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ABSTRACT. The biomimetic replication of dry adhesion present in the gecko’s foot has attracted 

great interest in recent years. All the microfabrication techniques used so far were not be able to 

faithfully reproduce the hierarchical and complex three-dimensional geometry of the gecko’s 

setae, with features at the micro- and nano-scale, thus reducing the effectiveness that such type of 

conformal morphology could provide. By means of direct laser lithography we fabricated artificial 
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hairs that faithfully reproduce the natural model. This technique allows the fabrication of three-

dimensional microstructures with outstanding results in terms of reproducibility and resolution at 

the micro- and nanoscale. It was possible to get very close to the morphology of the natural gecko 

setae, especially concerning the hierarchical shape. We designed several morphologies for the 

setae and studied the effects in terms of adhesion and friction performances compared to the natural 

counterpart, showing the interplay between morphology, dimensional scaling and materials. Direct 

laser lithography promises great applications in the biomimetics field, paving the way to the 

implementation of the concept of hierarchical bioinspired dry adhesives.  

 

1. Introduction 

The fabrication of smart surfaces based on biomimetic principles has attracted great interest in 

recent years.1–7 In particular, several studies have tried to reproduce the remarkable capability of 

dry adhesion that is present in the gecko’s foot.8–22 Geckos can easily climb surfaces with various 

degrees of roughness, supporting their relatively high weight thanks to the hierarchical conformal 

morphology of the pads at the micro- and nano-scale. The gecko’s adhesive system is directional 

and controllable: it provides immediate and strong adhesion when loaded in a particular direction 

and it requires very low force for attachment and detachment. In addition, it is “self cleaning” and 

does not attract dirt; hence it can be reused many times without degrading its performance.23 These 

characteristics would be desirable for climbing and grasping applications in robotics.  

Although numerous dry adhesives have been created using lithographic and micromachining 

techniques, none of these fully realizes the capabilities of the gecko’s adhesive system. One 

important reason may be that it is difficult to reproduce the complex three-dimensional 

morphology of the gecko’s lamellae, setae and spatula with features sizes below 1 µm. Instead, 
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lithographic processes produce arrays of pillars, wedges, stalks or “mushroom cap” features that 

produce useful levels of van der Waals adhesion when pressed against smooth and clean surfaces, 

but not on surfaces with high levels of  roughness.24 For better conformability, a number of 

investigations have produce hierarchical features, however these usually come at the expense of 

decreased real area of contact, and hence reduced adhesion, on smooth surfaces.25 Here, by means 

of a 3D laser lithography technique, complex artificial hairs inspired by the gecko pad were 

fabricated, with a geometry that approximates the biological model. Direct 3D laser lithography 

has already demonstrated its potential in the realization of biomimetic surfaces patterned with 

three-dimensional features at sub-micrometric resolution.26–29 The only limiting factor of the 

proposed technique is related to the relative large fabrication time even if advanced 3D laser 

lithography systems could overcame such issue (Galvo mode, Nanoscribe GmbH). In this work 

we also validated the adhesive and friction performances of the artificial setae, investigating 

different designs and showing the crucial interplay between morphology, dimensional scaling and 

materials. 

The study started from a detailed design of the setae, based on the anatomy of gecko pads, which 

has been thoroughly investigated.1,23 The gecko foot skin is composed of a multilevel structure of 

lamellae, setae, branches and spatulae primarily composed of β-keratin, whose elastic modulus is 

1.5 GPa.30 The setae have a length in the range of 30–130 µm and a diameter of about 5–10 µm, 

while the spatulae – the end portions which ramify from the branches – have final tips 0.5 µm long, 

0.2–0.3 µm wide and 10 nm thick (Figure 1a). Each segment, thanks to its independent 

deformation, easily conforms and comes in close contact to solid surfaces at different levels of 

roughness, from the mm to the nm scale, providing a huge number of short range interactions 

mainly governed by van der Waals forces.30,31 In the case of Gekko gecko, each of the 
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5000 setae mm-2 can ensure an average adhesion force of about 20 µN, although the maximum 

adhesion can reach a value tenfold higher, depending on the preload.32 

The high aspect ratio of the stalk, the hierarchical morphology and the micro- and nanoscale 

features of the branches make the replication of such a complex design extremely challenging with 

most microfabrication techniques. The artificial setae constructed in this work are composed of I) 

a stalk, II) two levels of branches and III) the final spatulae (Figure 1b). Different designs were 

obtained by tuning the angles between the branches. We focused our investigation on the friction 

force and adhesive normal force of the artificial setae, which play a key role in the so-called 

adhesive friction or parallel adhesion that is exploited by the geckos.
33

 

Finally, it seems worthy to remark the goal of our investigation since the fabrication of dry 

adhesives could also be obtained by means of a range of inorganic materials that the scientist can 

nowadays choose according to practical issues. Nature, on the other hand has developed a peculiar 

shape for the setae due to materials constraints. 
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Figure 1. a) Scanning electron micrographs reporting the hierarchical adhesive structures of 

Gekko gecko at different magnifications; ST: seta, SP: spatula, BR: branch (adapted from H. Gao 
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et al. 2005, with permission from Elsevier)34. b) Simulation of the artificial programmed setae 

showing the first level of branching, the second level and the final spatulae (green, red and blue 

bar respectively). c) First prototype of setae and details of branches (d) and spatulae ((e)  adapted 

from O. Tricinci et al. 2017, with permission from Springer)35. f) Example of a definitive design 

and details of branches in (g). h) View from the top of the definitive design, showing the details 

of the spatulae.  

 

2. Experimental methods 

2.1 Microfabrication procedure 

The setae were fabricated in IP-DiLL photoresist (Nanoscribe GmbH) by means of a Nanoscribe 

system (Nanoscribe GmbH). The elastic modulus of the photoresist is 1-3 GPa, according to the 

laser power and the writing speed,36 comparable to the natural counterpart, thus being a good 

candidate material for the artificial structures. A square silicon sample of side 1 mm was glued on 

a glass slide; the resist, poured on the silicon substrate, was exposed to a laser beam at a center 

wavelength of 780 nm, using a writing speed of 100 µm s−1 with a power of 5.6 mW (Calman laser 

source). The sample was developed for 20 min in SU-8 Developer (MicroChem Corp) and rinsed 

in IPA and deionized water.  

2.2 Design of artificial setae 

The fabrication procedure required the design of two different models. The first model tried to 

reproduce the rough morphology of the gecko setae and it was used for the calibration of the main 

fabrication parameters such as the laser power and the writing speed (Figure S1 in SI). The second 

model was designed, in several slightly different variant morphologies, in order to reproduce the 

effective shape of the natural setae with a higher level of details. The structures fabricated 

according to this type of model were used for the adhesion and friction tests. In both cases the tips 

have been modeled as paths of coordinates in Matlab. The sorting strategy is based on a breadth-
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first algorithm, in which all adjacent edges at the same depth from the base are written before 

moving to the next level of edges that are further from the base. The programmed stalk has a 

nominal length of 60 µm and a square section with nominal sides of 3.4 µm; it forms an angle of 

30° relative to the substrate. The branches grow of about 20 µm along the direction perpendicular 

to the substrate. There are 16 rectangular final tips with sides of 1 µm and 1.2 µm (Figure 1c-e). 

Once the lithographic parameters have been defined, they have been used for the fabrication of the 

setae for the experimental tests. A Matlab program was written for the implementation of different 

geometrical parameters of the setae which may affect the adhesion properties. In the definitive 

model the stalk has a nominal length of 60 µm and it has a square section with nominal sides of 

2.8 µm and it forms an angle of 30° relative to the substrate. There are three levels of branches that 

end with 128 tips in total, each of 300 nm in thickness and 1 µm in length (Figure 1f-h). 

2.3 Friction and adhesion tests 

The adhesion and friction tests were carried out under an optical microscope (KH-7700 digital 

microscope, Hirox). The microforce sensor (FemtoTools GmbH) was mounted on a 

micromanipulator, while the silicon sample with the artificial gecko setae was fixed on the tip of 

a nanomanipulator (Kleindiek Nanotechnik GmbH), as shown in Figure 2a. The surface of the 

sensing component was silicon. The sample and the sensor were properly aligned under the 

microscope (Figure 2b). The cycles of the tests were controlled by means of dedicated software 

code written with Visual Basic (Microsoft Corp.) and data were acquired at a frequency of  10-2 

Hz. Since the microforce sensor operates only along the direction of its axis, and therefore it was 

not possible to measure at the same time the perpendicular preload and the effective friction force, 

a calibration procedure for the estimation of the perpendicular preload as a function of the bending 

of the setae was required. 
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For the evaluation of the friction on silicon, the test cycles consisted of: i) approaching and 

perpendicular preloading, ii) parallel displacement of about 5 µm, iii) sliding of the setae along the 

surface of the microforce sensor during which the parallel adhesive force is measured, and iv) final 

perpendicular detachment (Figure 2c). The measurement of the friction force was carried out in a 

quasi-static condition, at a speed of 35 nm s-1. 

The test for the perpendicular adhesion of the artificial setae was carried out on two different target 

surface materials with different stiffness: silicon, that is hard, and polydimethylsiloxane (PDMS), 

that is softer. The PDMS surface was obtained by dip coating the silicon sensor. The samples were 

moved against the sensor with a speed of 5 μm s-1, until reaching a preset load that varied 

depending on the geometry and surface tested. Then a parallel slide of 10 μm was imposed to 

provide the rearrangement of the tips. Finally the samples were detached (in the perpendicular 

direction) with a speed of 5 μm  s-1. 
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Figure 2. a) Scheme of the experimental setup for the estimation of the friction and adhesion force. 

b) Optical image of the artificial microfabricated setae aligned with the sensor cantilever. c) Phases 

of the cycle of friction tests: (i) approach and perpendicular preload; (ii) parallel preload; (iii) 

parallel quasi-static sliding; (iv) detachment. 

 

3. Results and discussion 

Ten different designs of the setae obtained by changing the angles between the branches (labelled 

from A to J, Figure 3a) were tested, assessing the effect of density/proximity of spatulae on the 

friction and normal adhesive forces. The results of the microfabrication procedure are illustrated 

in Figure S2-3 in SI. 

In Figure 3b the typical behaviour of the parallel frictional force as a function of time is depicted.  

A prominent factor affecting the friction is the preload imposed on the setae. For this reason, 

emulating the behaviour of the gecko during its walk, both perpendicular and parallel preload 
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forces were applied.32 The perpendicular preload force was applied perpendicularly against the 

substrate while the parallel preload was applied by means of a small parallel displacement; this 

increases the number of the contact points as the spatulae lay over and conform to the substrate. 

Experimental data of the friction force vs perpendicular preload (Figure S4 in SI) are compatible 

with a linear relationship that would be expected in frictional phenomena. 

Designs I, B and H ensure good friction (maximum slope of the curve in Figure S4 in SI), in 

absolute terms (Figure 3c). To confirm the effectiveness of the hierarchical configuration, we 

carried out the same experiment on a control sample consisting of a single cylindrical pillar 

composed by 4 segments with the same inclination and section area of the corresponding level of 

the tested samples and with a semi-spherical tip (Figure S5 in SI and Figure 3e). Such shape was 

designed in order to have the same contact area of the samples, ensuring a permanent contact that 

was very hard to achieve with a flat control surface. Comparing the results of the friction (at 5 µN 

of perpendicular preload) of the control with those of the hierarchical samples, we found that the 

control sample was weaker, demonstrating that the hierarchical configuration was more effective; 

in our case, the artificial setae produced forces 6-9 times higher than the control.  

To compare the performances of the artificial setae with the natural ones, it is necessary to 

normalize their contact area. In particular, the range of interest is around 5 µN of perpendicular 

preload, since this is the typical value observed in gecko setae, which, in this condition, can provide 

an average force of 20 µN, that is a normalized force of 0.1 N/mm².32  The area covered by the 

artificial spatulae ranges between about 35% and 80% (depending on the specific design 

considered) of the area of the natural ones, due to the different angles between the branches. 

Broader angles between the branches (as in cases H and I) produce a large area of contact and 

friction force, as shown in Figure 3c, but a lower effectiveness when normalized by area (Fig. 3d). 
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Conversely, a configuration with closer spatulae (as in cases A and B) ensures high values of force 

per unit area, comparable with the natural setae since the spatulae have greater density. The best 

design solution should have an increase of the density of the artificial spatulae while avoiding self-

sticking or bunching: this can be obtained by reducing the dimensions of the spatula, which is 

exactly what happens in the natural gecko setae. 

Although the friction force of artificial setae is comparable to the natural counterpart, their 

conformability to every type of surface is intrinsically limited, since they do not include 

morphological features down to the tens of nanometers, which are instead present in gecko setae.32 

We note also that the surface of the sensor used for the tests plays a role in the friction; although 

it is flat it is not smooth at the nanometer scale but is characterized by a roughness with features 

comparable to the natural spatulae (Figure S6 in SI). For all these reasons it is expected that 

artificial setae will exert lower forces than gecko setae. 
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Figure 3. a) Scheme of the setae highlighting angles changed in the designs A-J and corresponding 

table summarizing different designs. b) Friction force of a seta (design C) pulled parallel to the 

surface of the silicon sensor, plotted as a function of time, in a typical experiment. The four phases 

of the friction test are labelled above the graph: (i) approach and perpendicular preload; (ii) parallel 

preload; (iii) parallel quasi-static sliding; (iv) detachment. c) Friction force of all the setae designs 

at 5 μN of perpendicular preload; the dotted line represents the performance of the control sample 
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(1.2 μN). d) Friction force normalized to the actual area of each artificial setae (5 μN of 

perpendicular preload); the dotted line represents the performance of the natural setae (0.1 

N/mm²).32 e) Control sample with hemispherical tip. 

 

In order to investigate this aspect we carried out the second experiment in which we tested the 

normal adhesion of the artificial setae. In this case, it has to be considered that in the artificial setae 

the spatulae are a series of lines obtained by extruding a solid ellipsoid voxel, so that the terminal 

part of the tips involved in the contact process can be approximated to a hemisphere. For this 

reason the interaction of each feature in the spatulae with a flat surface can be modelled as that of 

a sphere of radius R. In this condition van der Waals interaction energy WVDW between a sphere 

and a flat surface is:37  

𝑊𝑉𝐷𝑊 = −
𝐴𝑅

6𝐷
  (1), 

where D is the distance between the body and the surface (D ≪ R) and A is the Hamaker constant 

in the range of 10-20 – 10-19J (A = π2Cρ
1
ρ

2 , where ρ
1 and ρ

2 are the number of atoms per unit 

volume in the two interacting bodies).37 The related van der Waals normal force is:  

𝐹𝑉𝐷𝑊 = −
𝐴𝑅

6𝐷2
 (2). 

The van der Waals normal force between the setae and a flat surface is calculated as:  

𝐹𝑉𝐷𝑊 = −
𝐴𝑅𝑛𝑡𝑛𝑠

6𝐷2
 (3), 

where nt and ns are the number of tips in the spatulae and the number of spatulae in the setae, 

respectively 2 and 64; D is an atomic gap distance of 0.3 nm. The value of R was chosen to be 150 

nm which represents the maximum radius of the ellipsoid along the longitudinal direction, thus 

providing a superior limit of confidence. According to this model, we can estimate the normal 

adhesion force for this type of artificial setae in the range from 0.36 to 3.6 μN.  
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We tested the normal adhesion of the artificial setae (designs with the closest (A) and broadest (J) 

branches) to two different target surface materials: silicon and polydimethylsiloxane (PDMS). 

PDMS was chosen for its relative softness, thus trying to find a material surface able to help the 

setae to better conform. In the case of design A each sample consisted of six setae, while in the 

case of the design J each sample had 4 setae. During this step, if adhesion occurred, the normal 

force flipped sign from positive to negative because the attached setae pulled the sensor while 

being retracted. Figure 4 summarizes the results obtained in normal adhesion tests. A bare Si 

surface was first considered as the target surface. The combination of design A against the Si 

surface did not produce any measurable adhesion (Figure 4a) since the closely arranged tips did 

not properly interact with the rigid silicon surface. A similar result was observed in the case of 

design J against Si, even though the tips had an apparently good configuration (Figure 4b). Several 

peaks were observed during the force increase/decrease steps, underlining how the tips had the 

time to adjust their conformation over the surface of the sensor. A second set of experiments 

considered PDMS as the target surface, obtained by dip coating the silicon sensor. The 

combination of design A against PDMS produced measureable adhesion (Figure 4d) since the high 

compliance of the PDMS was enough to provide a proper interaction with the tips. The adhesion 

force recorded was 1.88 ± 0.11 μN, with a mean adhesion force of 0.31 μN per seta. This small 

value is not within the interval predicted by the mathematical model. The reason for such an 

apparently weaker adhesion could be that not all the tips were in contact with the surface of the 

sensor, or that each tip was not fully aligned with the surface. Improved adhesion was observed in 

the case of design J against PDMS (Figure 4e). Rearrangement of tips is again observed as a short 

sawtooth profile in the graphic. The recorded adhesion force was 1.82 ± 0.15 μN, which means a 

mean single seta force of 0.46 μN, inside the predicted value range and considerably higher than 
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design A. The result is promising since, as already evidenced for design A, not all of the setae may 

have made perfect simultaneous contact with the surface of the sensor. In contrast, the control 

sample showed no measureable adhesion on either the Si or PDMS surfaces (Figure 4c,f). 

Although the obtained values are far from the performance of the natural setae, we were able to 

measure, for the best configuration, around 25g/cm2 of adhesion that is not only due to the target 

material (PDMS) adhesiveness. In fact, from these tests we can deduce that broader artificial 

spatulae are able to exert improved adhesion forces with respect to narrower designs since they 

can better conform to the surface; nevertheless a higher density of spatulae per surface area would 

be required to obtain an effective force comparable to the gecko setae. These two requirements 

must be balanced according to the minimum size of features that can be fabricated with the 

proposed technique.  

Additionally, it is important to remark that, while the present study mainly focused on structural 

features as a means to tune adhesion of artificial setae, the material composition (both of the 

artificial setae and target surface) plays a role in the adhesion. Focusing on this aspect, the effective 

elastic modulus represents a critical requirement: although β-keratin and IP-DiLL have comparable 

elastic modulus, the effective modulus is lower in the natural setae since they have a slimmer shape 

respect to the artificial ones. Our structures are still slightly too rigid to proper conform even on a 

flat surface. A soft material placed at least on the tips would be of some help. 

This consideration suggests the possibility of fabricating the artificial setae with different structural 

materials or performing a surface functionalization to optimize their smart adhesive behaviour for 

specific target surfaces. 
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Figure 4.  Normal adhesion tests of artificial setae with different designs against target surfaces: 

a) Normal force on Si of design A (perpendicular preload 20 µN) and in (b) design J (perpendicular 

preload 22 µN) and in (c) the control (perpendicular preload 4.5 µN); d) normal force on PDMS 

of design A (perpendicular preload 30 µN) and in (e) design J (perpendicular preload 13 µN) and 

in (f) the control (perpendicular preload 8 µN). 
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4. Conclusion 

In conclusion, gecko foot-like microstructures fabricated by means of direct laser lithography have 

been presented. These biomimetic structures reproduced with unprecedented faithfulness the 

structural microscale features of the animal model. The artificial setae were fabricated with 

different designs to investigate how their morphology influences their adhesive performance. 

Adhesion tests of the artificial setae developed here provided meaningful insight into their 

structure/property relationship. We investigated the friction force and adhesive normal force of the 

artificial setae, which are at the basis of the frictional adhesion friction in the geckos’ toe. 

In particular, friction forces similar to the natural model were obtained using optimized designs. 

On the other hand, adhesive force of the artificial setae is still weaker than in the geckos’ setae, 

due to the mechanical properties of the structures. To achieve higher forces and reach the goal of 

emulating the natural model, the interplay of morphology, dimensional scaling and materials 

involved should be considered. This work represents a first step in the direction of artificial 

biomimetic microstructures, with nanometric features, that closely mimic the morphology of the 

natural gecko setae. Selecting new structural materials would be in principle possible to enhance 

and optimize the adhesion on virtually every kind of target surface.   

 

ASSOCIATED CONTENT 

Supporting Information. Some more details about artificial setae fabrication and experimental 
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