.2 0.8 1.0 1.8 

Strain, pl 1 2.0 ± 2.5 2.1 0 2.3 1.8 1.6 0.7 2.9 5.1 

Purity, p 1 0.8 ± 0.6 0.8 0.8 0 0.8 0.9 0.9 1.2 1.0 

Bulk strength, 0 1 –0.2 ± 3.0 0.1 2.0 0.8 0 0.3 1.8 –1.0 –4.3 

Anisotropy, C 1 0.8 ± 0.8 1.0 0.6 1.0 0.8 0 1.1 0.4 1.3 

Stacking-fault energy,  1 1.0 ± 0.7 1.1 0.8 1.4 1.0 1.4 0 1.5 1.5 

Schmid factor anisotropy, m 1 1.2 ± 0.8 1.2 1.2 1.6 1.2 0.9 1.3 0 1.7 

Grain size, dISR 1 1.5 ± 0.8 1.8 1.7 1.6 1.5 1.8 1.4 2.0 0 

“Outliers”, f 0.15 0.15 ± 0.05  0.15  0.15 0.15 0.15 0.15 0.15 0.15 0.15 

Slope, a 1.76  1.77 ± 0.13 1.56 1.95 1.75 1.78 1.74 1.99 1.68 1.53 

Gaussian width,  0.39 0.38 ± 0.04 0.38 0.38 0.39 0.38 0.38 0.39 0.39 0.38 

Log-Likelihood, lnL –72.3 –71.2 –71.7 –71.6 –72.4 –71.2 –71.8 –72.5 –72.3 –72.8 

AIC = 2n – 2lnL  153 164 163 163 165 162 164 165 165 165 

BIC = 4.1n – 2lnL 161 188 184 184 186 183 185 186 186 187 

 

 



σ = σ0 +
kHP

d

The abscissa contains weighted factors:

w1 year of publication
w2 plastic strain
w3 plastic anisotropy
w4 composition (purity)

w5 bulk strength
w6 elastic anisotropy
w7 stacking fault energy
w8 grain size

Only grain size is statistically significant

in determining kHP values
Combined abscissa with weights
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