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Cross-View Learning

Li Zhang

Abstract

Key to achieving more efficient machine intelligence is the capability to analysing and under-
standing data across different views – which can be camera views or modality views (such as
visual and textual). One generic learning paradigm for automated understanding data from dif-
ferent views called cross-view learning which includes cross-view matching, cross-view fusion
and cross-view generation. Specifically, this thesis investigates two of them, cross-view match-
ing and cross-view generation, by developing new methods for addressing the following specific
computer vision problems.

The first problem is cross-view matching for person re-identification which a person is cap-
tured by multiple non-overlapping camera views, the objective is to match him/her across views
among a large number of imposters. Typically a person’s appearance is represented using fea-
tures of thousands of dimensions, whilst only hundreds of training samples are available due
to the difficulties in collecting matched training samples. With the number of training samples
much smaller than the feature dimension, the existing methods thus face the classic small sam-
ple size (SSS) problem and have to resort to dimensionality reduction techniques and/or matrix
regularisation, which lead to loss of discriminative power for cross-view matching. To that end,
this thesis proposes to overcome the SSS problem in subspace learning by matching cross-view
data in a discriminative null space of the training data.

The second problem is cross-view matching for zero-shot learning where data are drawn
from different modalities each for a different view (e.g. visual or textual), versus single-modal
data considered in the first problem. This is inherently more challenging as the gap between
different views becomes larger. Specifically, the zero-shot learning problem can be solved if
the visual representation/view of the data (object) and its textual view are matched. Moreover,
it requires learning a joint embedding space where different view data can be projected to for
nearest neighbour search. This thesis argues that the key to make zero-shot learning models suc-
ceed is to choose the right embedding space. Different from most existing zero-shot learning
models utilising a textual or an intermediate space as the embedding space for achieving cross-
view matching, the proposed method uniquely explores the visual space as the embedding space.
This thesis finds that in the visual space, the subsequent nearest neighbour search would suffer
much less from the hubness problem and thus become more effective. Moreover, a natural mech-
anism for multiple textual modalities optimised jointly in an end-to-end manner in this model
demonstrates significant advantages over existing methods.

The last problem is cross-view generation for image captioning which aims to automatically
generate textual sentences from visual images. Most existing image captioning studies are lim-
ited to investigate variants of deep learning-based image encoders, improving the inputs for the
subsequent deep sentence decoders. Existing methods have two limitations: (i) They are trained
to maximise the likelihood of each ground-truth word given the previous ground-truth words and
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the image, termed Teacher-Forcing. This strategy may cause a mismatch between training and
testing since at test-time the model uses the previously generated words from the model distri-
bution to predict the next word. This exposure bias can result in error accumulation in sentence
generation during test time, since the model has never been exposed to its own predictions. (ii)
The training supervision metric, such as the widely used cross entropy loss, is different from
the evaluation metrics at test time. In other words, the model is not directly optimised towards
the task expectation. This learned model is therefore suboptimal. One main underlying reason
responsible is that the evaluation metrics are non-differentiable and therefore much harder to be
optimised against. This thesis overcomes the problems as above by exploring the reinforcement
learning idea. Specifically, a novel actor-critic based learning approach is formulated to directly
maximise the reward - the actual Natural Language Processing quality metrics of interest. As
compared to existing reinforcement learning based captioning models, the new method has the
unique advantage of a per-token advantage and value computation is enabled leading to better
model training.
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Chapter 1

Introduction

1.1 Scope of the Thesis

When we look around this world, the amount of information deliver to us with its own man-

ifestation at any given moment is enormous. For example, visual data generated by the rapid

expansion of large-scale distributed multi-camera systems, with same object captured by dif-

ferent cameras as views; Hundreds of hours of videos are uploaded to YouTube every minute,

which appear in multiple modalities, namely visual, audio and text views; A large number of

bilingual news are reported every day, with the description in each language as a view. Our

brain manage to process these views to create a complete, coherent and comprehensible uni-

verse that is always rich and vivid. Moreover, human find it easy to accomplish a wide variety

of tasks that involve complex visual recognition and scene understanding from different view-

points/pose/illumination/background, tasks that involve communication in image/text/audio/video

and tasks that combine translation between these different modalities. This is why customer has

no problem to recognise the merchandise exhibited on Amazon webpage after viewing the pho-

tos took from different camera viewpoints/pose/background. This is also why children can better

gain knowledge from ”children’s picture book” – with picture and text description on it (Figure

1.1).

In order to achieve a better and efficient machine intelligence for well understanding our rich

and vivid visual world, capability to learning from data across different views is essential. This

is also one reason why achieving computer vision driven machine intelligence is so difficult: the
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(a) Cross camera view (b) Cross modality

Figure 1.1: Many cross-view examples in real-world: (a) Laptop displayed under different cam-
era views; (b) Children’s picture books contain visual image and textual language.

pattern/representation of an object is not uniquely determined, it is often manifest with different

views. Therefore, automatically and efficiently understanding data across different views poses

a major research challenge. One generic learning paradigm for that called cross-view learning,

which includes:

Cross-View Matching. The object can be captured by different views – camera views or

modalities (such as visual and textual), which bring about a great challenge of matching them.

This kind of problem is generally called as cross-view matching. Usually, the representation of

objects from different views are significantly different from each other, and the large view dis-

crepancy makes it quite challenging to directly compare them based on the feature representation.

Substantial efforts have been dedicated to eliminate the view discrepancy by learning a mapping

function or a embedding space across views.

Cross-View Generation. Given a novel instance from one view, the objective of cross-view

generation is to automatically generate raw data of another view(s), by learning a mapping func-

tion across views. Data from both views are available during training, but only one view is

available at test time. Usually, Generative Adversarial Network (Goodfellow et al., 2014) or a

encoder-decoder network are used for such cross-view generation task. Specifically, when the

view refers to camera view, images from different viewpoints are synthesised (Tran et al., 2017;

Huang et al., 2017; Ji et al., 2017; Yang et al., 2015); when the view is modality, data from

different modality or domain are generated (Vinyals et al., 2015; Isola et al., 2016).

Cross-View Fusion. The term fusion means in general an approach to extraction of infor-

mation acquired in several views. The goal of cross-view fusion is to integrate complementary

different view information into one new view containing information the quality of which cannot
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be achieved otherwise. The term quality, its meaning and measurement depend on the particular

application (e.g. detection, tracking). Specifically, when the view refers to camera view, which

means the images of the same modality, taken from different view angles, the goal of cross-view

fusion is to supply complementary information from different views; when the view represents

modality, for example, one image with high spatial resolution, the other one with low spatial but

higher spectral resolution, the goal of cross-view fusion is to get an image with high spatial and

spectral resolution (Dian et al., 2017).

Views. When the view refers to camera view, object can be captured by different camera

views, cross-views matching problem is then investigated in Chapter 3; When the view refers to

modality, two views are consider: visual and textual. More particular, only attribute and natural

language are considered as textual view in this thesis. Natural language can be continue split into:

(1) the online free articles (e.g.google news, Wikipedia documents) and, (2) caption descriptions

corresponding to each visual image. They are three in total for textual view in this thesis.

1. Attributes describe parts (has nose), shape (cylindrical), colour (brown), and materials

(furry). They (can be learned from annotations or pre-defined by human experts) allow us

to describe objects and to identify them based on textual descriptions, i.e. attribute can be

seen as the unstructured textual view (Farhadi et al., 2009; Ferrari and Zisserman, 2007;

Parikh and Grauman, 2011; Yan et al., 2017);

2. A skip-gram language model (Mikolov et al., 2013a,b) trained on a corpus of online free

google news or Wikipedia documents which can be used to extract fixed dimension word

vectors according to the name of each visual class needed;

3. Sentence descriptions/captions corresponding to each image (Lin et al., 2014; Reed et al.,

2016a) have started to gain popularity recently. A neural language model (e.g. LSTM) is

required to output a vector representation of the description. Both Chapter 4 and 5 consider

text/captions as the textual view.

We can see that all above three learned/pre-defined representation are semantic meaningful. In

particular, in Chapter 4, these vector can be termed as semantic vector. The semantic vector rep-

resents each visual class name is termed as a class prototype. Therefore, semantic space refers

to a high dimensional vector space where visual classes are usually semantically related in. The

knowledge from seen classes can be transferred to unseen classes in this semantic space. More

details are in Section 4.2. While in Chapter 5, semantic usually describes the high level visual
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representation that is semantic meaningful against to the label space (e.g. the feature representa-

tion extracted from a trained Deep Neural Networks for the classification task).

Relationship between cross-view matching and cross-view generation. Specifically, this

thesis investigates two of them: cross-view matching and cross-view generation. Given a col-

lection of data with view X and view Y (whether the data are paired or unpaired (Zhu et al.,

2017a)), for both cross-view matching and cross-view generation at modelling stage, the goal is

to learning a mapping function M : X →Y or finding an embedding space that both views can be

projected to. Then novel instances or objects from novel classes are given for inference for both

problems, the only difference is that both views are given for cross-view matching while only

one view is given for inference for cross-view generation.

Moreover, the two investigated problems covering widely studied cross-view real-world ap-

plications such as person re-identification, zero-shot learning and image captioning. All these

problems require strong and robust cross-view learning algorithms for building corresponding

models to realise automatically cross-view data analysis at large scale.

Person Re-identification. The first application is person re-identification (Re-ID) which refers

to the problem of visually matching already detected individual or group of people across non-

overlapping cameras views distributed at diverse physical locations and times (Vezzani et al.,

2013; Gong et al., 2014a). In particular, for surveillance systems performed over space and time,

an individual disappearing from one view would need to be matched in one or more other views

at different physical locations over a period of time, and be differentiated from numerous visually

similar but different candidates in those views. For most of today’s intelligent surveillance sys-

tems, re-identification has become a fundamental technology which paves the way for numerous

higher level and more complex systems. For example, it contributes as a critical component for a

multi-camera tracking or forensic search system, which allow government agencies to fast locate

suspicious criminals, and therefore prevent terrorism threatening social infrastructure and civil-

ian safety and security; The re-identification of a group of people collectively provides valuable

intelligence for crowd movement/behaviour analysis, which facilitates public spaces like airports

or shopping malls to conduct better crowd control practices or develop more profitable retail

floor plans; Re-identification techniques could also be integrated into smart home automation

platforms, so as to enable functionalities such as elderly/baby monitoring, intrusion detection

and burglary alarming (Wang et al., 2017a). To this end, this thesis focuses on addressing this
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real-world cross-view person image matching problem.

Zero-Shot Learning. A recent trend in developing visual recognition models is to scale up the

number of object categories. However, most existing recognition models are based on supervised

learning and require a large amount (at least 100s) of training samples to be collected and anno-

tated for each object class to capture its intra-class appearance variations (Deng et al., 2009). This

severely limits their scalability – collecting daily objects such as chair is easier, but many other

categories are rare (e.g., a newly identified specie of beetle on a remote pacific island). None of

these models can work with few or even no training samples for a given class. In contrast, hu-

man perform visual recognition effortlessly, and instantaneously. Importantly, human are great at

recognising a new object without seeing any visual samples by just knowing the description of it,

leveraging similarities between the textual description of the new object and previously learned

concepts. For example, a child would have no problem recognising a zebra if she has seen horses

before and also read elsewhere that a zebra is a horse but with black-and-white stripes on it.

Humans can easily generalise the knowledge learned in the past to recognise the classes never

seen before. Very recently, researchers in machine learning and computer vision community

have started to propose approaches that imitate the humans recognition ability, and this is known

as zero-shot learning (ZSL). Specially, the zero-shot learning is a cross-view matching problem

which can be solved if the visual representation/view of the data (object) and its textual view are

matched. For example, it might allow a computer to read on the Internet that a Persian cat is ”a

long-haired breed of cat characterized by its round face, short muzzle and large, striking eyes”

and recognise such concept in visual data based on the description. However, zero-shot learn-

ing is inherently more challenging as the gap between different views becomes larger. To this

end, this thesis studies and develops novel approaches for addressing zero-shot learning problem

across visual and textual views.

Image Captioning. Another application where cross-view learning is of great use is image cap-

tioning. At a high-level, image captioning aims to automatically describe the visual content of an

image in natural language instead of merely assigning it a category. It is a fundamental problem

in artificial intelligence that connects computer vision and natural language processing. Differ-

ent from the previous two cross-view matching applications, image captioning aims to provide a

means for learning a generative map from visual images to human-level textual language. There-

fore, it’s an application of cross-view generation. Similar to how traditional computer vision
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Figure 1.2: Cross-view learning problems beyond visual recognition. Up-left: classification and
detection of visual object; Up-right: re-identification of object under different camera views;
Middle: describe an image with a sentence; Down: recognise an unseen object.

seeks to make the world more accessible and understandable for computers, image captioning

has the potential to make our world more accessible and understandable for us humans. It can

serve as a tour guide, and can even serve as a visual aid for daily life of visually impaired people.

To that end, a robust cross-view learning model is required to not only generate a rich visual

representation but also have a strong generation capability for recovering the high-level visual

representation in the form of textual language.

Long-term motivations. Given all the valuable problems and practical applications, following

aspirations are motivated:

1. Cross-view learning is a step towards a long-term goal of building up intelligent machines

as they require large amounts of different views data which are the channels by which the

knowledge of the world can be accessed;

2. Recent successes in applying deep neural networks to computer vision and other domain

such as natural language processing tasks have inspired AI researchers to explore new

research opportunities at the intersection of these previously separate domains. Therefore,

it is critical that we develop techniques that can relate information across different views

instead of processing each independently;
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3. The ultimate goal of computer vision driven artificial intelligence research is to make ma-

chines see and understand the rich and vivid visual world and endow them with the ability

to communicate with us in many ways. Taking Figure 1.2 as an example, solving cross-

viewing learning problems will expand the boundary of the artificial intelligence, not only

can classify and detect ”Persian cat”, but also be able to recognise new breed ”German

Shorthaired Pointer”, re-identify which images/videos contain same cats and describe what

the cat is doing with human language.

1.2 Challenges and Limitations

Cross-view learning is hard. For making sense of the vast quantity of data generated from

the rapid expansion of large-scale distributed views, automated cross-view learning is essential.

However, it poses a number of challenges: (1) To a computer vision based intelligence system,

image is represented as a large array of numbers indicating the brightness at any position. An

ordinary image might have a few million of these pixels and an artificial intelligence agent must

transform these patterns of brightness values into high-level concepts such as a ”cat”. Moreover,

when the same cat (Figure 1.2) seen under different camera viewpoint and distance, or in a differ-

ent pose, featuring different static and dynamic backgrounds under different lighting conditions,

degrees of occlusion and other view-specific variable, its pattern of brightness values could be

completely different. (2) When the views refer to different modalities such as visual and textual,

the challenge become more severe, the model has to balance an understanding of both visual cues

and textual views. For example, a natural language description – the textual view – of a ”cat”

image such as ”A Persian cat sitting in front of a computer” will be represented in the computer

as a sequence of integers indicating the index of each word in a vocabulary (e.g. ”A Persian

cat sitting in front of a computer” might be [3, 1742, 246, 33, 20, 198, 69, 3, 498]). Therefore,

the very natural task of pointing out and naming different parts of the image in fact involves

a complex pattern recognition process of identifying salient subsets of a grid of a few million

brightness values and annotating them with sequences of integers (Karpathy, 2016).

Encouraging progress but not enough. Despite the difficulty of these tasks, the computer

vision community have recently witnessed rapid progress in the area of visual recognition. In

particular, the state of the art image recognition models based on deep convolutional neural net-

works (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; Szegedy et al., 2015; He et al.,
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2016) have become capable of distinguishing thousands of visual categories at accuracies compa-

rable to humans, or even surpassing them in some fine-grained categories such as breeds of cats

(Russakovsky et al., 2015). These advances can potentially eliminate the large view discrepancy

in cross-view learning problems by simply extracting features from the learned convolutional

neural networks. However, inherent challenges lie in the aforementioned cross-view learning

problems still remains and innovation of more robust and advanced computer vision algorithms

are motivated to propose in this thesis.

Cross-View Matching for Person Re-identification Despite the best efforts from the com-

puter vision researchers, cross-view person image matching or person re-identification remains

a largely unsolved problem. This is because that a persons appearance often undergoes dramatic

changes across camera views due to changes in view angle, body pose, illumination and back-

ground clutter. Furthermore, since people are mainly distinguishable by their clothing under a

surveillance setting, many passers-by can be easily confused with the target person because they

wear similar clothes.

Existing approaches focus on developing discriminative feature representations that are ro-

bust against the view/pose/illumination/background changes (Gray and Tao, 2008; Yang et al.,

2014; Farenzena et al., 2010; Kviatkovsky et al., 2013; Ma et al., 2012; Zhao et al., 2014; Liao

et al., 2015), or learning a distance metric (Gray and Tao, 2008; Koestinger et al., 2012; Prosser

et al., 2010; Zheng et al., 2013; Mignon and Jurie, 2012; Tao et al., 2013; Pedagadi et al., 2013;

Li et al., 2013; Zhao et al., 2013b,a; Xiong et al., 2014; Ma et al., 2014; Lisanti et al., 2014a;

Liao et al., 2015), or both jointly (Li et al., 2014; Ahmed et al., 2015). Among them, the distance

metric learning methods are most popular and are the focus of this thesis. Given any feature

representation and a set of training data consisting of matching image pairs across camera views,

the objective is to learn the optimal distance metric that gives small values to images of the same

person and large values for those of different people. Distance metric learning has been exten-

sively studied in machine learning (Yang and Jin, 2006), and existing metric learning methods

employed for Re-ID are either originated elsewhere or extensions of existing methods with mod-

ifications to address the additional challenges arising from the Re-ID task. Although they have

been shown to be effective in improving the existing Re-ID benchmarks over the past five years,

all these models are still limited by some of classical problems in model learning.
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Small sample size problem Specifically, a key challenge for distance metric learning when ap-

plied to person re-identification is the small sample size (SSS) problem (Chen et al., 2000).

Specifically, to capture rich person appearance whilst being robust against those condition changes

mentioned above, the feature representations used by most recent Re-ID works are of high dimen-

sion – typically in the order of thousands or tens of thousands. In contrast, the number of training

samples is typically small, normally in hundreds. This is because that collecting training samples

of matched person pairs across views is labour intensive and tedious. As a result the sample size

is much smaller (often in an order of magnitude) than the feature dimension, a problem known

as the SSS problem. Metric learning methods suffer from the SSS problem because they essen-

tially aim to minimise the intra-class (intra-person) variance (distance), whilst maximising the

inter-class (inter-person) variance (distance). With a small sample size, the within-class scatter

matrix becomes singular (Chen et al., 2000); to avoid it, unsupervised dimensionality reduction

or regularisation are required. This in turn makes the learned distance metric sub-optimal and

less discriminative (Chen et al., 2000; Zheng et al., 2005; Guo et al., 2006).

Cross-View Matching for Zero-Shot Learning Compare to the single-modal for each view

in Re-ID problem, zero-shot learning (ZSL) models need to deal with the case that each view is

associated with different modality. Specifically, ZSL models rely on learning a joint embedding

space where both textual description of object classes and visual representation of object images

can be projected to for cross-view matching. Usually a labelled training set of seen classes

and the knowledge about how an unseen class is semantically related to the seen classes are

available for model training. Seen and unseen classes are usually related in a high dimensional

vector space, called semantic space, where the knowledge from seen classes can be transferred

to unseen classes. The semantic spaces used by most early works are based on attributes (Farhadi

et al., 2009; Ferrari and Zisserman, 2007; Parikh and Grauman, 2011). Given a defined attribute

ontology, each class name can be represented by an attribute vector. Generally, attribute can be

seen as the unstructured textual view (Yan et al., 2017). More recently, word vector space (Socher

et al., 2013; Frome et al., 2013) and sentence descriptions/captions (Reed et al., 2016a) both from

textual views have started to gain popularity. With the former, the class names are projected into

a word vector space so that different classes can be compared, whilst with the latter, a neural

language model is required to provide a vector representation of the description. The semantic

vector which represents each class name is termed as a class prototype. With the semantic space
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and a visual feature representation of image content, ZSL is typically solved in two steps: (1)

A joint embedding space is learned where both the textual vectors (prototypes) and the visual

feature vectors can be projected to; and (2) nearest neighbour (NN) search is performed in this

embedding space to match the projection of an image feature vector against that of an unseen

class prototype.

Hubness problem Despite the success of deep neural networks that learn an end-to-end model

across visual and textual views in other vision problems (e.g. image captioning), very few deep

ZSL model exists (Lei Ba et al., 2015; Frome et al., 2013; Socher et al., 2013; Yang and Hospedales,

2015; Reed et al., 2016a) and they show little advantage over ZSL models (Fu et al., 2014; Fu

and Sigal, 2016; Akata et al., 2015; Bucher et al., 2016; Romera-Paredes and Torr, 2015; Zhang

and Saligrama, 2015; Lampert et al., 2014) that utilise deep feature representations but do not

learn an end-to-end embedding. The main problem prevents the deep ZSL model to succeed is

the hubness problem (Radovanović et al., 2010). Existing models, regardless whether they are

deep or non-deep, choose either the semantic space (Lampert et al., 2014; Fu and Sigal, 2016;

Socher et al., 2013; Frome et al., 2013) or an intermediate embedding space (Lei Ba et al., 2015;

Akata et al., 2015; Romera-Paredes and Torr, 2015; Fu et al., 2014) as the embedding space.

However, since the embedding space is of high dimension and nearest neighbour search is to be

performed there, the hubness problem is inevitable, that is, a few unseen class prototypes will

become the nearest neighbours of many data points, i.e., hubs. Using the semantic space as the

embedding space means that the visual feature vectors need to be projected into the semantic

space which will shrink the variance of the projected data points and thus aggravate the hubness

problem (Radovanović et al., 2010; Dinu et al., 2014).

Cross-View Generation for Image Captioning Apart from cross-view matching, this thesis

discusses the problem of cross-view generation for image captioning which is introduced in Sec-

tion 1.1, Image captioning model learns to capture relevant semantic information from visual

image data by training on large numbers of visual-textual pairs. Specifically, each image will

be encoded by a deep convolutional neural network into a visual vector representation. A lan-

guage generating RNN, or recurrent neural network, will then decode that visual representation

sequentially into a textual/natural language description.

Limitations in supervised learning based image captioning Most existing image captioning stud-

ies investigate variants of deep learning-based image encoders, improving the inputs for the sub-
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sequent deep sentence decoders. Due to the supervised training strategy, they have two lim-

itations: (i) They are trained to maximise the likelihood of each ground-truth word given the

previous ground-truth words and the image, termed Teacher-Forcing. This strategy may cause a

mismatch between training and testing since at test-time the model uses the previously generated

words from the model distribution to predict the next word. This exposure bias can result in error

accumulation in sentence generation during test time, since the model has never been exposed to

its own predictions. (ii) The training supervision metric, such as the widely used cross entropy

loss, is different from the evaluation metrics at test time. In other words, the model is not directly

optimised towards the task expectation. This learned model is therefore suboptimal. One main

underlying reason responsible is that the evaluation metrics are non-differentiable and therefore

much harder to be optimised against.

1.3 Approaches

Motivated by the challenges and problems lie in cross-view learning this thesis proposes follow-

ing robust cross-view learning algorithm to address them.

Null Space Learning for Cross-View Matching To overcome the challenges in cross-view

matching for re-id, this study argues that the SSS problem in person Re-ID distance metric learn-

ing can be best solved by learning a discriminative null space of the training data. In particular,

instead of minimising the within-class variance, data points of the same classes are collapsed,

by a transform, into a single point in a new space (see Fig. 3.1). By keeping the between-class

variance non-zero, this automatically maximises the Fisher discriminative criterion and results in

a discriminative subspace. The null space method, also known as the null Foley-Sammon trans-

fer (NFST) (Guo et al., 2006) is specifically designed for the small sample case, with rigorous

theoretical proof on the resulting subspace dimension. Importantly, it has a closed-form solution,

no parameter to tune, requires no pre-precessing steps to reduce the feature dimension, and can

be computed efficiently. Furthermore, to deal with the non-linearity of the person’s appearance,

a kernel version can be developed easily to further boost the matching performance within the

null space. It therefore offers a perfect solution to the challenging person Re-ID problem. In

addition to formulating the NSFT model as a fully supervised model to solve the person Re-ID

problem, semi-supervised setting is extended to further alleviate the effects of the SSS problem

by exploiting unlabelled data abundant in Re-ID applications.



28 Chapter 1. Introduction

Deep Embedding Learning for Cross-View Matching To address the hubness problem in

zero-shot learning, a deep cross-view matching framework is presented, which makes it capable

of dealing with the case that each view is associated with different modality. Specifically, a novel

deep neural network based embedding model for ZSL is proposed which differs from existing

models in that: To alleviate the hubness problem, visual space is adopted as the embedding space

instead of the semantic space or an intermediate space. The resulting projection direction is from

the textual view to visual view. Such a direction is opposite to the one adopted by most existing

models. A theoretical analysis and some intuitive visualisations are provided to explain why this

would help to counter the hubness problem.

Reinforcement Learning for Cross-View Generation To address the two limitations in cross-

view generation for image captioning, the main idea is to formulate a reinforcement learning

based framework to improve the quality of generated text sentence. In this way, the gradient of

the expected reward can be optimised by sampling from the model during training, thus avoiding

the train-test mismatch; the relevant test-time metrics such as CIDEr can be directly optimised, by

treating them as reward in a reinforcement learning context. Specifically, an actor-critic model

is proposed which consists of a policy network (actor) and value network (critic). The actor

is trained to predict the caption as a sequential decision problem given the image, where the

sequence of actions correspond to tokens. The critic predicts the value of each state (image

and sequence of actions so far), which is defined as the expected task-specific reward (language

metric score) that the network will receive if it outputs the current token and continues to sample

outputs according to its probability distribution.

1.4 Contributions

The contributions made in this thesis are summarised below:

1. A distance metric learning model (Zhang et al., 2016) is proposed to overcome the small

sample size challenge in Re-ID by matching people in a discriminative null space of the

training data. In this null space, images of the same person are collapsed into a single

point thus minimising the intra-class scatter to the extreme and maximising the relative

inter-class separation simultaneously. Importantly, it has a fixed dimension, a closed-form

solution and is very efficient to compute. Moreover, A novel semi-supervised learning

method is developed in the null space to exploit the abundant unlabelled data to further



1.5. Organisation of Thesis 29

alleviate the effects of the SSS problem. The details are given in Chapter 3.

2. The cross-view matching framework is extended to the case of different modalities each for

a different view (e.g.visual or textual), versus single-modal data considered in the Chapter

3. Specifically, a novel deep embedding model to match visual view/representation of

the data (object) and its textual view for zero-shot visual recognition is proposed (Zhang

et al., 2017b). Further, a natural mechanism for multiple textual modalities optimised

jointly in an end-to-end manner in this model demonstrates significant advantages over

existing methods and state-of-the-art zero-shot learning performance achieved. The model

is described in Chapter 4.

3. A novel actor-critic sequence training framework for the image captioning is formulated

for effectively describing image content with human-level language (Zhang et al., 2017a).

In this way, the non-differentiable quality metrics of interest can be directly optimised. The

proposed approach exploits the shorter episodes and ameliorates the high dimensional ac-

tion space by formulating a per-token advantage and value computation strategy in this

novel reinforcement learning based caption generator. The framework is discussed in

Chapter 5.

1.5 Organisation of Thesis

This thesis is organised as follows, with all chapters structured as shown in Figure 1.3.

Chapter 2 presents a review on various existing cross-view learning strategies, including cross-

view matching, cross-view generation, and cross-view fusion while providing further motivations

for the proposed approaches of this thesis.

Chapter 3 proposes to overcome the small sample size (SSS) problem in person re-identification

(Re-ID) by matching cross camera view data in a discriminative null space of the training data.

Extensive experiments are conducted on five widely used person re-identification benchmarks to

evaluate the advantages of such a simple approach by comparing most contemporary methods.

Chapter 4 argues the key to make deep ZSL models succeed is to choose the right embedding

space and proposes a novel deep embedding model for zero-shot learning. Extensive experiments

on four benchmarks show that our the proposed model beats the state-of-the-art alternatives, often

by a clear margin.
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Chapter 3

Chapter 4

Cross-view matching for person re-identification

Cross-view matching for zero-shot learning

Cross-view generation for image captioning
Chapter 5

Chapter 1

Introduction

Chapter 6

Conclusion and
Future Work

Chapter 2

Literature 
Review

This chapter proposes to overcome the small sample
size (SSS) problem in person re-identification (Re-ID)
by matching cross camera view data in a
discriminative null space of the training data.

A novel deep embedding model for zero-shot learning
is proposed which lead to less hubness problem.
It offers a natural mechanism for multiple textual
views to be fused and optimised jointly in an end-to-
end manner.

Investigated the problem of automated image
captioning by employing reinforcement learning to
optimise the relevant non-differentiable language
metrics such as CIDEr. A novel actor- critic based
learning strategy is proposed a novel actor-critic based
learning strategy is formulated which has the
advantage over existing reinforcement learning based
captioning models

Figure 1.3: Summarisation and structure of all chapters.

Chapter 5 presents a reinforcement learning method for image captioning which aims to auto-

matically describing image content with human-level language. Specifically, a novel actor-critic

based learning approach is formulated to directly maximise the reward - the actual natural lan-

guage processing quality metrics of interest. As compared to existing reinforcement learning

based captioning models, the new method has the unique advantage of a per-token advantage

and value computation, achieving the state of the art performance on the widely used MSCOCO

benchmark.

Chapter 6 concludes the thesis, briefly introduce a number of directions to be pursued as the

future work.
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Chapter 2

Literature Review

This chapter presents background of several important concepts used throughout this thesis, and

literature review. Specifically, Section 2.1 provides background information for machine learning

and introduced existing machine learning models for cross-view learning. Section 2.2 reviews

conventional cross-view matching methods briefly. Then, Section 2.3 presents cross-view gener-

ation methods. Finally, benchmark datasets are summarised in Section 2.4.

2.1 Machine Learning Tools

2.1.1 Overview on machine learning

Machine learning (Friedman et al., 2001; Bishop, 2006; Robert, 2014) is an interdisciplinary field

of computer science, statistics, mathematics (esp. optimisation), and neuroscience. Formally,

according to (Mitchell et al., 1997), machine learning is ”A computer program is said to learn

from experience E with respect to some class of tasks T and performance measure P, if its

performance at tasks in T, as measured by P, improves with experience E. Depending on a

specific application, one can design various experiences E, tasks T, and performance measures P.

Conventionally machine learning is categorised into three different settings, namely,

Supervised learning The objective is to find the mapping between input and output. There

is ground truth labels for the output. Most recognition and matching problems fall into this

category.
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Figure 2.1: An illustration of reinforcement learning from (Arulkumaran et al., 2017). At time
t, the agent receives state st from the environment. The agent uses its policy to choose an action
at . Once the action is executed, the environment transitions a step, providing the next state st+1
as well as feedback in the form of a reward rt+1. The agent uses knowledge of state transitions,
of the form (st , at , rt+1, st+1), in order to learn and improve its policy.

Unsupervised learning It finds the underlying structure of the given data by transforming it

into another representation. There is no precise definition in this case. Dimension reduction and

clustering are typical studies in unsupervised learning.

Reinforcement learning (Sutton and Barto, 1998) An agent is trying to maximise the rewards

it getting in an environment by taking actions in different states. Reinforcement learning is about

how to pick the best action for the agent. A more detailed illustration is shown in Figure 2.1.

Two classic reinforcement learning algorithms are introduced following:

Policy gradient Gradients can provide a strong learning signal as to how to improve a parame-

terised policy. The REINFORCE rule can be used to compute the gradient of an expectation over

a function f of a random variable X with respect to parameters θ :

∇θEX [ f (X ; θ)] = EX [ f (X ; θ)∇θ log p(X)] (2.1)

Actor-Critic It is possible to combine value functions with an explicit representation of the

policy, resulting in actor-critic methods (Barto et al., 1983). In doing so, these methods trade

off variance reduction of policy gradients with bias introduction from value function methods.

Actor-critic methods use the value function as a baseline for policy gradients, such that the only

fundamental difference between actor-critic methods and other baseline methods are that actor-

critic methods utilise a learned value function. Many state-of-the-art reinforcement learning

algorithms (Mnih et al., 2016) are based on actor-critic. For instance, AlphaGo (Silver et al.,

2016) utilised the actor-critic method to do self-learning in the game of Go and achieved great



2.1. Machine Learning Tools 33

success by beating human world champions. It uses Monte-Carlo rollout and the reward is only

set at the end of the game with very long episode.

2.1.2 Machine learning models for cross-view learning

One typical practice of machine learning is: (1) collect the data (2) train the model, and (3)

deploy it. What this study focus ”cross-view learning” is thus training the model from different

views data. Nowadays, a tremendous quantity of data are continually generated. It has been

witnessed that many real applications involve large-scale cross-view data. For example, visual

data generated by the rapid expansion of large-scale distributed multi-camera systems, with same

object captured by different cameras as views; Hundreds of hours of videos are uploaded to

YouTube every minute, which appear in multiple modalities, namely visual, audio and text views;

A large number of bilingual news are reported every day, with the description in each language

as a view. Therefore, design an appropriate cross-view learning model for different views data is

essential. In this subsection, existing cross-view learning models are sequentially discussed.

Canonical Correlation Analysis One representative cross-view learning model are Canonical

Correlation Analysis (CCA) (Thompson, 2005) and its variants including Kernel CCA (Hardoon

et al., 2004) and multi-view CCA (Vı́a et al., 2007; Gong et al., 2014b). CCA is an approach

to correlating linear relationships between two-view feature sets. It seeks linear transformations

each for one view such that the correlation between these transformed feature sets is maximized

in the common subspace while regularizing the self covariance of each transformed feature sets

to be small enough. The aim of CCA is to find two projection directions wx and wy corresponding

to each view, and maximize the following linear correlation coefficient

cov(wT
x X , wT

y Y )√
var(wT

x X)var(wT
y Y )

=
wT

x Cxywy√
(wT

x Cxxwx)(wT
y Cyywy)

, (2.2)

where X and Y indicates the data from corresponding views, the covariance matrics Cxy, Cxx and

Cyy are calculated as Cxy =
1
n XY T , Cxx =

1
n XXT , Cyy =

1
nYY T . The constant 1

n can be cancelled

out when calculating the correlation coefficient.

CCA has attracted a lot of researchers in past years (Rupnik and Shawe-Taylor, 2010). CCA

has been extended to sparse CCA (Chen et al., 2012) and has been widely used for multi-view

classification (Sun et al., 2011), clustering (Chaudhuri et al., 2009), regression (Kakade and

Foster, 2007). CCA can be extended to multi-view CCA (Vı́a et al., 2007) by maximizing the sum



34 Chapter 2. Literature Review

of pairwise correlations between different views. However, the main drawback of this strategy is

that only correlation information between pairs of features is explored, while high-order statistics

are ignored. (Luo et al., 2015) develop tensor CCA (TCCA) to generalize CCA to handle any

number of views in a direct and yet natural way. In particular, TCCA can directly maximize the

correlation between the canonical variables of all views, and this is achieved by analyzing the

high-order covariance tensor over the data from all views (Kim et al., 2007).

Cross-view deep learning models Deep neural networks have recently demonstrated outstand-

ing performance in a variety of tasks such as face recognition, object classification and object

detection. They can significantly outperform other methods for the task of large-scale image

classification. For cross-view learning, there are also some potential of improving performance

through incorporating cross-view learning algorithms and deep learning methods. So far, multi-

view deep representation learning has two main strategies (Wang et al., 2015). First, (Ngiam

et al., 2011)] proposed Multimodal Autoencoder (MAE) which aims to achieve both within-view

and across view reconstruction via a shared embedding. Second, (Andrew et al., 2013) proposed

a DNN extension of CCA called deep CCA. For practical application, (Zhu et al., 2014) proposed

a multi-view perceptron which is a deep model for learning face identity and view representa-

tions. (Su et al., 2015b) presented a novel CNN architecture that combines information from

multiple views of a 3D shape into a single and compact shape descriptor. (Elhoseiny et al., 2016)

achieved joint object categorization and pose estimation on multi-view data through employing

view-invariant representation within CNNs. (Elkahky et al., 2015) presented a general recom-

mendation framework that uses deep learning to match rich user features to item features. They

also showed how to extend this framework to combine data from different domains to further

improve the recommendation quality. Although these methods have realized deep learning in the

cross-view learning framework, there is still a lot of room to develop cross-view deep learning in

terms of methodologies and applications.

2.2 Cross-View Matching

This section mainly focuses on reviewing existing methods for cross-view matching. Particularly,

recent work for two applications of cross-view learning, person re-identification and zero-shot

learning which are different in perspective of view, are discussed in Section 2.2.1 and Section

2.2.2, respectively.
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2.2.1 Person re-identification

Person re-identification (Re-ID) refers to the problem of visually matching already detected in-

dividual or group of people across non-overlapping cameras views distributed at diverse physical

locations and times (Vezzani et al., 2013; Gong et al., 2014a). Depending on the availability of

images across camera views, Re-ID can be performed in a singe-shot (i.e. , only one image per

camera view) or a multi-shot manner. In the following, first a number of feature learning studies

are discussed. Then, contemporary distance metric learning methods for Re-ID are presented.

Finally, deep neural network based methods are presented briefly. More thorough reviews can be

found in (Vezzani et al., 2013; Gong et al., 2014a; Zheng et al., 2016).

Feature design The first group of methods focus on designing invariant and discriminant fea-

tures (Li et al., 2014; Gray and Tao, 2008; Farenzena et al., 2010; Kviatkovsky et al., 2013; Ma

et al., 2012; Zhao et al., 2014; Lisanti et al., 2014b; Yang et al., 2014; Liao et al., 2015). Design-

ing suitable feature representation for person re-identification is a critical and challenging prob-

lem. Ideally, the extracted features should be robust to large cross-view discrepancy, different

body poses, changes in illumination, background clutter, occlusion and image quality/resolution.

In the context of re-id, however, it is unclear whether there exists universally important and

salient features that can be applied readily to different camera views and for all individuals.

The discriminative power, reliability and computability of features are largely governed by the

camera-pair viewing conditions and unique appearance characteristics of different persons cap-

tured in the given views. Moreover, the difficulty in obtaining an aligned bounding box, and

accurately segmenting a person from cluttered background makes extracting pure and reliable

features depicting the person of interest even harder. The general trend is that the dimensions of

the proposed features are getting higher. For instance the dimensions of two representations, re-

cently proposed in (Lisanti et al., 2014b) and (Liao et al., 2015) and used in Chapter 3, are 5,138

and 26,960 respectively. However, no matter how robust the designed features are, they are un-

likely to be completely invariant to the often drastic cross-view pose/illumination/background

changes.

Model learning Therefore, the second group of methods focus on learning robust and discrim-

inative distance metrics or subspaces for matching people across views, they include: KISSME

(Koestinger et al., 2012), RankSVM (Prosser et al., 2010), Probabilistic Relevance Distance

Comparison (Zheng et al., 2013), and (Gray and Tao, 2008; Mignon and Jurie, 2012; Tao et al.,
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2013; Pedagadi et al., 2013; Li et al., 2013; Zhao et al., 2013b,a; Xiong et al., 2014; Ma et al.,

2014; Lisanti et al., 2014b,a; Liao et al., 2015; Paisitkriangkrai et al., 2015).

Apart from a few exceptions (Gray and Tao, 2008; Prosser et al., 2010) based on ranking or

boosting, the second groups of methods can be further divided into two major sub-groups: those

on learning distance metrics (Koestinger et al., 2012; Zheng et al., 2013; Mignon and Jurie, 2012;

Tao et al., 2013) and those on learning discriminative subspaces (Pedagadi et al., 2013; Lisanti

et al., 2014b; Xiong et al., 2014; Liao et al., 2015). Seemingly different, these two sub-groups are

closely related (Globerson and Roweis, 2005). The main idea of metric learning is to optimise

the model parameters so that the cross-view inter-person distance is large whilst intra-person

distance is small. Specifically, most metric learning methods focus on Mahalanobis form metrics.

If the linear projection of a feature vector xi in a learned discriminative subspace is denoted as

yi, we have yi = WT xi. The Euclidean distance between yi and y j is exactly a Mahalanobis

distance ||yi− y j||2 = (xi− x j)
T A(xi− x j) where A = WT W is a positive semidefinite matrix.

In other words, learning a discriminative subspace followed by computing Euclidean distance

is equivalent to computing a discriminative Mahalanobis distance over feature vectors in the

original space. By making this connection, it is not difficult to see why both methods suffer from

the same SSS problem (Section 1.2) typically associated with the subspace learning methods

(Chen et al., 2000; Zheng et al., 2005; Guo et al., 2006). Most existing methods need to work with

a reduced dimensionality (Pedagadi et al., 2013), achieved typically by PCA whose dimension

has to be carefully tuned for each dataset. Some works additionally require introducing matrix

regularisation term if the intra-class scatter matrix is used in the formulation, in order to prevent

matrix singularity (Pedagadi et al., 2013; Lisanti et al., 2014b; Xiong et al., 2014; Liao et al.,

2015), again with free parameters to tune. Critically, they suffer from the degenerate eigenvalue

problem (i.e. several eigenvectors share the same eigenvalue), which makes the solution sub-

optimal resulting in loss of discriminant ability (Zheng et al., 2005). In contrast, the proposed

discriminative null space based approach (Section 3), neither dimensionality reduction before

model learning nor regularisation term is required, and it has no parameters to tune.

As a solution proposed specifically to address the SSS problem, the null Foley-Sammon

transfer (NFST) method has been around for a long time (Guo et al., 2006), but received very

little attention apart from a recent application to the novelty detection problem (Bodesheim et al.,

2013). A possible reason is that by restricting the learned discriminative projecting directions to
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the null projecting directions (NPDs), on which within-class distance is always zero and between-

class distance is positive, the model is extreme, leaving little space for further extension with

clear added-value. For example, the more relaxed Fisher discriminative analysis (FDA) can be

extended, gaining notable advantage, by exploit graph laplacian to preserve local data structure,

known as LFDA (Sugiyama, 2006), which has been successfully applied to Re-ID (Pedagadi

et al., 2013). However, a similar graph laplacian extension to NFST does not apply due to its

single point per class nature. Despite the restrictions, given the acute SSS problem in Re-ID

distance metric learning, the basic idea of learning a null space for overcoming this problem

becomes very attractive. The general concept of collapsing same-class data points to a single

point has been exploited in a Mahalanobis distance learning framework, known as maximally

collapsing metric learning (MCML) (Globerson and Roweis, 2005). However, MCML does not

exploit a null space. Instead, the MCML model must make approximations with plenty of free

parameters to tune and no closed-form solution.

Deep learning based methods Recently, the third group of methods start to appear which are

based on deep learning (Shi et al., 2016; Cheng et al., 2016; Liu et al., 2017b; Varior et al., 2016;

Ustinova et al., 2015; Yi et al., 2014; Li et al., 2014; Ahmed et al., 2015; Xiao et al., 2016; Li

et al., 2017; Geng et al., 2016; Chen et al., 2017) have obtained impressive performance. These

approaches are largely inspired by the strong representation auto-learning capacity of deep mod-

els. They differ significantly in their network architectures, which are largely determined by the

training objectives/losses. Specifically, most existing works cast the Re-ID problem as a deep

metric learning problem and employ pairwise verification loss (Yi et al., 2014; Ahmed et al.,

2015; Ustinova et al., 2015; Varior et al., 2016; Shi et al., 2016) or triplet ranking loss (Liu et al.,

2017b; Cheng et al., 2016), or both (Wang et al., 2016a). Correspondingly the overall network ar-

chitecture is a Siamese CNN network with either two or three branches for the pairwise or triplet

loss respectively. (Xiao et al., 2016) uses an identity classification loss with one-branch archi-

tecture. (Geng et al., 2016) has a Siamese two-branch architecture with an identity classification

loss for each branch and pairwise verification loss across the two branches. (Li et al., 2017)

jointly learns the local and global branches, both subject to the same identity class supervision

for maximising the complementary advantages of local and global Re-ID feature learning whilst

enhancing their individual discriminative power. (Chen et al., 2017) also adopted two-branch

architecture, not only learning scale-specific discriminative features by optimising multiple clas-
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sification losses on the same person label information concurrently, but also maximising jointly

multi-scale complementary fusion selections by multi-scale consensus regularisation in a closed-

loop form. However, deep learning based Re-ID models require a large number of training data,

which may be not available in many real cases. For example, deep Re-ID models are often poor

in small scale due to overfitting problem, CMC rank-1 accuracy of (Xiao et al., 2016) on VIPeR

lower than 40% .

Attribute/Language based methods Visual semantic attributes (Wang et al., 2017b; Liu et al.,

2017d) have been exploited as a mid-level feature representation for cross-view Re-ID (Layne

et al., 2014a,b, 2012; Peng et al., 2016; Su et al., 2015a, 2016). This data has been manually

annotated with 15 binary attributes in (Layne et al., 2012), which include: shorts, skirt, sandals,

backpack, jeans, logo, v-neck, open-outerwear, stripes, sunglasses, headphones, long-hair, short-

hair, gender, carrying-object, 12 of which are appearance-based, and 3 are soft-biometrics. In

many practical cases visual example is not available or tedious manual search has to be done to

identify one instance that can then be used as a query. In such cases a natural language description

is the only available view, often gathered from a number of witnesses with many variations and

inconsistencies. For example, natural language descriptions of visual image can be often found

in missing person sections in newspapers . (Yan et al., 2017) first extends the conventional Re-

ID datasets with natural language descriptions (see Figure 2.2), which will facilitate research in

person Re-ID with joint vision and language modelling. It covers the following scenarios: 1)

the gallery has only the vision modality while the query has only the language modality; 2) the

gallery has only vision while the query has both vision and language; and finally, 3) both the

gallery and the query have vision and language. Second, (Yan et al., 2017) propose models that

integrate vision and language, and demonstrate that in several Re-ID scenarios, the performance

can be significantly improved by the proposed integration; Third, (Yan et al., 2017) compare

natural language annotations to attribute based ones (Layne et al., 2014a, 2012), and identify

their relative advantages. Compared to attribute based annotations (Layne et al., 2014a, 2012),

the advantage of natural language description is its flexibility and richness.

2.2.2 Zero-shot learning

Zero-shot learning (ZSL) is a variant of cross-view learning which aims to matching the visual

view of a unseen data (objects) and its textual view. Specifically, ZSL models rely on learning
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Figure 2.2: Example images from CUHK03 with discriminative sections of their natural language
descriptions. Figure credits to (Yan et al., 2017).

a joint embedding space where both textual description of seen and unseen classes and visual

representation of object images can be projected to for cross-view matching.

Semantic space Seen and unseen classes are usually related in a high dimensional vector

space, called semantic space, where the knowledge from seen classes can be transferred to un-

seen classes. Existing ZSL methods differ in what semantic spaces are used: typically either

attribute (Farhadi et al., 2009; Ferrari and Zisserman, 2007; Parikh and Grauman, 2011), word

vector (Socher et al., 2013; Frome et al., 2013), or text description (Reed et al., 2016a). It has

been shown that an attribute space is often more effective than a word vector space (Akata et al.,

2015; Zhang and Saligrama, 2015; Lampert et al., 2014; Romera-Paredes and Torr, 2015). This is

hardly surprising as additional attribute annotations are required for each class. Similarly, state-

of-the-art results on fine-grained recognition tasks have been achieved in (Reed et al., 2016a)

using sentence descriptions/captions to construct the semantic space. Again, the good perfor-

mance is obtained at the price of more manual annotation: 10 sentence descriptions need to be

collected for each image, which is even more expensive than attribute annotation. This is why

the word vector semantic space is still attractive: it is ‘free’ and is the only choice for large scale

recognition with many unseen classes (Fu and Sigal, 2016). In this thesis, all three semantic

spaces are considered.

Fusing multiple semantic spaces Multiple semantic spaces are often complementary to each

other; fusing them thus can potentially lead to improvements in recognition performance. Score-
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level fusion is perhaps the simplest strategy (Fu et al., 2015b). More sophisticated multi-view

embedding models have been proposed. (Akata et al., 2015) learn a joint embedding semantic

space between attribute, text and hierarchical relationship which relies heavily on hyperparameter

search. Multi-view canonical correlation analysis (CCA) has also been employed (Fu et al., 2014)

to explore different modalities of testing data in a transductive way. Differing from these models,

our neural network based model has an embedding layer to fuse different semantic spaces and

connect the fused representation with the rest of the visual-semantic embedding network for end-

to-end learning. Unlike (Fu et al., 2014), it is inductive and does not require to access the whole

test set at once.

Embedding model Existing methods also differ in the visual-semantic embedding model

used. They can be categorised into two groups: (1) The first group learns a mapping function

by regression from the visual feature space to the semantic space with pre-computed features

(Lampert et al., 2014; Fu and Sigal, 2016) or deep neural network regression (Socher et al.,

2013; Frome et al., 2013). For these embedding models, the semantic space is the embedding

space. (2) The second group of models implicitly learn the relationship between the visual and

semantic space through a common intermediate space, again either with a neural network formu-

lation (Lei Ba et al., 2015; Yang and Hospedales, 2015) or without (Lei Ba et al., 2015; Akata

et al., 2015; Romera-Paredes and Torr, 2015; Fu et al., 2014). The embedding space is thus

neither the visual feature space, nor the semantic space. This study shows that using the visual

feature space as the embedding space is intrinsically advantageous due to its ability to alleviate

the hubness problem (Section 1.2).

Deep ZSL model All recent ZSL models use deep CNN features as inputs to their embedding

model. However, few are deep end-to-end models. Existing deep neural network based ZSL

works (Frome et al., 2013; Socher et al., 2013; Lei Ba et al., 2015; Yang and Hospedales, 2015;

Reed et al., 2016a) differ in whether they use the semantic space or an intermediate space as the

embedding space, as mentioned above. They also use different losses. Some of them use margin-

based losses (Frome et al., 2013; Yang and Hospedales, 2015; Reed et al., 2016a). Socher et al

(Socher et al., 2013) choose a Euclidean distance loss. (Lei Ba et al., 2015) takes a dot product

between the embedded visual feature and semantic vectors and consider three training losses,

including a binary cross entropy loss, hinge loss and Euclidean distance loss. The work in (Reed

et al., 2016a) differs from the other models in that it integrates a neural language model into its
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neural network for end-to-end learning of the embedding space as well as the language model.

The hubness problem The phenomenon of the presence of ‘universal’ neighbours, or hubs,

in a high-dimensional space for nearest neighbour search was first studied by Radovanovic et

al. (Marco et al., 2015). They show that hubness is an inherent property of data distributions in

a high-dimensional vector space, and a specific aspect of the curse of dimensionality. A couple

of recent studies (Dinu et al., 2014; Shigeto et al., 2015) noted that regression based zero-shot

learning methods suffer from the hubness problem and proposed solutions to mitigate the hubness

problem. Among them, the method in (Dinu et al., 2014) relies on the modelling of the global

distribution of test unseen data ranks w.r.t. each class prototypes to ease the hubness problem. It

is thus transductive. In contrast, the method in (Shigeto et al., 2015) is inductive: It argued that

least square regularised projection functions make the hubness problem worse and proposed to

perform reverse regression, i.e., embedding class prototypes into the visual feature space. Our

model also uses the visual feature space as the embedding space but achieve so by using an

end-to-end deep neural network which yields far superior performance on ZSL.

2.3 Cross-View Generation

Whilst most existing approaches to cross-view learning are devoted to tasks of matching (Section

2.2.1 and 2.2.2), extending cross-view learning frameworks to scenarios of generating raw data of

novel view(s) conditioned on other view(s) is non-trivial due to the significant view discrepancy

and the ability of the model to balance an understanding of both views. This section mainly

focuses on reviewing existing approaches to cross-view generation. In particular, this section is

separated into three subsections based on the realm of view: Fist, a number of image synthesis

frameworks are discussed in Section 2.3.1; Then, image captioning models are introduced in

Section 2.3.2; At last, group of work on machine translation are presented in Section 2.3.3.

2.3.1 Image synthesis

Generative Adversarial Network As one of the most significant improvements on the re-

search of deep generative model, Generative Adversarial Network (GAN) (Goodfellow et al.,

2014) has drawn substantial attention from computer vision society and achieved impressive re-

sults in image synthesis. We first briefly revisit GAN.

GAN consists of a generator G and a discriminator D that compete in a two-player minimax
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game. The discriminator tries to distinguish a real image x from a synthetic one G(z), and the

generator tries to synthesize realistic-looking images that can fool discriminator. Concretely, D

and G play the following game on V (D, G):

min
G

max
D

V (D, G) = Ex∼pdata(x)[logD(x)]+Ex∼pz(z)[log(1−D(G(z)))] (2.3)

It is proved in (Goodfellow et al., 2014) that this minimax game has a global optimum when

the distribution pg of the synthetic samples and the distribution pd of the training samples are

the same. Under mild conditions (e.g. , G and D have enough capacity), pg converges to pd . In

practice, it is better for G to maximize log(D(G(z))) instead of minimizing log(1−D(G(z))).

The min-max two-player game provides a simple yet powerful way to estimate target dis-

tribution and generate novel image samples (Denton et al., 2015). With its power for distribu-

tion modelling, the GAN can encourage the generated images to move towards the true image

manifold and thus generates photorealistic images with plausible high frequency details. Re-

cently, modified GAN architectures, conditional GAN (Mirza and Osindero, 2014) in particular,

have been successfully applied to vision tasks like image-to-image translation (Isola et al., 2016),

super-resolution (Ledig et al., 2017), style transfer (Li and Wand, 2016), text-to-image-synthesis

(Reed et al., 2016b) and camera view synthesis (Huang et al., 2017). These successful applica-

tions of GAN motivate us to develop frontal view synthesis methods based on GAN.

Camera View Synthesis When the view refers to camera view, the goal of view synthesis

is to create unseen novel view(s) images based on a set of available existing views. From an

optimisation point of view, generating novel view(s) from incompletely observed profile is an

ill-posed problem.

There is one line of work use Generative Adversarial Network (GAN) (Goodfellow et al.,

2014) to achieve this. (Huang et al., 2017) proposes a Two-Pathway Generative Adversarial

Network (TP-GAN) for photorealistic frontal view face synthesis by simultaneously perceiving

global structures and local details from a single image. Four landmark located patch networks

are proposed to attend to local textures in addition to the commonly used global encoder-decoder

network. The combination of adversarial loss, symmetry loss and identity preserving loss func-

tions leverage both frontal face distribution and pre-trained discriminative deep face models to

guide an identity preserving inference of frontal views from profiles. Some samples generated

by TP-GAN are shown in Figure 2.3. (Tran et al., 2017) proposes Disentangled Representation
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Figure 2.3: Frontal view synthesis by TP-GAN (Huang et al., 2017). The upper half shows the
90◦ profile image (middle) and its corresponding synthesized (left) and ground truth frontal face
(right). The lower half shows the synthesized frontal view faces from profiles of 90◦, 75◦ and
45◦ respectively.

learning-Generative Adversarial Network (DR-GAN) that takes one or multiple face images as

the input, producing an identity representation that is both discriminative and generative, and can

synthesis identity-preserving faces at any views specified by the pose code.

The other line of work of camera view synthesis is to use encoder-decoder network. (Ji et al.,

2017) proposes a novel CNN architecture for view synthesis called ”Deep View Morphing” that

does not suffer from lacking of texture details, shape distortions, or high computational complex-

ity. To synthesize a middle view of two input images, a rectification network first rectifies the two

input images. An encoder-decoder network then generates dense correspondences between the

rectified images and blending masks to predict the visibility of pixels of the rectified images in

the middle view. A view morphing network finally synthesizes the middle view using the dense

correspondences and blending masks. Apart from the above 2D image synthesis work, (Yang

et al., 2015) proposes a novel recurrent convolutional encoder-decoder network that is trained

end-to-end on the task of rendering rotated 3D faces and chairs starting from a single image.

The recurrent structure allows the proposed model to capture long-term dependencies along a

sequence of transformations.
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Figure 2.4: An example of text-to-image synthesis network: text-conditional convolutional GAN
architecture (Reed et al., 2016b). Text encoding ϕ(t) is used by both generator and discriminator.
It is projected to a lower-dimensions and depth concatenated with image feature maps for further
stages of convolutional processing. Figure credits to (Reed et al., 2016b).

Text-to-Image Synthesis The goal of text-to-image synthesis is automatic generating realistic

images conditioned on text descriptions. (Reed et al., 2016b) develops a simple and effective

end-to-end GAN architecture and training strategy that enables compelling text to image syn-

thesis of bird and flower images from human-written descriptions. The model can synthesise

many plausible visual interpretations of one given text caption. The approach is to train a deep

convolutional generative adversarial network (DC-GAN) conditioned on text features encoded

by a hybrid character-level convolutional recurrent neural network. Both the generator network

G and the discriminator network D perform feed-forward inference conditioned on the text fea-

ture. Specifically, in the generator G, first sampling from the noise prior z and encoded the text

query t using text encoder ϕ . The description embedding ϕ(t) is first compressed using a fully-

connected layer to a small dimension followed by leaky-ReLU and then concatenated to the noise

vector z. Details of the network architecture is shown in Figure 2.4.

Another line of work that utilise GAN to generate image from text view and visual view

is Fashion Synthesis (Zhu et al., 2017b). It extends the DeepFashion dataset (Liu et al., 2016)

by collecting sentence descriptions for 79K images. Given an input image of a person and a

sentence description of a new desired outfit (e.g.a lady dressed in sleeveless white clothes), (Zhu

et al., 2017b) first generates a segmentation map S̃ using the generator from the first GAN. Then

they render the new image with another GAN, with the guidance from the segmentation map

generated in the previous step. At test time, the final rendered image is obtained with a forward

pass through the two GAN networks (see Figure 2.5).

Image-to-Image Translation When the view retains to the different representations of a par-

ticular image, such as an RGB image, a gradient field, an edge map or a Monet style painting,
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Figure 2.5: An example of Fashion synthesis network (Zhu et al., 2017b).

then automatic image-to-image translation is another variant of cross-view generation, which is

defined as translating one possible representation of an image into another.

(Isola et al., 2016) training a conditional GAN to predict one view images conditioned on

another paired view (e.g. , generating aerial photos from maps). The discriminator D learns to

classify between real and synthesised pairs. The generator learns to fool the discriminator. Unlike

an unconditional GAN, both the generator and discriminator observe an input image. (Zhu et al.,

2017a) learns to do the same: capturing special characteristics of one view image and figuring out

how these characteristics could be translated into the other views, but it takes a further step that

all in the absence of any paired training examples by introducing an additional cycle consistency

loss. Neural Style Transfer (Li and Wand, 2016; Johnson et al., 2016) is another way to perform

image-to-image translation, which synthesises a novel image by combining the content of one

image with the style of another image (typically a painting) based on matching the Gram matrix

statistics of pre-trained deep features.

2.3.2 Image captioning

If the mapping function is learned from visual view to textual view, which is rightly an inverse

mapping compared with text-to-image synthesis, then we called this as image captioning. Image

captioning aims to automatically describe the visual content of an image in natural language

instead of merely assigning it a category. Image captioning model does indeed develop the

ability to generate accurate new captions when presented with completely new scenes, indicating

a deeper understanding of the objects and context in the visual images. Moreover, it learns how

to express that knowledge in natural-sounding English phrases despite receiving no additional

language training other than reading the human textual captions. Figure 2.7 shows the image

captioning model generates a completely new caption using concepts learned from similar scenes
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Figure 2.6: Image synthesis examples from (Zhu et al., 2017a). Given any two unordered image
collections X and Y , (Zhu et al., 2017a)learns to automatically ”translate” an image from one into
the other and vice versa: (left) Monet paintings and landscape photos from Flickr; (center) zebras
and horses from ImageNet; (right) summer and winter Yosemite photos from Flickr. Example
application (bottom): using a collection of paintings of famous artists, model learns to render
natural photographs into the respective styles.

in the training set.

Figure 2.7: Image captioning model generates a completely new caption using concepts learned
from similar scenes in the training set

Image captioning with supervised learning There is now extensive work on image caption-

ing (Vinyals et al., 2015; Fang et al., 2015; Xu et al., 2015; Devlin et al., 2015; Mao et al., 2015;

Wu et al., 2016; Vinyals et al., 2016; Liu et al., 2017a) which are based on supervised learning.

The typical pipeline is based on a Convolutional Neural Network (CNN) image encoder and a re-
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current neural network (RNN) based sentence decoder (Vinyals et al., 2015, 2016). Specifically,

each image will be encoded by a deep convolutional neural network into a visual vector repre-

sentation. A language generating RNN, or recurrent neural network, will then decode that visual

representation sequentially into a textual/natural language description (Figure 2.8). The CNN

image representation can be entered into the RNN in different manners. While some (Vinyals

et al., 2015; Karpathy and Fei-Fei, 2015) use it only to compute the initial state of the RNN,

others enter it in each RNN iteration (Mao et al., 2015; Donahue et al., 2015).

Figure 2.8: CNN-RNN model architecture for image captioning. Figure credits to (Vinyals et al.,
2015, 2016).

(Xu et al., 2015) were the first to propose an attention-based approach for image captioning,

in which the RNN state update includes the visual representation of an image region. Which

image region is attended to is determined based on the previous state of the RNN. They propose

a ”soft” variant in which a convex combination of different region descriptors is used, and a

”hard” variant in which a single region is selected. The latter is found to perform slightly better,

but is more complex to train due to a non-differentiable sampling operator in the state update.

In their approach the positions in the activation grid of a convolutional CNN layer is the loci of

attention. Each position is described with the corresponding activation column across the layer’s

channels.

Several works build upon the approach of (Xu et al., 2015). (You et al., 2016) learns a set

of attribute detectors, similar to (Fang et al., 2015), for each word of their vocabulary. These

detectors are applied to an image, and the strongest object detections are used as regions for

an attention mechanism similar to that of (Xu et al., 2015). In their work the detectors are

learned prior and independently from the language model. (Wu et al., 2016) also learn attribute
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detectors but manually merge word tenses (walking, walks) and plural/singulars (dog, dogs) to

reduce the set of attributes. (Wu and Cohen, 2016) improve the attention based encoder-decoder

model by adding a reviewer module that improves the representation passed to the decoder. They

show improved results for various tasks, including image captioning. (Yao et al., 2015) use a

temporal version of the same mechanism to adaptively aggregate visual representations across

video frames per word for video captioning.

Another topical issues addressed in the literature include improving visual feature represen-

tations (Liu et al., 2017a). Specifically, (Liu et al., 2017a) propose a novel CNN-RNN image

annotation model which differs from the existing models in the selection of the image embed-

ding layer and in the introduction of deeply supervised semantic regularisation to the embedding

layer.

Image captioning with reinforcement learning Image captioning methods summarised above

are all typically trained by maximising training caption likelihood through teacher forcing (Sec-

tion 1.2). Recently a few studies proposed to use reinforcement learning to address the discrep-

ancy between the standard training objective for image captioning (likelihood/teacher forcing)

and the evaluation metrics of interest (CIDEr) (Ranzato et al., 2016; Liu et al., 2017c; Rennie

et al., 2017). (Rennie et al., 2017) uses the basic REINFORCE algorithm (Williams, 1992).

REINFORCE with a Baseline. The policy gradient given by REINFORCE can be generalized

to compute the reward r(ws) associated with an action value relative to a reference reward or

baseline. The core idea of (Rennie et al., 2017) is to baseline the REINFORCE algorithm with

the reward r(w̃) obtained by the current model under the inference algorithm used at test time.

∇θL(θ) =−Ews∼pθ
[(r(ws)− r(w̃))∇θ log pθ (ws)]. (2.4)

As a results, for each sampled caption, it has only one sentence level advantage which means

that every token makes the same contribution towards the whole sentence – a clearly invalid

assumption. (Ranzato et al., 2016; Liu et al., 2017c) add an additional FC layer on top of the

RNN output to predict state value function. However, both treat state as the RNN output while

the proposed image captioning model in this thesis treat the state as the RNN input (given image

and the taken actions), so that one can build an independent value network rather than a shared

RNN cell between actor and critic.
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2.3.3 Machine translation

When the views represent different textual human-languages (e.g. , German, Frensh and English

etc). Machine translation (Sutskever et al., 2014; Bahdanau et al., 2015) is another variant of

cross-view generation.

The models proposed recently for neural machine translation often belong to a family of en-

coderdecoders and encode a source sentence into a fixed-length vector from which a decoder gen-

erates a translation. (Sutskever et al., 2014) presents a general end-to-end approach to sequence

learning that makes minimal assumptions on the sequence structure. It uses a multilayered Long

Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) to map the input sequence to

a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence

from the vector. (Bahdanau et al., 2015) conjectures that the use of a fixed-length vector is a

bottleneck in improving the performance of this basic encoderdecoder architecture, and propose

to extend this by allowing a model to automatically (soft-)search for parts of a source sentence

that are relevant to predicting a target word, without having to form these parts as a hard segment

explicitly.

Sequence generation with reinforcement learning Very recently there is one line of work on

sequence generation (Bahdanau et al., 2017; Yu et al., 2017; Paulus et al., 2017) which are using

reinforcement learning for model training. (Bahdanau et al., 2017) uses actor-critic for machine

translation. Their actor and critic have the same encoder-decoder architecture while the critic

outputs state-action value function for each possible actions for policy iteration. Given that the

action space is huge for a sequence generation task, the predicted action-value function often

have to rely on various tricks to penalising the variance of the outputs of the critic. Without the

penalty the values of rare actions can be severely overestimated, introducing bias to the gradient

estimates and causing convergence difficulties. (Yu et al., 2017) uses Monte Carlo rollout to

sample actions and uses GAN to compute reward. (Paulus et al., 2017) applies the same method

as (Rennie et al., 2017) to improve the performance of abstractive summarisation.

2.4 Benchmark Dataset

The proposed cross-view learning frameworks are evaluated on a number of benchmark datasets.

They are summarised in Table 2.1, Table 2.2 and Table 2.3. Examples are shown in Figure 2.9,

Figure 2.10, and Figure 2.11.



50 Chapter 2. Literature Review

Dataset Cameras Person Instance Chapter

VIPeR (Gray et al., 2007) 2 632 1264 3

PRID2011 (Hirzer et al., 2011) 2 749 949 3

CUHK01 (Li and Wang, 2013) 2 971 1942 3

CUHK03 (Li et al., 2014) 6 1467 14097 3

Market1501 (Zheng et al., 2015) 6 1501 32668 3

Table 2.1: Benchmark datasets for evaluation of cross-view matching for person re-identification

Dataset Instances SS SS-D Seen-Unseen Chapter

AwA (Animals with Attributes) (Lampert et al., 2014) 30,475 A/W 85 40-10 4

CUB (CUB-200-2011) (Wah et al., 2011) 11,788 A/D 312 150-50 4

ImageNet (ILSVRC) 2010 1K (Russakovsky et al., 2015) 1.2×106 W 1000 800-200 4

ImageNet (ILSVRC) 2012/2010 (Russakovsky et al., 2015) 218,000 W 1000 1000-360 4

Table 2.2: Benchmark datasets for evaluation of cross-view matching for zero-shot learning.
Notation: SS: semantic space; SS-D: the dimension of semantic space; A: attribute space; W:
semantic word vector space; D: sentence description (only available for CUB)

Dataset Training Validation Test Caption Chapter

MSCOCO (Lin et al., 2014) 82,783 40,504 40,775 5 5

Table 2.3: Benchmark datasets for evaluation of cross-view generation for image caption. Nota-
tion: Train, Validation and Test means the number of images in each split; Caption: number of
captions annotated for each image.

(a) AwA (b) CUB

Figure 2.9: Visual examples of: (a) AwA dataset; (b) CUB dataset.



2.5. Summary 51

Figure 2.10: Visual examples of VIPeR dataset. Person are captured under two camera views.

a police officer patrols the streets on a motorcycle.
a police officer rides a motorcycle in front of a building.
an police officer riding on a police motorcycle.
a police officer sitting on motorbike with his police lights on.
an motorcycle cop riding his motorcycle in front of a store.

a little girl sitting at a table wiping her mouth with a napkin.
a little kid that is eating some food on the table.
an adorable little girl sitting at a black table.
little girl sitting at a table holding a napkin to her face.
a young child sitting on a table with two plates in front.

some people are holding a union jack umbrella.
many people stand around a bricked over square, holding their 
umbrellas.
a group of people on a street with umbrellas.
some people with their umbrellas and some buildings.
city street with people walking with coats and umbrellas.

a man sitting in front of a plate holding a sandwich next to a girl.
a young man is eating a hamburger while a young girl watches and laughs.
there is a man and a woman eating at the table.
a couple of people sitting at a wooden table.
a young man siting at a picnic table holding a sandwich while a young girl 
looks on smiling.

Figure 2.11: Examples of MSCOCO dataset. Five captions are given to describe for the corre-
sponding image.

2.5 Summary

The preceding sections have given the background of important concepts used throughout this

thesis and discussed important studies in the literature with respect to cross-view matching and

cross-view generation methods in generic machine learning. Specifically, the main topics in-

clude cross-view matching for person re-identification and zero-shot learning, cross-view gen-
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eration for image captioning. Despite the significant progress made by existing methods, there

are still many limitations and many open problems to explore. In the subsequent chapters, novel

approaches are presented to advance further cross-view learning problem:

1. (Chapter 3) To avoid the small sample size problem in distance metric learning Re-ID, most

existing models adopted unsupervised dimensionality reduction or regularisation methods.

These in turn make the learned distance metric sub-optimal and less discriminative. To

overcome this problem, a distance metric learning model is proposed for Re-ID by match-

ing people in a discriminative null space of the training data. In this null space, images of

the same person are collapsed into a single point thus minimising the within-class scatter

to the extreme and maximising the relative between-class separation simultaneously.

2. (Chapter 4) Despite the success of deep neural networks that learn an end-to-end model

across visual and textual views in other vision problems such as image captioning, very few

deep ZSL model exists and they show little advantage over ZSL models that utilise deep

feature representations but do not learn an end-to-end embedding. Specifically, existing

models, regardless whether they are deep or non-deep, choose either the semantic space

or an intermediate embedding space as the embedding space, suffering from the hubness

problem which is the main issue prevents the deep ZSL model to succeed. Nonetheless,

how to deal with the hubness problem in ZSL is largely ignored in the literature. To allevi-

ate the hubness problem, this study utilises the output visual feature space of a CNN subnet

as the embedding space. Further, a natural mechanism for multiple textual modalities op-

timised jointly in an end-to-end manner in this model demonstrates significant advantages

over existing methods

3. (Chapter 5): Most of existing models for image captioning rely on ”Teacher-Forcing” train-

ing strategy and optimise the supervision metric ”cross-entropy loss”. Therefore, they are

likely to produce sub-optimal results. Recently proposed reinforcement learning methods

for image captioning aim to overcome two limitations but suffer from invalid assumption

of sentence-level poor value function design. To address those limitations, a novel actor-

critic sequence training framework for the image captioning is formulated with a per-token

advantage and value computation strategy.
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Chapter 3

Cross-View Matching for Person Re-Identification by

Learning a Discriminative Null Space

This chapter discusses a real-world cross-view matching problem – person re-identification (Re-

ID) – with the case that view denotes camera view. Person re-identification (Re-ID) refers to

the problem of visually matching already detected individual or group of people across non-

overlapping cameras views. Most existing Re-ID methods focus on learning the optimal distance

metrics across camera views. Typically a person’s appearance is represented using features of

thousands of dimensions, whilst only hundreds of training samples are available due to the diffi-

culties in collecting matched training images. With the number of training samples much smaller

than the feature dimension, the existing methods thus face the classic small sample size (SSS)

problem and have to resort to dimensionality reduction techniques and/or matrix regularisation,

which lead to loss of discriminative power. In this chapter, a distance metric learning model

is proposed to overcome the small sample size challenge discussed in Section 1.2 by matching

people in a discriminative null space of the training data. In this null space, images of the same

person are collapsed into a single point thus minimising the within-class scatter to the extreme

and maximising the relative between-class separation simultaneously. Importantly, it has a fixed

dimension, a closed-form solution and is very efficient to compute. Extensive experiments are

conducted on five widely used person re-identification benchmarks to evaluate the advantages of

such a simple approach by comparing most contemporary methods
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Figure 3.1: Training images of same identity are projected to a single point in a learned discrim-
inative null space.

3.1 Background

For making sense of the vast quantity of visual data generated by the rapid expansion of large-

scale distributed multi-camera systems, automated person re-identification is essential (Vezzani

et al., 2013; Gong et al., 2014a). When a person is captured by multiple non-overlapping views,

the objective is to match him/her across views among a large number of imposters, which is a

classic cross-view matching problem.

Existing approaches for cross-view matching focus on developing discriminative feature rep-

resentations that are robust against the view/pose/illumination/background changes, or learning

a distance metric, dedicated to eliminate the large camera view discrepancy. Among them, the

distance metric learning methods are most popular and are the focus of this chapter. Given any

feature representation and a set of training data consisting of matching image pairs across camera

views, the objective for Re-ID is to learn the optimal distance metric that gives small values to

images of the same person and large values for those of different people. Although the distance

metric learning methods have been shown to be effective in improving the existing Re-ID bench-

marks over the past five years, some of them are still limited by a classical problems in model

learning, small sample size (SSS) problem (Chen et al., 2000).

This chapter argues that the SSS problem in person Re-ID distance metric learning can be

best solved by learning a discriminative null space of the training data. In particular, instead of

minimising the within-class variance, data points of the same classes are collapsed, by a trans-
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form, into a single point in a new space (see Fig. 3.1). By keeping the between-class variance

non-zero, this automatically maximises the Fisher discriminative criterion and results in a dis-

criminative subspace. The null space method, also known as the null Foley-Sammon transfer

(NFST) (Guo et al., 2006) is specifically designed for the small sample case, with rigorous theo-

retical proof on the resulting subspace dimension. Importantly, it has a closed-form solution, no

parameter to tune, requires no pre-precessing steps to reduce the feature dimension, and can be

computed efficiently. Furthermore, to deal with the non-linearity of the person’s appearance, a

kernel version can be developed easily to further boost the matching performance within the null

space. It therefore offers a perfect solution to the challenging person Re-ID problem. In addition

to formulating the NSFT model as a fully supervised model to solve the person Re-ID problem,

the semi-supervised setting is also extended to further alleviate the effects of the SSS problem by

exploiting unlabelled data abundant in Re-ID applications.

3.2 Problem Definition

For the problem of cross-view matching, each object is captured by different views. Usually, the

representation of objects from different views are significantly different from each other. The

goal of cross-view matching is to eliminate the view discrepancy and ultimately matching the

different views of same object.

Given a set of N training data denoted as X ∈ Rd×N . Each column of the data descriptor

matrix X, xi is a feature vector representing the i-th training sample. In the case of person re-id,

this feature vector is extracted from a person detection box and contains appearance information

about the person, and its dimension d is typically very high. This chapter assumes that each

data point belongs to one of C classes, i.e. C different identities. The objective of learning a

discriminative null space is to learn a projection matrix W ∈ Rd×m to project the original high-

dimensional feature vector xi into a lower-dimensional one yi ∈ Rm with m < d. Person Re-ID

can then be performed by computing the Euclidean distance between two projected vectors in

the learned discriminative null space.
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3.3 Methodology

3.3.1 Foley-Sammon transform

The learned null Foley-Sammon transform (NFST) space is closely related to linear discriminant

analysis (LDA), also known as Foley-Sammon transform (FST) (Foley and Sammon, 1975). So

before we formulate NFST, let us first briefly revisit FST.

The objective of FST is to learn a projection matrix W ∈Rd×m so that each column, denoted

as w, is an optimal discriminant direction that maximises the Fisher discriminant criterion:

J (w) =
w>Sbw
w>Sww

, (3.1)

where Sb is the between-class scatter matrix and Sw is the within-class scatter matrix. The opti-

misation of Eq. (3.1) can be done by solving the following generalised eigen-problem:

Sbw = λSww. (3.2)

If Sw is non-singular, C− 1 eigenvectors w(1), ...,w(c−1) can be computed corresponding to

the C−1 largest eigenvalues of S−1
w Sb. Using them as the columns, the projection matrix W can

project the original data into a C− 1 dimensional discriminative subspace where the C classes

become maximally separable. However, in the small sample size case, we have d >N; as a result,

Sw is singular. FST thus runs in numerical problems and common solutions include reducing d

by PCA or adding a regularisation term to Sw. In (Guo et al., 2006), a more principled way

to overcome the SSS problem in FST is proposed, termed as Null Foley-Sammon transform

(NFST).

3.3.2 Null foley-sammon transform

NFST aims to learn a discriminative subspace where the training data points of each of the C

classes are collapsed to a single point, resulting in C points in the space. In order to make this

subspace discriminative, these C points should not further collapse to a single point. Formally, we

aim to learn the optimal projection matrix W so that each of its column w satisfies the following

two conditions:

w>Sww = 0, (3.3)

w>Sbw > 0. (3.4)
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That is, it satisfies zero within-class scatter and positive between-class scatter. This guarantees

the best separability of the training data in the sense of Fisher discriminant criterion. Such a

linear projecting direction w is called Null Projecting Direction (NPD) (Guo et al., 2006).

Next, we show that a NPD must lie in the null space of Sw. In particular, we have the

following Lemma:

Lemma 1. Let W be a projection matrix which maps a sample x into the null space of Sw,

where the null space is spanned by the orthonormal set of W, that is, SwW = 0. If all samples are

mapped into the null space of Sw through W, the within-class scatter matrix Ŝw of the mapped

samples is a complete zero matrix.

Proof. Let xc
n be the nth sample of the cth ∈ {1, ...C} class which has Nc samples in total. yc

n

denote the mapped feature vector through W. We have:

Ŝw =
C

∑
c=1

Nc

∑
n=1

(yc
n−yc)(yc

n−yc)>

=
C

∑
c=1

Nc

∑
n=1

(W>xc
n−W>µ

c)(W>xc
n−W>µ

c)>

= W>
C

∑
c=1

Nc

∑
n=1

(xc
n−µ

c)(xc
n−µ

c)>W

= W>SwW = 0

where yc
n = W>xc

n, yc = W>µc, µc = 1
Nc

∑
Nc
n=1 xc

n, Nc is the number of samples in class c, and µc

is the mean vector of all data belonging to the class c.

Now with Lemma 1, we know that Eq. (3.3) holds as long as w is from the null space of Sw.

Next we take a look the condition in the inequality (3.4). It is easy to see that when Eq. (3.3)

holds, (3.4) also holds if:

w>Stw > 0, (3.5)

where St = Sb +Sw is the total scatter matrix. We now denote the null space of the St and Swas:

Zt =
{

z ∈ Rd | Stz = 0
}
, (3.6)

Zw =
{

z ∈ Rd | Swz = 0
}
, (3.7)

and their orthogonal complements as Z⊥t and Z⊥w respectively. Now since Sb is non-negative

definite, we can see that in order for the NPDs to satisfy both Eqs. (3.3) and (3.4) simultaneously,

they must lie in the shared space between Zw and Z⊥t , that is:

w ∈ (Z⊥t ∩Zw). (3.8)
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It has been proved in (Guo et al., 2006) that there are precisely C− 1 NPDs w that satisfy

both Eq. (3.3) and (3.4). In other words, the discriminative null space we are looking for has

m =C−1 dimensions.

3.3.3 Learning the discriminative null space

Let Xw be the matrix consisting of vectors xc
i −µc. Xt be the matrix consisting of vectors xi−µ

with µ = 1
N ∑

N
i=1 xi. We then have,

Sw =
1
N

XwX>w , St =
1
N

XtX>t (3.9)

Now we know where to look for the NPDs – the shared space between Zw and Z⊥t . Next,

we shall see how to compute them. Let us first take a look at how to compute w that satisfies

w ∈ Z⊥t . First we notice that:

Zt =
{

z ∈ Rd | Stz = 0
}
=
{

z ∈ Rd | z>Stz = 0
}

=
{

z ∈ Rd | (X>t z)>X>t z = 0
}

=
{

z ∈ Rd | X>t z = 0
}
.

Hence, Z⊥t is the subspace spanned by zero-mean data xi− µ . We can obtain the orthonormal

basis U = [u(1), ...,u(N−1)] of the zero-mean data using Gram-Schmidt orthonormalisation, then

represent each solution w as:

w = β1u(1)+ ...+βN−1u(N−1) = Uβ , (3.10)

Note that there are N−1 basis vectors because the rank of St is N−1.

So now after expressing w using Eq. (3.10), it must satisfy w∈Z⊥t . The next step is the make

it also satisfy w ∈ Zw. This can be achieved by substituting Eq. (3.10) into Eq. (3.3) and solve

the following eigen-problem:

(U>SwU)β = 0, (3.11)

for which we know that C−1 solutions β (1), ...,β (C−1) exist, giving C−1 NPDs, Uβ .

In summary, the problem of learning the discriminative null space boils down to solving an

eigen-problem which has a closed-form solution and can be solved very efficiently. Importantly,

the whole optimisation algorithm has no free parameter to tune.
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3.3.4 Kernelisation

The NFST model is a linear model. It has been demonstrated (Xiong et al., 2014) that many

distance metric learning or discriminative subspace based methods for person Re-ID benefit from

kernelisation because of the non-linearity in person’s appearance. In the following we describe

how the discriminative null space can be kernelised.

Given a kernel function k(xi,xi) = 〈Φ(xi),Φ(x j)〉, where Φ(xi) maps xi to an implicit higher

dimensional space, we can compute the data kernel matrix K ∈ RN×N for training data X as

K = Φ(X)>Φ(X). Now the within-class scatter matrix Sw and total-class scatter matrix St can

be kernelised as:

Kw = K(I−L)(I−L)>K,

Kt = K(I−M)(I−M)>K,

where I is an N×N identity matrix, L is a block diagonal matrix with block sizes equal to the

number of data points Nc for each class c ∈ {1, ...C} and M is an N×N matrix with all entries

equal to 1
N .

Now to write Eq. (3.11) in its kernelised form, we need to replace Sw with Kw, and compute

the orthonormal basis of Kt to replace U. The orthonormal basis of Kt can be computed using

kernel PCA. First, we compute the centred kernel matrix K̃. Second, the eigendecomposition

of K̃ is written as Kt = VEV> with E being the diagonal matrix containing N − 1 non-zero

eigenvalues and V containing the corresponding eigenvectors in its columns. Now the scaled

eigenvectors Ṽ = VE−1/2 contain coefficients for the kernelised orthonormal basis used to re-

place U in Eq. (3.11). Let

H = ((I−M)Ṽ)>K(I−L), (3.12)

and with Eq. (3.9), we can rewrite Eq. (3.11) as:

HH>β = 0. (3.13)

By solving the eigen-problem Eq. (3.13), we obtain the final C− 1 null projection directions

(NPDs) as:

w(i) = ((I−M)Ṽ)>β
(i) ∀i = 1, ...,C−1. (3.14)
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3.3.5 Semi-supervised learning

The NFST method is a fully supervised method. When applied to the problem of Re-ID, the

labelled training set is used to learn the projection W. The test data are then projected into the

same subspace and matched by computing the Euclidean distance between a query sample and a

set of gallery samples.

In a real-world application scenario, the labelled training data are scarce but there are often

plenty of unlabelled data (person images collected from different views) that can be used to

alleviate the small sample size problem. To this end, the NFST method is extended to the semi-

supervised setting. More specifically, given a training set X contains a labelled subset Xl of Nl

samples and an unlabelled subset Xu of Nu samples. Using the NFST method described above,

we can first learn an initial projection matrix W0 using Xl only. Then Xu is projected to the

lower-dimensional subspace through W0 and becomes Yu
W0 . To utilise the unlabelled data Xu,

we use their projections Yu
W0 to build a cross-view correspondence matrix A ∈ RNu×Nu which

captures the identity relationship for the unlabelled people across views. Note, since the data

are unlabelled, the true cross-view correspondence relationship is unknown. We therefore use

A to represent a soft cross-view correspondence relationship. That is, each person in one view

can correspond to multiple people in another view depending on their visual similarity in the

learned discriminative subspace parameterised by W0. To this end, we first construct a k-nearest-

neighbour (k-nn) graph G across camera views with Nu vertices, where each vertex represents a

unlabelled data point. A is then computed as the weight matrix of G using a heat kernel. With

this k-nn graph, we then create pseudo-classes, each consisting one vertex from one view and

its k-nearest-neighbours from the other view. Next these pseudo-classes are augmented with the

labelled classes in Xl to create a new training set, denoted P, on which a new project matrix W1 is

computed using NFST. Re-learning the projection matrix runs iteratively till the average distance

for the k-nearest-neighbours stop decreasing. In our experiments, we found that the algorithm

converges rapidly with less iterations.

This semi-supervised learning is essentially based on self-training, a popular strategy taken

by many semi-supervised learning methods (Zhu, 2005). For any self-training based methods,

preventing model drift is of paramount importance. Apart from examining the average distance

for the k-nearest-neighbours, another measure taken is to rank the k-nearest-neighbours and take

only the top f percent with the smallest distance to create the pseudo-classes. The complete
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Algorithm 1: Semi-supervised null space learning

Input: Xl , Xu, k, P0 = 0.

Output: The learned projection W.

1: Estimate W0 using Xl;

2: t = 0;

3: while not converged do

4: project Xu through Wt to obtain Yu
Wt

5: build k-nn graph G with Yu
Wt

6: take top f percent to create the pseudo-classes Pt+1

7: learn Wt+1 with Xl +Pt+1

8: t = t +1

9: end while

semi-supervised null space learning algorithm is summarised in Algorithm. 1.

3.4 Experiments

3.4.1 Datasets

Datasets Five widely used datasets are selected for experiments, including the three largest

benchmarks available (CUHK01, CUHK03, and Market1501).

VIPeR (Gray et al., 2007) contains 632 identities and each has two images captured outdoor

from two views with distinct view angles. All images are scaled to 128 × 48 pixels. The 632

people’s images are randomly divided into two equal halves, one for training and the other for

testing. This is repeated for 10 times and the averaged performance is reported.

PRID2011 (Hirzer et al., 2011) consists of person images recorded from two cameras. Specifi-

cally, it has two camera views. View A captures 385 people, whilst View B contains 749 people.

Only 200 people appear in both views. The single shot version of the dataset is used in our ex-

periments as in (Hirzer et al., 2012): In each data split, 100 people with one image from each

view are randomly chosen from the 200 present in both camera views for the training set, while

the remaining 100 of View A are used as the probe set, and the remaining 649 of View B are used

as gallery. Experiments are repeated over the 10 splits provided in (Hirzer et al., 2012).

CUHK01 (Li and Wang, 2013) contains 971 identities with each person having two images in

each camera view. All the images are normalised to 160× 60 pixels. Following the standard set-
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ting, images from camera A are used as probe and those from camera B as gallery. We randomly

partition the dataset into 485 people for training and 486 for testing (multi-shot) following (Liao

et al., 2015; Zhao et al., 2014), again over 10 trials.

CUHK03 (Li et al., 2014) contains 13,164 images of 1,360 identities, captured by six surveil-

lance cameras with each person only appearing in two views. It provides both manually labelled

pedestrian bounding boxes and bounding boxes automatically detected by the deformable-part-

model (DPM) detector (Felzenszwalb et al., 2010). A real-world Re-ID system has to rely on a

person detector; the latter version of the data is thus ideal for testing performance given detector

errors. We report results on both of the manually labelled and detected person images. The 20

training/test splits provided in (Li et al., 2014) is used under and the single-shot setting as in

(Liao et al., 2015) – two images are randomly chosen for testing; one is for probe and the other

for gallery.

Market1501 (Zheng et al., 2015) is the biggest Re-ID benchmark dataset to date, containing

32,668 detected person bounding boxes of 1,501 identities. Each identity is captured by six

cameras at most, and two cameras at least. During testing, for each identity, one query image

in each camera is selected, therefore multiple queries are used for each identity. Note that, the

selected 3,368 queries in (Zheng et al., 2015) are hand-drawn, instead of DPM-detected as in the

gallery. Each identity may have multiple images under each camera. We use the provided fixed

training and test set, under both the single-query and multi-query evaluation settings.

3.4.2 Settings

Feature Representations By default the recently proposed Local Maximal Occurrence (LOMO)

features (Liao et al., 2015) are used for person representation. The descriptor has 26,960 dimen-

sions. To test our method’s ability to fuse different representations, we also consider another

histogram-based image descriptor proposed in (Lisanti et al., 2014b). These include colour his-

togram, HOG and LBP which are concatenated resulting in 5138 dimensions. In addition, deep

learning feature (Li et al., 2017) is also adopted for comparing with deep learning based method.

Evaluation metrics Cumulated Matching Characteristics (CMC) curve is adopted to evaluate

the performance of person re-identification methods for all datasets in this chapter. Note that

for the Market1501 dataset, since there are on average 14.8 cross-camera ground truth matches

for each query, we additionally use mean average precision(mAP) as in (Zheng et al., 2015) to

evaluate the performance.
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Parameter setting There is no free parameter to tune for our model. However, with the

kernelisation, kernel selection is necessary. Unless stated otherwise, RBF kernel is used with the

kernel width determined automatically using the mean pairwise distance of samples. For other

compared methods, different model specific parameters have to be tuned carefully to report the

highest results. Note that under the semi-supervised null space learning algorithm, there are free

parameters: the value of k in the k-nn graph is fixed to 3 for all experiments. The percentage of

neighbours f kept for creating pseudo classes are fixed at 40%. We found that the results are not

sensitive to the values of these parameters.

3.4.3 Fully supervised learning results

For the fully supervised setting, all the labels of the training data are used for model learning. For

different datasets, we select different most representative and competitive alternative methods for

comparison.

Results on VIPeR We first evaluate our method against the state-of-the-art on VIPeR. We

compare with 17 existing methods. Among them, the distance metric learning based methods

are RPLM (Hirzer et al., 2012), MtMCML (Ma et al., 2014), Mid-level Filter (Zhao et al., 2014),

SCNCD (Yang et al., 2014), Similarity Learning (Chen et al., 2015), LADF (Li et al., 2013),

ITML (Davis et al., 2007), LMNN (Weinberger et al., 2005), KISSME (Koestinger et al.,

2012), and MCML (Globerson and Roweis, 2005), whilst the others are discriminative subspace

learning based methods including kCCA (Lisanti et al., 2014b), MFA (Xiong et al., 2014),

kLFDA (Xiong et al., 2014), and XQDA (Liao et al., 2015). Note that XQDA can be considered

as hybrid between metric learning and subspace learning. In addition, deep learning based model

is also compared (Ahmed et al., 2015). For fair comparison, whenever possible (i.e. code is

available and features can be replaced), we compare with these methods using the same LOMO

features. Otherwise, the reported results are presented.

From the results shown in Table 3.1, we can have the following observations: (1) Our method

achieves the highest performance when a single type of features are used (Rank 1 of 42.28%

compared to the closest competitor XQDA (Liao et al., 2015) which gives 40.00%). (2) For fair

comparison against methods which fuse more than one types of features (Paisitkriangkrai et al.,

2015) or more than one models (Zhao et al., 2014), we also present our result obtained by a simple

score-level fusion using the two types of features described earlier. Our method (Ours (Fusion))

beats the nearest rival (Paisitkriangkrai et al., 2015) by over 5% on Rank 1. (3) The discriminative
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Figure 3.2: CMC curve comparison between the proposed method and the existing state-of-the-
art models on VIPeR.

subspace learning based methods seem to be more competitive compared with the distance metric

learning based methods. Note that all of them have been kernelised and we observe a significant

drop in performance without kernelisation. This confirms the conclusion drawn in (Xiong et al.,

2014) that kernelisation is critical for addressing the non-linearity problem in re-id. (4) The most

related methods MCML (Globerson and Roweis, 2005) and MtMCML (Ma et al., 2014) yeild

much poorer results1, indicating that the principle of collapsing same-class samples is better

realised in a subspace learning framework which provides an exact and closed-form solution.

(5) The deep learning based method (Ahmed et al., 2015) does not work well on this small

dataset despite the fact that the model has been pre-trained on the far-larger CUHK01+CUHK03

datasets. This suggests that the model learned from other datasets are not transferable by the

simple model fine-tuning strategy and small sample size remains a bottle-neck for applying deep

learning to Re-ID. Fig. 3.2 shows the CMC curve comparison between proposed method and

existing state-of-the-art models on VIPeR.

Results on PRID2011 We compare the state-of-the-art (Hirzer et al., 2012; Paisitkriangkrai

et al., 2015) results reported on PRID2011 in Table 3.2. With access to the implementation codes,

we also compare with the methods in (Liao et al., 2015; Xiong et al., 2014; Lisanti et al., 2014b)

using the same LOMO features. The results show clearly with a single feature type, our method

1The result of MCML is from (Ma et al., 2014) using different features. We did have access to the code
of MCML. However, no matter how hard we try, it would not converge to a meaningful solution using the
higher-dimensional LOMO features.
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Rank 1 5 10 20

RPLM (Hirzer et al., 2012) 27.00 55.30 69.00 83.00

MtMCML (Ma et al., 2014) 28.83 59.34 75.82 88.51

MCML (Globerson and Roweis, 2005) 20.19 47.31 63.96 77.69

Mid-level (Zhao et al., 2014) 29.11 52.34 65.95 79.87

SCNCD (Yang et al., 2014) 37.80 68.50 81.20 90.40

LADF (Li et al., 2013) 30.22 64.70 78.92 90.44

Improved Deep (Ahmed et al., 2015) 34.81 63.61 75.63 84.49

Similarity Learning (Chen et al., 2015) 36.80 70.40 83.70 91.70

ITML (LOMO) (Davis et al., 2007) 24.65 49.78 63.04 78.39

LMNN (LOMO) (Weinberger et al., 2005) 29.43 59.78 73.51 84.91

KISSME (LOMO) (Koestinger et al., 2012) 34.81 60.44 77.22 86.71

kCCA (LOMO) (Lisanti et al., 2014b) 30.16 62.69 76.04 86.80

MFA (LOMO) (Xiong et al., 2014) 38.67 69.18 80.47 89.02

kLFDA (LOMO) (Xiong et al., 2014) 38.58 69.15 80.44 89.15

XQDA (LOMO) (Liao et al., 2015) 40.00 68.13 80.51 91.08

Ours (LOMO) 42.28 71.46 82.94 92.06

Mid-level+LADF (Zhao et al., 2014) 43.39 73.04 84.87 93.70

Metric Ensembles (Paisitkriangkrai et al., 2015) 45.90 77.50 88.90 95.80

Ours (Fusion) 51.17 82.09 90.51 95.92

Table 3.1: Fully supervised results on VIPeR
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is the state-of-the-art; when fusing two types of features, the result is improved dramatically

(over 10% increase on both Rank 1 and 5), and significantly higher than the reported results of

the feature fusion method in (Paisitkriangkrai et al., 2015), which fuses four different types of

features including the deep convolutional neural network (CNN) features.

Rank 1 5 10 20

L1-Norm (LOMO) 7.20 17.20 24.00 27.50

L2-Norm (LOMO) 16.30 30.0 37.90 47.90

RPLM (Hirzer et al., 2012) 15.00 32.00 42.00 54.00

kCCA (LOMO) (Lisanti et al., 2014b) 14.30 37.40 47.60 62.50

MFA (LOMO) (Xiong et al., 2014) 22.30 45.60 57.20 68.20

kLFDA (LOMO) (Xiong et al., 2014) 22.40 46.50 58.10 68.60

XQDA (LOMO) (Liao et al., 2015) 26.70 49.90 61.90 73.80

Ours (LOMO) 29.80 52.90 66.00 76.50

Metric Ensembles (Paisitkriangkrai et al., 2015) 17.90 39.00 50.00 62.00

Ours (Fusion) 40.90 64.70 73.20 81.00

Table 3.2: Fully supervised results on PRID2011

Results on CUHK01 & CUHK03 Compared with VIPeR and PRID2011, these two datasets

are much bigger with thousands of training samples. However, the sample size is still much

smaller than the feature dimension, i.e. the SSS problem still exists. Table 3.3 shows that on

CUHK01, our method beats all compared existing methods at low ranks and when two types of

features are fused, the margin is significant. As for CUHK03, there are two versions: the one

with manually cropped person images, and the one with bounding boxes produced by a detector.

The latter obviously is harder as reflected by the decrease of matching accuracy for all compared

methods. But it is also a better indicator of real-world performance. It can be seen from Table

3.4 that, as expected, on this much larger dataset, the deep learning based model (Ahmed et al.,

2015) with its millions of parameters becomes much more competitive – with manually cropped

images, our result with single feature type is higher on Rank 1 but lower on other ranks. However,

with the detector boxes, our method is less affected and outperforms the deep model in (Ahmed

et al., 2015) by a big margin. In addition, our performance is further boosted by fusing two types

of features. Fig. 3.3 shows the CMC curve comparison between proposed method and existing
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state-of-the-art models on CUHK01.

Rank 1 5 10 20

SalMatch (Zhao et al., 2013a) 28.45 45.85 55.67 67.95

Mid-level Filter (Zhao et al., 2014) 34.30 55.06 64.96 74.94

Improved Deep (Ahmed et al., 2015) 47.53 71.60 80.25 87.45

kCCA (LOMO) (Lisanti et al., 2014b) 56.30 80.66 87.94 93.00

MFA (LOMO) (Xiong et al., 2014) 54.79 80.08 87.26 92.72

kFLDA (LOMO) (Xiong et al., 2014) 54.63 80.45 86.87 92.02

XQDA (LOMO) (Liao et al., 2015) 63.21 83.89 90.04 94.16

Ours (LOMO) 64.98 84.96 89.92 94.36

Metric Ensembles (Paisitkriangkrai et al., 2015) 53.40 76.40 84.40 90.50

Ours (Fusion) 69.09 86.87 91.77 95.39

Table 3.3: Fully supervised results on CUHK01

Dataset CUHK03 (Manual) CUHK03 (Detected)

Rank 1 5 10 20 1 5 10 20

DeepReID (Li et al., 2014) 20.65 51.50 66.50 80.00 19.89 50.00 64.00 78.50

Improved Deep (Ahmed et al., 2015) 54.74 86.50 93.88 98.10 44.96 76.01 83.47 93.15

XQDA (LOMO) (Liao et al., 2015) 52.20 82.23 92.14 96.25 46.25 78.90 88.55 94.25

Ours (LOMO) 58.90 85.60 92.45 96.30 53.70 83.05 93.00 94.80

Metric Ensembles (Paisitkriangkrai et al., 2015) 62.10 89.10 94.30 97.80 - - - -

Ours (Fusion) 62.55 90.05 94.80 98.10 54.70 84.75 94.80 95.20

Table 3.4: Fully supervised results on CUHK03. ’-’ means that no reported results is available.

Results on Market1501 This dataset is the largest and most realistic dataset with natural de-

tector errors abundant in the provided data as they were collected in front of a busy supermarket.

The baseline presented in (Zheng et al., 2015) is not competitive because it is based on a weaker

BoW features and L2-Norm distance. We compare our method with four alternatives with the

same LOMO features. The results in Table 3.5 again show that our method significantly out-

performs the alternatives, under both the single query and multi-query settings and with both

evaluation metrics. This is despite the fact that with 12,936 training samples, the SSS problem is
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Figure 3.3: CMC curve comparison between the proposed method and the existing state-of-the-
art models on CUHK01.

the least severe in this dataset.

Results with deep learning features As reviewed in Section 2.2.1, deep learning based meth-

ods have obtained impressive performance, especially on large-scale dataset Market1501. To

evaluate the proposed method with deep learning features, JLML (Li et al., 2017) is selected for

comparison. JLML is pre-trained on ImageNet (ILSVRC2012) for classification task. Subse-

quently, Market1501 is used for model fine-tuning. Particularly, 1,024-D joint representation is

obtained by concatenating the local (512D) and global (512D) feature vectors extract from end-

to-end trained model JLML (Li et al., 2017). The proposed model is adopted on the extracted

deep feature while JLML only use L2 distance for testing. Table 3.6 shows that our method boost

almost 20 points on rank-1 single query comparing with our results on Table 3.5. However, JLML

still outperforms the proposed method with a clear margin. This is due to the JLML can better

discriminate identity/people under different camera views in this end-to-end trained 1,024D di-

mension space. One possible extension of current model (see Section 6.2) could be integrating

the proposed model into learning an end-to-end neural networks, as NFST is an extreme case of

Linear Discriminative Analysis (Dorfer et al., 2015).

3.4.4 Semi-supervised learning results

For semi-supervised setting, we use the VIPeR and PRID2011 datasets. The same data splits are

used as in the fully-supervised setting. The difference is that only one third of the training data
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Query singleQ multiQ

Evaluation metrics Rank-1 mAP Rank-1 mAP

Baseline (Zheng et al., 2015) 34.38 14.10 42.64 19.47

Baseline (+HS) (Zheng et al., 2015) - - 47.25 21.88

KISSME (LOMO) (Koestinger et al., 2012) 40.50 19.02 - -

MFA (LOMO) (Xiong et al., 2014) 45.67 18.24 - -

kLFDA (LOMO) (Xiong et al., 2014) 51.37 24.43 52.67 27.36

XQDA (LOMO) (Liao et al., 2015) 43.79 22.22 54.13 28.41

Ours (LOMO) 55.43 29.87 67.96 41.89

Ours (Fusion) 61.02 35.68 71.56 46.03

Table 3.5: Fully supervised results on Market1501

Query singleQ multiQ

Evaluation metrics Rank-1 mAP Rank-1 mAP

JLML (Li et al., 2017) 85.1 65.5 89.7 74.5

Ours (Deep) 79.5 59.4 84.9 68.4

Table 3.6: Fully supervised results comparing with deep learning based method (Li et al., 2017)
on Market1501
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are labelled following the setting in (Liu et al., 2014; Kodirov et al., 2015). For comparison, apart

from the state-of-the-art methods in (Liu et al., 2014; Kodirov et al., 2015), we also choose three

subspace learning based methods trained on the labelled data only.

The results in Table 3.7 show that the performance of our method is clearly superior to that

of the compared alternatives. The advantage is more significant on PRID2011. This dataset has

only 100 pairs or 200 training samples; with only one third of them labelled, the SSS problem

becomes the most acute than any experiment we conducted before in Section 3.4.3. Comparing

Table 3.7 with Table 3.2, it is apparent that the performance of all three compared subspace

learning methods, kCCA, kLFDA, and XQDA degrades drastically. In contrast, the performance

of our method decreases much more gracefully from 29.80% to 24.70% on Rank 1. This is partly

because our self-training based method can exploit the unlabelled data. It also shows that it can

better cope with the SSS problem in its extreme.

Dataset VIPeR PRID2011

Rank 1 5 10 20 1 5 10 20

SSCDL (Liu et al., 2014) 25.60 53.70 68.20 83.60 - - - -

kCCA (LOMO) (Lisanti et al., 2014b) 13.64 37.97 53.77 69.94 5.80 16.00 24.70 36.00

kLFDA (LOMO) (Xiong et al., 2014) 25.47 53.25 66.49 80.13 12.00 27.10 37.80 50.30

XQDA (LOMO) (Liao et al., 2015) 28.04 56.30 69.65 81.74 12.60 29.40 40.20 53.00

IterativeLap (LOMO) (Kodirov et al., 2015) 29.43 49.05 59.18 69.62 18.70 34.60 43.50 52.30

Ours (LOMO) 31.68 59.40 72.78 84.91 24.70 46.80 58.20 68.20

Table 3.7: Semi-supervised Re-ID results on VIPeR and PRID2011

3.4.5 Running cost

We compare the run time of our method with XQDA, kLFDA and MFA on Market1501. We

calculate the overall training time over 12,936 samples and test time over 3,368 queries. All

algorithms are implemented in Matlab and run on a server with 2.6GHz CPU cores and 384GB

memory. Table 3.8 shows that for training, our method is the most efficiently, whilst on testing it

is much slower than XQDA, but faster than kLFDA and MFA. Considering the test time is over

3,368 queries, it is more than adequate for real-time applications.
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Method Ours XQDA (Liao et al., 2015) kLFDA (Xiong et al., 2014) MFA (Xiong et al., 2014)

Training 393.1 3233.8 995.2 437.8

Testing 31.3 1.6 43.4 43.2

Table 3.8: Run time comparison on Market1501 (in seconds)

3.5 Summary

This chapter proposed to solve the person Re-ID problem by learning a discriminative null space

of the training samples. Compared with existing Re-ID models, the employed NFST model is

much simpler, with a closed-form solution and no parameters to tune. Yet, it is very effective in

dealing with the SSS problem faced by the Re-ID methods. Extensive experiments on five widely

used benchmarks show that our method achieves the state-of-the-art performance on all of them

under both fully supervised and semi-supervised settings.

On the other hand, although the mostly recent state-of-the-art results are obtained by deep

Re-ID models, the contribution of this chapter in the era of deep learning still can not be ignored.

Deep learning based model often overfit on the small datasets due to the SSS problem. A possible

way is to combine these two: a deep model trained using large dataset for extracting features and

the discriminative null space model to adapt to the target small dataset.
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Chapter 4

Cross-View Matching for Zero-Shot Learning

by Deep Embedding Learning

In Chapter 3, a distance metric learning framework was formulated for cross-view matching prob-

lem, but one key assumption is that both of the views pertain to same modality. In this chapter, a

novel deep embedding model for zero-shot learning (ZSL) problem is proposed, which makes it

capable of dealing with the case that each view is associated with different modality. Specifically,

the proposed deep neural network based embedding model differs from the existing models in

that: To alleviate the hubness problem discussed in Section 1.2, visual space is adopted as the

embedding space instead of the semantic space or an intermediate space. The resulting projec-

tion direction is from the textual view to visual view. Such a direction is opposite to the one

adopted by most existing models. Moreover, a theoretical analysis and some intuitive visualisa-

tions are provided to explain why this would help to counter the hubness problem. Further, this

framework design also provides a natural mechanism for multiple textual views (e.g., attributes

and sentence descriptions) to be fused and optimised jointly in an end-to-end manner. Extensive

experiments on four benchmarks show that the proposed method beats all the state-of-the-art

models presented to date, often by a clear margin.

4.1 Background

ZSL models rely on learning a joint embedding space where both textual/semantic description

of object classes and visual representation of object images can be projected to for cross-view
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matching. Specifically, the zero-shot learning problem can be solved if the visual view of the

data (object) and its textual view are matched. Despite the success of deep neural networks that

learn an end-to-end model across visual and textual views in other vision problems (e.g. image

captioning), very few deep ZSL model exists and they show little advantage over ZSL models

that utilise deep feature representations but do not learn an end-to-end embedding.

End-to-end learning of a deep neural network embedding based ZSL model, which is the fo-

cus of this chapter, offers a number of advantages . First, end-to-end optimisation can potentially

lead to learning a better embedding space. For example, if sentence descriptions are used as the

input to a neural language model such as recurrent neural networks (RNNs) for computing a se-

mantic space, both the neural language model and the CNN visual feature representation learning

model can be jointly optimised in an end-to-end fashion. Second, a neural network based joint

embedding model offers the flexibility for addressing various transfer learning problems such as

multi-task learning and multi-domain learning (Yang and Hospedales, 2015). Third, when mul-

tiple semantic spaces are available, this model can provide a natural mechanism for fusing the

multiple modalities. However, despite all these intrinsic advantages, in practice, the few existing

end-to-end deep models for ZSL in the literature (Lei Ba et al., 2015; Frome et al., 2013; Socher

et al., 2013; Yang and Hospedales, 2015; Reed et al., 2016a) fail to demonstrate these advantages

and yield only weaker or merely comparable performances on benchmarks when compared to

non-deep learning alternatives.

In this chapter, a novel Deep neural network based Embedding Model (DEM) for ZSL is pro-

posed, which differs from existing models in that: (1) This chapter argues that the key to make

deep ZSL models succeed is to choose the right embedding space. Instead of embedding into

a semantic space or an intermediate space, the output visual feature space of a CNN subnet is

adopted as the embedding space. This is because that in this space, the subsequent nearest neigh-

bour search would suffer much less from the hubness problem and thus become more effective.

A theoretical analysis and some intuitive visualisations are provided to explain why this would

help us counter the hubness problem. (2) A simple yet effective multi-modality fusion method

is developed in our neural network model which is flexible and importantly enables end-to-end

learning of the semantic space representation.
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4.2 Problem definition

Assume a labelled training set of N training samples is given asDtr = {(Ii, yu
i , tu

i ), i = 1, . . . ,N},

with associated class label set Ttr, where Ii is the i-th training image, yu
i ∈ RL×1 is its corre-

sponding L-dimensional semantic representation vector, tu
i ∈ Ttr is the u-th training class label

for the i-th training image. Given a new test image I j, the goal of ZSL is to predict a class label

tv
j ∈ Tte, where tv

j is the v-th test class label for the j-th test instance. We have Ttr ∩Tte =∅, i.e.,

the training (seen) classes and test (unseen) classes are disjoint. Note that each class label tu or

tv is associated with a pre-defined semantic space representation yu or yv (e.g. attribute vector),

referred to as semantic class prototypes. For the training set, yu
i is given because each training

image Ii is labelled by a semantic representation vector representing its corresponding class label

tu
j .

As introduced in Section 1.1, zero-shot learning is also a cross-view matching problem. The

textual view in the context of ZSL usually relates to the class label representation in the textual

space, which means the textual view for same class objects are identical. Specifically, the ZSL

problem can be solved if the visual view of the data (object) and its textual view are matched.

Semantic representation All three kind of semantic representation from textual view (Sec-

tion 1.1) are considered in this chapter. More details about semantic representation are described

in Section 4.4.

1. Attribute: Attribute vector yu
i for each visual class are given, each dimension of the at-

tribute vector is semantic meaningful which describe the object class, e.g. black, white,

blue, brown, patches, spots, stripes, furry, tail, horns, claws, tusks, smelly, flies, . . .

2. Word vector: A skip-gram language model (Mikolov et al., 2013a,b) trained on a corpus of

4.6M Wikipedia documents is used to extract fixed dimension word vectors yu
i to represent

each object class;

3. Sentence descriptions/captions: A neural language model (e.g.LSTM) is required to out-

put a vector representation yu
i from sentence descriptions/captions corresponding to each

image (Reed et al., 2016a). More details are given in Section 4.3.3.
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4.3 Methodology

4.3.1 Model architecture

The architecture of the proposed model is shown in Fig. 4.1. It has two branches. One branch

is the visual encoding branch, which consists of a CNN subnet that takes an image Ii as input

and outputs a D-dimensional feature vector φ(Ii) ∈ RD×1. This D-dimensional visual feature

space will be used as the embedding space where both the image content and the semantic rep-

resentation of the class that the image belongs to will be embedded. The semantic embedding

is achieved by the other branch which is a semantic encoding subnet. Specifically, it takes an

L-dimensional semantic representation vector of the corresponding class yu
i as input, and after

going through two fully connected (FC) linear + Rectified Linear Unit (ReLU) layers outputs a

D-dimensional semantic embedding vector. Each of the FC layer has an l2 parameter regularisa-

tion loss. The two branches are linked together by a least square embedding loss which aims to

minimise the discrepancy between the visual feature φ(Ii) and its class representation embedding

vector in the visual feature space. With the three losses, our objective function is as follows:

L(W1,W2) =
1
N

N

∑
i=1
||φ(Ii)− f1(W2 f1(W1yu

i ))||2

+λ (||W1||2 + ||W2||2) (4.1)

where W1 ∈ RL×M are the weights to be learned in the first FC layer and W2 ∈ RM×D for the

second FC layer. λ is the hyperparameter weighting the strengths of the two parameter regular-

isation losses against the embedding loss. We set f1(�) to be the Rectified Linear Unit (ReLU)

which introduces nonlinearity in the encoding subnet (Krizhevsky et al., 2012).

After that, the classification of the test image I j in the visual feature space can be achieved

by simply calculating its distance to the embed prototypes:

v = argmin
v
D(φ(I j), f1(W2 f1(W1yv))) (4.2)

whereD is a distance function, and yv is the semantic space vector of the v-th test class prototype.

4.3.2 Multiple semantic space fusion

As shown in Fig. 4.1, we can consider the semantic representation and the first FC and ReLU

layer together as a semantic representation unit. When there is only one semantic space con-

sidered, it is illustrated in Fig. 4.1(a). However, when more than one semantic space is used,
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e.g., we want to fuse attribute vector with word vector for semantic representation of classes, the

structure of the semantic representation unit is changed slightly, as shown in Fig. 4.1(b).

More specifically, we map different semantic representation vectors to a multi-modal fusion

layer/space where they are added. The output of the semantic representation unit thus becomes:

f2(W
(1)
1 ·y

u1
i +W(2)

1 ·y
u2
i ), (4.3)

where yu1
i ∈ RL1×1 and yu2

i ∈ RL2×1 denote two different semantic space representations (e.g.,

attribute and word vector), “+” denotes element-wise sum, W(1)
1 ∈ RL1×M and W(2)

1 ∈ RL2×M

are the weights which will be learned. f2(�) is the element-wise scaled hyperbolic tangent func-

tion (LeCun et al., 2012):

f2(x) = 1.7159 · tanh(
2
3

x). (4.4)

This activation function forces the gradient into the most non-linear value range and leads to

a faster training process than the basic hyperbolic tangent function.

4.3.3 Bidirectional LSTM encoder for description

The structure of the semantic representation unit needs to be changed again, when text description

is avalialbe for each training image (see Fig. 4.1(c)). In this work, we use a recurrent neural

network (RNN) to encode the content of a text description (a variable length sentence) into a

fixed-length semantic vector. Specifically, given a text description of T words, x=(x1, . . . ,xT ) we

use a Bidirectional RNN model (Schuster and Paliwal, 1997) to encode them. For the RNN cell,

the Long-Shot Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) units are used as the

recurrent units. The LSTM is a special kind of RNN, which introduces the concept of gating to

control the message passing between different time steps. In this way, it could potentially model

long term dependencies. Following (Graves et al., 2013b), the model has two types of states to

keep track of the historical records: a cell state c and a hidden state h. For a particular time step t,

they are computed by integrating the current inputs xt and the previous state (ct−1,ht−1). During

the integrating, three types of gates are used to control the messaging passing: an input gate it , a

forget gate ft and an output gate ot .

We omit the formulation of the bidirectional LSTM here and refer the readers to (Graves

et al., 2013b,a) for details. With the bidirectional LSTM model, we use the final output as our

encoded semantic feature vector to represent the text description:
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f (W−→h ·
−→
h +W←−h ·

←−
h ), (4.5)

where
−→
h denote the forward final hidden state,

←−
h denote the backward final hidden state. f (�) =

f1(�) if text description is used only for semantic space unit, and f (�) = f2(�) if other semantic

space need to be fused (Sec. 4.3.2). W−→h and W←−h are the weights which will be learned.

In the testing stage, we first extract text encoding from test descriptions and then average

them per-class to form the test prototypes as in (Reed et al., 2016a). Note that since our ZSL

model is a neural network, it is possible now to learn the RNN encoding subnet using the training

data together with the rest of the network in an end-to-end fashion.

4.3.4 The hubness problem

How does our model deal with the hubness problem? First we show that our objective function

is closely related to that of the ridge regression formulation. In particular, if we use the matrix

form and write the outputs of the semantic representation unit as A and the outputs of the CNN

visual feature encoder as B, and ignore the ReLU unit for now, our training objective becomes

L(W) = ||B−WA||2F +λ ||W||2F , (4.6)

which is basically ridge regression. It is well known that ridge regression has a closed-form

solution W = BA>(AA>+λ I)−1. Thus we have:

||WA||2 = ||BA>(AA>+λ I)−1A||2
≤ ||B||2||A>(AA>+λ I)−1A||2 (4.7)

It can be further shown that

||A>(AA>+λ I)−1A||2 =
σ2

σ2 +λ
≤ 1. (4.8)

where σ is the largest singular value of A. So we have ||WA||2 ≤ ||B||2. This means the mapped

source data ||WA||2 are likely to be closer to the origin of the space than the target data ||B||2,

with a smaller variance.

Why does this matter in the context of ZSL? Figure 4.2 gives an intuitive explanation. Specif-

ically, assuming the feature distribution is uniform in the visual feature space, Fig. 4.2(a) shows

that if the projected class prototypes are slightly shrunk towards the origin, it would not change

how hubness problem arises – in other words, it at least does not make the hubness issue worse.
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feature
prototype

feature
prototype

(a) S→ V (b) V→ S

Figure 4.2: Illustration of the effects of different embedding directions on the hubness problem.
S: semantic space, and V: visual feature space. Better viewed in colour.

However, if the mapping direction were to be reversed, that is, we use the semantic vector space

as the embedding space and project the visual feature vectors φ(I) into the space, the training

objective is still ridge regression-like, so the projected visual feature representation vectors will

be shrunk towards the origin as shown in Fig. 4.2(b). Then there is an adverse effect: the seman-

tic vectors which are closer to the origin are more likely to become hubs, i.e. nearest neighbours

to many projected visual feature representation vectors. This is confirmed by our experiments

(see Sec. 4.4) which show that using which space as the embedding space makes a big differ-

ence in terms of the degree/seriousness of the resultant hubness problem and therefore the ZSL

performance.

Measure of hubness To measure the degree of hubness in a nearest neighbour search problem,

the skewness of the (empirical) Nk distribution is used, following (Radovanović et al., 2010;

Shigeto et al., 2015). The Nk distribution is the distribution of the number Nk(i) of times each

prototype i is found in the top k of the ranking for test samples (i.e. their k-nearest neighbour),

and its skewness is defined as follows:

(Nkskewness) =
∑

l
i=1(Nk(i)−E[Nk])

3/l

Var[Nk]
3
2

, (4.9)

where l is the total number of test prototypes. A large skewness value indicates the emergence of

more hubs.

4.3.5 Relationship to other deep ZSL models

We compare the proposed model with the related end-to-end neural network based models: De-

ViSE (Frome et al., 2013), Socher et al. (Socher et al., 2013), MTMDL (Yang and Hospedales,

2015), and Ba et al. (Lei Ba et al., 2015). Their model structures fall into two groups. In the first

group (see Fig. 4.3(a)), DeViSE (Frome et al., 2013) and Socher et al. (Socher et al., 2013) map
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the CNN visual feature vector to a semantic space by a hinge ranking loss or least square loss.

In contrast, MTMDL (Yang and Hospedales, 2015) and Ba et al. (Lei Ba et al., 2015) fuse visual

space and semantic space to a common intermediate space and then use a hinge ranking loss or

a binary cross entropy loss (see Fig. 4.3(b)). For both groups, the learned embedding model will

make the variance of WA to be smaller than that of B, which would thus make the hubness prob-

lem worse. In summary, the hubness will persist regardless what embedding model is adopted,

as long as NN search is conducted in a high dimensional space. Our model does not worsen it,

whist other deep models do, which leads to the performance difference as demonstrated in our

experiments.

image

Hing ranking/MSE loss

Pretrained
cnn

Semantic vector 𝜔

image

Dot-prodocut

Pretrained
cnn

Semantic vector

𝜔 𝜔

Hing ranking/BCE loss

(a) (Frome et al., 2013; Socher et al., 2013) (b) (Yang and Hospedales, 2015; Lei Ba et al., 2015)

Figure 4.3: The architectures of existing deep ZSL models fall into two groups: (a) learning
projection function ω from visual feature space to semantic space; (b) learning an intermediate
space as embedding space.

4.4 Experiments

4.4.1 Dataset and settings

We follow two ZSL settings: the old setting and the new GBU setting provided by (Xian et al.,

2017) for training/test splits. Under the old setting, adopted by most existing ZSL works before

(Xian et al., 2017), some of the test classes also appear in the ImageNet 1K classes, which have

been used to pretrain the image embedding network, thus violating the zero-shot assumption.

In contrast, the new GBU setting ensures that none of the test classes of the datasets appear in

the ImageNet 1K classes. Under both settings, the test set can comprise only the unseen class



82 Chapter 4. Cross-View Matching for Zero-Shot Learning by Deep Embedding Learning

samples (conventional test set setting) or a mixture of seen and unseen class samples. The latter,

termed generalised zero-shot learning (GZSL), is more realistic in practice.

Datasets Four benchmarks are selected for the old setting: AwA (Animals with Attributes) (Lam-

pert et al., 2014) consists of 30,745 images of 50 classes. It has a fixed split for evaluation with

40 training classes and 10 test classes. CUB (CUB-200-2011) (Wah et al., 2011) contains 11,788

images of 200 bird species. We use the same split as in (Akata et al., 2015) with 150 classes for

training and 50 disjoint classes for testing. ImageNet (ILSVRC) 2010 1K (Russakovsky et al.,

2015) consists of 1,000 categories and more than 1.2 million images. We use the same train-

ing/test split as (Mensink et al., 2012; Frome et al., 2013) which gives 800 classes for training

and 200 classes for testing. ImageNet (ILSVRC) 2012/2010: for this dataset, we use the same

setting as (Fu and Sigal, 2016), that is, ILSVRC 2012 1K is used as the training seen classes,

while 360 classes in ILSVRC 2010 which do not appear in ILSVRC 2012 are used as the test

unseen classes. Three datasets (Xian et al., 2017) are selected for GBU setting: AwA1, AwA2

and CUB. The newly released AwA2 (Xian et al., 2017) consists of 37,322 images of 50 classes

which is an extension of AwA while AwA1 is same as AwA but under the GBU setting.

Semantic space For AwA, we use the continuous 85-dimension class-level attributes provided

in (Lampert et al., 2014), which have been used by all recent works. For the word vector space,

we use the 1,000 dimension word vectors provided in (Fu et al., 2014, 2015a). For CUB, con-

tinuous 312-dimension class-level attributes and 10 descriptions per image provided in (Reed

et al., 2016a) are used. For ILSVRC 2010 and ILSVRC 2012, we trained a skip-gram language

model (Mikolov et al., 2013a,b) on a corpus of 4.6M Wikipedia documents to extract 1,000D

word vectors for each class.

Model setting and training Unless otherwise specified, We use the Inception-V2 (Szegedy

et al., 2015; Ioffe and Szegedy, 2015) as the CNN subnet in the old and conventional setting,

and ResNet101 (He et al., 2016) for the GBU and generalised setting, taking the top pooling

units as image embedding with dimension D = 1024 and 2048 respectively. The CNN subnet is

pre-trained on ILSVRC 2012 1K classification without fine-tuning, the same as the recent deep

ZSL works (Lei Ba et al., 2015; Reed et al., 2016a). For fair comparison with DeViSE (Frome

et al., 2013), ConSE (Norouzi et al., 2014) and AMP (Fu et al., 2015b) on ILSVRC 2010, we

also use the Alexnet (Krizhevsky et al., 2012) architecture and pretrain it from scratch using the

800 training classes. All input images are resized to 224× 224. Fully connected layers of our
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model are initialised with random weights for all of our experiments. Adam (Kingma and Ba,

2015) is used to optimise our model with a learning rate of 0.0001 and a minibatch size of 64.

The model is implemented based on Tensorflow.

Parameter setting In the semantic encoding branch of our network, the output size of the

first FC layer M is set to 300 and 700 for AwA and CUB respectively when a single semantic

space is used (see Fig. 4.1(a)). Specifically, we use one FC layer for ImageNet in our exper-

iments. For multiple semantic space fusion, the multi-modal fusion layer output size is set to

900 (see Fig. 4.1(b)). When the semantic representation was encoded from descriptions for the

CUB dataset, a bidirectional LSTM encoding subnet is employed (see Fig. 4.1(c)). We use the

BasicLSTMCell in Tensorflow as our RNN cell and employ ReLU as activation function. We

set the input sequence length to 30; longer text inputs are cut off at this point and shorter ones are

zero-padded. The word embedding size and the number of LSTM unit are both 512. Note that

with this LSTM subnet, RMSprop is used in the place of Adam to optimise the whole network

with a learning rate of 0.0001, a minibatch size of 64 and gradient clipped at 5. The loss weight-

ing factor λ in Eq. (4.1) is searched by five-fold cross-validation. Specifically, 20% of the seen

classes in the training set are used to form a validation set.

4.4.2 Experiments on small scale datasets

Competitors Numerous existing works reported results on AwA and CUB these two relatively

small-scale datasets under old setting. Among them, only the most competitive ones are selected

for comparison due to space constraint. The selected 13 can be categorised into the non-deep

model group and the deep model group. All the non-deep models use ImageNet pretrained CNN

to extract visual features. They differ in which CNN model is used: FO indicates that overfeat

(Sermanet et al., 2013) is used; FG for GoogLeNet (Szegedy et al., 2015); and FV for VGG net

(Simonyan and Zisserman, 2014). The second group are all neural network based with a CNN

subnet. For fair comparison, we implement the models in (Frome et al., 2013; Socher et al.,

2013; Yang and Hospedales, 2015; Lei Ba et al., 2015) on AwA and CUB with Inception-V2 as

the CNN subnet as in our model and (Reed et al., 2016a). The compared methods also differ

in the semantic spaces used. Attributes (A) are used by all methods; some also use word vector

(W) either as an alternative to attributes, or in conjunction with attributes (A+W). For CUB,

recently the instance-level sentence descriptions (D) are used (Reed et al., 2016a). Note that only

inductive methods are considered. Some recent methods (Zhang and Saligrama, 2016b; Fu et al.,
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2014, 2015a) are tranductive in that they use all test data at once for model training, which gives

them a big unfair advantage.

Comparative results on AwA under old setting From Table 4.1 we can make the following

observations: (1) Our model DEM achieves the best results either with attribute or word vector.

When both semantic spaces are used, our result is further improved to 88.1%, which is 7.6%

higher than the best result reported so far (Zhang and Saligrama, 2016a). (2) The performance

gap between our model to the existing neural network based models are particularly striking.

In fact, the four models (Frome et al., 2013; Socher et al., 2013; Yang and Hospedales, 2015;

Lei Ba et al., 2015) achieve weaker results than most of the compared non-deep models that use

deep features only and do not perform end-to-end training. This verify our claim that selecting

the appropriate visual-semantic embedding space is critical for the deep embedding models to

work. (3) As expected, the word vector space is less informative than the attribute space (86.7%

vs. 78.8%) even though our word vector space alone result already beats all published results

except for one (Zhang and Saligrama, 2016a). Nevertheless, fusing the two spaces still brings

some improvement (1.4%).

Comparative results on CUB under old setting Table 4.1 shows that on the fine-grained

dataset CUB, our model also achieves the best result. In particular, with attribute only, our result

of 58.3% is 3.8% higher than the strongest competitor (Changpinyo et al., 2016). The best result

reported so far, however, was obtained by the neural network based DS-SJE (Reed et al., 2016a)

at 56.8% using sentence descriptions. It is worth pointing out that this result was obtained using

a word-CNN-RNN neural language model, whilst our model uses a bidirectional LSTM subnet,

which is easier to train end-to-end with the rest of the network. When the same LSTM based

neural language model is used, DS-SJE reports a lower accuracy of 53.0%. Further more, with

attribute only, the result of DS-SJE (50.4%) is much lower than ours. This is significant because

annotating attributes for fine-grained classes is probably just about manageable; but annotating

10 descriptions for each images is unlikely to scale to large number of classes. It is also evident

that fusing attribute with descriptions leads to further improvement.

Comparative results under the GBU setting We follow the evaluation setting of (Xian et al.,

2017). We compare our model with 12 alternative ZSL models in Table 4.2. We can see that on

AwA1, AwA2 and aPY, the proposed model DEM is particularly strong under the more realistic

GZSL setting measured using the harmonic mean (H) metric. In particular, DEM achieves state-
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Model F SS AwA CUB

AMP (Fu et al., 2015b) FO A+W 66.0 -

SJE (Akata et al., 2015) FG A 66.7 50.1

SJE (Akata et al., 2015) FG A+W 73.9 51.7

ESZSL (Romera-Paredes and Torr, 2015) FG A 76.3 47.2

SSE-ReLU (Zhang and Saligrama, 2015) FV A 76.3 30.4

JLSE (Zhang and Saligrama, 2016a) FV A 80.5 42.1

SS-Voc (Fu and Sigal, 2016) FO A/W 78.3/68.9 -

SynC-struct (Changpinyo et al., 2016) FG A 72.9 54.5

SEC-ML (Bucher et al., 2016) FV A 77.3 43.3

DeViSE (Frome et al., 2013) NG A/W 56.7/50.4 33.5

Socher et al. (Socher et al., 2013) NG A/W 60.8/50.3 39.6

MTMDL (Yang and Hospedales, 2015) NG A/W 63.7/55.3 32.3

Ba et al. (Lei Ba et al., 2015) NG A/W 69.3/58.7 34.0

DS-SJE (Reed et al., 2016a) NG A/D - 50.4/56.8

DEM NG A/W(D) 86.7/78.8 58.3/53.5

DEM NG A+W(D) 88.1 59.0

Table 4.1: Zero-shot classification accuracy (%) comparison on AwA and CUB (hit@1 accuracy
over all samples) under the old and conventional setting. SS: semantic space; A: attribute space;
W: semantic word vector space; D: sentence description (only available for CUB). F: how the
visual feature space is computed; For non-deep models: FO if overfeat (Sermanet et al., 2013)
is used; FG for GoogLeNet (Szegedy et al., 2015); and FV for VGG net (Simonyan and Zisser-
man, 2014). For neural network based methods, all use Inception-V2 (GoogLeNet with batch
normalisation) (Szegedy et al., 2015; Ioffe and Szegedy, 2015) as the CNN subnet, indicated as
NG.
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of-the-art performance on AwA1, AwA2 and SUN under conventional setting with 68.4%, 67.1%

and 61.9%, outperforming alternatives by big margins.

4.4.3 Experiments on ImageNet

Comparative results on ILSVRC 2010 Compared to AwA and CUB, far fewer works report

results on the large-scale ImageNet ZSL tasks. We compare our model against 8 alternatives

on ILSVRC 2010 in Table 4.3, where we use hit@5 rather than hit@1 accuracy as in the small

dataset experiments. Note that existing works follow two settings. Some of them (Mukherjee

and Hospedales, 2016; Huang et al., 2016) use existing CNN model (e.g. VGG/GoogLeNet)

pretrained from ILSVRC 2012 1K classes to initialise their model or extract deep visual features.

Comparing to these two methods under the same setting, our model gives 60.7%, which beats the

nearest rival PDDM (Huang et al., 2016) by over 12%. For comparing with the other 6 methods,

we follow their settings and pretrain our CNN subnet from scratch with Alexnet (Krizhevsky

et al., 2012) architecture using the 800 training classes for fair comparison. The results show that

again, significant improvement has been obtained with our model.

Comparative results on ILSVRC 2012/2010 Even fewer published results on this dataset are

available. Table 4.4 shows that our model clearly outperform the state-of-the-art alternatives by

a large margin.

4.4.4 Further analysis

chimpanzee

giant panda

leopard

persian cat

pig

hippopotamus

humpback whale

raccoon

rat

seal

(a) S→ V (b) V→ S

Figure 4.4: Visualisation of the distribution of the 10 unseen class images in the two embedding
spaces on AwA using t-SNE (Maaten and Hinton, 2008). Different classes as well as their corre-
sponding class prototypes (in squares) are shown in different colours. Better viewed in colour.

Importance of embedding space selection We argue that the key for an effective deep em-

bedding model is the use of the CNN output visual feature space rather than the semantic space
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Model hit@5

ConSE (Norouzi et al., 2014) 28.5

DeViSE (Frome et al., 2013) 31.8

Mensink et al. (Mensink et al., 2012) 35.7

Rohrbach (Rohrbach et al., 2011) 34.8

PST (Rohrbach et al., 2013) 34.0

AMP (Fu et al., 2015b) 41.0

DEM 46.7

Gaussian Embedding (Mukherjee and Hospedales, 2016) 45.7

PDDM (Huang et al., 2016) 48.2

DEM 60.7

Table 4.3: Comparative results (%) on ILSVRC 2010 (hit@1 accuracy over all samples) under
the old and conventional setting.

Model hit@1 hit@5

ConSE (Norouzi et al., 2014) 7.8 15.5

DeViSE (Frome et al., 2013) 5.2 12.8

AMP (Fu et al., 2015b) 6.1 13.1

SS-Voc (Fu and Sigal, 2016) 9.5 16.8

DEM 11.0 25.7

Table 4.4: Comparative results (%) on ILSVRC 2012/2010 (hit@1 accuracy over all samples)
under the old and conventional setting.
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as the embedding space. In this experiment, we modify our model in Fig. 4.1 by moving the

two FC layers from the semantic embedding branch to the CNN feature extraction branch so that

the embedding space now becomes the semantic space (attributes are used). Table 4.5 shows

that by mapping the visual features to the semantic embedding space, the performance on AwA

drops by 26.1% on AwA, highlighting the importance of selecting the right embedding space.

We also hypothesis that using the CNN visual feature space as the embedding layer would lead

to less hubness problem. To verify that we measure the hubness using the skewness score (see

Sec. 4.3.4). Table 4.6 shows clearly that the hubness problem is much more severe when the

wrong embedding space is selected. We also plot the data distribution of the 10 unseen classes

of AwA together with the prototypes. Figure 4.4 suggests that with the visual feature space as

the embedding space, the 10 classes form compact clusters and are near to their corresponding

prototypes, whilst in the semantic space, the data distributions of different classes are much less

separated and a few prototypes are clearly hubs causing miss-classification.

Loss Visual→ Semantic Semantic→ Visual

Least square loss 60.6 86.7

Hinge loss 57.7 72.8

Table 4.5: Effects of selecting different embedding space and different loss functions on zero-
shot classification accuracy (%) on AwA.

N1 skewness AwA CUB

Visual→ Semantic 0.4162 8.2697

Semantic→ Visual -0.4834 2.2594

Table 4.6: N1 skewness score on AwA and CUB with different embedding space.

Neural network formulation Can we apply the idea of using visual feature space as embed-

ding space to other models? To answer this, we consider a very simple model based on linear

ridge regression which maps from the CNN feature space to the attribute semantic space or vice

versa. In Table 4.7, we can see that even for such a simple model, very impressive results are

obtained with the right choice of embedding space. The results also show that with our neural

network based model, much better performance can be obtained due to the introduced nonlinear-
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ity and its ability to learn end-to-end.

Model AwA CUB

Linear regression (V→ S) 54.0 40.7

Linear regression (S→ V) 74.8 45.7

DEM 86.7 58.3

Table 4.7: Zero-shot classification accuracy (%) comparison with linear regression on AwA and
CUB.

Choices of the loss function As reviewed in Sec. 2, most existing ZSL models use either

margin based losses or binary cross entropy loss to learn the embedding model. In this work,

least square loss is used. Table 4.5 shows that when the semantic space is used as the embedding

space, a slightly inferior result is obtained using a hinge ranking loss in place of least square loss

in our model. However, least square loss is clearly better when the visual feature space is the

embedding space.

4.5 Summary

This chapter has proposed a novel deep embedding model for zero-shot learning. The model

differs from existing ZSL model in that it uses the CNN output feature space as the embedding

space. This chapter hypothesises that this embedding space would lead to less hubness problem

compared to the alternative selections of embedding space. Further more, the proposed model

offers the flexibility of utilising multiple semantic spaces and is capable of end-to-end learning

when the semantic space itself is computed using a neural network. Extensive experiments show

that our model achieves state-of-the-art performance on a number of benchmark datasets and

validate the hypothesis that selecting the correct embedding space is the key for achieving the

excellent performance.
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Chapter 5

Cross-View Generation for Image Captioning by

Actor-Critic Sequence Training

Chapter 3 and Chapter 4 presented frameworks for matching data across views. This chapter

takes a further step to automatically generate the textual language description of a visual image.

This is an important capability for a robot or other visual-intelligence driven AI agent that may

need to communicate with human users about what it sees. Such image captioning methods

are typically trained by maximising the likelihood of ground-truth annotated caption given the

image. While simple and easy to implement, these approaches do not directly maximise the

language quality metrics we care about such as CIDEr. This chapter investigate training image

captioning methods based on actor-critic reinforcement learning in order to directly optimise non-

differentiable quality metrics of interest for effectively describing image content with human-

level language. By formulating a per-token advantage and value computation strategy in this

novel reinforcement learning based captioning model, it is shown that it is possible to achieve

the state of the art performance on the widely used image captioning benchmark.

5.1 Background

As the classic task of automatic object category recognition is beginning to approach a solved

problem (Szegedy et al., 2016), interest is growing in solving a more ‘end-to-end’ task of gen-

erating richer descriptions of images in terms of natural language, suitable for communication

to human users (Vinyals et al., 2015, 2016; You et al., 2016; Liu et al., 2017a). This task is ex-
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tremely topical recently, benefiting from public benchmarks such as MSCOCO (Lin et al., 2014).

Despite extensive research in recent years, leading performance on the benchmarks has not in-

creased dramatically. It is hypothesised that this is mainly due to research focus being on the

image understanding aspects of captioning, rather than the language generation aspects. In this

chapter, reinforcement learning based are investigated methods for training effective language

generation in captioning.

Most existing captioning studies investigate variants of deep learning-based image encoders,

that feed into deep sentence decoders. They have two main issues: (i) They are trained by

maximising the likelihood of each ground-truth word given the previous ground-truth words

and the image using back-propagation (Ranzato et al., 2016), termed ‘Teacher-Forcing’ (Bengio

et al., 2015). This creates a mismatch between training and testing, since at test-time the model

uses the previously generated words from the model distribution to predict the next word. This

exposure bias (Ranzato et al., 2016), results in error accumulation during generation at test time,

since the model has never been exposed to its own predictions. (ii) While sequence models are

usually trained using the cross entropy loss, the actual NLP quality metrics of interest – with

which we evaluate them at test time – are non-differentiable metrics such as CIDEr (Vedantam

et al., 2015). Ideally sequence models for image captioning should be trained to avoid exposure

bias and directly optimise metrics for the task at hand.

To address this two identified issues in image captioning, the main idea is to formulate a

reinforcement learning based work to improve the quality of generated textual description. In

this way, the gradient of the expected reward can be optimised by sampling from the model

during training, thus avoiding the train-test mismatch; and the relevant test-time metrics such as

CIDEr can be directly optimised, by treating them as reward in a reinforcement learning context.

Specifically, an actor-critic model is proposed for image captioning. It consists of a policy

network (actor) and value network (critic). The actor is trained to predict the caption as a sequen-

tial decision problem given the image, where the sequence of actions correspond to tokens. The

critic predicts the value of each state (image and sequence of actions so far), which we define as

the expected task-specific reward (language metric score) that the network will receive if it out-

puts the current token and continues to sample outputs according to its probability distribution.

The value predicted by the critic can be used to train the actor (captioning policy network). Under

the assumption that the critic produces the exact values, the actor is trained based on an unbi-
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ased estimate of the gradient of the caption score in terms of relevant language quality metrics.

Compared to most reinforcement learning applications (Mnih et al., 2013), image captioning has

a much higher dimensional action (e.g., 10,000+ token/word actions) space but shorter episodes.

The proposed actor-critic approach exploits the shorter episodes and ameliorates the high dimen-

sional action space.

5.2 Problem formulation

Image captioning model aims to generate caption sequence Y = {y1, . . . ,yT},yt ∈ D given an

image I, whereD is the dictionary. To simplify the formulas we always use T to denote the length

of an output sequence, ignoring the fact that the generated caption sequences may have different

lengths. Two sets of input-output pairs (I,Y ) are assumed to be available for both training and

testing. The trained sequence generative model is evaluated by computing the task-specific score

R(Ŷ ,Y ) (e.g., BLEU, CIDEr) on the test set, where Ŷ is the predicted caption sequence.

In this chapter, off-the-shelf conventional encoder-decoder architecture (see Figure 5.1) for

image captioning is adopted which consists of a Convolutional Neural Network (CNN) as the

encoder and a Recurrent Neural Network (RNN) as the decoder. In order to transform the image

captioning problem into a reinforcement learning task, we consider the image caption generation

process as a finite Markov decision process (MDP) {S,A,P,R,γ}. In the MDP setting, the state

S is composed of the image feature Ie encoded by the CNN from image I and the tokens/actions

{a0,a1, . . . ,at} that are generated so far. With the definition of the state, the state transition

function P is st+1 = {st , at+1}, where the action at+1 becomes a part of the next state st+1 and

the reward rt+1 is received. γ ∈ [0,1] is the discount factor. Under the MDP interpretation of the

image captioning problem, we can apply standard reinforcement learning algorithms to maximise

the cumulated reward.

5.2.1 Model

Actor-critic (Barto et al., 1983) reinforcement learning method is adopted to train the proposed

model which contains a policy network (actor) and a value network (critic). In particular, the

model use Inception-V3 (Szegedy et al., 2016) as the CNN subnet and Long Short-Term Mem-

ory (Hochreiter and Schmidhuber, 1997) as the RNN subnet. Both the policy network and value

network are based on LSTM for sequential action or value generation.
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Figure 5.1: Schematic illustration of our actor-critic based captioning model (with word embed-
ding layer omitted).

Policy network The policy network π is parametrised by θ and at time t it receives a state

st and generates the categorical distribution over |D| actions (tokens), i.e. at+1 ∼ πθ (st). We

encode the given image I to Ie by CNN and treat Ie and the start token a0 as the initial state s0:

s0 = {Ie, a0}. (5.1)

With state transfer function mentioned above, we have:

st = {Ie,a0,a1, . . . ,at}. (5.2)

We feed state st into the LSTM and obtain the LSTM hidden state ht+1 (Ie was set as h0). In

order to build a probabilistic model for caption generation with an LSTM, we add a stochastic

output layer f (typically with the softmax activation for discrete outputs) that generates outputs

at+1 ∈ D:

ht+1 = LSTM(st),

at+1 ∼ f (ht+1).

Thus, the policy network defines a probability distribution p(at+1|st) of the action at+1 given

current state st . The architecture of the policy network is the same as the standard supervised

learning. Therefore, by given a target ground truth sequence {y0,y1, . . . ,yT}, the supervised

learning approach would be to train this network by minimising the cross entropy loss (XE).

LXE(θ) =−
T

∑
t=1

log(πθ (yt | y0, . . . ,yt−1)). (5.3)
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This corresponds to imitation learning of a perfect teacher in an RL context, and we use the

pre-trained model as the initial policy network.

Policy gradient training Policy gradient methods maximise the expected cumulated reward by

repeatedly estimating the gradient g :=∇θE[∑T
t=1 rt ], where the environment issues the reward rt

according to the efficacy of the produced actions, rather than the teacher demonstrating the ideal

actions directly as in Eq 5.3. For policy gradient, it is typically better to train an expression of

the form:

g = E[
T−1

∑
t=0

Aπ(st , at+1)∇θ logπθ (at+1 | st)], (5.4)

where Aπ(st , at+1) is advantage function yields almost the lowest possible variance, though in

practice, the advantage function is not known and must be estimated. This statement can be

intuitively justified by the following interpretation of the policy gradient: that a step in the policy

gradient direction should increase the probability of better-than-average actions and decrease the

probability of worse-than-average actions. The advantage function, by its definition Aπ(s,a) =

Qπ(s,a)−V π(s), measures whether or not the action is better or worse than the policy’s default

behaviour. So that the gradient term Aπ(st , at+1)∇θ logπθ (at+1 | st) points in the direction of

increasing πθ (at+1 | st) if and only if Aπ(st , at+1)> 0.

Value network Given the policy π , sampled actions and reward function, the value represents

the expected future return as a function of the observed state st . We use V be an approximate

state-value function.

V π(st) = E[
T−t−1

∑
l=0

γ
lrt+l+1 | at+1, . . . ,aT ∼ π, I], (5.5)

where parameter γ allows us to reduce variance by down-weighting rewards, at the cost of intro-

ducing bias. This parameter corresponds to the discount factor used in discounted formulations

of MDPs.

The value network can be seen as an encoder. We propose to use a separate LSTM parametrised

by φ with shared CNN. The RNN consumes state st = {Ie,a0,a1, . . . ,at} and produces a single

value output to predict the TD target (to be defined later in Sec 5.2.2).
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5.2.2 Advantage function estimation

Temporal-difference (TD) learning is utilised for advantage function estimation. Specifically, we

define Qπ(st ,at+1) in forward-view TD(λ ) setting:

Qπ(st ,at+1) = (1−λ )
∞

∑
n=1

Gn
t , (5.6)

where Gn
t is the n-step expected return:

Gn
t = rt+1 + γrt+2 + ...+ γ

n−1rt+n + γ
nV π(st+n). (5.7)

Therefore we have:

Aπ(st ,at+1) = Qπ(st ,at+1)−V π(st) = (1−λ )
∞

∑
n=1

Gn
t −V π(st), (5.8)

which is the same definition as Generalised Advantage Estimation (GAE) (Schulman et al., 2016)

but in a forward view. Then the gradient of policy network has the form:

g = E[
T−1

∑
t=0

(
(1−λ )

∞

∑
n=1

Gn
t −V π(st))∇θ logπθ (at+1|st)]. (5.9)

5.2.3 Value function estimation

When using a nonlinear function approximator to represent the value function, the simplest ap-

proach is to solve a nonlinear regression problem:

min
φ
||Qπ(st ,at+1)−V π

φ (st)||2 (5.10)

where Qπ(st , at+1) = (1−λ )∑
∞
n=1 Gn

t .

5.2.4 λ setting for image captioning

λ setting plays an important role for the whole algorithm. If λ = 0, the advantage and value

function estimations become one-step TD, whereas if λ = 1, the estimations turn out to be Monte

Carlo approach. Since the episode length of image captioning is relatively shorter than popular

contemporary RL problems (e.g. Atari and Mujoco games), and we have to sample the whole

sequence of captions for rewarding, we set λ = 1 for our image captioning problem. Under this

setting, the estimator for both advantage and value function is unbiased and the limited length of

episode restricts the variance of estimation to a limited range. Concretely, with λ = 1, we have:

Qπ(st , at+1) =
T−t−1

∑
l=0

γ
lrt+l+1 (5.11)
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5.2.5 Reward

For image captioning we can only obtain an evaluation score (e.g. CIDEr) when the caption

generation process is finished. Therefore, we define the reward as follows:

rt =


0 t < T

score t = T
(5.12)

under such reward setting, we have

Qπ(st , at+1) = γ
T−t−1rT . (5.13)

Then the gradient of policy network has a sample form:

g = E[
T−1

∑
t=0

(
γ

T−t−1rT −V (st))∇θ logπθ (at+1 | st)]. (5.14)

5.3 Experiments

5.3.1 Implementation details

The Inception-v3 (Szegedy et al., 2016) is adopted as the CNN subnet, and an LSTM network is

used as the RNN subnet. The number of LSTM cells is 512, equal to the dimension of the word

embedding. The output vocabulary size for sentence generation is 12,000. Note that all these are

exactly the same as the NICv2 (Vinyals et al., 2015) model ensuring a fair comparison.

For the CNN feature we used, semantic concept (Liu et al., 2017a) feature I ∈ R1000 is used.

These 1,000 semantic concepts are mined from the most frequent words in a set of image cap-

tions. A concept classifier is learned to predict Is as classification scores for the concepts.

Algorithm 2 describes the proposed method in detail. Our preliminary experiments show that

training actor-critic from scratch can lead to an early determinisation of the policy and vanishing

gradients, because neither the actor nor the critic would provide adequate training signals for

one another. The actor would sample completely random tokens that receive very low reward,

thus providing a very weak training signal for the critic. A random critic would be similarly

useless for training the actor. To overcome these problems, staged pre-trainings are carried out.

More specifically, we first pre-train the actor using standard cross entropy loss (XE) (see Eq. 5.3).

After that, we pre-train the critic network by feeding it with sampled actions from the fixed pre-

trained actor. The critic network is pre-trained for 2,000 iterations using Adam with a learning
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rate of 5e-5. For the final stage of joint training of actor-critic, we weight critic loss by 0.5. We

use Adam with an initial learning rate of 5e-5 and decrease it to 5e-6 after 1 million iterations,

with minibatch size 16. The complete training procedure including pre-training is described by

Algorithm 3.

Algorithm 2: Actor-Critic Training for Image Captioning

1 Require: Actor π(at+1|st) and critic V (st) with weights θ and φ respectively;

2 for iteration = 1 to max iteration do

3 Receive a random example (I,Y ) and sample sequence of actions {a1, . . . ,aT}

according to current policy πθ ;

4 Compute TD target Qπ(st , at+1) = γT−t−1rT for V (st);

5 Update critic weights φ by minimising Eq. 5.10;

6 Update actor weights θ using the gradient in Eq. 5.14;

Algorithm 3: Complete Actor-Critic Algorithm for Image Captioning

1 Initialise actor π(at+1|st) and critic V (st) with random weights θ and φ respectively;

2 Pre-train the actor to predict ground truth yt given {y1, . . . ,yt−1} by minimise Eq.

5.3;

3 Pre-train the critic to estimate V (st) by running Algorithm 2 with fixed actor;

4 Run Algorithm 2

5.3.2 Datasets and setting

We evaluate the proposed method on the most widely used MSCOCO (Lin et al., 2014) dataset.

The dataset contains 82,783 training images and 40,504 validation images. Each image is man-

ually annotated with about 5 captions. The comparison against the state-of-the-art is conducted

using the actual MS COCO test set comprising 40,775 images. Note that the annotation of the

test set is not publicly available, so the results are obtained from the COCO evaluation server. We

also follow the setting of (Vinyals et al., 2015, 2016) by using a held-out set of 4,051 images from

the COCO validation set as the development set. The widely used BLEU, CIDEr, METEOR, and

ROUGE scores are employed to measure the quality of generated captions.
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5.3.3 Experimental results

Competitors Several state-of-the-art models are selected for comparison: MSRCap: The Mi-

crosoft Captivator (Devlin et al., 2015) combines the bottom-up based word generation model (Fang

et al., 2015) with a gated recurrent neural network (Cho et al., 2014) (GRNN) for image caption-

ing. mRNN: The multimodal recurrent neural network (Mao et al., 2015) uses a multimodal layer

to combine the CNN and RNN. NICv2: The NICv2 (Vinyals et al., 2016) is an improved version

of the Neural Image Caption generator (Vinyals et al., 2015). It uses a better image encoder, i.e.,

Inception-v3. In addition, scheduled sampling (Bengio et al., 2015) and an ensemble of 15 mod-

els are used; both improved the accuracy of captioning. V2L: The V2L model (Wu et al., 2016)

uses a CNN based attribute detector to firstly generate 256 attributes, and then feed as initial

input to an LSTM model to generate captions. ATT: The semantic attention model (You et al.,

2016) uses both image features and visual attributes, and introduces an attention mechanism to

reweight the attribute context to improve captioning accuracy. Semantic (Liu et al., 2017a) is our

base model which uses a semantically regularised embedding layer as the interface between the

CNN and RNN.

In addition to the traditional supervised learning method, we compare our method with three

reinforcement learning based model. PG (Liu et al., 2017c) and MIXER (Ranzato et al., 2016)

use policy gradient method with an additional FC layer on top of the RNN as state value network

to reduce the high variance. Different from (Ranzato et al., 2016), (Liu et al., 2017c) uses the

same method as (Yu et al., 2017) with k-times Monte Carlo rollout to estimate the state value

target. Self-critical (Rennie et al., 2017) uses the basic REINFORCE algorithm with a reward

obtained by the current model under the inference algorithm as the baseline. This simple method

achieved very high performance which ranked 2nd currently on COCO captioning challenge.

However, it use a multiple model ensemble. In contrast, only a single model is used for our

method.

Results The results on development set are summarised in Table 5.1. We report a significant

improvement from 1.007 to 1.162 on CIDEr over the log-likelihood baseline when single model

greedy search is used for decoding. We can also see that our method is better than attention (Xu

et al., 2015) and memory cell (Graves et al., 2016) which are added on top of the LSTM cell.

For fair comparison with the current state-of-the-art method (Rennie et al., 2017), we implement

it with same semantic CNN input (Liu et al., 2017a) on development set with single model for
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Figure 5.2: Average training reward curve for ours and (Rennie et al., 2017). We recorded the
reward for 1 million iteration and plot every 10k iteration.

evaluation. The training reward curves of our method and (Rennie et al., 2017) are shown

in Figure 5.2. Our method is clearly superior to that of (Rennie et al., 2017) due to the per-

token advantage and value computation strategy adopted in our actor-critic based reinforcement

learning framework.

We also submitted our single model results to the official evaluation server to compare with

the eight baselines mentioned above. The evaluation is done with both 5 and 40 reference cap-

tions (C5 and C40). Our model is ranked the 3rd on the MSCOCO image captioning challenge

leaderboard. Ours is the highest ranked single models, and is only surpassed by multi-model en-

sembles. Table 5.2 shows that, compared to the supervised learning based methods, our method

significantly outperforms all of them in all metrics despite using only a single model rather than

model ensemble. Comparing to the other two reinforcement learning based methods (Liu et al.,

2017c; Ranzato et al., 2016), our method still achieved better performance except ROUGE-L

c40.

Figure 5.3 shows some qualitative examples of our models captioning compared against using

the same encoder-decoder architecture, but with standard cross-entropy (XE) training.

Computational Cost We compare the training time of our method with several alternatives. All

algorithms are implemented in Tensorflow and run on an NVIDIA P100 card, with a mini-batch

size of 16. Table 5.3 shows that for training, our method is the most efficient one. This is mainly

due to the fact that our model does not have attention cell. Furthermore, for the Self-critical (Ren-

nie et al., 2017) model, it needs to sample twice (random sampling + greedy decoding) for each

iteration which is expensive.
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Model Time

Semantic (Liu et al., 2017a)+Attention (Xu et al., 2015) 0.10

Semantic (Liu et al., 2017a)+Self-critical (Rennie et al., 2017) 0.13

Semantic (Liu et al., 2017a)+Self-critical (Rennie et al., 2017)+Attention (Xu et al., 2015) 0.18

Ours 0.07

Table 5.3: Training time for one minibatch on COCO dataset (in seconds)

5.4 Summary

This chapter have investigated the problem of automated image captioning by employing rein-

forcement learning to optimise the relevant non-differentiable language metrics such as CIDEr.

A novel actor-critic based learning strategy is formulated which has the advantage over existing

reinforcement learning based captioning models in that a per-token advantage and value compu-

tation is enabled leading to better model training. State-of-the-art performance is achieved using

our computational efficient model on the MSCOCO benchmark.
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Chapter 6

Conclusion and Future Work

This chapter summarise the achievements of the work presented in this thesis, and also discuss

possible directions for future research.

6.1 Conclusion

This thesis has presented a collection of cross-view learning methods for automated analysis

and understanding cross-view data. In particular, cross-view matching models for person re-

identification and zero-shot learning have been investigated and explored. Besides, cross-view

generation model is also studied for image captioning, aiming to automatically generate textual

descriptions conditioned on visual images. These problems are inherently challenging due to

the significant appearance and modality variations across views, or intrinsic learning strategy

desiderata. Specifically,

1. In Chapter 3, a null space learning method for person re-identification problem is pre-

sented. This allows to obtain a more discriminative subspace for cross-view person image

matching. Following are the observations in this chapter: (1) This chapter first identified

the small sample size (SSS) problem suffered by all existing metric learning based re-id

methods and argued that their solutions to this problem is suboptimal. (2) A null space

learning method is then presented to overcome the SSS problem in cross-view person Re-

ID. In this null space, images of the same person are collapsed into a single point thus

minimising the within-class scatter to the extreme and maximising the relative between-
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class separation simultaneously. Compared with existing Re-ID models, the employed

NFST model is much simpler, with a closed-form solution and no parameters to tune.

Yet, it is very effective in dealing with the SSS problem faced by the Re-ID methods.

(3) A novel semi-supervised learning method is developed in the null space to exploit the

abundant unlabelled data to further alleviate the effects of the SSS problem. Extensive ex-

periments carried out on five person re-identification benchmarks show that such a simple

and computationally very efficient approach beats all state-of-the-art methods often by a

large margin.

2. In Chapter 4, a novel deep embedding model for zero-shot learning is proposed. Specif-

ically, the proposed deep neural network based embedding model differs from existing

models in that: To alleviate the hubness problem, visual space is adopted as the embed-

ding space instead of the semantic space or an intermediate space. The resulting projec-

tion direction is from the textual view to visual view. Such a direction is opposite to the

one adopted by most existing models. Moreover, a theoretical analysis and some intu-

itive visualisations are provided to explain why this would help to counter the hubness

problem. Further, this framework design also provides a natural mechanism for multiple

textual views (e.g., attributes and sentence descriptions) to be fused and optimised jointly

in an end-to-end manner. Extensive experiments on four benchmarks show show that the

proposed method beats all the state-of-the-art models presented to date, often by a clear

margin.

3. In Chapter 5, first, two main issues in most existing captioning methods were identified.

(i) They are trained by maximising the likelihood of each ground-truth word given the

previous ground-truth words and the image using back-propagation (Ranzato et al., 2016),

termed ‘Teacher-Forcing’ (Bengio et al., 2015). This creates a mismatch between train-

ing and testing, since at test-time the model uses the previously generated words from the

model distribution to predict the next word. This exposure bias (Ranzato et al., 2016), re-

sults in error accumulation during generation at test time, since the model has never been

exposed to its own predictions. (ii) While sequence models are usually trained using the

cross entropy loss, the actual NLP quality metrics of interest – with which we evaluate

them at test time – are non-differentiable metrics such as CIDEr (Vedantam et al., 2015).

Ideally sequence models for image captioning should be trained to avoid exposure bias
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and directly optimise metrics for the task at hand. Second, to address the identified two

issues in image captioning, the main idea is to formulate a reinforcement learning based

work to improve the quality of generated textual description. In this way, the gradient of

the expected reward can be optimised by sampling from the model during training, thus

avoiding the train-test mismatch; and the relevant test-time metrics such as CIDEr can be

directly optimised, by treating them as reward in a reinforcement learning context. Specif-

ically, a novel actor-critic based learning strategy is formulated which has the advantage

over existing reinforcement learning based captioning models in that a per-token advantage

and value computation is enabled leading to better model training. State-of-the-art perfor-

mance is achieved using our computation efficient model on the MSCOCO benchmark.

Although the newly proposed methods have explored several applications and challenges in

cross-view learning, other directions and dimensions are also possibly promising to investigate

and explore, and a few of them are discussed below.

6.2 Future Work

The potential research directions for future work beyond the proposed methods are summarised

as follows to end this thesis.

1. Deep null space learning for person re-identification: The initial effort of exploiting

null space of the training samples for person image matching across views or person re-

identification has shown effective and encouraging. However, the features are still hand-

crafted. Recently, deep neural networks have been becoming a dominate solution for the

appearance representation, they have also been shown to be effective for re-identification

(Xiao et al., 2016). One possible extension could be integrating the current model into

learning an end-to-end neural networks, as NFST is an extreme case of Linear Discrimi-

native Analysis (Dorfer et al., 2015). Algorithmically, incorporating appropriate losses is

important (Li et al., 2017; Geng et al., 2016).

2. Deep embedding learning for sentence retrieval: Aside from zero-shot learning, one

could use the proposed cross-view matching framework of learning an embedding model

for a range of other visual-textual cross-view problems. For example, sentence retrieval,

to find amidst a set of sentences the one best describing the content of a given image or

video, would be an area that could be improved upon. The embedding model transform the
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text embedding from sentence vectorisation into a higher-dimensional visual feature space,

which is capable of alleviating the hubness problem (Section 1.2), potentially allowing the

training of robust systems for sentence retrieval.

3. Reinforcement learning for multi-label image classification: Reinforcement learning

method has demonstrated favourable capabilities of generating text from image with CNN-

RNN model. This indicates its promising potentials to deal with other visual-textual cross-

view tasks with CNN-RNN architecture. Current CNN-RNN model for multi-label im-

age classification (Wang et al., 2016b) optimise the likelihood of the generated text labels

which is not the evaluation metric of interest. This may lead the learned model subopti-

mal. Therefore, the proposed actor-critic sequence training model for multi-label image

classification is interesting to investigate and explore.
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J. Vı́a, I. Santamarı́a, and J. Pérez. A learning algorithm for adaptive canonical correlation

analysis of several data sets. Neural Networks, 20(1):139–152, 2007.

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator.

In IEEE Conference on Computer Vision and Pattern Recognition, 2015.

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: Lessons learned from the 2015

mscoco image captioning challenge. PAMI, 2016.

C. Wah, S. Branson, P. Perona, and S. Belongie. Multiclass recognition and part localization with

humans in the loop. In IEEE International Conference on Computer Vision, 2011.

F. Wang, W. Zuo, L. Lin, D. Zhang, and L. Zhang. Joint learning of single-image and cross-

image representations for person re-identification. In IEEE Conference on Computer Vision

and Pattern Recognition, 2016a.

H. Wang et al. Minimising Human Annotation for Scalable Person Re-Identification. PhD thesis,

Queen Mary University of London, 2017a.

J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, and W. Xu. Cnn-rnn: A unified framework

for multi-label image classification. In IEEE Conference on Computer Vision and Pattern

Recognition, 2016b.

J. Wang, X. Zhu, S. Gong, and W. Li. Attribute recognition by joint recurrent learning of context

and correlation. In IEEE International Conference on Computer Vision, volume 2, 2017b.

W. Wang, R. Arora, K. Livescu, and J. Bilmes. On deep multi-view representation learning. In

International Conference on Machine learning, pages 1083–1092, 2015.



123

K. Q. Weinberger, J. Blitzer, and L. K. Saul. Distance metric learning for large margin nearest

neighbor classification. In Advances in Neural Information Processing Systems, 2005.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement

learning. Machine Learning, 1992.

Q. Wu, C. Shen, L. Liu, A. Dick, and A. van den Hengel. What value do explicit high level

concepts have in vision to language problems? In IEEE Conference on Computer Vision and

Pattern Recognition, 2016.

Z. Y. Y. Y. Y. Wu and R. S. W. W. Cohen. Encode, review, and decode: Reviewer module for

caption generation. Advances in Neural Information Processing Systems, 2016.

Y. Xian, Z. Akata, G. Sharma, Q. Nguyen, M. Hein, and B. Schiele. Latent embeddings for zero-

shot classification. In IEEE Conference on Computer Vision and Pattern Recognition, pages

69–77, 2016.

Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata. Zero-shot learning-a comprehensive evaluation

of the good, the bad and the ugly. arXiv preprint arXiv:1707.00600, 2017.

T. Xiao, H. Li, W. Ouyang, and X. Wang. Learning deep feature representations with domain

guided dropout for person re-identification. In IEEE Conference on Computer Vision and

Pattern Recognition, 2016.

F. Xiong, M. Gou, O. Camps, and M. Sznaier. Person re-identification using kernel-based metric

learning methods. In European Conference on Computer Vision, 2014.

K. Xu, J. L. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. S. Zemel, and Y. Bengio.

Show, attend and tell: Neural image caption generation with visual attention. In International

Conference on Machine learning, 2015.

F. Yan, K. Mikolajczyk, and J. Kittler. Person re-identification with vision and language. arXiv

preprint arXiv:1710.01202, 2017.

J. Yang, S. E. Reed, M.-H. Yang, and H. Lee. Weakly-supervised disentangling with recurrent

transformations for 3d view synthesis. In Advances in Neural Information Processing Systems,

pages 1099–1107, 2015.



124 Bibliography

L. Yang and R. Jin. Distance metric learning: A comprehensive survey. Michigan State Universiy,

2006.

Y. Yang and T. M. Hospedales. A unified perspective on multi-domain and multi-task learning.

In International Conference on Learning Representations, 2015.

Y. Yang, J. Yang, J. Yan, S. Liao, D. Yi, and S. Z. Li. Salient color names for person re-

identification. In European Conference on Computer Vision, 2014.

L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle, and A. Courville. Describing videos

by exploiting temporal structure. In IEEE International Conference on Computer Vision, pages

4507–4515, 2015.

D. Yi, Z. Lei, S. Liao, and S. Z. Li. Deep metric learning for person re-identification. In IEEE

International Conference on Pattern Recognition, 2014.

Q. You, H. Jin, Z. Wang, C. Fang, and J. Luo. Image captioning with semantic attention. In IEEE

Conference on Computer Vision and Pattern Recognition, 2016.

L. Yu, W. Zhang, J. Wang, and Y. Yu. Seqgan: sequence generative adversarial nets with policy

gradient. In AAAI, 2017.

L. Zhang, T. Xiang, and S. Gong. Learning a discriminative null space for person re-

identification. In IEEE Conference on Computer Vision and Pattern Recognition, 2016.

L. Zhang, F. Sung, F. Liu, T. Xiang, S. Gong, Y. Yang, and T. M. Hospedales. Actor-critic

sequence training for image captioning. In NIPS Workshop on Visually-Grounded Interaction

and Language, 2017a.

L. Zhang, T. Xiang, and S. Gong. Learning a deep embedding model for zero-shot learning. In

IEEE Conference on Computer Vision and Pattern Recognition, 2017b.

Z. Zhang and V. Saligrama. Zero-shot learning via semantic similarity embedding. In IEEE

International Conference on Computer Vision, 2015.

Z. Zhang and V. Saligrama. Zero-shot learning via joint latent similarity embedding. In IEEE

Conference on Computer Vision and Pattern Recognition, 2016a.



125

Z. Zhang and V. Saligrama. Zero-shot recognition via structured prediction. In European Con-

ference on Computer Vision, 2016b.

R. Zhao, W. Ouyang, and X. Wang. Person re-identification by salience matching. In IEEE

International Conference on Computer Vision, 2013a.

R. Zhao, W. Ouyang, and X. Wang. Unsupervised salience learning for person re-identification.

In IEEE Conference on Computer Vision and Pattern Recognition, 2013b.

R. Zhao, W. Ouyang, and X. Wang. Learning mid-level filters for person re-identification. In

IEEE Conference on Computer Vision and Pattern Recognition, 2014.

L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian. Scalable person re-identification: A

benchmark. In IEEE International Conference on Computer Vision, 2015.

L. Zheng, Y. Yang, and A. G. Hauptmann. Person re-identification: Past, present and future.

arXiv preprint arXiv:1610.02984, 2016.

W. Zheng, L. Zhao, and C. Zou. Foley-sammon optimal discriminant vectors using kernel ap-

proach. IEEE TNN, 2005.

W.-S. Zheng, S. Gong, and T. Xiang. Re-identification by relative distance comparison. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 35(3), 2013.

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. arXiv preprint arXiv:1703.10593, 2017a.

S. Zhu, S. Fidler, R. Urtasun, D. Lin, and C. C. Loy. Be your own prada: Fashion synthesis with

structural coherence. In IEEE International Conference on Computer Vision, 2017b.

X. Zhu. Semi-supervised learning literature survey. Citeseer, 2005.

Z. Zhu, P. Luo, X. Wang, and X. Tang. Multi-view perceptron: a deep model for learning face

identity and view representations. In Advances in Neural Information Processing Systems,

pages 217–225, 2014.


	Introduction
	Scope of the Thesis
	Challenges and Limitations
	Approaches
	Contributions
	Organisation of Thesis

	Literature Review
	Machine Learning Tools
	Overview on machine learning
	Machine learning models for cross-view learning

	Cross-View Matching
	Person re-identification
	Zero-shot learning

	Cross-View Generation
	Image synthesis
	Image captioning
	Machine translation

	Benchmark Dataset
	Summary

	Cross-View Matching for Person Re-Identification by Learning a Discriminative Null Space
	Background
	Problem Definition
	Methodology
	Foley-Sammon transform
	Null foley-sammon transform
	Learning the discriminative null space
	Kernelisation
	Semi-supervised learning

	Experiments
	Datasets
	Settings
	Fully supervised learning results
	Semi-supervised learning results
	Running cost

	Summary

	Cross-View Matching for Zero-Shot Learning by Deep Embedding Learning
	Background
	Problem definition
	Methodology
	Model architecture
	Multiple semantic space fusion
	Bidirectional LSTM encoder for description
	The hubness problem
	Relationship to other deep ZSL models

	Experiments
	Dataset and settings
	Experiments on small scale datasets
	Experiments on ImageNet
	Further analysis

	Summary

	Cross-View Generation for Image Captioning by Actor-Critic Sequence Training
	Background
	Problem formulation
	Model
	Advantage function estimation
	Value function estimation
	 setting for image captioning
	Reward

	Experiments
	Implementation details
	Datasets and setting
	Experimental results

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work


