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ABSTRACT 

The combined finite-discrete element method (FDEM) has made a groundbreaking progress in the 

computation of contact interaction. However, FDEM has a strict requirement on the element type, and 

the simulation result may be inconsistent due to a deficiency of physical meaning of the potential function. 

To address this problem, a new 3D discrete element method based on a distance potential is proposed for 

a system consisting of a large number of arbitrary convex polyhedral elements. In this approach, a well-

defined distance potential is proposed as a function of the penetration between the contact couples. It 

exhibits a clear physical meaning and precise measurement of the embedding between the elements in 

contact. The newly presented method provides a holonomic and accurate contact interaction without 

being influenced by the element shape. Therefore, the restraint of the element type in FDEM is removed 

and the proposed method can be used for arbitrary convex polyhedrons. In addition, an improved contact 

detection algorithm for non-uniform block discrete elements is provided to overcome the demand of the 

elements with same size of the Munjiza-No Binary Search (Munjiza-NBS) contact detection method. 

The new approach retains the merits of the FDEM and avoids its deficiencies. It is validated with well-

known benchmark examples including an impact simulation, a friction experiment, a joints structure of 

a sliding rock mass, pillar impact, block accumulation and analysis for the failure process of wedge slope. 

The results of this proposed method are in excellent agreement with existing experimental measurements 

and analytical solutions. 
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tangential contact interaction; contact detection algorithm 
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1. Introduction 

Computational discontinuous mechanics has an important role in various engineering fields. 

Generally, the analyzed medium is discretized into a large number of individual blocks using 

discontinuous structural planes. The mechanical behavior of separate entities is hard to model with 

traditional numerical methods based on the continuum assumption. By comparison, discontinuous 

methods apply the block or particle-based models to describe the movement of each component. Over 

recent decades, development of accurate and efficient numerical methods for discontinuous problems has 

become a very active research area of computational mechanics. 

In general, discontinuous numerical methods can be classified as implicit or explicit methods 

according to the solution methods for dynamic equations. Among the implicit approaches, the 

discontinuous deformation analysis (DDA) originated by Shi (Shi and Goodman 1985; Shi 2001) is a 

typical method. Since the initiation of the two dimensional model for DDA in 1985, diverse applications 

have been carried out to validate the performance for 2D problems (Zhang et al. 2014; Nie et al. 2014; 

Morgan and Aral 2015). Although much attention has been paid (Yeung et al. 2003; Yeung et al. 2007; 

Zhu et al. 2016), DDA still suffers from many deficiencies when it is extended to three dimensions due 

to a serious obstacle in the contact detection. In DDA, as the contact condition is determined by the 

process of open-close iteration (Zheng et al. 2016), the stiffness of the contact spring significantly affects 

the results. The open-close iteration is not always convergent, especially when many point-to-point 

contact candidates are involved in the problem. Many improvements have been applied to avoid the 

contact spring (Lin et al. 1996; Cai et al. 2000; Zheng and Jiang 2009), but the open-close iteration is 

still necessary to determine the contact state and it may fail due to rank deficiency of the stiffness matrix 

(Zheng et al. 2016; Li and Zheng 2015; Zheng and Li 2015). Furthermore, it has no efficient way to solve 

the point-to-point contact condition (Bao and Zhao 2012). Originally, the stress and strain inside the 

block are assumed to be constant and the deformation of blocks are limited in DDA due to the utilization 

of a first-order displacement function. To overcome these drawbacks, Shi (Shi 1992) proposed the 

numerical manifold method (NMM) based on the finite cover approximation theory. The 2D NMM has 

already been developed and used in various researches (Terada et al. 2003; Ning et al. 2011; Zheng and 

Xu 2014). On the contrary, the three dimensional NMM is in early development stage, and the published 

literature is still focused on the concept extension and equation derivation (Jiang et al. 2009; He et al. 

2013). 

An alternative to the discontinuous numerical method is the discrete element method (DEM). 

Instead of the implicit approach utilized in DDA and NMM, an explicit scheme is employed to avoid the 

establishment and resolution of a motion matrix equation (Jing 2003). The non-linearity in material 

behavior can also be handled in a straightforward manner. Depending upon the description of the 

geometrical configuration in elements, DEM is generally divided into two categories, namely granular 

discrete method and block discrete element method. The granular discrete element method, firstly 

suggested by Cundall and Strack (Cundall and Strack 1979), has enjoyed considerable popularity due to 

the simplicity of the element type (Smeets et al. 2015) and efficiency in contact detection (Hohner et al. 

2011). The commercial code, Particle flow code PFC2D/3D (Itasca 2014a; Itasca 2014b), developed by 

Itasca Consulting Group, has been widely applied to simulate the motion of rock-mass (Albusaidi et al. 



3 

2005; Shimizu et al. 2011; Yoon et al. 2014) and soil materials (Mcdowell and Harireche 2002; Jung et 

al. 2012; Wang and Yan 2013). Subsequently, multi-element particle models were also developed (Garcia 

et al. 2009; Zhou et al. 2013). However, the granular discrete element method has a severe drawback that 

its spherical element is not able to capture the complex physical features of an actual particle, such as 

interlocking of particles (Latham and Munjiza 2004). In addition, the value of shear strength among the 

granular particle assemblies are below those obtained experimentally (Jiang et al. 2015). 

On the other hand, the block discrete element method raised by Cundall and Strack (Cundall 1971; 

Cundall 1988; Hart et al. 1988) has received a close attention because it considers realistic element shapes 

for a more accurate interaction. The core concept of the method is that it treats all blocks as rigid and a 

small amount of overlap is allowed in order to consider relative displacement. At each time step, the 

contact interaction is determined by laws which update the contact forces based on the relative motions 

and relevant contact stiffness. This method has already been applied in the commercial codes UDEC 

(Cundall and Hart 1985; Itasca 2016a) and 3DEC (Itasca 2016b), and it has a broad variety of applications 

in engineering and research studies (Zhu et al. 2013; Boon et al. 2014). 

 However, the standard DEM lacks a simple and unified mathematical model of the contact 

interaction in different contact statuses. Normal and tangential springs are used to express the contact 

force. As a result, different calculation models, such as point-to-point, point-to-edge, point-to-face, are 

not robust and generally very complex, but are necessary according to the different contact situations. 

Furthermore, it cannot deal with the point-to-point contact state. For the standard block DEM method, 

this kind of difficulty mainly comes from the non-determinacy of the normal contact force, as the normal 

direction does not vary smoothly but discontinuously at a corner. This also results in an inconsistent 

contact force which can cause energy imbalance and numerical errors. One common practice to overcome 

the corner singularity is to employ a corner rounding procedure so that blocks can slide past one another 

in a smooth way when two opposing corners interact (Bao and Zhao 2012). However, this practice has a 

negative effect on the accuracy and robustness. In order to address complex contact modes, Cundall 

(Cundall 1988) introduced the common plane (CP) method. By translating and rotating the common 

plane, the contact types can be reduced to a corner-to-plane contact. However, the common plane method 

and the improved algorithms still face a number of problems (Nezami et al. 2004; Nezami et al. 2006), 

for example, the proper choice of the common plane, the iterative error for the spinning common plane 

and its uniqueness. Consequently, the reliability of simulation results would be influenced by these 

defects. 

 Some improvements have been introduced to make DEM more accordant with practical 

circumstances and provide more efficient models both in contact interaction (Li et al. 2004; Jin et al. 

2011; Feng et al. 2012; Lu et al. 2015; Kawamoto et al. 2016) and contact detection (Kodam et al. 2010a; 

Kodam et al. 2010b). Among them, the combined finite-discrete element method (FDEM) draws the 

most attention after it was introduced by Munjiza (Munjiza et al. 1995). Entirely different from the 

standard DEM, FDEM defines a new potential function instead of employing normal or tangential spring. 

Accordingly, the contact force in FDEM is determined conveniently and uniformly by an integral of the 

potential function over the embedded volume. In addition, each element is discretized into finite elements 

to capture the deformability of an individual discrete element. Generally, Munjiza (Munjiza et al. 1995) 
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has made a revolutionary change on the mode of contact interaction which establishes a new and uniform 

calculation model to avoid the discussion of different contact situations completely, whilst the energy 

conservation and momentum balance properties are preserved during the contact process. In the 

meantime, to improve the efficiency of contact detection, Munjiza (Munjiza and Andrews 1998) 

produced a linear algorithm, which is known as No Binary Search (NBS) (Munjiza and Andrews 1998). 

This new algorithm performs well both in dense and loose packs of blocks because of the insensitivity 

of the spatial distribution of blocks (Munjiza et al. 2006) and it can reduce the CPU requirement of 

contact problems (Munjiza 2004). The research code Y-code has been developed by Munjiza in 2004 

(Munjiza 2004), together with a graphical user interface (Y-GUI) which is a practical example of this 

approach (Mahabadi et al. 2010). 

 Although various applications have been published to represent the validations of FDEM (Munjiza 

and John 2002; Munjiza et al. 2004; Rougier et al. 2011; Mahabadi et al. 2012), the numerical precision 

of this method remains uncertain. As the potential function is defined in a simple format which is the 

normalized penetrated volume, the potential value is greatly influenced by the element shape. In other 

words, with the same penetration and overlapping volume within a same element, the potential magnitude 

is not identical at all time. Therefore, both the contact interaction and the simulation may undergo 

deviations which can decrease computational accuracy, even though the macroscopic mechanical 

behaviors of blocks is achieved conveniently and quickly in most cases. The principal reason for this 

phenomenon fundamentally boils down to the inherent deficiency of the potential definition, which lacks 

a clear physical meaning and a measurement for the penetration between the contact couples. Besides, 

this numerical model of contact interaction is incomplete, because this method does not indicate the 

influence of tangential contact force. Another severe drawback is that FDEM cannot be used for an 

arbitrary polyhedral element due to the specific definition of the potential function for the four-node 

tetrahedron (Munjiza 2004). Moreover, the NBS contact detection algorithm is not efficient when it is 

utilized to deal with a system of a large number of polyhedral blocks with different sizes. It limits the 

application of this method in engineering due to the rapid increase of computing time. 

In the current work, a three-dimensional distance potential discrete element method has been 

proposed. In this approach, a novel definition of distance potential function is developed and a complete 

calculation algorithm for the normal contact interaction is exhibited. Furthermore, the proposed method 

also provides a precise definition of the tangential direction and the computational algorithm. The new 

approach retains the merit of FDEM and avoids its deficiencies. The new function is based on the 

normalized penetrated distance. In comparison with the definition in FDEM, this function exhibits a clear 

physical meaning and presents an accurate measurement of penetration for the contact elements. 

Accordingly, both the magnitude of the distance potential function and numerical solution of the contact 

interaction are calculated regardless of the element types and shapes. Quite apart from that, a non-uniform 

block contact detection algorithm is introduced to overcome the defects of NBS contact detection 

algorithm. 

 This paper is organized as follows. The basic idea of FDEM is given in section 2 in which the 

definition of the potential function and its calculation algorithm are introduced. Then the new distance 

potential function and the algorithm of contact interactions are derived in detail in section 3. An improved 
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new non-uniform blocks search algorithm is introduced in section 4. Several illustrative examples are 

applied to validate the presented method in section 5. Brief conclusions are summarized in section 6. 

2. Basic idea of FDEM 

2.1 Definition of potential function and contact force calculation 

The most notable difference between FDEM and the classic discrete element method lies in the 

application of a potential function. Instead of the force-displacement law, FDEM employs the definition 

of a potential function and a potential contact force to calculate the contact interaction. 

 

Fig. 1 Sub-tetrahedral elements divided by a corresponding centroid o and a point p in sub-tetrahedron 

o-b-c-d. 

As shown in Fig. 1, a tetrahedral element is separated into four-node sub-tetrahedral elements 

according to the corresponding centroid o. The potential value of each point p in the sub-tetrahedron is 

defined as: 

  
4

p b c d

o b c d

V
p k

V
   

  

 
  

 
, (1) 

where k is the penalty parameter, p b c dV     and o b c dV     stand for the volume of tetrahedron p-b-c-d 

and sub-tetrahedron o-b-c-d, respectively. 

Consider two discrete elements, t  and c . t  is penetrated by the element c , as shown in 

Fig. 2. 
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Fig. 2 The contact couple and their overlapping volume. 

The normal contact force acting on the overlapping domain is generated by integrating   over the 

overlapping volume t cV  , as follows: 

  
t c

n c tV
grad grad dV  f


, (2) 

where c  and t  are the corresponding potential functions in t cV   belonging to the elements c  

and t , respectively. 

Eq.(2) can also be rewritten as an integration over the boundary surface t cS   of t cV   in 

accordance with the Gauss formula: 

  
t c

n c tS
dS  f n


, (3) 

where n is the outward unit vector of the boundary surface t cS  . 

2.2 Some issues of contact force in FDEM 

In the context of FDEM, the potential   plays an important role in calculating the normal contact 

force. From Eq.(1), it is clear that   is a function of the penetrated distance and itself provides an extent 

measurement of the embeddedness between the contact couples. It means that the potential gradient 

should be constant and the points with the same penetrated distance ought to have the same magnitude 

within the same element. The potential distributions in tetrahedral elements are exhibited in Fig. 3. It is 

worthwhile to notice that the distribution density of potential remains constant inside the regular 

tetrahedral element in Fig. 3(a), however, high difference is indicated in every sub-tetrahedron of the 

arbitrary tetrahedral element in Fig. 3(b). Accordingly, this approach is strongly sensitive to the element’s 

shape. 
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Fig. 3 The potential distribution in tetrahedral elements. (a) potential distribution in a regular 

tetrahedron; (b) potential distribution in an arbitrary tetrahedron. 

The reason for this phenomenon lies in the inherent defect of this potential definition. As shown in Fig. 

4  

Fig. 4, points 1a  and 2a  are selected with the same distance h along the inward unit normal 

vector of the bases b-c-d, a-c-d in tehrahedons a-b-c-d, respectively. The potential value at points 1a  

and 2a  can be calculated using Eq.(1): 

   1

1 4
a b c d

o b c d

V
a k

V
   

  

 
  

 
,   2

2 4
a a c d

o a c d

V
a k

V
   

  

 
  

 
. (4) 

The different shapes of the tetrahedron results in different results. On the basis of the geometrical 

property of tetrahedron, volumes of tetrahedra a1-b-c-d and a2-a-c-d shown in Fig. 4(a) are equivalent, 

but they are different in Fig. 4(b). Consequently, in Fig. 4(a),    1 2=a a  , but they are not equal in 

Fig. 4(b). The discrepancy caused by the element shape can be observed clearly. As a result, the normal 

contact interactions are also not equivalent by Eq.(3). In fact, although the element shapes are different, 

the normal contact force cannot be different because of the same penetrated distance. 
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Fig. 4 Points 1a  and 2a  with a same penetrated distance h in tetrahedron a-b-c-d. (a) a-b-c-d is a 

regular tetrahedron; (b) a-b-c-d is an arbitrary tetrahedron. 

In addition, this potential definition has a strict restriction to the element type and cannot be used 

to compute the contact interaction among polyhedra. The fundamental cause for this problem comes from 

the basic concept in Eq.(1). As shown in Fig. 5, the hexahedron is discretized into five-node pyramidal 

blocks. Analogously, two points 1p  and 2p  with same penetrated distance are selected. The potential 

value for 1p  and 2p  can be obtained by Eq.(1). 

 

Fig. 5 Sub-polyhedral blocks divided by the corresponding centroid o and two points 1p  and 2p  

with a same penetrated distance. 

Noted that the same result for points 1p  and 2p  cannot be satisfied with Eq.(1) due to the 

randomicity of boundary surfaces 1  and 2 . More importantly, the presence of discontinuities along 

the interfaces can be observed in the arbitrary polyhedral block exhibited in Fig. 6(b). 
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Fig. 6 The potential distribution in hexahedral elements. (a) potential distribution in a cube; (b) 

potential distribution in an arbitrary hexahedron. 

3. Distance potential discrete element method 

3.1 Definition of distance potential function 

As mentioned before, FDEM is an excellent convenient and efficient algorithm for the calculation 

of contact interaction, however, this method has a strict requirement on the element type and the 

simulation result may be inconsistent. In this section, a new definition of the distance potential function 

is developed to overcome these defects. 

Assuming an arbitrary convex polyhedral element, the radius of a maximum inscribed spherical 

element expressed as r is shown in Fig. 7. As described in Fig. 8, the inner domain is surrounded by 

boundaries which have the same distance r from the base surfaces of the block. The block is discretized 

into sub-polyhedral elements by the nodes of the bases and inner domain as shown in Fig. 8(b). 

Accordingly, the distance potential value d  for each point p in the sub-polyhedron is defined as: 

   1
d p h

r
   Ⅰ, 1d  , (5) 

where hⅠ  is the distance from the point p to the base Ⅰ of the sub-polyhedron. 

 

Fig. 7 An arbitrary polyhedral block and its maximum inscribed sphere. 
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Fig. 8 An element is divided into sub-polyhedral blocks on the basis of the maximum inscribed sphere; 

where (a) the inner domain of the element according to r; (b) sub-polyhedral blocks and the point p are 

shown. 

Note that the new concept of dividing elements with the radius of a maximum inscribed sphere 

often results in an inner domain at the center of the element as presented in Fig. 8(b), especially for an 

arbitrary polyhedron and this phenomenon can be observed in Fig. 9. As described above, the point in 

this area is not defined by the distance potential function. In accordance with the basic assumption of the 

discrete element method, the embedded distance between contact couples is strictly controlled by the 

value of the normal contact stiffness. Consequently, the overlapping volume cannot extend to the core of 

the element because only a small penetration is allowed during the DEM computation, and the singular 

area without the definition of distance potential is not of significance for the solution procedure. 
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Fig. 9 Inner domain for an arbitrary polyhedron. 

The merit of this definition lies in the approach of the approximated calculation of the contact 

interaction. As the normalized partition of the penetrated distance is applied in Eq. (5), the distance 

potential value is achieved without an influence of the element shape as presented in Fig. 10. Moreover, 

this new definition can be used in an arbitrarily convex polyhedron, because the principle of the distance 

potential function holds good universally. The constant of distribution gradient is also indicated in Fig. 

11. The normal contact stiffness of different boundaries of the element is in accordance with the actual 

condition. As a result, it can avoid errors both in the calculation of potential and normal contact force as 

discussed in section 2.2. 

 

Fig. 10 The distance potential distribution in tetrahedral elements as in (a) a regular tetrahedron; (b) an 

arbitrary tetrahedron. 
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Fig. 11 The distance potential distribution in hexahedral elements as in (a) a cube; (b) an arbitrary 

hexahedron. 

3.2 Normal contact force 

In this section, the calculation process of the normal contact force is considered as based on Eq. (3) 

but with the newly defined distance potential function. 

As illustrated in Fig. 12, two polyhedral blocks t  and c  are in contact. Normal contact force 

between this contact couples can be described as an integration of the distance potential function over 

the boundaries of the overlapping volume. 

 

Fig. 12 Two contact polyhedrons and their overlapping volume. 

In summary, two steps are listed as follows for the determination of the boundary surfaces: 

Step 1. Determine the intersection surface S among the plane of the base of c  and the target sub-

polyhedron of t  as indicated in Fig. 13. 

  1 2 n, ,S S S S  , (6) 
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where 1 2 n, ,S S S  are the nodes of the intersection surface S. 

 

 

 

Fig. 13 Intersection surface S between the plane base   of c  and a sub-polyhedron of t , 

showing (a) the sub-polyhedron of t  and the plane of   of c ; (b) the sub-polyhedron of t  is 

separated into two parts by the plane of  ; (c) the intersection surface s is determined by the sub-

polyhedron of t  and the plane of  . 

Step 2. Determine the intersection polygon B defined by the surface S and the base   of c  

shown in Fig. 14. 

  1 2, , nB B B B  , (7) 
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where 1 2, , nB B B  are the nodes of the polygon B. 

 

Fig. 14 The intersection polygon B between the surface S and the base  . 

Then the value of the distance potential at every node of the interaction polygon B is presented as: 

      1 2, ,d d d nB B B    (8) 

The calculation is performed over the polygonal surface B. For simplicity, two assumptions are 

generated as base upon the regularities of the distribution of the distance potential function in the 

polyhedron: (i) The local coordinate system  ,x y  is established on the boundary surfaces, respectively. 

(ii) The distance potential distribution on the intersection surface B has a linear variation and the value 

of the point over the surface B is represented as: 

   1 2 3,d i i i ix y A x A y A    , (9) 

where xi and yi are the local coordinates of the point on the polygonal surface B. 

Parameters 1A , 2A  and 3A  can be expressed as: 

           1 1 3 2 2 3 1 3 1 2 /d d dA B y y B y y B y y J          , (10) 

         2 1 3 2 2 1 3 3 2 1 /d d dA B x x B x x B x x J          , (11) 

          3 1 2 3 3 2 2 1 3 3 1 3 1 2 2 1 /d d dA B x y x y B x y x y B x y x y J          , (12) 

where  1 1,x y ,  2 2,x y  and  3 3,x y  are the local coordinates of B1, B2 and B3, respectively. 

Thus the normal contact force over the polygonal surface B is: 

  , ,n B B n dk x y dxdy f n , (13) 

where Bn  is the outward unit vector of the polygonal surface B, nk  is the normal penalty parameter. 
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And the moments contributed by the contact normal force are: 

  , ,x B B n dk x y ydxdy M n , (14) 

  , ,y B B n dk x y xdxdy M n . (15) 

 

Fig. 15 The polygonal intersection surface B is divided into triangles by the nodes. 

The integration is performed by dividing the polygonal surface into triangles bi as shown in Fig. 15, 

then summating the total contact force over the triangular surfaces. 

Note that the integration is computationally expensive over the triangular surfaces when there is a 

large number of elements and the shape of integral domain is arbitrary. Therefore, a natural coordinate 

system  ,   located in every triangular surface is established for simplifying the calculation and 

improving computational efficiency. 

 

Fig. 16 Transition from the local coordinate system  ,x y  to natural coordinate system  ,  . 

The local coordinate system and natural coordinate system shown in Fig. 16 are related through 

well-defined mappings: 

    
3

1

, ,i i
i

x N x   


 , (16) 
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3

1

, ,i i
i

y N y   


 , (17) 

where  ,iN    is the shape function expressed as: 

  1 , 1N       ，  2 ,N    ，  3 ,N    ，    , 0,1    (18) 

Therefore Eq.(9) can be described as: 

        1 31 2 31 1 21 2 21 1 1 2 1 3, ,d dx y A x A y A x A y A x A y A             , (19) 

where 21 2 1x x x  , 21 2 1y y y  , 31 3 1x x x  , 31 3 1y y y  . 

 The Eqs.(13), (14) and (15) can be rewritten as: 

    ,
=1 1

, ,
i i

m m

n B B n d B n db b
i i

k x y dxdy k d d     


   f n n , (20) 

    ,
1 1

, ,
i i

m m

x B B n d B n db b
i i

k x y ydxdy k J d d     
 

   M n n , (21) 

    ,
1 1

, ,
i i

m m

y B B n d B n db b
i i

k x y xdxdy k J d d     
 

   M n n , (22) 

where m is the number of the divided triangular surfaces, J  is the Jacobi determinant of coordinate 

transformation, 

x y

J
x y

 

 

 
 


 
 

. 

 On the basis of Eq.(19), Eqs.(20), (21) and (22) can be simplified as: 

 31 2
,

1 6 6 2

m

n B B n
i

CC C
k



    
 

f n , (23) 

 31 2
,

1 12 24 6

m

B B n
i

CC C
k



    
 

M n , (24) 

 31 2
,

1 24 12 6

m

B B n
i

CC C
k



    
 

M n . (25) 

Parameters 1C , 2C , 3C  are expressed as: 

    1 1 2 1 2 2 1C A x x A y y J      , (26) 

    2 1 3 1 2 3 1C A x x A y y J      , (27) 

  3 1 1 2 1 3C A x A y A J   . (28) 

The action position of the normal contact force in the natural coordinate system can be determined 
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by: 

 

,

,

,

,

B
n

n B

B
n

n B

M

f

M

f




















 (29) 

Analogously, the normal contact force and moment between the contact couples are decomposed 

into a summation at each base surface of the overlapping volume. 

3.3 Tangential contact force 

Munjiza (Munjiza et al. 1995) improved the calculating the algorithm of normal contact interaction 

and developed a simplified potential contact force method. However, the influence of the tangential 

contact force is not considered in his method. In this section, a precise computational algorithm for the 

tangential contact force is developed by the displacement increment method to revise this flaw in the 

FDEM approach. 

The main difficulty of calculating the tangential contact force is the accurate determination of the 

tangential direction at each time step. As analyzed in section 3.2, contact interaction is decomposed as 

an integration over each boundary surface. Therefore, the measurement for tangential contact force can 

be generated in two different ways. 

One possible way is to use an approximation of the algorithm for the normal contact force described 

in section 3.2. The tangential displacement increment and tangential force are implemented as 

components on the boundary surfaces (Yan et al. 2015; Yan and Zheng 2016). For brevity, the value of 

the total tangential contact force at step i is denoted by 

  1
,

sn
i i- i

s s s s t j
j

k


  f f δ
1

, (30) 

where sn  is the number of the boundary surfaces, i
sf  is the tangential contact force at step i, 

,
i
s tδ  is the tangential increment displacement of each surface, and ks is the tangential penalty parameter. 

The tangential direction is defined as verticality of the normal contact force on each surface. 

It is worthwhile to note that large computer memory (RAM) is necessary to record both the normal 

and tangential force and displacement increments at each step for all boundary surfaces. More 

importantly, this method could cause excess normal force. As indicated in Fig. 17(a) and (b), block Ⅰ

impacts block Ⅱ  in a direction opposite that of Z axis. Initially blocks Ⅰ and Ⅱ  are stacked in 
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such way that they contact, but there are no overlap and contact force between them. The calculation of 

the contact interaction is presented in Fig. 17(c). It is observed that the tangential forces ,t acf  and ,t abf  

have components along the normal direction which will affect the computation of the normal contact 

force. And this can be a source of error. 

 

 

Fig. 17 The calculation of a tangential contact force on each boundary surface, where (a) block Ⅰ 

penetrates Ⅱ  along Z axis; (b) the calculation model of cross section 1-1; (c) the contact interactions 

in 1-1. 

An alternative approach is illustrated in Fig. 18. The calculation for tangential force is achieved by 

following the solution of the total normal contact force. The value of the tangential force is determined 

by the total tangential increment displacement. The direction of the tangential force is perpendicular to 

the total normal contact force and the loading position is almost identical with the total normal contact 
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force. Hence excessive computer memory requirements and the errors analyzed for the first method can 

be completely eliminated. 

 

Fig. 18 Calculation of tangential contact force based on the total tangential increment displacement. 

In this work, we calculate the tangential contact force with the second algorithm. To achieve the 

increment tangential displacement, the relative velocity of the contact element c  with respect to the 

target element t  shown in 

 

Fig. 12 at step i is considered as 

      i i i i i i i
c t c c t tv v v ω r ω r , (31) 

where i
cv  and i

tv  are the translational velocities of blocks c  and t  at step i, respectively; i
cω

and i
tω  stand for the angular velocities of blocks c  and t , respectively. Then the incremental 

tangential displacement i
sδ  is: 

    i i i i i
s n n n n t          Δδ Δs Δs n n v v n n Δ , (32) 

where iΔs  is the incremental displacement between c  and t , and nn  is the unit direction vector 

of total normal contact force. 

The tangential contact force is updated as: 

 1f f Δf  i i i
s s sr , (33) 

where r is the rotation matrix that rotates the normal vector from step i-1 to the normal vector at the 

current step i, i
sΔf  is the incremental tangential contact force expressed as: 

 i i
s s sk Δf Δδ  (34) 

The magnitude of the tangential force is checked with the maximum possible value  maxsf  
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defined by Coulomb-type friction law as: 

  max
tans nf f C   , (35) 

where   is the maximum static friction angle, C is the cohesion force. If the absolute value of sf  is 

larger than  maxsf , sf  is set to be equal to  maxsf . 

 The tangential contact moment is given by 

 i i
s s s M f  , (36) 

where s  is the vector from the force sf  load position to the centroid of the element. 

4. Contact detection algorithm 

As mentioned in the previous sections, the proposed method is applied to deal with the motion of a 

system consisting of arbitrary convex polyhedra. In general, the simulation model contains a large 

amount of individual blocks with different sizes. An efficient contact detection algorithm is crucial since 

it can affect the computational efficiency of the discrete element method. One of the most common 

contact detection algorithm is the NBS (no binary search) firstly developed by Munjiza (Munjiza and 

Andrews 1998). It is a linear calculation algorithm, in other words, both the total CPU time and RAM 

requirements are proportional to the number of blocks. Because the method is insensitive to the spatial 

distribution of the elements, it displays a high effectiveness during the contact detection process both in 

dense and loose packs of elements with a uniform size. However, this method cannot be used for the 

problems of non-uniform blocks. As the system is discretized according to the size of the largest block, 

contact detections for small blocks are also performed even though they are far away from each other. 

To overcome this problem, Munjiza (Munjiza et al. 2006) developed the linear search algorithm for the 

system comprised of different sizes of particles and proposed the multi-step MR algorithm (MMR). 

In this work, an improved search algorithm is proposed for non-uniform polyhedral blocks 

depending upon the basic idea of MMR. The approach is performed by dividing the elements into 

different groups according to their sizes: 

Group 1: Value of the maximum circumradius for the first group blocks 1d : 1
D d D   , 

Group 2: Value of the maximum circumradius for the second group blocks 2d : 2 2
D Dd 

  , 

… 

Group n: Value of the maximum circumradius for the last group blocks nd : 1nn
Dd
  , 

where D is the maximum circumradius among all the blocks, 1  . 



21 

 

Fig. 19 Spherical bounding box of an icosahedron. 

Then the process of the contact search algorithm can be performed in n steps as follows. 

Step 1. As shown in Fig. 19, all of the elements are bounded by spherical boxes and they are mapped 

into the calculation space which is discretized into cells according to the maximum value of d1 in Fig. 20. 

Each block can only be mapped into a cell based on its centroid, as explained in the following 

formulations: 

 min1 int 0.5cent
k

x x
x

l

    
 

, (37) 

 min1 int 0.5cent
k

y y
y

l

    
 

, (38) 

 min1 int 0.5cent
k

z z
z

l

    
 

, (39) 

where centx , centy  and centz  are the current coordinates of the centroids in the global coordinate system,

kx , ky  and kz  are the coordinates of the centroids when the elements are mapped into the cell, 

 1maxl d . 

 

Fig. 20 Space divided into identical cells which are large enough to contain the first group element. 
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The contact detection is performed for the first group elements. The detection of contact for the first 

group elements is circulated as a direct check from either central or neighboring cells as shown in Fig. 

21. Discrete elements mapped into the cells can be determined as contact couples only if the contact 

condition is met: 

 maxcl l , (40) 

where cl  is the distance between the centroids of the contact couples. And maxl  is the contact distance:

max 1max 2 maxl l l  , 1 m axl , 2 maxl are the longest distances between the vertexes and centroids of the two 

contact elements, respectively. 

 

 

Fig. 21 Contact detection check cells, where (a) the blank cell is the central cell and the shaded 

elements are neighboring cells, (b) all the blocks are mapped into the cells and the contact detection for 

the first group elements is performed. 

The contact elements for the first group elements can be obtained respectively. 
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Step 2: The first group elements are removed from the system and all the remaining elements are 

mapped into the space which is divided by 2d  as shown in Fig. 22. Contact detection is performed 

between the elements of group 2 and remaining group elements with the method in step 1. Thus the 

contact couples for the second group elements can be detected. 

 

Fig. 22 The first group elements are removed and space is divided into identical cells according to d2 

Step n: By analogy, in this step only elements in group n remain in the system and the contact 

detection is carried out between these elements. 

With the new contact search algorithm, the size of the cells in each step is approximated to fit the 

detection performed elements. The coordinates of the element mapped into the cells can reflect the actual 

distribution law of the elements and it can greatly improve the accuracy of contact detection for the 

system comprised of blocks with different sizes. 

5. Verification and Application 

In this section, several numerical examples are presented to illustrate the accuracy of the newly 

proposed method. Firstly, the robustness is tested by five standard problems, including an impact 

simulation, a numerical friction experiment, a joints structure effects on the sliding rock mass, a pillar 

impact, and a block accumulation. Then the full simulation of this method is performed for a stability 

analysis of a wedge slope. The results are compared against existing numerical and experimental data in 

literature. 

5.1 Impact simulation between tetrahedral blocks 
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The proposed method exhibits an accurate computation algorithm of the normal contact force. To 

verify its reliability, a test for an impact process is analyzed. 

This numerical model is composed of two tetrahedral blocks Ⅰ and Ⅱ  which are vertically 

arranged along the Y axis shown in Fig. 23. The density of blocks is 2000 kg/m3 and the initial velocity 

of block A is set as 0 m/su . The vertical acceleration due to the gravity is taken to be 10 m/s2 in a 

direction opposite that of the Y axis, and the friction is neglected. In this simulation, large embedding is 

allowed with the application of a small penalty parameter for observation during the process of 

penetration. As a comparison, a test with the same setting is conducted by FDEM. 

 

Fig. 23 Numerical model for the impact test. 

Initially block Ⅰ  is free-falling towards Ⅱ . As Ⅰ  impacts the ridge a-b, the velocity 

decreases and converses to a standstill during the increment of the penetration. In this phase, the 

embedded volume between the contact couples achieves the maximum value simultaneously. Then A 

turns into a reverse motion and ultimately returns the original state for the negligible energy loss. 

The predicted motion of block Ⅰ with FDEM is illustrated in Fig. 24. It is worthwhile to notice 

that the track and the final position of block Ⅰ are not compatible before and after the collision, and 

sideways deflection of block Ⅰ can be observed in the simulation results. Because a sensitivity of the 

calculated normal contact force by Eq.(1) to the element shape, the simulation with FDEM is inconsistent 

with the physical visualization. 
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Fig. 24 Predicted motion of block Ⅰ by FDEM 

Fig. 25 presents the predicted motion of block Ⅰ with the newly proposed method. Simulation 

results agree with the analysis. The main reason is the same penetrations between Ⅰ and sub-tetrahedra 

on the left and right of ridge a-b because of the geometric symmetry of block Ⅰ with respect to Z axis. 

 

Fig. 26Fig. 26 presents the three displacement components of block Ⅰ during the process of 

motion. It can be observed that the displacement of block Ⅰ is symmetrical along the Y axis and 

displacements along X and Z are not generated because of the load distribution.

 

Fig. 27Fig. 27 shows the evolution of the energy conservation obtained by the proposed method. 

The reduction of kinetic energy is the consequence of the contact from 0.72 st  . The kinetic energy 

translates into potential energy due to the overlap in contact. Then the potential energy translate into the 

kinetic energy. The kinetic energy equals with the value at the time 0.72 st  , when the block Ⅰ 

begins to move away from the block Ⅱ . 

 

Fig. 25 Predicted motion of block Ⅰ by the newly proposed method. 
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Fig. 26 Three displacement components of block Ⅰ at different times. 

 

Fig. 27 Kinetic energy of block Ⅰ as a function of time by the newly proposed method. 

Based on the above discussion, the veracity of the proposed method in the calculation of the normal 

contact force is deduced. However, the tangential contact force has not been tested yet. Thus a test for 

the friction experiment is implemented in the next section. 

5.2 Test for the frictional experiment 

In this example, a friction test for a cuboid sliding on an inclined surface is simulated as a benchmark 

problem for this proposed method. The analytical formulas of the displacement and velocity for the block 

during the sliding process are given as follows: 
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1
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u
u , (42) 

where 0u  and 0s  are the initial velocity and displacement of the sliding block, respectively, g stands 

for the gravity acceleration,   represents the slope angle of inclined plane,  is the friction coefficient 

of plane surface and  1 0 sin cost u g g     . 

 

Fig. 28 Sliding cube on the slope, showing (a) the overall model of this test, and (b) a side view of the 

model.

 

Fig. 28Fig. 28 presents the numerical model of this test. The material properties of the sliding block 

in the simulation are listed in Table 1. 

Table 1 Material properties of the sliding block, test for the friction experiment. 

Density 

 3kg / m  
Young’s 

Modulus (Pa) 
Poisson ratio 

Normal stiffness 
(N/m) 

Tangential 
stiffness (N/m) 

2500 82 10  0.167 81.5 10  81.2 10  

Initially the velocity of the sliding block is 0 6 m/su , then the gravitational force drives the block 

to move along the dipping slope surface. Fig. 29 and Fig. 30 show the displacement and velocity of the 

sliding block with a friction coefficient 0.2, 0.4 and 0.6, respectively. Results calculated by the proposed 

method agree well with the theoretical values. 
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Fig. 29 Time evolution of the displacement of the sliding block for several friction coefficients as 

calculated by the proposed numerical method and the theoretical expression (41). 

 

Fig. 30 Time evolution of the velocity of the sliding block for several friction coefficients as calculated 

by the proposed numerical method and the theoretical expression (42). 

Fig. 31 shows the displacement time evolution for several normal penalty parameters. Excellent 

match is found between the numerical and the analytical predictions. 
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Fig. 31 Time evolution of the displacement of the sliding block for several normal penalty parameters 

as calculated by the proposed numerical method and the theoretical expression (41). 

5.3 Simulation for joints structure affecting a sliding rock mass 

The calculation of the tangential contact force is significantly dependent on the incremental 

tangential displacement. A major obstacle for an errorless computation of tangential contact force is the 

variation of the direction of tangential contact force within each time step. A method for this problem 

was presented in this work, and it is tested in a simulation of joints structure effects of a sliding rock 

mass. This simulation is based on the experiment pursued by Li (Li et al. 2007). Our results are compared 

against the experiment data and their available numerical results. 

The experiment is designed with five artificial slopes as shown in Table 2. Three different sizes of 

blocks are used in this example to form the slopes and their geometries are listed in Table 3. 

Table 2 Models of five accumulation slopes with different sets of transfixion planes. 

Number of simulation Diagram of the mechanism Joints construction 

1 

 

Big blocks, persistent joints 

2 

 

Big blocks, stepped joints 

3 

 

Medium blocks, persistent 
joints 



30 

4 

 

Medium blocks, stepped 
joints 

5 

 

Mixture blocks: 

Big blocks with stepped 
joints 

Small blocks with persistent 
joints 

Table 3 The geometrical properties of three types of blocks. 

Block type Length (m) Width (m) Height (m) 
Big block 0.2 0.1 0.1 

Medium block 0.1 0.1 0.1 
Small block 0.05 0.05 0.05 

In the experiment, five types of accumulation slopes are placed on a platform, respectively. The 

platform is turned counterclockwise with a constant angular velocity until the failure of the slope occurs. 

The blocks have a density of 2000 kg/m3 and a gravity acceleration of 9.81 m/s2 was assumed. All 

the blocks and the platform have the same mechanical parameters: the friction coefficient is 0.4877  , 

the cohesion is  2.14 PaC  , the normal penalty parameter is 2.0 Gpank  , and the tangential penalty 

parameter is 1.6 Gpask  . The constant angular velocity of the platform is 0.03 rad/s. 

Table 4 shows the simulation results of the five types of accumulation slopes, presenting the failure 

behavior of each accumulation slope. The failure process of the fifth slope is exhibited in Fig. 32. The 

simulation results, including the failure modes and failure angles, are compared with the experimental 

data and numerical results by Li (Li et al. 2007), as exhibited in Table 5. It can be observed that simulation 

results of the proposed method are in a good agreement with the existing experimental and numerical 

data. Hence the proposed method can deal with a tangential direction change in time. 
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Table 4 The simulation results of five slopes. 

Number of 
simulation 

Moment of destruction 
Failure modes 

and angles (deg) 

1 

 

Toppling 

24 

2 

 

Sliding 

26 

0
0.5

1
1.5

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6

0
0.5

1
1.5

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6
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3 

 

Toppling 

11 

4 

 

Sliding 

24 

5 

 

Sliding 

21 

0
0.5

1
1.5

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6

0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6

0
0.5

1
1.5

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6
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Fig. 32 Failure process of the fifth slope consists of the mixture blocks. (a) t = 0 s; (b) t = 11.7 s; (c)  

t = 12.0 s; (d) t = 12.6 s; (e) t = 13.0 s; (f) t = 13.2 s. 

Table 5 Comparison of the current simulation results with experimental data and numerical results 

by Li (Li et al. 2007). 

Failure mode 
1 2 3 4 5 

Toppling Sliding Toppling Sliding Sliding 
Failure The proposed method 24.0 26.0 11.0 24.0 21.0 
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angle (deg) 
Experiment data by Li 

(deg) 
22.1~24.2 25.0~26.3 9.8~11.6 23.0~24.9 19.5~21.8 

Numerical result by Li 
(deg) 

23.0 25.5 10.0 23.5 20.0 

5.4 Impact simulation of a pillar 

An impact simulation for a pillar is employed to test the ability of the proposed method to deal with 

complex situations. The original configuration of the pillar is shown in Fig. 33. This calculation model 

is discretized by 30.5 0.5 0.5 m   rectangular blocks. The initial velocity of the rigid projectile is set 

as 50 m / s u  in Y direction. The blocks use the same density of 600 kg/m3 and a gravity 

acceleration of 9.81 m/s2 is assumed. The strength and cohesion of all interfaces between blocks are zero. 

The friction coefficient is 0.5, the normal penalty parameter is 2 Gpa, and the tangential penalty 

parameter is 2 Gpa. The detection results are computed with the motion law discussed by Jin (Jin et al. 

2011). 

 

Fig. 33 Numerical model of the pillar impact case. 

The predicted transient motion of the pillar is given in Fig. 34. The movement of the blocks is 

consistent with the analysis by Jin (Jin et al. 2011). As the projectile impacts the center of the pillar, two 
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kinds of waves are generated. The first one is the compression wave formed by the impact, which 

propagate at the impact direction. As a result, the blocks in pillar near the impact point are extracted by 

the projectile. This results in an acceleration of these blocks. It can be observed that the front blocks fly 

forward and the blocks around the impacting point fly backward. 

 

Fig. 34 Predicted motion of the pillar blocks at different times of (a) t = 0.03 s; (b) t = 0.14 s; (c) t = 

0.20 s and (d) t = 0.72 s. 

Propagation of the pressure waves satisfy the standard wave equation, and the wave velocity V can 

be calculated as follows: 

 
E

V


 , (43) 

where E is the elastic modulus, and   is the density of the blocks. E is assigned to all blocks, 

therefore the elastic modulus is obtained by Hooke's Law 

 ΔE F   (44) 
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where F is the normal contact force between the blocks, and Δ  is the relative displacement of 

the contact blocks. In this simulation, the velocity of wave propagation is generated according to the 

motion of block Ⅰ, when it is extracted from the pillar. The normal contact force of block Ⅰ at each 

time step is shown in Fig. 35 and the velocity of the wave propagation can be calculated as 

1819.5 m/sV   following Eqs.(43) and (44). Thus the time of the front blocks separating from the 

pillar is obtained as -31.64 10  st   . 

 

Fig. 35 Time evolution of the normal contact force of block Ⅰ for the pillar case. 

 

Fig. 36 Time evolution of the displacement in x axis of block Ⅰ for the pillar case. 

 

Fig. 36Fig. 36 exhibits the x-displacement of block A. Significantly, the computationally predicted 

time of block Ⅰ  separating from the pillar -31.63 10  st    agrees well the theoretical value 

-31.64 10  st   . 

The second kind of wave is the shear wave which propagates transversely in the pillar direction. 
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The moving trajectory of the blocks turns into parabolic. The expansion wave in the pillar direction 

caused by the Poisson effect is ignored in this simulation, because of the rigid physical property of the 

blocks. 

5.5 Simulation of block accumulation 

A series of numerical simulations of block accumulation are now presented in this example to test 

the capacity of proposed method in dealing with arbitrary convex polyhedral blocks and illustrate the 

computational efficiency of the non-uniform block contact detection algorithm. 

 

Fig. 37 Deposition of the simulation at initial state. 

As shown in Fig. 37, 1093 blocks are accumulated on the ground. The accumulation process consists 

of two stages. In the first stage, the blocks drop on the ground from a height of 5 mm. In the second stage, 

these blocks accumulate gradually and finally achieve a stability by applying the same friction coefficient 

of block-block and block-wall, 0.4877   and a damping radio 0.002  . All the blocks are 

individual and the geometries are described in Fig. 38. The predicted transient motion of the blocks is 

presented in Fig. 39. 

 

Fig. 38 The elements utilized in this simulation. 
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Fig. 39 The predicted transient motion of the blocks at several times; (a) t = 0 s; (b) t = 0.5 s; (c) t = 1.0 

s; (d) t = 2.0 s; (e) t = 3.0 s; (f) t = 4.0 s. 

The following simulation is used to validate the efficiency of the proposed method to calculate the 

motion of polyhedral blocks. As shown in Fig. 40(a), a rigid box of dimension 13 × 13 × 13 mm3 is 

adopted and divided as cubes with a length of 1 mm . 735 cubes fall into the box and achieve a stable 

state by applying the same damping ratio of block-block and block-wall, 0.01  . For comparison, the 

same example is also simulated with FDEM in which each cube is represented by five tetrahedral blocks 

bundled together with springs as shown in Fig. 40(b). The simulation methods achieve similar results 

exhibited in Fig. 41 and both two methods reflect the block motion. However, two approaches present 

different performance when dealing with this problem of polygonal elements. Table 6 lists the total 

calculation time of the two methods. It can be seen that it takes nearly quintuple times as long to complete 
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this simulaton. Clearly, the proposed method performs much better and it is much more suitable and 

efficient than the FDEM. 

 

Fig. 40 Numerical model for this accumulation simulation. (a) the element type of the cube for the 

proposed method; (b) the element type of five tetrahedral blocks bundled together with springs which 

have a high elastic stiffness for the FDEM simulation 

 

Fig. 41 Simulation results by the proposed method and FDEM. 

Table 6 The computer time required by two methods in simulating the accumulation of blocks with 

different shapes. 

 The proposed method FDEM 
The CPU time (s) 16112.14 916165.54 

The comparison of CPU time taken for the contact detection between the non-uniform blocks 

contact detection algorithm proposed in this work and NBS contact algorithm is performed in this 

example using assemblies of 1000, 2000, 3000, 4000, 5000 and 6000 cubic blocks. Two different sizes 

of cubes used to form the models are described inTable 7, and the distribution is exhibited in Fig. 42. 

Blocks are dropped on the ground from a height of 2.5 mm. The contact detection is solved ten times for 

the problem. Each time all contact couples are detected and the CPU time for contact detection is 
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measured for the different number of blocks. 

 

Fig. 42 Models for the test of efficient test, where the number of blocks is (a) 1000; (b) 2000; (c) 3000; 

(d) 4000; (e) 5000; (f) 6000. 

Table 7 The geometric properties of the accumulation blocks. 

Block type Length (m) Width (m) Height (m) 
Big block 1.0 1.0 1.0 

Small block 0.1 0.1 0.1 

The cumulative CPU time by the proposed algorithm is shown in Fig. 43 and it is a linear function 

of the total number of cubic blocks used in the numerical model. The results are obtained by varying the 

number of blocks from 1000 to 6000 having the same spatial distribution and density. It is worthy of 

noticing that the total CPU time is directly proportional to the element number. Fig. 44 shows the 

simulation results with the NBS contact detection algorithm. The total CPU time is no longer linear and 

the inefficiency of this method can be observed by comparing with Fig. 43. It is evident that the new 

contact detection algorithm exhibits a higher computational efficiency in dealing with blocks with 

different sizes. 
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Fig. 43 Total CPU time for ten times contact detections by the proposed contact detection algorithm. 

 

Fig. 44 Total CPU time for ten times contact detections by the NBS contact detection algorithm. 

5.6 Failure process analysis of wedge slope 

Wedge sliding is one of the most common failure forms of the rock slope. In Fig. 45 the analytical 

model slope with a wedge is shown. The wedge is formed by the surface of slope with left and right 

structural weak surfaces (LWSP, RWSP). The obliquity of the intersection between the structural 

surfaces is   which is set as 20, 30 and 40 degrees in this simulation. Table 7 shows the physical 

properties of the slope. In this example, the sliding process of the wedge is simulated under the static and 

dynamic loading, respectively. 
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Fig. 45 Numerical model of the wedge slope, showing (a) the overall model and (b) the geometry of the 

wedge. 

Table 8 Material parameters of the slope. 

Density  3kg/m  
Young’s 

Modulus(Pa) 
Poisson ratio 

Normal stiffness 
(N/m) 

Tangential 
stiffness (N/m) 

2600 92 10  0.167 92 10  81.2 10  

In static analysis, the influence of friction coefficient and cohesion on LWSP and RWSR are ignored. 

The bottom of the slope is fixed on the ground. Thus the wedge starts to slide along the weak structure 

surfaces driven by the gravity: 

 
1

sin
2

s gt  2  (45) 

Fig. 46 provides a comparative analysis of the sliding displacement of the wedge between the 

numerical simulations and the analytical calculations by Eq.(45), revealing excellent match. 

 

Fig. 46 Time evolution of the displacement of wedge as calculated by the proposed numerical method 

and the theoretical expression (45). 



43 

The geometry of the wedge for the dynamic analysis is shown in Fig. 47. The numerical model and 

resisting parameters for this simulation are exhibited in Fig. 48 and Table 9, respectively. Fig. 49 shows 

the horizontal acceleration-time-history that is applied on the wedge. The velocity and the cumulative 

displacement variation with time are presented in Fig. 50 and Fig. 51. 

 

Fig. 47 The wedge considered in this dynamic analysis. 

 

Fig. 48 Numerical model of the wedge for dynamic analysis, showing (a) the overall model and (b) the 

geometry of the wedge, 32.36   . 

Table 9 The resisting parameters of the wedge. 

Density 

 3kg / m  
Young’s 

Modulus (Pa) 
Poisson ratio 

Normal stiffness 
(N/m) 

Tangential 
stiffness (N/m) 

2000 92 10  0.167 82 10  92 10  

From the Fig. 50 and Fig. 51 it can be seen that the wedge remains stationary till t = 0.02 s when 

the exciting force is greater than the resistance against the sliding. From time t = 0.02 s to t = 0.629 s the 

acceleration is positive. As a result the velocity and displacement continuously increase, while the 
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velocity obtains the maximum value at time t = 0.38 s. From t = 0.38 s to t = 0.629 s, although the 

acceleration becomes deceleration, the velocity is still greater than zero. Therefore the sliding 

displacement continues, achieving its maximum value at t = 0.629 s when the velocity comes to half. At 

the end of this stage, the displacement has a constant value. This whole phase begins at t = 0.02 s and 

lasts until t = 0.8 s. Same motion sequence of the wedge is repeated until the end of the calculation. 

Excellent agreement is revealed between the computational and analytical predictions for the velocity 

and displacement in Fig. 50 and Fig. 51, respectively. 

 

Fig. 49 The horizontal sinusoidal input function. 

 

Fig. 50 Time evolution of the velocity of the wedge. 
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Fig. 51 Time evolution of the displacement of the wedge. 

6. Conclusions 

The current work developed a novel discrete element method using a new definition of a distance 

potential function. It is applicable for three-dimensional arbitrary convex elements. This newly proposed 

method has constructed a basic function of the distance potential for an arbitrary convex element, a 

complete normal contact force calculation model, including the magnitude, direction. The normal contact 

force moment, is also determined under the concept of the distance potential. A fundamental algorithm 

is also developed for the tangential contact force. An improved non-uniform block contact detection 

algorithm for NBS contact detection method is introduced in detail. The calculation method is clear, 

efficient, and stable for 3D calculations. 

To be specific, the main features of the proposed method can be summarized as follows: 

(1) Instead of using the standard potential function, the normal contact force is calculated with a 

new definition of a distance potential function. It presents an accurate potential value and a normal 

contact force without the influence of the element shape. 

(2) Compared with the potential calculation method discussed in FDEM, the proposed method can 

be implemented to deal with the problems involving arbitrary convex polygonal elements. 

(3) The proposed algorithm for the tangential contact force makes the simulation more accurate and 

reliable. 

(4) An improved non-uniform block discrete element search algorithm is introduced to solve the 

contact detection problem of arbitrary convex elements with different sizes. 
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