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Abstract

In this thesis we study the problem of learning under uncertainty using the statist-
ical learning paradigm. We first propose a linear maximum margin classifier that deals
with uncertainty in data input. More specifically, we reformulate the standard Support
Vector Machine (SVM) framework such that each training example can be modeled
by a multi-dimensional Gaussian distribution described by its mean vector and its
covariance matrix – the latter modeling the uncertainty. We address the classification
problem and define a cost function that is the expected value of the classical SVM
cost when data samples are drawn from the multi-dimensional Gaussian distributions
that form the set of the training examples. Our formulation approximates the classical
SVM formulation when the training examples are isotropic Gaussians with variance
tending to zero. We arrive at a convex optimization problem, which we solve effi-
ciently in the primal form using a stochastic gradient descent approach. The resulting
classifier, which we name SVM with Gaussian Sample Uncertainty (SVM-GSU), is
tested on synthetic data and five publicly available and popular datasets; namely, the
MNIST, WDBC, DEAP, TV News Channel Commercial Detection, and TRECVID
MED datasets. Experimental results verify the effectiveness of the proposed method.
Next, we extended the aforementioned linear classifier so as to lead to non-linear de-
cision boundaries, using the RBF kernel. This extension, where we use isotropic input
uncertainty and we name Kernel SVM with Isotropic Gaussian Sample Uncertainty
(KSVM-iGSU), is used in the problems of video event detection and video aesthetic
quality assessment. The experimental results show that exploiting input uncertainty,
especially in problems where only a limited number of positive training examples are
provided, can lead to better classification, detection, or retrieval performance. Finally,
we present a preliminary study on how the above ideas can be used under the deep
convolutional neural networks learning paradigm so as to exploit inherent sources of
uncertainty, such as spatial pooling operations, that are usually used in deep networks.
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I never expected hell to have so much light.

Miltos Sachtouris (1919-2005)1

1Miltos Sachtouris was a Greek poet who has created, through the development of a style as spare
and lucid as Baudelaire’s, a surrealist world of ordinary horror, where the most bizarre flowerings of
intolerable anxiety unfold with dreamlike clarity at your elbow as you walk down the street.
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Chapter 1

Introduction

Contents

1.1 Learning under uncertainty . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Problem definition – Challenges and Assumptions . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 Learning under uncertainty

Uncertainty is ubiquitous in almost all fields of scientific studies [66, 31], which it
is roughly divided into two general categories: aleatory uncertainty and epistemic
uncertainty. While aleatory uncertainty refers to the inherent randomness in nature,
derived from natural variability of the physical world (e.g., random show of a flipped
coin), epistemic uncertainty origins from human’s lack of knowledge of the physical
world, as well as ability of measuring and modeling the physical world. Uncertainty
distinguishes from certainty in the degree of belief or confidence. If certainty is referred
to as a perception or belief that a certain system or phenomenon can experience or
not, uncertainty indicates a lack of confidence or trust in an article of knowledge or
decision [127]. The US National Research Council [20] gave the following general
definition of uncertainty: “Uncertainty is a general concept that reflects our lack of
sureness about something or someone, ranging from just short of complete sureness to
an almost complete lack of conviction about an outcome”. In this thesis, however, we
use the term of uncertainty as referred to by the dominant probability theory [60, 50,
101].

Concerning the supervised machine learning field, to which this thesis lies, uncer-
tainty has been studied in many different aspects [24, 7, 54]. More specifically, the
research community has studied learning problems where uncertainty is present either
in the labels or in the representation of the training data. The former case concerns
the problem where the truth labels of the training examples of a supervised learning
problem are not certain or are corrupted. The latter case, to which this thesis falls,
concerns the problem of supervised learning using data representations that are not
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1.2. Problem definition – Challenges and Assumptions

certain. Examples of such problems include image classification, video event detection,
emotional analysis using electroencephalogram signals, etc.

In this thesis, we focus on the supervised learning problem by introducing input
uncertainty under the Statistical Learning Theory (SLT) paradigm. SLT, established
by Vladimir Vapnik [111] more than three decades ago, aims at providing a framework
for studying –using a statistical framework– the problem of inference; that is, the
problem of gaining knowledge from data and making decisions about them. Vapnik
once said that nothing is more practical than a good theory. Indeed, the SLT paradigm
has been proven to be an extremely practical for decades. The Support Vector Ma-
chine (SVM), probably the most popular learning algorithm that is based on SLT, has
been shown to be very powerful for pattern classification, among other relevant tasks.
Vapnik established the standard linear regularized SVM algorithm for computing a
linear discriminative function that optimizes the margin between the so-called support
vectors and the separating hyperplane. Despite the fact that the standard linear SVM
algorithm is a well-studied and general framework for statistical learning analysis, it
is still an active research field (e.g., [99, 94]).

Although SVM has been shown to be a powerful learning paradigm, its classical
formulation, as well as the majority of classification methods, do not explicitly model
input uncertainty. In standard SVM, each training datum is a vector, whose position
in the feature space is considered certain. This does not model the fact that meas-
urement inaccuracies or artifacts of the feature extraction process contaminate the
training examples with noise. In several cases the noise distribution is known or can
be modeled; e.g., there are cases where each training example represents the average
of several measurements or of several samples whose distribution around the mean can
be modeled or estimated. Finally, in some cases it is possible to model the process by
which the data is generated, for example by modeling the process by which new data
is generated from transforms applied on an already given training dataset.

1.2 Problem definition – Challenges and Assumptions

The main problem we wish to address in this thesis is the classical supervised classi-
fication problem using input uncertainty. The majority of the learning methods (e.g.,
those employed in video understanding and indexing applications, such as the video
event detection and aesthetic quality video assessment problems) do not address the
uncertainty in the training data explicitly. In these problems each training example is
typically described by a fixed position in some vector space (feature representation).
However, such an approach does not account for the fact that the underlying process
of extracting the feature representation may be imperfect or noisy, hence introducing
some degree of uncertainty to the generated features.

For this, we model input uncertainty in training example level using the well-studied
and ubiquitously-used multi-variate Gaussian distribution. More specifically, we define
an input training entity/example1 as a multi-variate Gaussian distribution, or, equival-

1We choose to interchangeably use the term training example or training entity over the usually
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1.2. Problem definition – Challenges and Assumptions

ently, as a pair of a mean vector and a covariance matrix (since a Gaussian distribution
is defined uniquely by its first- and second-order statistics). Each training example
is allowed to have a distinct covariance matrix. Consequently, we formally define
the problem we address as follows: Given an annotated set of Gaussian distributions,
we optimize for the soft margin using the expected value of the hinge loss, where the
expectation is taken under the given Gaussians.

For developing our basic learning algorithm we choose to use and extend a very
popular maximum-margin learning algorithm, the soft-margin linear Support Vector
Machine (SVM). More specifically, we extend the standard linear SVM using the stand-
ard hinge loss function and optimize for the soft margin using the expected value of
the hinge loss. This essentially means that the loss that is potentially introduced
by a training example is measured not solely using a single feature vector (e.g., the
mean feature vector of the input Gaussian), but rather using the knowledge of the
discrepancy of the respective distribution, i.e., its (co)variance.

The fundamental assumption that we made during the development of our learning
algorithms concerns the normality of the input uncertainty. That is, as discussed above,
each training entity is considered as a multi-variate Gaussian distribution. Modeling
the uncertainty of each training example as above comes with a number of virtues.
More specifically:

• In a process (e.g., feature extraction) where there is limited knowledge of the
factors that may introduce uncertainty (usually not even the number of pos-
sible noise or error sources), a Gaussian distribution is expected to serve as a
good model, since it is the limit of the sum of a large number of unknown (but
reasonably bounded) uncertainty sources (Central Limit Theorem).

• A Gaussian distribution is completely described by its first- and second-order
statistics. This is a significant advantage of the Gaussian, which is absent in other
random distributions. Measuring or modeling mean and variance is relatively
easy compared to measuring higher-order moments (which may be necessary if
the random vectors are not Gaussian).

• Mathematical manipulation of Gaussian provides greater convenience compared
to other, even conceptually simpler, distributions. For instance, even in the
case of the multivariate uniform distribution, which is conceptually simpler than
an anisotropic Gaussian, the analytical evaluation of the loss introduced by an
input random vector, i.e., the intersection between the n-ball and a hyperplane,
introduces extra complexity, which also makes the differentiation more strenuous
than the Gaussian ellipsoidal case (where tails decay exponentially).

• Finally, compared to other distributions that are inherently isotropic over the in-
put dimensions, or rigid over input dimensions, a Gaussian distribution provides

used training sample so as not to cause confusion between the term sample, which is typically used for
a datum drawn from a distribution, and the training entity of our algorithm, which is itself a Gaussian
distribution.

5



1.2. Problem definition – Challenges and Assumptions

flexibility in modeling anisotropic uncertainty for arbitrary number of input di-
mensions. That is, one can model the anisotropic uncertainty solely on a set
of input dimensions of interest. That is, one can introduce constraints on the
covariance matrices, such as them being diagonal, block diagonal, or multiples
of the identity matrix. In this way one can model different types of uncertainty.

For the above reasons, we chose to adopt the multi-variate Gaussian distribution as
the most appropriate candidate for modeling input uncertainty.

The challenges that arose during the development of our learning algorithms, along
with the solutions that we proposed for addressing them, are described below. First
of all, the introduction of input uncertainty in the loss function of the classifier should
be done analytically, in contrast to other relevant methods that address the problem
by generating a large number of uniformly distributed points that lie in each input
Gaussian’s ellipsoid, and computing the ratio of the number of points on the wrong
side of the hyperplane to the total number of generated points. Instead, we addressed
the problem by analytically computing the loss introduced by each input Gaussian
(Appendix A), arriving at a closed-form loss along with its derivatives with respect to
the optimization parameters. In addition, we proved (in Appendix B) that the above
loss is convex with respect to the optimization parameters and, thus, we were allowed
to obtain the global optimal solution using an appropriate iterative gradient descent
algorithm that is linear with respect to the number training data. For this purpose,
we modified and used a popular SGD algorithm, namely the Pegasos algorithm [96].

Next, an important challenge that is inherent in our method is the modeling or
the estimation of input uncertainty, since this amount of information is considered as
prior knowledge; that is, it is data-driven and is not computed or estimated during
training. In general, modeling of the uncertainty is a domain- and/or dataset-specific
problem, and in this respect, similarly to all of the other methods in the literature that
model/use uncertainties, we do not offer a definitive answer on how this can or should
be done on any existing dataset. We addressed this important issue by providing a
number of methodologies that mainly depend on the specific problems, but can also
be applied in similar problems/datasets.

Extending the proposed linear classifier so as to result in non-linear boundaries was
a special challenging task that needed to be addressed. This is because the well-
known kernel trick [105], which is used –among other cases– in the kernelization of
the standard SVM cannot be applied directly. In the classical SVM formulation (in
its dual form), the training data appear only through inner products and, thus, the
application of the kernel trick is straight-forward. That is, a so-called kernel function is
first used in order to map input data in a higher-, even infinite-dimensional (implicit)
feature space, where one does not need to explicitly compute the aforementioned inner
products, but only to evaluate the kernel function on the various combinations of the
input data. In our case, where we work in the primal form, in the general case of
anisotropic covariance matrices, training data do not appear in the objective function
only through inner products, and thus the kernel trick could be applied directly. To
resolve this limitation, we needed to assume only isotropic input covariance matrices.
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1.3. Contributions

Then, we proceeded to the kernel version of our classifier by appealing to a semi-
parametric version [93] of the representer theorem [57].

Finally, we attempt to investigate the application of the idea of exploiting input
uncertainty under the Deep Convolutional Neural Network (DCNN) framework. The
renaissance of convolutional neural networks (CNNs) has given rise to sophisticated
architectures for Computer Vision problems producing state-of-the-art results com-
pared to other learning paradigms. Most of the existing CNN architectures for image
classification use a set of structured convolution layers, a pooling operation before
the classification layer, and they typically employ the cross-entropy loss function for
measuring the miss-classification cost. While pooling has proven to be extremely ef-
fective by reducing input dimensionality and providing feature maps robust to spatial
transformations, it also results to loss of information as it summarizes the responses
with the pooling area by their mean (or max value).

1.3 Contributions

In this section we list the main contributions of the thesis. In the first main chapter
(Chapter 3), we develop the linear variant of the proposed classifier, i.e., the linear
SVM with Gaussian Sample Uncertainty (LSVM-GSU). The main contributions of
that chapter can be listed as follows:

• We generalize the standard soft-margin linear SVM algorithm so as input train-
ing data are given as multi-variate Gaussian distributions (in the form of mean
vector-covariance matrix pairs). Each input Gaussian distribution corresponds
to an annotated training entity. We arrive at our loss function, which is based
on the expectation of the hinge loss, and its derivatives in closed forms.

• We prove that the aforementioned loss function is convex with respect to the
optimization parameters. Thus, the global optimal solution, i.e., the optimal
separating hyperplane is guaranteed to be obtained using the appropriate op-
timization algorithm. For this, we modify and use a popular SGD algorithm,
namely the Pegasos algorithm [96] for solving our optimization problem. This
allows for great scalability (its complexity is linear to the number of training
data).

• It is worth noting that one would arrive at the same decision border with the
classical SVM trained on a dataset containing samples drawn from the Gaussians
in question, as the number of samples tend to infinity. However, we show that
as the dimensionality of the input space increases, one needs to generate more
samples from the Gaussians in order to preserve a desired approximation of the
loss and, thus, of the optimal decision function. We also show that for spaces of
high dimensionality the number of samples needed can be prohibitively high. In
addition, our method degenerates to a classical SVM in the case that all of the
Gaussians are isotropic with a variance that tends to zero.
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• We propose a linear subspace learning approach in order to address the situation
where most of the mass of the training Gaussians lie in a low dimensional mani-
fold that can be different for each Gaussian and subsequently solve the problem
in lower-dimensional spaces.

• An important contribution of our basic linear learning algorithm is that, in con-
trast to previous works that model uncertainty in the SVM framework either by
considering isotropic noise or by using expensive sampling schemes to approxim-
ate their loss functions, our formulation allows for full covariance matrices that
can be different for each example. This allows dealing, among others, with cases
where the uncertainty of only a few examples, and/or the uncertainty along only
a few of their dimensions, is known or modeled. In the experimental results
section we show several real-world problems in which such modeling is benefi-
cial. More specifically, we show cases, in which the variances along (some) of the
dimensions are part of the dataset – this includes medical data where both the
means and the variances of several measurements are reported, and large scale
video datasets, where the means and the variances of some of the features that
are extracted at several time instances in the video in question are reported. We
then show a case in which means and variances are a by-product of the feature
extraction method, namely the Welch method for extracting periodograms from
temporal EEG data. And finally, we show a case in which, for an image dataset
(MNIST) we model the distribution of images under small geometric transforms
as Gaussians, using a first-order Taylor approximation to arrive in an analytic
form. In particular, the Taylor expansion method (Appendix B) that is behind
the modeling used in Sect. 3.5.2, has been used to model the propagation of
uncertainties due to a feature extraction process in other domains; for instance,
in [26] (Sect. II.B) this is used to model as Gaussian the uncertainty in the
estimation of illumination invariant image derivatives.

In the following chapter (Chapter 4), we proceed to the kernelization of our linear
classifier, using the popular RBF kernel function. In this chapter, we assume isotropic
input uncertainty, i.e., we assume that each training example is described by a (dis-
tinct) multi-variate Gaussian distribution with a covariance matrix that is a multiple
of the identity matrix, and we arrive at Kernel SVM with Isotropic Gaussian Sample
Uncertainty (KSVM-iGSU). The main contributions of that chapter can be listed as
follows:

• We recast the optimization problem of the linear SVM-GSU into a variational
calculus problem; that is, the original optimization problem is rewritten as a
problem of minimizing an equivalent (objective) functional, and, thus, instead
of looking for a separating hyperplane (i.e., its parameters) in the original input
feature space, we look for a minimizer function that lives in a richer, higher-
dimensional (in our case infinite-dimensional) space. We prove that the above
functional is such that its minimizer can be represented as a finite linear combina-
tion of kernel products (in our case using the RBF kernel function). Additionally,

8



1.3. Contributions

due to the convexity of our objective functional, we can efficiently solve the prob-
lem using an appropriate SGD algorithm (similarly to the linear case), i.e., the
Pegasos algorithm [96].

• We combine KSVM-iGSU with the previously proposed Relevance Degree SVM
(RD-SVM) [108, 107]. In RD-SVM each training example is associated with a
confidence value (called relevance degree) indicating the degree of relevance of
the respective training example with the class that it is related. This is essentially
a method that handles uncertainty in the truth labels, and combined with the
proposed KSVM-iGSU provide a methodology for handling uncertainty both in
label and feature representation.

• We apply the above kernel classifiers in two challenging multimedia understand-
ing problems, namely the video event detection and aesthetic quality video as-
sessment. Especially in the visual understanding domain, the majority of the
learning methods employed in video understanding and indexing applications do
not address the uncertainty in the training data explicitly. That is, firstly, each
training example is assumed to be described by a fixed position in some vector
space (feature representation). However, such an approach does not account for
the fact that the underlying process of extracting the feature representation may
be imperfect or noisy, hence introducing some degree of uncertainty to the gen-
erated features. Secondly, each training example is typically annotated with a
binary ground-truth label. This is essentially the result of a quantization process,
where different pieces of data that may be perfect or not-so-perfect examples of a
class have to be assigned a binary label, and this inevitably introduces some form
of quantization error. For instance, in some cases the annotation process could
naturally lead to three types of labels, i.e., positive, negative, and “near-miss” or
“related”, the latter expressing the fact that the example is closely related with
the positive class but does not meet the exact requirements for being character-
ized as a positive instance; yet, for training a binary classifier, these annotations
need to be subsequently quantized to just two classes: positive and negative.
Similarly, in many cases the ground-truth annotation of training data is car-
ried out by a number of experts who decide on the label of each given example,
and a final binary assignment of each sample to the positive or negative class
is made by averaging and binarizing, or aggregating in another similar way, the
responses of the different annotators. In both the above examples, the ground
truth annotation process endows every binary annotation with some level of con-
fidence on it, but this is typically ignored in the subsequent training of a binary
classifier. In thesis, we address the above using the proposed KSVM-iGSU and
RD-KSVM-iGSU.

Finally, in the last main chapter of this thesis (Chapter 5), we apply the idea of
introducing and exploiting input uncertainty in the DCNN framework. For this pur-
pose we choose a state-of-the-art architecture, namely the Wide Residual Network
(WRN) [124], which has been proven to be very successful in image classification tasks.
More specifically, we try to address this by a) modifying the last pooling layer of a
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CNN so as to compute both the first- and second-order statistics of its output, and b)
modifying a maximum-margin loss function (i.e., the squared hinge loss) so as to take
the aforementioned uncertainty into account during training. The proposed modifica-
tions can be applied to all networks that have pooling and classification layers at the
last stages (i.e., most state of the art methods, including AlexNet, VGG, Inception,
ResNet, and WRN) – the resulting network has practically the same training/testing
time complexity, and no additional parameters at test time. We apply the proposed
method in a state-of-the-art CNN architecture, i.e., the Wide Residual Network and
propose an efficient approach for training the proposed maximum-margin classification
layer. Experimental results show that using the maximum-margin hinge loss function
improves classification results in comparison to soft-max layer and that the proposed
methods for exploiting uncertainty increases further the classification accuracy.

1.4 Outline of the thesis

The rest of the thesis is structured as follows. We start by discussing related works
in Chapter 2. We follow by introducing the linear variant of the proposed learning
algorithm, i.e., the Linear SVM with Gaussian Sample Uncertainty (LSVM-GSU) in
Chapter 3, where we also present the experimental evaluation of the proposed clas-
sifier on synthetic data and five publicly available and popular datasets; namely, the
MNIST, WDBC, DEAP, TV News Channel Commercial Detection, and TRECVID
MED datasets. Chapter 4 deals with extending the proposed linear classifier in its
RBF-kernelized version, i.e., the kernel SVM with Isotropic Gaussian Sample Un-
certainty (KSVM-iGSU) Moreover, in this chapter we combine the proposed kernel
classifier (KSVM-iGSU) with the previously proposed Relevance Degree SVM (RD-
SVM) for handling training examples with variable reliability in their truth labels. We
evaluate the proposed kernel classifiers in the problems of video event detection and
video aesthetic quality assessment. In Chapter 5, we provide a preliminary study on
the extension of the ideas of exploiting input data uncertainty in the so-called deep
learning (DL) framework; more specifically in the Deep Convolutional Neural Networks
(DCNNs) for the problem of image classification. Finally, we draw our conclusions in
Chapter 6.
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Chapter 2

Related work
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In this chapter we briefly review the works that are closely related to the devel-
opments of this thesis. More specifically, we will first discuss works that study the
problem of supervised learning under uncertainty. That is, uncertainty either in the
training labels, or in the feature representation. However, we will mostly focus on the
latter category, since this is the case where this thesis falls. Then, since this thesis,
among others, also addresses two challenging visual understanding problems, i.e., video
event detection and video aesthetic quality assessment, we will briefly discuss the rel-
evant literature. Finally, we will briefly review the literature of deep convolutional
neural networks (DCNNs) for image classification, since we will attempt to apply the
idea of introducing and exploiting input uncertainty in the training of a DCNN for
image classification.

2.1 Learning under uncertainty

Uncertainty is ubiquitous in almost all fields of scientific studies [66]. Exploiting un-
certainty in learning has been studied in many different aspects [24, 7, 54]. More
specifically, the research community has studied learning problems where uncertainty
is present either in the labels or in the representation of the training data.

Jaakkola and Haussler [48] introduced the Fisher kernel (named in honour of Sir
Ronald Fisher), in an attempt to create a generic mechanism for incorporating gen-
erative probability models into discriminative classifiers such as SVMs. The Fisher
kernel combines the benefits of generative and discriminative approaches to pattern
classification by deriving a kernel from a generative model of the data. In brief, it
consists in characterizing a sample by its deviation from the generative model. The
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deviation is measured by computing the gradient of the sample log-likelihood with
respect to the model parameters. This leads to a vectorial representation which we
call Fisher Vector (FV). In the image classification case, the samples correspond to the
local patch descriptors and we choose as generative model a Gaussian Mixture Model
(GMM) which can be understood as a “probabilistic visual vocabulary”.

Moreover, learning distance or similarity metrics has been an emerging field in ma-
chine learning, with various applications in computer vision. The goal of metric learn-
ing algorithms is to take advantage of prior information in form of labels over simpler
though more general similarity measures. A particular class of distance functions that
exhibits good generalization performance for many machine learning problems is Ma-
halanobis metric learning. The goal is to find a global, linear transformation of the
feature space such that relevant dimensions are emphasized while irrelevant ones are
discarded. As there exists a bijection between the set of Mahalanobis metrics and
the set of multivariate Gaussians one can think of it in terms of the corresponding
covariance matrix. The metric adapts to the desired geometry by arbitrary linear
rotations and scalings. After projection the plain Euclidean distance is measured.
In [59], Koestinger et al. proposed KISS (Keep It Simple and Straightforward) metric
learning method. The authors proposed to learn a distance metric from equivalence
constraints. Based on a statistical inference perspective they provide a solution that is
very efficient to obtain and effective in terms of generalization performance. For this
purpose, they considered two independent generation processes for observed common-
alities of similar and dissimilar pairs. The dissimilarity is defined by the plausibility
of belonging either to one or the other.

In [71], Liu and Tao studied a classification problem in which sample labels are
randomly corrupted. In this scenario, there is an unobservable sample with noise-free
labels. However, before being observed, the true labels are independently flipped with
a probability p ∈ [0, 0.5), and the random label noise can be class-conditional. Tzelepis
et al. [108, 107] proposed an SVM extension where each training example is assigned a
relevance degree in (0, 1] expressing the confidence that the respective example belongs
to the given class. Li and Sethi [65] proposed an active learning approach based on
identifying and annotating uncertain samples. Their approach estimates the uncer-
tainty value for each input sample according to its output score from a classifier and
selects only samples with uncertainty value above a user-defined threshold. In [92], the
authors used weights to quantify the confidence of automatic training label assignment
to images from clicks and showed that using these weights with Fuzzy SVM and Power
SVM [126] can lead to significant improvements in retrieval effectiveness compared to
the standard SVM. Finally, the problem of confidence-weighted learning is addressed
in [21, 29, 46], where uncertainty in the weights of a linear classifier (under online
learning conditions) is taken into consideration.

Assuming uncertainty in data representation has also drawn the attention of the
research community in recent years. Different types of robust SVMs have been pro-
posed in several recent works. Bi and Zhang [12] considered a statistical formulation
where the input noise is modeled as a hidden mixture component, but in this way the
“iid” assumption for the training data is violated. In that work, the uncertainty is

12



2.1. Learning under uncertainty

modeled isotropically. Second order cone programming (SOCP) [2] methods have also
been employed in numerous works to handle missing and uncertain data. In addition,
Robust Optimization techniques [6, 9] have been proposed for optimization problems
where the data is not specified exactly, but it is known to belong to a given uncertainty
set U , yet the optimization constraints must hold for all possible values of the data
from U .

Lanckriet et al. [63] considered a binary classification problem where the mean and
covariance matrix of each class are assumed to be known. Then, a minimax problem
is formulated such that the worst-case (maximum) probability of misclassification of
future data points is minimized. That is, under all possible choices of class-conditional
densities with a given mean and covariance matrix, the worst-case probability of mis-
classification of new data is minimized.

Shivaswamy et al. [97], who extended Bhattacharyya et al. [11], also adopted a
SOCP formulation and used generalized Chebyshev inequalities to design robust clas-
sifiers dealing with uncertain observations. In their work uncertainty arises in ellips-
oidal form, as follows from the multivariate Chebyshev inequality. This formulation
achieves robustness by requiring that the ellipsoid of every uncertain data point should
lie in the correct halfspace. The expected error of misclassifying a sample is obtained
by computing the volume of the ellipsoid that lies on the wrong side of the hyperplane.
However, this quantity is not computed analytically; instead, a large number of uni-
formly distributed points are generated in the ellipsoid, and the ratio of the number
of points on the wrong side of the hyperplane to the total number of generated points
is computed.

Several works [11, 97, 63] robustified regularized classification using box-type uncer-
tainty. By contrast, Xu et al. [119, 120] considered the robust classification problem
for a class of non-box-typed uncertainty sets; that is, they considered a setup where
the joint uncertainty is the Cartesian product of uncertainty in each input. This leads
to penalty terms on each constraint of the resulting formulation. Furthermore, Xu et
al. gave evidence on the equivalence between the standard regularized SVM and this
robust optimization formulation, establishing robustness as the reason why regularized
SVMs generalize well.

In [87], motivated by GEPSVM [77], Qi et al. robustified a twin support vector ma-
chine (TWSVM) [56]. Robust TWSVM [87] deals with data affected by measurement
noise using a SOCP formulation. In their work, the input data is contaminated with
isotropic noise (i.e., spherical disturbances centred at the training examples), and thus
cannot model real-world uncertainty, which is typically described by more complex
noise patterns. Power SVM [126] uses a spherical uncertainty measure for each train-
ing example. In this formulation, each example is represented by a spherical region in
the feature space, rather than a point. If any point of this region is classified correctly,
then the corresponding loss introduced is zero.
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2.2 Exploiting uncertainty in multimedia understanding
problems

High-level video event detection is concerned with determining whether a certain video
depicts a given event or not [129, 30, 70]. Typically, a high-level (or complex) event
is defined as an interaction among humans, or between humans and physical objects.
Some typical examples of complex events are those provided in the Multimedia Event
Detection (MED) task of the TRECVID benchmarking activity [84]. For instance,
indicative complex events defined in MED 2014 include “Attempting a bike trick”,
“Cleaning an appliance”, or “Beekeeping”, to name a few. There are many works
dealing with event detection in video (e.g., [129, 30, 70, 18, 28, 35, 42, 41, 51, 52, 67,
39, 79, 13, 100]), several of them being developed in the context of the TRECVID MED
task. Despite the attention that video event detection has received, though, there is
only a limited number of studies that have explicitly examined the problem of learning
event detectors from very few (e.g. 10) positive training examples [41],[108], and
developed methods for addressing this exact problem. In [41], for instance, Habibian
et al. present VideoStory, a video representation scheme for learning event detectors
from a few training examples by exploiting freely available Web videos together with
their textual descriptions. Several other works (e.g. [13])) treat the few-example
problem in the same way that they deal with event detection when more examples are
available (e.g. training standard kernel SVMs). Learning video event detectors from
a few examples is a problem that is simulated in the TRECVID MED task [84] by the
10Ex subtask, where only 10 positive samples are available for training.

In the case of learning from very few positive samples, it is of high interest to
further exploit video samples that do not exactly meet the requirements for being
characterized as true positive examples of an event, but nevertheless are closely related
to an event class and can be seen as “related” examples of it. This is simulated in the
TRECVID MED task [84] by the “near-miss” video examples provided for each target
event class. Except for [108], none of the above works takes full advantage of these
related videos for learning from few positive samples; instead, the “related” samples
are either excluded from the training procedure [39],[13], or they are mistreated as
true positive or true negative instances [28]. In contrast, in [108] the authors exploit
related samples by handling them as weighted positive or negative ones, applying an
automatic weighting technique during the training stage. To this end, a relevance
degree in (0, 1] is automatically assigned to all the related samples, indicating the
degree of relevance of these observations with the class they are related to. It was
shown that this weighting resulted in learning more accurate event detectors.

Video aesthetic quality assessment is about the automatic assessment of a given
video’s aesthetic value and the corresponding ranking of the videos within a dataset,
such that videos of higher aesthetic value can be ranked higher. For this problem,
only a few methods have been proposed so far. The first methods in this domain tried
to estimate the videos’ aesthetic value by extracting mostly low-level features from
video frames. For instance, in [81], a set of low-level features, such as sharpness, col-
orfulness, luminance and blockiness quality, and a few motion features, are extracted.
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Then, a SVM using the Radial Basis Function (RBF) kernel is trained for assessing
the aesthetic quality of videos. In [76], the authors treat the video as a sequence of
still images to from which they extract a set of visual-based features together with two
additional motion-based features, i.e., the length of subject region motion and motion
stability, so as to distinguish professional videos from amateurish ones. They also tried
different learning approaches, such as kernel SVM, Bayesian classification, and Gentle
AdaBoost. A more elaborate method that introduces a set of features ranging from
low- and mid-level attributes to high-level style descriptors, combined with a kernel
SVM learning stage, is presented in [114]. In [121], an RBF kernel SVM is applied to
a set of “semantically independent” features, such as camera motion and stabilization,
and frame composition, along with a set of “semantically dependent” features, such
as motion direction entropy, color saturation, and lightness. Semantic dependency of
a feature, according to [121], refers to whether this feature relates or not to the se-
mantic content of each frame. Moreover, in [10], low- and high-level visual and motion
features are extracted at cell-, frame-, and shot-level and a Low Rank Late Fusion
(LRLF) scheme is used for fusing the scores produced by a set of SVMs, each of which
was trained with one specific aesthetic feature. More motion features are introduced
in [122], where the authors evaluate the effectiveness of motion space, motion direction
entropy and hand shaking (i.e., camera stabilization) on VAQ assessment tasks. They
also use naive Bayesian, SVM, and AdaBoost classification techniques. Finally, in [82],
a variety of aesthetic-related features for video are designed, such as visual continuity
and shot length, and their performance in retrieving professional videos in conjunction
with a kernel SVM classifier is examined.

2.3 Deep Convolutional Neural Networks

During the last years, Deep Convolutional Neural Networks (DCNNs) have achieved
state-of-the-art performance on various computer vision tasks, such as image classific-
ation [44, 124, 128]. For this purpose, many network architectures have been proposed
and used successfully for the problem of image classification. Two of the most widely
used ones include the Residual Network (ResNet) and the Wide Residual Network
(WRN). He et al. [44] proposed ResNets, which have shortcut connections parallel to
their normal convolutional layers, as a solution to the problems of vanishing/exploding
gradient and hard optimization when increasing the model’s parameters (i.e. adding
more layers). Zagoruyko and Komodakis [124] showed that wide residual networks
(named WRN) could outperform Deep ResNets with hundreds of layers, shifting the
interest of the community to increasing the number of each layer’s filters.

Besides the various network architectures that have been proposed in recent years,
the research community has also directed its efforts in the loss function used in a
CNN [5, 8, 104]. Most of these works are motivated by a specific problem domain and
are inspired by similar losses that had been proposed for other learning algorithms
(e.g., the SVM classifier). Liu et al. [73] proposed a generalized large-margin softmax
(L-Softmax) loss which explicitly encourages intra-class compactness and inter-class
separability between learned features. Furthermore, in [86], the authors proposed the
contrastive-center loss, which learns a center for each class. In [113] the authors pro-
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posed Large Margin Cosine Loss (LMCL) for the face recognition problem, to guide
the deep CNNs to learn highly discriminative features by extending the cosine margin
between decision boundaries. Wen et al. [113] proposed the center loss function, which
combined with the softmax loss to jointly supervise the learning of CNNs improved the
discriminative power of the deeply learned features for robust face recognition. In [72],
the authors presented a deep hypersphere embedding approach for face recognition.
For this purpose, they proposed the angular softmax (A-Softmax) loss for CNNs to
learn discriminative face features (SphereFace) with angular margin. A-Softmax loss
renders nice geometric interpretation by constraining learned features to be discrimin-
ative on a hypersphere manifold, which intrinsically matches the prior that faces also
lie on a non-linear manifold. Finally, in [116], Wen et al. proposed the center loss func-
tion for the problem of face recognition. More specifically, the center simultaneously
learns a center for deep features of each class and penalizes the distances between
the deep features and their corresponding class centers. With the joint supervision of
softmax loss and center loss, the authors achieve to robustify CNNs so as to obtain
the deep features with the two key learning objectives; namely, inter-class dispension
and intra-class compactness as much as possible.

While there has been significant research in the design of the architecture and of
the filters in the convolutional layers, there is less work on the pooling layers. Xie et
al. [117] considered the neurons in the hidden layer as neural words, and constructed
a set of geometric neural phrases on top of them, borrowing the idea from the Bag-
of-Visual-Words (BoVW) model. Subsequently, they proposed the Geometric Neural
Phrase Pooling (GNPP) algorithm in order to efficiently encode these neural phrases.
GNPP acts as a new type of hidden layer, which is inserted into a CNN between a
convolution and a pooling layer, that punishes isolated neuron responses after convo-
lution.

2.4 Conclusions

In this chapter we have mentioned and briefly discussed some of the most important
works concerning the problem of learning under uncertainty. We began by discussing
works that address the problem of learning with uncertain training labels, and we
focused on works that assume uncertainty in input data representation. We followed
by discussing works on two challenging visual understanding problems, namely video
event detection and video aesthetic quality assessment, and works that use DCNNs
for image classification.

The main proposed classifiers of this thesis, i.e., the linear SVM-GSU and kernel
SVM-iGSU, in contrast to [12], do not violate the “iid” assumption for the training in-
put data. Especially for the basic linear variant, we can model the uncertainty of each
input training example using an arbitrary covariance matrix; that is, it allows aniso-
tropic modeling of the uncertainty analytically in contrast to [97, 87, 126]. Moreover,
we define a cost function that is convex and whose derivatives with respect to the
optimization parameters can be expressed in closed form. Therefore, we can find their
global optimal using an iterative gradient descent algorithm whose complexity is linear
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with respect to the number of training data. For this purpose we used and modified
the well-studied Pegasos algorithm [96]. Finally, in LSVM-GSU, we applied a linear
subspace learning approach in order to address the situation where most of the mass
of the Gaussians lies in a low dimensional manifold that can be different for each
Gaussian, and subsequently solve the problem in lower-dimensional spaces. Learning
in subspaces is widely used in various statistical learning problems [23, 74, 75].

Concerning the problem of video event detection, it is clear that regardless of whether
the works discussed above address the problem of learning from a few positive examples
or assume that an abundance of such examples is available, they all treat the training
video representations as noise-free observations in the SVM input space. This is also
the case for the problem of video aesthetic quality assessment. To the best of our
knowledge, there has been no study dealing with uncertainty in the above problems,
except for the published works that relate to this thesis.

Finally, concerning the extension of our method into the DCNN framework, al-
though learning under uncertainty has been extensively studied in other learning
paradigms [110, 87, 126, 65], the deep learning community has mostly directed its
efforts into studying uncertainty in the output predictions of a network [15, 40, 4, 64],
in an attempt to provide a degree of confidence of those predictions. In a similar spirit,
Dorta et al. [27] proposed a network in order to predict a structured uncertainty dis-
tribution for a reconstructed image. More specifically, the authors proposed a model
that learns to predict a full Gaussian covariance matrix for each reconstruction, which
permits efficient sampling and likelihood evaluation. Finally, in [32] the authors study
the a model’s uncertainty due to the use of dropout. That is, they built a probabil-
istic interpretation of dropout which allowed for obtaining model uncertainty out of
existing deep learning models.

Although our work shares some similarity with studies that adopt a large-margin loss
function (e.g., [104, 113, 72]), it is different from them since it proposes a maximum-
margin loss function and an efficient learning approach that allows its application in
state-of-the-art architectures, like the WRN, in contrast to [104], for instance, that is
applicable mostly in swallow architectures. Moreover, the maximum-margin loss that
we present is more general than other large-margin losses that are mainly motivated
by and applied to a specific problem domain (i.e., face recognition), usually introdu-
cing limiting constraints (as in [72]). Finally, the proposed method for exploiting the
uncertainty that rises when using a pooling operation before the classification stage,
i.e., the uncertainty in the position of the network classifier’s training data, is different
from – but also complementary to – works that study uncertainty at the output of a
CNN (e.g., [40, 27, 32]).
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In this chapter, we present the linear version of our classifier, for which we consider
that training examples are given multivariate Gaussian distributions; that is, each
training example is given as a pair of a mean vector and a covariance matrix (since a
Gaussian distribution is uniquely defined by its first two moments). Moreover, each
training example has a different covariance matrix expressing the uncertainty around
its mean. An illustration is given in Fig. 3.1, where the shaded regions are bounded
by iso-density loci of the Gaussians, and the means of the Gaussians for examples of
the positive and negative classes are located at × and ◦ respectively. A classical SVM
formulation would consider only the means of the Gaussians as training examples and,
by optimizing the soft margin using the hinge loss and a regularization term, would
arrive at the separating hyperplane depicted by the dashed line. In our formulation, we
optimize for the soft margin using the same regularization but the expected value of the
hinge loss, where the expectation is taken under the given Gaussians. By doing so, we
take into consideration the various uncertainties and arrive at a drastically different
decision border, depicted by the solid line in Fig. 3.1. It is worth noting that one
would arrive at the same decision border with the classical SVM trained on a dataset
containing samples drawn from the Gaussians in question, as the number of samples
tend to infinity. In addition, our method degenerates to a classical SVM in the case
that all of the Gaussians are isotropic with a variance that tends to zero.
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Figure 3.1: Linear SVM with Gaussian Sample Uncertainty (LSVM-GSU). The solid
line depicts the decision boundary of the proposed algorithm, and the dashed line
depicts the decision boundary of the standard linear SVM (LSVM).

In the rest of this chapter, we will develop a new classification algorithm whose
training set is not just a set of vectors xi in some multi-dimensional space, but rather
a set of multivariate Gaussian distributions; that is, each training example consists
of a mean vector xi ∈ D and a covariance matrix Σi ∈ Sn++; the latter expresses
the uncertainty around the corresponding mean1. In Sect. 3.1, we first briefly review
the linear SVM and then describe in detail the proposed linear SVM with Gaussian
Sample Uncertainty (LSVM-GSU). In Sect. 3.2 we motivate and describe a formulation
that allows learning in linear subspaces. In the general case we arrive at different
subspaces for the different Gaussians – this allows, for example, dealing with covariance
matrices that are of low rank. In Sect. 3.3 we discuss how the proposed algorithm
relates to standard SVM when the latter is fed with samples drawn from the input
Gaussians. In Sect. 3.4 we describe a SGD algorithm for efficiently solving the SVM-
GSU optimization problem. Finally, in Sect. 3.5, we provide the experimental results
of the application of SVM-GSU to synthetic data and to five publicly available and
popular datasets. In the same section, we provide comparisons with the standard SVM
and other state of the art methods.

3.1 Linear SVM with Gaussian Sample Uncertainty
(LSVM-GSU)

We begin by briefly describing the standard SVM algorithm. Let us consider the
supervised learning framework and denote the training set with X =

{
(xi, yi) : xi ∈

Rn, yi ∈ {±1}, i = 1, . . . , `
}

, where xi is a training example and yi is the corresponding
class label. Then, the standard linear SVM learns a hyperplane H : w>x + b = 0 that

1D is typically a subset of the n-dimensional Euclidean space of column vectors, while Sn
++ denotes

the convex cone of all symmetric positive definite n× n matrices with entries in D ⊆ Rn.
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(a) (b) (c)

Figure 3.2: Illustrative example of calculating (a) the standard linear SVM’s hinge
loss, and (b) the proposed linear SVM-GSU’s loss. In (c), the hinge loss is compared
with the proposed linear SVM-GSU’s loss for various quantities of uncertainty.

minimizes with respect to w, b the following objective function:

λ

2
‖w‖2 +

1

`

∑̀
i=1

max
(

0, 1− yi(w>xi + b)
)
, (3.1)

where h(t) = max(0, 1 − t) is the “hinge” loss function [43]. An illustrative example
of the hinge loss calculation is given in Fig. 3.2, where in Fig. 3.2a the red dashed line
indicates the loss introduced by the misclassified example (xi, yi) and in Fig. 3.2c the
hinge loss is shown in the black bold line.

In this work we assume that, instead of the i-th training example in the form of
a vector, we are given a multivariate Gaussian distribution with mean vector xi and
covariance matrix Σi. One could think of this as that the covariance matrix, Σi,
models the uncertainty about the position of training samples around xi. Formally,
our training set is a set of ` annotated Gaussian distributions, i.e.,

X ′ =
{

(xi,Σi, yi) : xi ∈ Rn, Σi ∈ Sn++, yi ∈ {±1}, i = 1, . . . , `
}
,

where xi ∈ Rn and Σi ∈ Sn++ are respectively the mean vector and the covariance
matrix of the i-th example, and yi is the corresponding label. Then, we define `
random variables, Xi, each of which we assume that follows the corresponding n-
dimensional Gaussian distributionN (xi,Σi) and define an optimization problem where
the misclassification cost for the i-th example is the expected value of the hinge loss for
the corresponding Gaussian. Formally, the optimization problem, in its unconstrained
primal form, is the minimization with respect to w, b of

λ

2
‖w‖2 +

1

`

∑̀
i=1

∫
Rn

max
(
0, 1− yi(w>x + b)

)
fXi(x) dx, (3.2)

where

fXi(x) =
1

(2π)
n
2 |Σi|

1
2

exp

(
−1

2
(x− xi)

>Σ−1
i (x− xi)

)
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3.1. Linear SVM with Gaussian Sample Uncertainty (LSVM-GSU)

is the probability density function (PDF) of the i-th Gaussian distribution. The above
objective function J : Rn × R→ R can be written as

J (w, b) =
λ

2
‖w‖2 +

1

`

∑̀
i=1

L
(
w, b; (xi,Σi, yi)

)
, (3.3)

where, as stated above, the loss function L for the i-th example (i.e. the i-th Gaussian)
is defined as the expected value of the hinge loss for the Gaussian in question. That
is,

L(w, b)=

∫
Rn

max
(
0, 1− yi(w>x + b)

)
fXi(x) dx. (3.4)

We proceed to express the objective function (3.3) and its derivatives in closed form.
This will allow us to solve the corresponding optimization problem using an efficient
SGD approach. More specifically, the loss can be expressed as

L(w, b)=

∫
Ωi

[
1− yi(w>x + b)

]
fXi(x) dx, (3.5)

where Ωi denotes the halfspace of Rn that is defined by the hyperplane H′ : yi(w>x +
b) = 1 as Ωi = {x ∈ Rn : yi(w

>x + b) ≤ 1}, and is the halfspace to which misclassified
samples lie. This is illustrated in Fig. 3.2b, where a misclassified example (xi,Σi, yi)
introduces a loss indicated by the shaded region. For the calculation of this loss,
all points that belong to the halfspace Ωi = {x ∈ Rn : yi(w

>x + b) ≤ 1}, i.e., the
points x′ ∈ Ωi, contribute to it by a quantity of [1 − yi(w>x′ + b)]fXi(x

′). For one
such x′ denoted by a red circle in Fig. 3.2b, the first part of the above product,
1− yi(w>x′+ b), corresponds to the typical hinge loss of SVM, shown as a red dashed
line in this example. The total loss introduced by the misclassified example (xi,Σi, yi)
is obtained by integrating all these quantities over the halfspace Ωi.

Using Theorem 1 proved in Appendix A, for the halfspace

Ω+
i =

{
x ∈ Rn : yi

(
w>x + b

)
≤ 1
}
,

the above integral is evaluated in terms of w and b as follows

L(w, b) =
dxi

2

[
erf

(
dxi

dΣi

)
+ 1

]
+

dΣi

2
√
π

exp

(
−
d2

xi

d2
Σi

)
, (3.6)

where dxi = 1 − yi
(
w>xi + b

)
, dΣi =

√
2w>Σiw, and erf : R → (−1, 1) is the error

function, defined as erf(x) = 2√
π

∫ x
0 e
−t2 dt. For a training example (x,Σ, y), Fig. 3.2c

shows the proposed loss in dashed green lines for constant values of dΣ (constant
amounts of uncertainty). We note that as dΣ → 0, SVM-GSU’s loss virtually coincides
with the SVM’s hinge loss, while it can be easily verified that, regardless of dΣ, as
dx →∞ the SVM-GSU’s loss will eventually converge to zero (as the hinge loss does).

Let us note that the covariance matrix of each training example describes the uncer-
tainty around the corresponding mean; that is, as the covariance matrix approaches
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3.1. Linear SVM with Gaussian Sample Uncertainty (LSVM-GSU)

the zero matrix, the certainty increases. At the extreme2, as Σ→ 0, the proposed loss
converges to the hinge loss function used in the standard SVM formulation [43]. This
implies that the proposed formulation is a generalization of the standard SVM; the
two classifiers are equivalent when the covariance matrices tend to the zero matrix.

In Appendix B we show that the objective function (3.3) is convex with respect
to w and b; therefore, based on Pegasos [96] SVM solver, we modify and present
a SGD algorithm in Sect. 3.4 for solving the corresponding optimization problem.
Since the objective function is convex, we can obtain the global optimal solution.
Moreover, it can be shown that the proposed loss function (3.4) enjoys the consistency
property [89, 125], i.e., it leads to consistent results with the 0 − 1 loss given the
presence of infinite data. By differentiating J with respect to w and b, we obtain,
respectively,

∂J
∂w

= λw +
1

`

∑̀
i=1

[
exp

(
−d2

xi/d2
Σi

)
√
πdΣi

Σiw −
1

2

(
erf

(
dxi

dΣi

)
+ 1

)
xi

]
, (3.7)

and

∂J
∂b

= −1

`

∑̀
i=1

[
erf

(
dxi

dΣi

)
+ 1

]
. (3.8)

Despite the complex appearance of the loss function and its derivatives, their com-
putation essentially requires the calculation of the inner product w>xi (which is the
same as in standard SVM), plus that of the quadratic form w>Σiw, which requires
n(n+1)

2 multiplications, since Σi is symmetric. The latter, in the case of diagonal covari-
ance matrices, is equivalent to the computation of an inner product, i.e., of complexity
O(n). Moreover, each one of w>xi and w>Σiw needs to be computed just once for
calculating the loss function and its derivatives for a given w. It is worth noting that,
in practice, as shown in Sect. 3.5, in real-world problems uncertainty usually rises in
diagonal form. In such cases, the proposed algorithm is quite efficient and exhibits
very similar complexity to the standard linear SVM (less than 10% slower).

Once the optimal values of the parameters w and b are learned, an unseen testing
datum, xt, can be classified to one of the two classes according to the sign of the
(signed) distance between xt and the separating hyperplane. That is, the predicted
label of xt is computed as yt = sgn(dt), where dt = (w>xt+b)/‖w‖. The posterior class
probability, i.e, a probabilistic degree of confidence that the testing sample belongs to
the class to which it has been classified, can be calculated using the well-known Platt
scaling approach [85] for fitting a sigmoid function, S(t) = 1/(1 + eσAt+σB ). This is
the same approach that is used in the standard linear SVM formulation (e.g., see [17])
for evaluating a sample’s class membership at the testing phase.

2A zero covariance matrix exists due to the well known property that the set of symmetric positive
definite matrices is a convex cone with vertex at zero.
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3.2. Solving the linear SVM-GSU in linear subspaces

3.2 Solving the linear SVM-GSU in linear subspaces

The derivations in Sect. 3.1 were made for the general case of full rank covariance
matrices that can be different for each of the examples. Clearly, one can introduce
constraints on the covariance matrices, such as them being diagonal, block diagonal,
or multiples of the identity matrix. In this way one can model different types of
uncertainty – examples will be given in the section of experimental results. However,
in some cases, especially when the dimensionality of the data is high, most of the
mass of the Gaussian distributions will lie in a few directions in the feature space
that may be different for each example and may not be aligned with the feature axes.
To address this issue we alter the formulation and work directly in the subspaces
that preserve most of the variance. More specifically, we propose a methodology for
approximating the loss function of SVM-GSU, by projecting the vectors x in (3.5)
into a linear subspace and integrating the hinge loss function in that subspace instead
of the original feature space. A separate subspace is used for each of the training
examples, that is, for each of the input Gaussians. For a given Gaussian distribution,
the projection matrix is found by performing eigenanalysis on the covariance matrix
and the dimensionality of each subspace is defined so as to preserve a certain fraction
of the total variance.

More specifically, by performing eigenanalysis on the covariance matrix of the ran-
dom vector Xi, the latter is decomposed as Σi = UiΛiU

>
i , where Λi is an n × n

diagonal matrix consisting of the eigenvalues of Σi, i.e. Λi = diag(λ1
i , . . . , λ

n
i ), so that

λ1
i ≥, . . . ,≥ λni > 0, while Ui is an n× n orthonormal matrix, whose j-th column, uji ,

is the eigenvector corresponding to the j-th eigenvalue, λji .

Let us keep the first di ≤ n eigenvectors, so that a certain fraction p ∈ (0, 1] of the

total variance is preserved, i.e.,
∑di

t=1 λ
t
i∑n

t=1 λ
t
i
> p. Then, we construct the n× di matrix U ′i

by keeping the first di columns of Ui, i.e., U ′i = [u1
i u2

i . . . udii ]. Now, by using the

projection matrix Pi = U ′i
>, we define a new random vector Zi, such that Zi = PiXi.

Then, Zi ∈ Rdi follows a multivariate Gaussian distribution (since Xi ∼ N (xi,Σi)),
i.e. Zi ∼ N (zi,Σ

z
i ), with mean vector zi = E

[
PiXi

]
= PiE

[
Xi

]
= Pixi and (diagonal)

covariance matrix Σz
i = Λzi . Let fZi denote the PDF of Zi.

We proceed to approximate the expected value of the hinge loss in the original space
(3.5), by considering the integral in the new, lower-dimensional space where most of
the variance is preserved. More specifically, x ≈ P>i z =⇒ w>x ≈ w>(P>i z) = wz

>z,
where wz = Piw. Consequently, the loss function for the i-th example, that is the
integral in the RHS of (3.5) can be approximated by the quantity∫

Ωz
i

[
1− yi

(
w>z z + b

)]
fZi(z) dz,

where Ωz
i denotes the projected halfspace on Rdi , that is, Ωz

i =
{
z ∈ Rdi : yi

(
w>z z+b

)
≤

1
}

. Using Theorem 1 (Appendix A), we can then give this approximation of the loss
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function L′ : Rdi × R→ R, in closed form as follows:

L′(w, b) =
dzi

2

[
erf

(
dzi

dΣz
i

)
+ 1

]
+

dΣz
i

2
√
π

exp

(
−
d2

zi

d2
Σz

i

)
(3.9)

where dzi = 1 − yi
(
w>z zi + b

)
, dΣz

i
=
√

2w>z Σz
iwz. Therefore, the objective function

J ′ : Rn × R→ R, given by (3.3) can be approximated as follows

J ′(w, b) =
λ

2
‖w‖2 +

1

`

∑̀
i=1

L′ (Piw, b; (zi,Σ
z
i , yi)) . (3.10)

Similarly to J , we can show that J ′ is also convex with respect to the unknown
parameters w and b of the separating hyperplane. Moreover, using the chain rule,
we can obtain the partial derivatives of J ′ with respect to w and b in closed form,
and therefore use a stochastic gradient method to arrive at the global optimum. More
specifically,

∂J ′

∂w
= λw +

1

`

∑̀
i=1

∂

∂wz
L′
(
wz, b; (zi,Σ

z
i , yi)

)∂wz

∂w
,

where ∂
∂wwz = ∂

∂wPiw = Pi. By differentiating L′ with respect to wz, and replacing
in the above, we arrive at

∂J ′

∂w
= λw +

1

`

∑̀
i=1

[
exp

(
−d2

zi/d2
Σz
i

)
√
πdΣz

i

P>i (Σz
iwz)−

1

2

(
erf

(
dzi

dΣz
i

)
+ 1

)
P>i zi

]
, (3.11)

that is a closed form equation that gives the partial derivatives of the cost with respect
to w. Similarly, the first partial derivative of J ′ with respect to b can be obtained as
follows

∂J ′

∂b
= −1

`

∑̀
i=1

[
erf

(
dzi

dΣz
i

)
+ 1

]
. (3.12)

where wz = Piw, Σz
i = PiΣiP

>
i .

To summarize, in the low-dimensional spaces Rdi , the loss function is computed as
shown in (3.9). The objective function is computed as shown in (3.10) and its first
derivatives are computed as in (3.11) and (3.12). Finally, let us note that in the above
equations, the only matrix operations involve the projection matrix Pi. Since the
covariance matrices Σz

i are diagonal, all operations that involve them boil down to
efficient vector rescaling and vector norm calculations.

3.3 To sample or not to sample?

The data term in our formulation (see (3.4)) is the expected value of the classical SVM
cost when data samples are drawn from the multi-dimensional Gaussian distributions.
It therefore follows that a standard linear SVM would arrive at the same hyperplane
when sufficiently many samples are drawn from them. How many samples are needed
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to arrive at the same hyperplane is something that cannot be computed analytically.
Nevertheless, our analysis and results indicate that this number can be prohibitively
high, especially in the case of high-dimensional spaces.

More specifically, in what follows, we show that the difference between the analytic-
ally calculated expected value of the hinge loss (3.4) and its sample mean is bounded
by a quantity that is inversely related to the dimensionality of the feature space. Let
L be the expected loss given analytically as in (3.4), and L̃N its approximation when
N samples are drawn from the Gaussians. Since the hinge loss is ‖w‖-Lipschitz3 with
respect to the Euclidean norm, we can use a result due to Tsirelson et al. [106] that
provides a concentration inequality for Lipschitz functions of Gaussian variables. By
doing so, for all r ≥ 0, we arrive at the following concentration inequality

P
(∣∣∣L − L̃N ∣∣∣ ≥ r) ≤ 2 exp

(
− r2

2‖w‖2

)
. (3.13)

That is, the tails of the error probability decay exponentially with r2. More interest-
ingly, they increase with the squared norm of ‖w‖, and therefore with the dimension-
ality of the input space, n. Consequently, as n increases, one needs to generate more
samples from the Gaussians in order to preserve a desired approximation of the loss.

This means that for spaces of high dimensionality the number of samples needed
to approximate (3.4) sufficiently well, can be prohibitively high. We experimentally
demonstrated this with a toy example in Sect. 3.5.1 (see Fig. 3.4), where we show that
in 2 dimensions we need approximately 3 orders of magnitude more samples to arrive
at the same hyperplane, while for 3 dimensions we need 4 orders of magnitude more
samples. Our experimental results on the large-scale MED dataset (Sect. 3.5.6) also
show the limitations of a sampling approach.

3.4 A stochastic gradient descent solver for SVM-GSU

Motivated by the Pegasos algorithm (Primal Estimated sub-GrAdient SOlver for SVM),
first proposed by Shalev-Shwartz et al. in [96], we modify and present a stochastic
sub-gradient descent algorithm for solving SVM-GSU in order to efficiently address
scalability requirements4.

Pegasos is a well-studied algorithm [96, 55] providing both state of the art classi-
fication performance and great scalability. It requires Õ(1/ε) number of iterations in
order to obtain a solution of accuracy ε, in contrast to previous analyses of SGD meth-
ods that require Õ(d/(λε)) iterations, where d is a bound on the number of non-zero
features in each example5. Since the run-time does not depend directly on the size

3A function h : Rn → R is L -Lipschitz with respect to the Euclidean norm if |h(x) − h(y)| ≤
L ‖x − y‖, L > 0. Indeed, the hinge loss h(x) = max(0, 1 − y(w>x + b)) is ‖w‖-Lipschitz since
|h(x)− h(y)| ≤

∣∣1− y(w>x + b)− 1 + y(w>y + b)
∣∣ ≤‖w‖‖x− y‖.

4A C++ implementation of the proposed method can be found at https://github.com/chi0tzp/
svm-gsu.

5We use the Õ notation (soft-O) as a shorthand for the variant ofO (big-O) that ignores logarithmic
factors; that is, f(n) ∈ Õ(g(n)) ⇐⇒ ∃k ∈ N : f(n) ∈ O(g(n) logk(g(n))).
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of the training set, the resulting algorithm is especially suited for learning from large
datasets.

Given a training set X =
{

(xi,Σi, yi) : xi ∈ Rn,Σi ∈ Sn++, yi ∈ {±1}, i = 1, . . . , `
}

,
the proposed algorithm solves the following optimization problem

min
w,b

λ

2
‖w‖2 +

1

`

∑̀
i=1

L
(
w, b; (xi,Σi, yi)

)
. (3.14)

The algorithm receives as input two parameters: (i) the number of iterations, T , and
(ii) the number of examples to use for calculating sub-gradients, k. Initially, we set
w(1) to any vector whose norm is at most 1/

√
λ and b(1) = 0. On the t-th iteration,

we randomly choose a subset of X , of cardinality k, i.e., Xt ⊆ X , where |Xt| = k, and
set the learning rate to ηt = 1

λt . Then, we approximate the objective function of the
above optimization problem with

λ

2
‖w‖2 +

1

k

∑
(xi,Σi,yi)∈Xt

L
(
w, b; (xi,Σi, yi)

)
.

Then, we perform the update steps

w(t+1) ← w(t) − ηt
k

∂J

∂w
, b(t+1) ← b(t) − ηt

k

∂J

∂b
,

where the first-order derivatives are given in (3.7), (3.8), if the training is conducted in
the original space (Sect. 3.1), or in (3.11), (3.12), if the learning is conducted in linear
subspaces (Sect. 3.2). Last, we project w(t+1) onto the ball of radius 1/

√
λ, i.e., the

set B = {w : ‖w‖ ≤ 1/
√
λ}. The output of the algorithm is the pair of w(T+1), b(T+1).

Algorithm 2 describes the proposed method in pseudocode.

Algorithm 1 A stochastic sub-gradient descent algorithm for solving SVM-GSU.

1: Inputs:
X , λ, T , k

2: Initialize:
b(1) = 0, w(1) such that ‖w(1)‖ ≤ 1√

λ
3: for t = 1, 2, . . . , T do
4: Choose Xt ⊆ X , where |Xt| = k
5: Set ηt = 1

λt

6: w(t+1) ← w(t) − ηt
k
∂J
∂w

7: w(t+1) ← min
(

1, 1/
√
λ

‖w(t+1)‖

)
w(t+1)

8: b(t+1) ← b(t) − ηt
k
∂J
∂b

9: end for

3.5 Experiments

In this section we first illustrate the workings of the proposed linear SVM-GSU classifier
on a synthetic 2D toy example (Sect. 3.5.1) and then apply the algorithm on five
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LSVM

LSVM-GSU

(a)

LSVM-sampling

LSVM-GSU

(b) N = 10

LSVM-sampling

LSVM-GSU

(c) N = 102 (d) N = 103

Figure 3.3: Toy example illustrating on 2D data, (a) the proposed LSVM-GSU (red
solid line) in comparison with the standard LSVM (blue dashed line), and (b)-(d)
with the standard SVM that learns by sampling from the input Gaussians (LSVM-
sampling), where N is the sampling size.

different classification problems using publicly available and popular datasets. Here,
we summarize how the uncertainty is modeled in each case, so as to illustrate how our
framework can be applied in practice.

First, we address the problem of image classification of handwritten digits (Sect. 3.5.2)
using the MNIST dataset. As we show in Appendix C, by using a first-order Taylor
approximation around a certain image with respect to some common image trans-
formations (small translations in our case), we show that the images that would be
produced by those translations would follow a Gaussian distribution with mean the
image in question and a covariance matrix whose elements are functions of the de-
rivatives of the image intensities/color with respect to those transformations. In the
simple case of spatial translations, the covariance elements are functions of the spa-
tial gradients. This is a case where the uncertainty is modeled. We show that our
method outperforms the linear SVM and other SVM variants that handle uncertainty
isotropically.

Second, we address the binary classification problem using the Wisconsin Diagnostic
Breast Cancer (WDBC) dataset (Sect. 3.5.3). This is a case in which each data example
summarizes a collection of samples by their second order statistics. More specifically,
each data example contains as features the mean and the variance of measurements on
several cancer cells – mean and variances over the different cells. With our formulation
we obtain state of the art results on this dataset.

Third, we address the problem of emotional analysis using electroencephalogram
(EEG) signals (Sect. 3.5.4). In this case, we exploit a very popular method for es-
timating the power spectrum of time signals; namely the Welch method, which allows
for estimating not only the mean values of the features (periodograms), but also their
variances, making it suitable for using the proposed SVM-GSU.

Fourth, we address the problem of detection of advertisements in TV news videos
(Sect. 3.5.5). This is an interesting case where uncertainty information is given only
for a few dimensions of the input space, rendering inapplicable the methods that treat
uncertainty isotropically. In contrast, the proposed method can model such uncertainty
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types using low-rank covariance matrices.

Finally, we address the challenging problem of complex event detection in video
(Sect. 3.5.6). We used the ∼5K outputs of a pre-trained DCNN in order to extract a
representation for each frame in a video and calculated the mean and covariances over
the frames of a video in order to classify it. This is a second example in which the
mean and the covariance matrices are calculated from data. We show that our formu-
lation outperforms the linear SVM and other SVM variants that handle uncertainty
isotropically.

3.5.1 Toy example using synthetic data

In this subsection, we present a toy example on 2D data that provides insights to
the way the proposed algorithm works. As shown in Fig. 3.3a, negative examples are
denoted by red × marks, while positive ones by green crosses. We assume that the
uncertainty of each training example is given via a covariance matrix. For illustration
purposes, we draw the iso-density loci of points at which the value of the PDF of the
Gaussian is the 0.03% of its maximum value.

First, a baseline linear SVM (LSVM) is trained using solely the centres of the dis-
tributions; i.e., ignoring the uncertainty of each example. The resulting separating
boundary is the dashed blue line in Fig. 3.3a. The proposed linear SVM-GSU (LSVM-
GSU) is trained using both the centres of the above distributions and the covariance
matrices. The resulting separating boundary is the solid red line in Fig. 3.3a. It is
clear that the separating boundaries can be very different and that the solid red line
is a better one given the assumed uncertainty modeling.

Next, we investigate on how many samples are needed in order to obtain LSVM-
GSU’s separating line by sampling N samples from each Gaussian and using the
standard LSVM (LSVM-sampling). The results for various values of N are depic-
ted in Fig. 3.3, where it is clear that ones needs almost 3 orders of magnitude more
examples. In order to investigate how this number changes with the dimensionality
of the feature space we performed the same experiment in a similar 3D dataset. In
Fig. 3.4 we plot the angle between the hyperplanes obtained by the LSVM-GSU and
the LSVM-sampling for both the 2D and the 3D datasets. We observe that, in the
3D case, we need at least one order of magnitude more samples from each Gaussian,
compared to the 2D case; that is, in the 2D case, we obtain θ ≈ 1.7◦ using N = 103

samples from each Gaussian, while in the 3D case, the sampling size for obtaining the
same approximation (θ ≈ 1.7◦) is N = 5 × 104. This is indicative of the difficulties
of using the sampling approach when dealing with high-dimensional data, where the
number of dimensions is in the hundreds or thousands.

3.5.2 Hand-written digit classification

Dataset and experimental setup

The proposed algorithm is also evaluated in the problem of image classification using
the MNIST dataset of handwritten digits [14]. The MNIST dataset provides a training
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Figure 3.4: Difference between the separating hyperplanes of LSVM-GSU and the
standard LSVM with sampling (angle θ), when varying the number of samples used
in the standard SVM, for the 2D and 3D toy datasets.

Table 3.1: MNIST “1” versus “7” experimental results in terms of testing accuracy.
The proposed LSVM-GSU is compared to the baseline linear SVM (LSVM), Power
SVM (PSVM) [126], and a linear SVM extension which handles the uncertainty iso-
tropically (LSVM-iso), as in [12, 87].

Dataset D0 D1 D2

LSVM 0.9952 0.9362 0.8240

PSVM [126] 0.9963 0.9315 0.8157

LSVM-iso (as in [12, 87]) 0.9968 0.9327 0.8133

LSVM-GSU
Learning in original space 0.9971 0.9452 0.8310

Learning in linear subspaces 0.9972 (0.99) 0.9480 (0.97) 0.8562 (0.89)

Dataset D3 D4 D5

LSVM 0.6830 0.6558 0.6027

PSVM [126] 0.7017 0.6650 0.6259

LSVM-iso (as in [12, 87]) 0.7222 0.6675 0.6328

LSVM-GSU
Learning in original space 0.7216 0.6708 0.6353

Learning in linear subspaces 0.7543 (0.85) 0.6974 (0.95) 0.6640 (0.25)

set of 60K examples (approx. 6000 examples per digit), and a test set of 10K examples
(approx. 1000 examples per digit). Each sample is represented by a 28×28 8-bit image.

In order to make the dataset more challenging, as well as to model a realistic dis-
tortion that may happen to this kind of images, the original MNIST dataset was
“polluted” with noise. More specifically, each image example was rotated by a random
angle uniformly drawn from [−θ,+θ], where θ is measured in degrees. Moreover, each
image was translated by a random vector t uniformly drawn from [−tp,+tp]2, where
tp is a positive integer expressing distance that is measured in pixels. We created five
different noisy datasets by setting θ = 15° and tp ∈ {3, 5, 7, 9, 11}, resulting in the
polluted datasets D1 to D5, respectively. D0 denotes the original MNIST dataset.

We created six different experimental scenarios using the above datasets (D0-D5).
First, we defined the problem of discriminating the digit one (“1”) from the digit seven
(“7”) similarly to [33]. Each class in the training procedure consists of 25 samples, ran-
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domly chosen from the pool of digits one (6k totally) and seven (6k totally), while the
evaluation of the trained classifier is carried out on the full testing set (2k examples).
In each experimental scenario we report the average of 100 runs and we compare the
proposed linear SVM-GSU (LSVM-GSU) to the baseline linear SVM (LSVM), Power
SVM [126], and LSVM-iso (a variation of SVM formulation that handles only isotropic
uncertainty, similarly to [12, 87]). We report the testing accuracy and the mean testing
accuracy across 100 runs. Finally, we repeat the above experiments for various sizes
of the training set; i.e., using 25, 50, 100, 500, 1000, 3000, 6000 positive examples per
digit, in order to investigate how this affects the results.

Uncertainty modeling

In Appendix C, we propose a methodology that, given an image, models the distribu-
tion of the images that result by small random translations of it. We show that under
a first-order Taylor approximation of the image intensities/color with respect to those
translations, and the assumption that the translations are small and follow a Gaussian
distribution, the resulting distribution of the images is also a Gaussian with mean
the original image and a covariance matrix whose elements are functions of the image
derivatives with respect to the transforms – in this case functions of the image spatial
gradients. The derivation could be straightforwardly extended to other transforms
(e.g. rotations, scaling). However, in this work we solely adopt translations.

In our experiments in this dataset we set the variances of the horizontal and the
vertical components of the translation, denoted by σ2

h and σ2
v respectively, to σ2

h = σ2
v =(pt

3

)2
, so that the translation falls in the square [−pt, pt] × [−pt, pt] with probability

99.7%. The pt is measured in pixels and for the experiments described below, it is set
to pt = 5 pixels.

Experimental results

Table 3.1 shows the performance of the proposed classifier (LSVM-GSU) and the
compared techniques in terms of testing accuracy for each dataset defined above; i.e.,
for each of the datasets D0-D5, where 25 training examples are used for each class. The
optimization of the training parameter for the various SVM variants was performed
using a line search on a 3-fold cross-validation procedure. The performance of LSVM-
GSU when the training of each classifier is carried out in the original feature space
is shown in row 5, and in linear subspaces in row 6. In row 6 we report both the
classification performance, and in parentheses the fraction of variance that resulted in
the best classification result.

The performance of the baseline linear SVM (LSVM) is shown in the second row,
the performance of Power SVM (PSVM) [126] is shown in the third row, and the
performance of the linear SVM extension, based on the proposed formulation, handling
the noise isotropically, as in [12, 87], (LSVM-iso) is shown in the fourth row. Moreover,
Fig. 3.6 shows the results of the above experimental scenarios for datasets D0-D5. The
horizontal axis of each subfigure describes the fraction of the total variance preserved
for each covariance matrix, while the vertical axis shows the respective performance
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Figure 3.5: MNIST “1” versus “7” experimental results using 25, 50, 100, 500, 1000,
3000, 6000 positive examples per digit. The proposed LSVM-GSU using learning
linear subspaces (LSVM-GSU-Sp) is compared to the baseline linear SVM (LSVM),
Power SVM (PSVM) [126], and a linear SVM extension which handles the uncertainty
isotropically (LSVM-iso), as in [12, 87]. The fraction of variance preserved for the
proposed method is (a) p = 0.85 (dataset D3), (b) p = 0.95 (dataset D4). Very similar
results are observed for all other datasets.

of LSVM-GSU with learning in linear subspaces (LSVM-GSU-SLp). Furthermore, in
each subfigure, for p = 1 we draw the result of LSVM-GSU in the original feature
space (denoted with a rhombus), the result of PSVM [126] (denoted with a circle), as
well as the result of LSVM-iso [12, 87] (denoted with a star).

We report the mean, and with an error-bar show the variance of the 100 iterations.
The performance of the baseline LSVM is shown with a solid line, while two dashed
lines show the corresponding variance of the 100 runs. From the obtained results, we
observe that the proposed LSVM-GSU with learning in linear subspaces outperforms
LSVM, PSVM, and LSVM-iso for all datasets D0-D5. Moreover, LSVM-GSU achieves
better classification results than PSVM in all datasets, and than LSVM-iso in 5 out
of 6 datasets, when learning is carried out in the original feature space. Finally,
all the reported results are shown to be statistically significant using the t-test [45];
significance values (p-values) were much lower than the significance level of 1%. Finally,
in Fig. 3.5, we show the experimental results using various training set sizes and we
observe that this does not qualitatively affect the behavior of the various compared
methods.

3.5.3 Wisconsin Diagnostic Breast Cancer dataset

The Wisconsin Diagnostic Breast Cancer (WDBC) dataset [68] consists of features
computed from 569 images, each belonging to one of the following two classes: malig-
nant (212 instances) and benign (357 instances). The digitized images depict breast
mass obtained by Fine Needle Aspirate (FNA) and they describe characteristics of the
cell nuclei present in the image. Each feature vector is of the form

x = (x1, . . . , x10, s1, . . . , s10, w1, . . . , w10)> ∈ R30,
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Figure 3.6: Comparisons between the proposed LSVM-GSU, the baseline LSVM, and
the LSVM with isotropic noise in (a) the original MNIST dataset (D0), and (b)-(f)
the noisy generated datasets D1-D5.

where xj is the mean value, sj the standard error, and wj the largest value of the j-th
feature, j = 1, . . . , 10. Ten real-valued features are computed for each cell nucleus.

Since the standard error si and variance σ2
i are connected via the relation si =

σ2
i
N ,

where N is the (unknown) size of the sample where standard deviation was com-
puted, we assign to each input example a diagonal covariance matrix given by Σi =
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diag(σ2
1, . . . , σ

2
10, σ

2
0, . . . , σ

2
0) ∈ S30

++, where σ2
0 is set to a small positive constant (e.g.,

10−6) indicating very low uncertainty for the respective features, and σ2
j is computed

using the standard error by scaling the standard error values into the range of mean
values; that is, the maximum variance is set to 80% of the range of the corresponding
mean value.

The proposed algorithm is compared in terms of testing accuracy both to the
baseline linear SVM (LSVM), Power SVM [126] (PSVM), and to LSVM-iso, simil-
arly to Sect. 3.5.2. Since the original dataset does not provide a division in training
and evaluation subsets, we divided the dataset randomly into a training subset (90%)
and an evaluation subset (10%). The optimization of the λ parameter for all classifiers
was performed using a line search on a 10-fold cross-validation procedure. We repeated
the experiment 10 times and report the average results in Table 3.2. The results are
statistically significant and show the superiority of LSVM-GSU. More specifically, we
used the t-test [45] and obtained significance values (p-values) lower than 0.05.

Table 3.2: Comparison between the proposed LSVM-GSU, the baseline LSVM, Power
SVM, and LSVM-iso.

Classifier Testing Accuracy

LSVM 95.15%

PSVM [126] 96.37%

LSVM-iso (as in [12, 87]) 96.53%

LSVM-GSU (proposed) 97.14%

3.5.4 Emotion analysis using physiological signals

Dataset and experimental setup

For evaluating the proposed method in the domain of emotional analysis using physiolo-
gical signals, we used the publicly available DEAP [58] dataset, which provides EEG
features of 32 participants who were recorded while watching 40 one-minute long ex-
cerpts of music videos. Three different binary classification problems were defined: the
classification of low/high arousal, low/high valence and low/high liking videos.

From the EEG signals, power spectral features were extracted using the Welch
method [115]. The logarithms of the spectral power from theta (4− 8 Hz), slow alpha
(8 − 10 Hz), alpha (8 − 12 Hz), beta (12-30Hz), and gamma (30+ Hz) bands were
extracted from all 32 electrodes as features, similarly to [58]. In addition to power
spectral features, the difference between the spectral power of all the symmetrical
pairs of electrodes on the right and left hemisphere was extracted to measure the
possible asymmetry in the brain activities due to emotional stimuli. The total number
of EEG features of a video for 32 electrodes is 216. For feature selection, we used
Fisher’s linear discriminant similarly to [58].

Uncertainty modeling

For modeling the uncertainty of each training example, we used a well-known property
of the Welch method [115] for estimating the power spectrum of a time signal. First,
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Table 3.3: Comparisons between the proposed LSVM-GSU, the baseline NB, LSVM,
Power SVM, and the LSVM with isotropic noise.

Arousal Valence Liking

Classifier ACC F1 ACC F1 ACC F1

NB [58] 0.620 0.583 0.576 0.563 0.554 0.502

LSVM 0.626 0.451 0.616 0.538 0.655 0.470

PSVM [126] 0.625 0.521 0.633 0.561 0.651 0.522

LSVM-iso [12, 87] 0.645 0.531 0.645 0.603 0.658 0.530

LSVM-GSU 0.659 0.551 0.650 0.609 0.666 0.539

the time signal was divided into (overlapping or non-overlapping) windows, where the
periodogram was computed for each window. Then the resulting frequency-domain
values were averaged over all windows. Besides these mean values, that are the desired
outcomes of the Welch method, we also computed the variances, and, thus, each 216-
element vector was assigned with a diagonal covariance matrix.

Experimental results

Table 3.3 shows the performance of the proposed linear SVM-GSU (LSVM-GSU)
in terms of accuracy and F1 score for each target class in comparison to LSVM,
PSVM [126], and LSVM-iso, similarly to Sect. 3.5.2 and 3.5.3, as well as the Naive
Bayesian (NB) classifier used in [58]. For each participant, the F1 measure was used to
evaluate the performance of emotion classification in a leave-one-out cross validation
scheme. At each step of the cross validation, one video was used as the test-set and
the rest were used for training. For optimizing the λ parameter of the various SVM
classifiers, we used a line search on a 3-fold cross-validation procedure.

From the obtained results, we observe that the proposed algorithm achieved better
classification performance than LSVM, PSVM, LSVM-iso, as well as the NB classifier
used in [58] for all three classes, in terms of testing accuracy, and for the two out of
three classes in terms of F1 score.

3.5.5 TV News Channel Commercial Detection

Dataset and experimental setup

The proposed algorithm is evaluated for the problem of detection of advertisements
in TV news videos using the very large publicly available dataset of [112]. This data-
set comprises 120 hours of TV news broadcasts from CNN, CNNIBN, NDTV, and
TIMES NOW (approximately 22k, 33k, 17k, and 39k videos, respectively). The au-
thors of [112] used various low-level audio and static-, motion-, and text-based visual
features, to extract and provide a 4125-dimensional representation for each video, that
includes the variance values for 24 of the above features. For a detailed description of
the dataset, see [112].
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Table 3.4: Comparisons between the proposed LSVM-GSU and the baseline LSVM,
similarly to [112].

Training
CNN CNNIBN NDTV TIMES NOW

LSVM LSVM-
GSU

LSVM LSVM-
GSU

LSVM LSVM-
GSU

LSVM LSVM-
GSU

T
e
st
in
g CNN 0.7799 0.9589 0.7799 0.8050 0.7799 0.8113 0.7799 0.9226

CNNIBN 0.7915 0.8836 0.7915 0.9215 0.7915 0.8978 0.7915 0.8611
NDTV 0.8484 0.9248 0.8484 0.8565 0.8484 0.9709 0.8484 0.8823
TIMES NOW 0.7809 0.9461 0.7809 0.7863 0.7809 0.7493 0.7809 0.9421

Uncertainty modeling

This dataset represents a real-world case where uncertainty information is given only
for a few dimensions of the feature space. In this case we model the covariance matrix
of each input example as a low-rank diagonal matrix, whose non-zero variance values
correspond to the dimensions for which uncertainty is provided. Each such matrix
corresponds to a Gaussian with non-zero variance along the few specific given dimen-
sions. Since the information about the input variance is provided just for the 24 of
the 4125 features, there is no natural way of estimating a single variance value, i.e.,
an isotropic covariance matrix, for each training example.

Experimental results

Table 3.4 shows the performance of the proposed linear SVM-GSU (LSVM-GSU) in
terms of F1 score in comparison to LSVM, similarly to [112]. As discussed above,
since methods that model the uncertainty isotropically (such as [12, 87, 126]), are not
applicable in this dataset, we experimented on this dataset using only the proposed
algorithm and the standard linear SVM. Following the protocol of [112], we did cross-
dataset training and testing. For optimizing the λ parameter of both LSVM and
LSVM-GSU we used a line search on a 3-fold cross-validation procedure. From the
obtained results, we observe that the proposed algorithm achieved considerably better
classification than LSVM in almost all cases (more than 10% relative boost on average).

3.5.6 Video Event Detection

Dataset and experimental setup

In our experiments on video event detection we used datasets from the challenging
TRECVID Multimedia Event Detection (MED) task [83]. For training, we used the
MED 2015 training dataset consisting of the “pre-specified” (PS) video subset (2000
videos, 80 hours) and the “event background” (Event-BG) video subset (5000 videos,
200 hours). For testing, we used the large-scale “MED14Test” dataset [83, 52] (∼ 24K
videos, 850 hours). Each video in the above datasets belongs to, either one of 20 target
event classes, or to the “rest of the world” (background) class. More specifically, in
the training set, 100 positive and 5000 negative samples are available for each event
class, while the evaluation set includes only a small number of positive (e.g., only 16
positives for event E021, and 28 for E031) and approximately 24K negative videos.
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For video representation, approximately 2 keyframes per second were extracted from
each video. Each keyframe was represented using the last hidden layer of a pre-trained
deep convolutional neural network (DCNN). More specifically, a 22-layer inception
style network, trained according to the GoogLeNet architecture [102], was used. This
network had been trained on various selections of the ImageNet “Fall 2011” dataset
and provides scores for 5055 concepts [90].

Uncertainty modeling

Let us now define a set X of ` annotated random vectors representing the aforemen-
tioned video-level feature vectors. Each random vector is assumed to be distributed
normally; i.e., for the random vector representing the i-th video, Xi, we have Xi ∼
N (xi,Σi). That is, X = {(xi,Σi, yi) : xi ∈ Rn,Σi ∈ Sn++, yi ∈ {±1}, i = 1, . . . , `}.
For each random vector Xi, a number, Ni, of observations, {xti ∈ Rn : t = 1, . . . , Ni}
are available (these are the keyframe-level vectors that have been computed). Then,
the sample mean vector and the sample covariance matrix of Xi are computed. How-
ever, the number of observations per each video that are available for our dataset is
in most cases much lower than the dimensionality of the input space. Consequently,
the covariance matrices that arise are typically low-rank; i.e. rank(Σi) ≤ Ni ≤ n. To
overcome this issue, we assumed that the desired covariance matrices are diagonal.
That is, we require that the covariance matrix of the i-th training example is given
by Σ̂i = diag

(
σ̂1
i , . . . , σ̂

n
i

)
, such that the squared Frobenious norm of the difference

Σi− Σ̂i is minimum. That is, the estimator covariance matrix Σ̂i must be equal to the
diagonal part of the sample covariance matrix Σi, i.e. Σ̂i = diag

(
σ1
i , . . . , σ

n
i

)
. We note

that, using this approximation approach, the covariance matrices are diagonal but an-
isotropic and different for each training input example. This is in contrast with other
methods (e.g. [126, 12, 87]) that assume more restrictive modeling for the uncertainty;
e.g., isotropic noise for each training sample.

Experimental results

We experimented using two different feature configurations. First, we used the mean
vectors and covariance matrices as computed using the method discussed above (Sect.
3.5.6). Furthermore, in order to investigate the role of variances in learning with
baseline LSVM, we constructed mean vectors and covariance matrices as shown in
Table 3.6, where σ0 is typically set to a small positive constant (e.g., 10−6) indicating
very low uncertainty for the respective features.

For both feature configurations, Table 3.5 shows the performance of the proposed
linear SVM-GSU (LSVM-GSU) in terms of average precision (AP) [83, 108] for each
target event in comparison with LSVM, PSVM [126], and LSVM-iso approaches.
Moreover, for each dataset, the mean average precision (MAP) across all target events
is reported. The optimization of the λ parameter for the various SVMs was performed
using a line search on a 10-fold cross-validation procedure. The bold-faced numbers
indicate the best result achieved for each event class. We also report the results of
the McNemar [80, 36], statistical significance tests. A ∗ denotes statistically signific-
ant differences between the proposed LSVM-GSU and baseline LSVM, a � denotes
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Table 3.5: Event detection performance (AP and MAP) of the linear SVM-GSU com-
pared to the baseline linear SVM, Power SVM [126], and a LSVM extension for
handling isotropic uncertainty (as in [12, 87]) using the MED15 (for training) and
MED14Test (for testing) datasets.

Event
Class

Feature Configuration 1
(5055-D)

LSVM
PSVM
[126]

LSVM-iso
[12, 87]

LSVM-GSU
(proposed)

McNemar
Tests

E021 0.0483 0.0510 0.0500 0.0515 ∗, �,∼
E022 0.0227 0.0310 0.0350 0.0277 ∗, �,∼
E023 0.4159 0.4515 0.6059 0.6057 ∗, �
E024 0.0071 0.0081 0.0097 0.0105 �
E025 0.0052 0.0052 0.0074 0.0068
E026 0.0457 0.0459 0.0606 0.0608 �
E027 0.1319 0.1424 0.1174 0.1219 ∗, �,∼
E028 0.4242 0.4125 0.3819 0.4335 ∗, �,∼
E029 0.0812 0.0914 0.1793 0.1791 �
E030 0.0516 0.0551 0.0877 0.0884
E031 0.4416 0.4425 0.4480 0.4796 ∗, �,∼
E032 0.0280 0.0400 0.0870 0.1196 ∗, �,∼
E033 0.3483 0.3614 0.3901 0.4187 ∗,∼
E034 0.0583 0.0588 0.0599 0.0614 �
E035 0.3330 0.3419 0.3500 0.3369 ∗, �,∼
E036 0.0894 0.0748 0.0695 0.0704 �
E037 0.0884 0.0880 0.1981 0.1968 ∗, �,∼
E038 0.0261 0.0241 0.0212 0.0291 �
E039 0.2677 0.2698 0.2959 0.2757 ∗, �,∼
E040 0.0421 0.0315 0.0375 0.0377 ∗, �
MAP 0.1478 0.1513 0.1746 0.1806 –

Event
Class

Feature Configuration 2
(10110-D)

LSVM
PSVM
[126]

LSVM-iso
[12, 87]

LSVM-GSU
(proposed)

McNemar
Tests

E021 0.0829 0.0834 0.1074 0.0778 �,∼
E022 0.0674 0.0773 0.1023 0.1429 ∗, �,∼
E023 0.7050 0.7236 0.7802 0.7943 ∗, �,∼
E024 0.0187 0.0223 0.0394 0.0367 ∗
E025 0.0219 0.0245 0.0161 0.0135 �
E026 0.0731 0.0745 0.0976 0.1109 ∗, �,∼
E027 0.1152 0.0133 0.1254 0.1812 ∗, �,∼
E028 0.1863 0.2214 0.2700 0.2278 ∗, �,∼
E029 0.2046 0.1987 0.2149 0.1999 ∗, �,∼
E030 0.1001 0.1276 0.1596 0.1774 ∗, �,∼
E031 0.7595 0.7599 0.7422 0.7697 ∗, �,∼
E032 0.0989 0.1011 0.1290 0.1292 ∗, �
E033 0.4571 0.4789 0.5091 0.5164 ∗
E034 0.3207 0.3214 0.3200 0.3380 ∗, �,∼
E035 0.3516 0.3419 0.3252 0.3059 ∗, �
E036 0.1156 0.1186 0.1064 0.1288 ∗, �,∼
E037 0.1169 0.1257 0.1598 0.1629 ∗, �,∼
E038 0.0558 0.0498 0.0557 0.0539 �
E039 0.4188 0.4219 0.4349 0.4271 ∗, �,∼
E040 0.0837 0.0889 0.0856 0.0902 ∗, �
MAP 0.2177 0.2187 0.2390 0.2442 –

statistically significant differences between LSVM-GSU and PSVM, and a ∼ denotes
statistically significant differences between LSVM-GSU and LSVM-iso.
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Table 3.6: Mean vector and covariance matrix of the i-th example for feature config-
urations 1 and 2 of the video event detection experiments.

Configuration 1
xi = (xi,1, . . . , xi,n)> ∈ Rn

Σi,= diag
(
σ1
i , . . . , σ

n
i

)
∈ Sn

++

Configuration 2
xi = (xi,1, . . . , xi,n, σ

1
i , . . . , σ

n
i )> ∈ R2n

Σi,= diag
(
σ1
i , . . . , σ

n
i , σ0, . . . , σ0

)
∈ S2n

++

From the obtained results, we observe that the proposed algorithm achieved better
detection performance than LSVM, PSVM, and LSVM-iso, in both feature config-
urations. For feature configuration 1, the proposed LSVM-GSU achieved a relative
boost of 22.2% compared to the baseline standard LSVM and 19.4% compared to
Power SVM, while for feature configuration 2 respective relative boosts of 12.7% and
11.7%, respectively, in terms of MAP. It is worth noting that configuration 2 exhibits
much better performance compared to configuration 1 (for all the compared methods),
since it uses the extra knowledge of the variance as additional dimensions in its fea-
ture representation scheme. Finally, we also experimented using directly the samples
from which the covariance matrix of each example was estimated and obtained inferior
results; that is, a MAP of 10.15%, compared to LSVM’s 14.78% and 18.06% of the
proposed SVM-GSU.

3.6 Conclusion

In this chapter we proposed a novel linear classifier that efficiently exploits uncertainty
in its input under the SVM paradigm. The proposed SVM-GSU was evaluated on
synthetic data and on five publicly available datasets; namely, the MNIST dataset
of handwritten digits, the WDBC, the DEAP for emotion analysis, the TV News
Commercial Detection dataset and TRECVID MED for the problem of video event
detection. For each of the above datasets and problems, either uncertainty information
(e.g., variance for each example and for all or some of the input space dimensions) was
part of the original dataset, or a method for modeling and estimating the uncertainty
of each training example was proposed. As shown in the experiments, SVM-GSU
efficiently takes input uncertainty into consideration and achieves better detection or
classification performance than standard SVM, previous SVM extensions that model
uncertainty isotropically, and other state of the art methods. Finally, we plan to
investigate the kernalization of the proposed algorithm and the extensions of it for the
problem of regression under Gaussian input uncertainty.
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Chapter 4

Kernel Maximum Margin Classifier
for Learning from Uncertain Data
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In this chapter we develop a non-liner version of the linear SVM-GSU presented in
the previous chapter using the well-known RBF kernel function. We proceed to this
development under the assumption of isotropic input uncertainty. For doing so, we
recast the optimization problem of linear SVM-GSU as a variational calculus minim-
ization problem; that is, the original optimization problem is rewritten as a problem
of minimizing an equivalent (objective) functional, and, thus, instead of looking for a
separating hyperplane (i.e., its parameters) in the original input feature space, we look
for a minimizer function that lives in a richer, higher-dimensional (in our case infinite-
dimensional) space. We prove that the above functional is such that its minimizer can
be represented as a finite linear combination of kernel products (in our case using the
RBF kernel function). Additionally, due to the convexity of our objective functional,
we can efficiently solve the problem using an appropriate SGD algorithm (similarly to
the linear case), i.e., the Pegasos algorithm [96].

Then, we combine the proposed kernel classifier with the previously proposed Rel-
evance Degree SVM (RD-SVM) [108, 107]. In RD-SVM each training example is
associated with a confidence value (called relevance degree) indicating the degree of
relevance of the respective training example with the class that it is related. This is
essentially a method that handles uncertainty in the truth labels, and combined with
the proposed KSVM-iGSU provide a methodology for handling uncertainty both in
label and feature representation.
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Finally, we apply the proposed methods to two challenging problems of video under-
standing and indexing: video event detection and video aesthetic quality assessment.
For video event detection, we experimented on the challenging TRECVID MED 2014
dataset, using a limited number of positive and related samples for training. Another
challenging video dataset, the CERTH-ITI-VAQ700, was used for experimenting on
video aesthetic quality assessment. The experimental results of our methods show
considerable performance improvement in comparison to the state-of-the-art learning
methods that are used in the literature for the video event detection and aesthetic
quality assessment problems.

4.1 Kernel SVM with Isotropic Gaussian Sample
Uncertainty (KSVM-iGSU)

Let us first revisit linear SVM-GSU’s [110] optimization problem as proposed in the
previous chapter. LSVM-GSU is a maximum-margin classifier that takes as input
training data that are described not solely by a set of feature representations, i.e. a
set of vectors xi in some n-dimensional space, but rather by a set of multi-variate
Gaussian distributions which model the uncertainty of each training example. In this
chapter we will consider only isotropic Gaussian uncertainty. That is, every training
datum is characterized by a mean vector xi ∈ Rn and an isotropic covariance matrix,
i.e. a scalar multiple of the identity matrix, Σi = σ2

i In ∈ Sn++
1. We will denote this

classifier as linear SVM with isotropic Gaussian Sample Uncertainty (LSVM-iGSU).
LSVM-iGSU is obtained by minimizing, with respect to w, b, the objective function
J : Rn × R→ R given by

J (w, b) =
λ

2
‖w‖22 +

1

`

∑̀
i=1

L
(
w, b; (xi, σ

2
i In, yi)

)
, (4.1)

where ` is the number of training data, w>x+b = 0 denotes the separating hyperplane,
and the loss L : Rn × R→ R is given by

L(w, b) =
dxi

2

[
erf

(
dxi

dΣi

)
+ 1

]
+

dΣi

2
√
π

exp

(
−
d2

xi

d2
Σi

)
, (4.2)

where dxi = 1− yi
(
w>xi + b

)
, dΣi =

√
2σ2

i ‖w‖2, xi and σ2
i In denote the mean vector

and the covariance matrix of the i-th input entity (Gaussian distribution), respectively,
yi denotes its ground-truth label, and erf(x) = 2√

π

∫ x
0 e
−t2 dt denotes the error function.

As discussed in the previous chapter, (4.1) is convex and thus a (global) optimal
solution (w, b) can be obtained using a gradient descent algorithm. The resulting
(linear) decision function f(x) = w>x+b is used in the testing phase for classifying an
unseen sample similarly to the standard linear SVM algorithm [17]; that is, according
to the distance between the testing sample and the separating hyperplane, without

1Sn
++ denotes the convex cone of all symmetric positive definite n× n matrices with entries in R.

In denotes the identity matrix of order n.

40



4.1. Kernel SVM with Isotropic Gaussian Sample Uncertainty (KSVM-iGSU)

taking into account any uncertainty estimates that could be made for the testing
sample representation.

The optimization problem discussed in the previous section can be recast as a vari-
ational calculus problem of finding the function f that minimizes the functional Φ[f ]:

min
f∈H

Φ[f ], (4.3)

where the functional Φ[f ] is given by

Φ[f ] =
λ

2
‖f‖2H +

1

`

∑̀
i=1

[
dxi

2

[
erf

(
dxi

dΣi

)
+ 1

]
+

dΣi

2
√
π

exp

(
−
d2

xi

d2
Σi

)]
, (4.4)

where dxi = 1− yi (f(xi) + b), dΣi =
√

2σ2
i ‖f‖2H, λ is a regularization parameter and

f belongs to a Reproducing Kernel Hilbert Space (RKHS), H, with associated kernel
k. Using a generalized semi-parametric version [93] of the representer theorem [57], it
can be shown that the minimizer of the above functional admits a solution of the form

f(x) =
∑̀
i=1

αik(x,xi)− b, (4.5)

where b ∈ R, αi ∈ R, i = 1, . . . , `.

Using the reproducing property, we have

‖f‖2H = 〈f, f〉H =

〈
l∑

i=1

αik(·,xi),
l∑

j=1

αjk(·,xj)

〉
H

= α>Kα, (4.6)

where K is the kernel matrix, i.e. the symmetric positive definite `× ` matrix defined
as K = (k(xi,xj))

`
i,j=1, and α = (α1, · · · , αl)>. Moreover, we observe that f(xi) =∑`

j=1 αjk(xi,xj) = K>i α, where Ki denotes the i-th column of the kernel matrix K.

Then, the objective function JH : R` × R→ R is given by

JH(α, b) =
λ

2
α>Kα +

1

`

∑̀
i=1

[
dxi

2
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(
dxi

dΣi
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+ 1
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dΣi

2
√
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exp
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−
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xi

d2
Σi

)
,

]
, (4.7)

where dxi = 1 − yi
(
K>i α + b

)
, dΣi =

√
2σ2

iα
>Kα. We (jointly) minimize the above

convex2 objective function with respect to α and b using a stochastic gradient descent
method, which we present in section 4.2.1. The first order derivatives of the objective
function with respect to the optimization variables α and b are given3, respectively,
as follows

∂JH
∂α

= λKα +
1

`

∑̀
i=1

σ
2
i exp

(
− d2

xi

d2
Σi

)
√
πdΣi

Kα− Ki

2

[
erf

(
dxi

dΣi

)
+ 1

] , (4.8)

2Convexity can be shown using Theorem 2 proved in B.
3Their derivation is omitted, as it is technical but straightforward.

41



4.2. Relevance Degree KSVM-iGSU

and

∂JH
∂b

= − 1

2`

∑̀
i=1

[
erf

(
dxi

dΣi

)
+ 1

]
. (4.9)

Since JH is a convex function on R` × R, the proposed SGD solver leads to a global
optimal solution; that is, at a pair (α, b) such that the decision function given in the
form of (4.5) minimizes the functional (4.4). We call this classifier kernel SVM-iGSU
(KSVM-iGSU).

4.2 Relevance Degree KSVM-iGSU

Motivated by [108], we reformulate the optimization problem in (4.3)-(4.4) such that
a different penalty parameter ci ∈ (0, 1] (hereafter called as relevance degree) is in-
troduced to each input datum. That is, the functional Φ[f ] of (4.4) is now given
by

Φ[f ] =
λ

2
‖f‖2H +

1

`

∑̀
i=1

ci

[
dxi

2

[
erf

(
dxi

dΣi

)
+ 1

]
+

dΣi

2
√
π

exp

(
−
d2

xi

d2
Σi

)]
. (4.10)

It is worth noting that the relevance degree, i.e., the penalty parameter ci, is a user-
defined parameter and, as such, it is treated similarly to the other classifier’s paramet-
ers (e.g., the regularization parameter λ). This means that it can be selected using
some cross-validation procedure, or it can merely be given based on prior knowledge
inspired by the problem in hand (e.g., see Sect. 4.3.1). To solve minf∈HΦ[f ], we follow
a similar path as in Sect. 4.1, and we arrive at the following convex objective function

JH(α, b) =
λ

2
α>Kα +

1

`

∑̀
i=1

ci

[
dxi

2
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erf

(
dxi

dΣi
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+ 1

]
+

dΣi

2
√
π

exp

(
−
d2

xi

d2
Σi

)]
, (4.11)

which we again minimize using the proposed SGD algorithm. The (global) optimal
solution (α, b) determines the decision function given in the form of (4.5). The new
extension of KSVM-iGSU obtained in this way is hereafter referred to as a Relevance
Degree KSVM-iGSU (RD-KSVM-iGSU).

4.2.1 A stochastic gradient descent solver

Similarly to the linear case (see Sect. 3.4), motivated by the Pegasos algorithm [95],
we modify and present a stochastic sub-gradient descent algorithm for solving KSVM-
iGSU in order to efficiently mount scalability requirements. As discussed in the previ-
ous chapter, Pegasos is a well-studied algorithm [96, 55] providing both state-of-the-art
classification performance and great scalability. Pegasos requires Õ(1/ε) number of it-
erations in order to obtain a solution of accuracy ε, in contrast to previous analyses
of stochastic gradient descent methods that require Õ(d/(λε)) iterations, where d is a
bound on the number of non-zero features in each example. Since the run-time does
not depend directly on the size of the training set, the resulting algorithm is especially
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Algorithm 2 A stochastic sub-gradient descent algorithm for solving KSVM-iGSU.

1: Inputs:
X , λ, T , k

2: Initialize:
b(1) = 0, α(1) such that ‖α(1)‖ ≤ 1√

λ
3: for t = 1, 2, . . . , T do
4: Choose Xt ⊆ X , where |Xt| = k
5: Set ηt = 1

λt

6: α(t+1) ← α(t) − ηt
k
∂J
∂α

7: α(t+1) ← min
(

1, 1/
√
λ

‖α(t+1)‖

)
α(t+1)

8: b(t+1) ← b(t) − ηt
k
∂J
∂b

9: end for

suited for learning from large datasets. Algorithm 2 describes the proposed method in
pseudocode.

We note that we can distinguish three variants of the algorithm: (a) a pure SGD
approach, where only one training example is used in each iteration for computing
the objective function, (b) a mini-batch variant, where 1 < k < ` examples are used,
and (c) a standard gradient descent (GD) one, where the whole set (k = `) of the
training examples contribute to the learning process. For the sake of training speed,
in our experiments we used a mini-batch SGD variant using a subset (of cardinality
approximately equal to the 1/10 of the original training set) for computing the loss
and its derivatives in each iteration.

4.3 Experiments

4.3.1 Application of KSVM-iGSU and RD-KSVM-iGSU to Video
Event Detection

Problem statement, video representation, and uncertainty

As discussed in the previous chapter, high-level video event detection is about deciding
whether a certain video depicts a given event or not. A typical high-level (or complex)
event is an interaction between humans, or between humans and physical objects [53].
Similarly to the previous chapter (see Sect. 3.5.6), for our experiments two keyframes
per second are extracted at regular time intervals from each video. Each keyframe
is represented using the last hidden layer of a pre-trained Deep Convolutional Neural
Network (DCNN). More specifically, a 16-layer pre-trained deep ConvNet network
provided in [98] is used. This network had been trained on the ImageNet data [25],
providing scores for 1000 ImageNet concepts; thus, each keyframe has a 1000-element
vector representation. Then, the typical procedure followed in state-of-the-art event
detection systems includes the computation of a video-level representation for each
video by taking the average of the corresponding keyframe-level representations [123,
39, 18, 13].
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Moreover, we estimated the uncertainty of each training video similarly to Sect. 3.5.6.
That is, let X be a set of l annotated random vectors representing the aforementioned
video-level model vectors. We assume that each random vector is distributed normally;
i.e., for the random vector representing the i-th video, Xi, we have Xi ∼ N (xi,Σi).
Also, for each random vector Xi, a number, Ni, of observations, {xti ∈ Rn : t =
1, . . . , Ni} is available; these are the keyframe-level model vectors that have been
computed. Then, the mean vector and the covariance matrix of Xi are computed
respectively as follows

xi =
1

Ni

Ni∑
t=1

xti, Σi =

∑Ni
t=1(xti − xi)(x

t
i − xi)

>

Ni − 1
. (4.12)

Now, due to the assumption for isotropic covariance matrices, we approximate the
above covariance matrices as multiples of the identity matrix, i.e. Σ̂i = σ2

i In by

minimizing the squared Frobenious norm of the difference Σi − Σ̂i with respect to σ2
i .

It can be shown (by using simple matrix algebra [37]) that for this it suffices to set σ2
i

equal to the mean value of the elements of the main diagonal of Σi.

Dataset and evaluation measures

Similarly to Sect. 3.5.6, the proposed algorithms are tested on a subset of the large
video dataset of the TRECVID Multimedia Event Detection (MED) 2014 benchmark-
ing activity [84]. Similarly to our previous works [109, 110], we use only the training
portion of the TRECVID MED 2014 task dataset, which provides ground-truth in-
formation for 30 complex event classes, since for the corresponding evaluation set of
the original TRECVID task there is no ground-truth data available. Hereafter, we
refer to the aforementioned ground-truth-annotated dataset as MED14 and we divide
it into a training subset, consisting of 50 positive and 25 related (near-miss) samples
per event class, together with 2496 background samples (i.e. videos that are negative
examples for all the event classes), and an evaluation subset consisting of approx-
imately 50 positive and 25 related samples per event class, along with another 2496
background samples.

For assessing the detection performance of each trained event detector, the average
precision (AP) [88] measure is utilized, while for measuring the detection performance
of a classifier across all the event classes we use the mean average precision (MAP), as
is typically the case in the video event detection literature, e.g. [34, 84, 108].

Experimental results and comparisons

The proposed KSVM-iGSU and RD-KSVM-iGSU are compared to standard kernel
SVM (KSVM), LSVM-iGSU [110] and RD-KSVM [108]. We note here that for the
problem of video event detection (and especially when only a few positive training
samples are available), kernel SVM is the state-of-the-art approach [18, 13], while, when
also a few related samples are available, RD-KSVM leads to state-of-the-art detection
performance [108]. We experimented on the problem of learning from 10 positive
examples per each event class, together with 5 related samples, that are drawn from the
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set of 25 related samples provided for each event class following the method presented
in [108]; i.e., the 5 nearest to the median of all 25 related samples were kept for training
both RD-KSVM and RD-SVM-iGSU. Also, we randomly chose 70 negative samples for
each event class, while we repeated each experiment 10 times. That is, for each different
experimental scenario, the obtained performance of each classifier (KSVM, RD-KSVM,
LSVM-iGSU, KSVM-iGSU, and RD-SVM-iGSU) is averaged over 10 iterations, for
each of which 10 positive samples have been randomly selected from the pool of 50
positive samples that are available in our training dataset for each target event class.

For all the above experimental scenarios where a kernel classifier is used, the radial
basis function (RBF) kernel has been used. Training parameters (C for LSVM-iGSU;
C, γ for KSVM, KSVM-iGSU; and C, γ, and c for RD-KSVM, RD-KSVM-iGSU)
are obtained via cross-validation. For C, γ, a 10-fold cross-validation procedure (grid
search) is performed with C, γ being searched in the range {2−16, 2−15, . . . , 22, 23}. For
c, an approach similar to that presented in [108] is followed. That is, related samples
are initially treated as true positive and true negative ones (in two separate cross-
validation processes) and C, γ are optimized as described above; then, by examining
the minimum cross-validation errors of the two above processes, we automatically
choose whether to treat the related samples as weighted positive or weighted negative
ones, and also fix the value of C to the corresponding optimal value. Using this C, we
proceed with a new cross-validation process (again grid search) for finding the optimal
γ, c pair (where c is searched in the range [0.01, 1.00] with a step of 0.05).

Table 5.1 shows the performance of the proposed KSVM-iGSU and RD-KSVM-
iGSU, compared to LSVM-iGSU [110], the standard KSVM, and the RD-KSVM [108],
respectively, in terms of average precision (AP), for each target event, and mean AP
(MAP), across all target events. Bold-faced values indicate the best performance for
each event class. We can see that LSVM-iGSU, whose improved performance over the
standard linear SVM was studied extensively in [110], cannot outperform the kernel
methods that are typically used for the video event detection problem, achieving a
MAP of 0.1761. Without using any related samples, KSVM-iGSU that takes into
account the input uncertainty, outperformed the standard kernel SVM for 25 out of
30 target event classes, achieving a MAP of 0.2527 in comparison to KSVM’s 0.2128
(relative boost of 18.75%). Moreover, when related samples were used for training,
the proposed RD-KSVM-iGSU outperformed the baseline RD-KSVM for 27 out of
30 target event classes, achieving a MAP of 0.2730, in comparison to RD-KSVM’s
0.2218 (i.e. a relative boost of 23.08%). This RD-KSVM-iGSU result also represents
a 8% relative improvement (MAP of 0.2730 versus 0.2527) in comparison to KSVM-
iGSU, which does not take advantage of related video samples during training. The
above results suggest that using uncertainty for training video event detectors leads
to improved results, while the additional exploitation of related samples can further
improve event detection performance.

Finally, in Fig. 4.1 we present indicative results of the proposed RD-KSVM-iGSU in
comparison with the baseline RD-KSVM [108] for four event classes, showing the top-5
videos each classifier retrieved. Green borders around frames indicate correct detection
results, while red ones indicate false detection. These indicative results illustrate the
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Event
Class

LSVM-iGSU
(see Chap. 3)

KSVM
(e.g. [39, 18])

KSVM-
iGSU

(proposed)

RD-KSVM
[108]

RD-KSVM-
iGSU

(proposed)

E021 0.1741 0.1763 0.1923 0.1823 0.2167
E022 0.1847 0.1903 0.2495 0.2009 0.2604
E023 0.4832 0.5665 0.6361 0.5435 0.6432
E024 0.0536 0.0482 0.0667 0.0489 0.0549
E025 0.0117 0.0210 0.0257 0.0200 0.0287
E026 0.1002 0.1388 0.1530 0.1385 0.1701
E027 0.1600 0.2882 0.4162 0.2899 0.4002
E028 0.2030 0.2234 0.2338 0.2250 0.2495
E029 0.2394 0.2321 0.2948 0.2521 0.3106
E030 0.1612 0.2464 0.2220 0.2398 0.2451
E031 0.4911 0.4595 0.6122 0.4762 0.6497
E032 0.0706 0.1278 0.1490 0.1301 0.1729
E033 0.2217 0.3170 0.3731 0.3265 0.3971
E034 0.1658 0.2129 0.3302 0.2231 0.6541
E035 0.2331 0.2650 0.3580 0.2874 0.3771
E036 0.1753 0.1897 0.2139 0.1923 0.2230
E037 0.2454 0.2928 0.3325 0.3133 0.3569
E038 0.0745 0.1127 0.1231 0.1187 0.1259
E039 0.2161 0.2531 0.3990 0.3294 0.3986
E040 0.5809 0.3205 0.3157 0.3095 0.3021
E041 0.0489 0.1589 0.2166 0.1782 0.2254
E042 0.1021 0.1358 0.1787 0.1532 0.1799
E043 0.0967 0.1568 0.2037 0.1890 0.2101
E044 0.0732 0.2697 0.2087 0.2543 0.1968
E045 0.1307 0.2315 0.2517 0.2385 0.2786
E046 0.1952 0.2457 0.2668 0.2412 0.2721
E047 0.0531 0.0837 0.1796 0.1187 0.1865
E048 0.0672 0.0642 0.0672 0.0654 0.0674
E049 0.0641 0.1250 0.1245 0.1189 0.1329
E050 0.2076 0.2321 0.1867 0.2489 0.2039

MAP 0.1761 0.2128 0.2527 0.2218 0.2730

Table 4.1: Evaluation of event detection approaches on the MED14 dataset.

practical importance of the AP and MAP differences between these two methods that
are observed in Table 5.1.

4.3.2 Application of KSVM-iGSU and RD-KSVM-iGSU to Video
Aesthetic Quality Assessment

Problem statement, video representation, and uncertainty

Video aesthetic quality assessment is about the automatic assessment of a given video’s
aesthetic value and the corresponding ranking of the videos within a dataset, such that
videos of higher aesthetic value can be ranked higher.

For video aesthetic quality assessment, exploiting both static and motion inform-
ation is important. Most of the existing works in video aesthetic quality assessment
borrow rules from photography and cinematography in order to represent the videos.
Typically, each video is divided into its shots or it is sampled such that a set of key-
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Figure 4.1: Indicative results (top-5 returned shots) for comparing RD-KSVM-iGSU
with RD-KSVM, for four event classes.

frames are extracted. Then a set of photo- and motion-based descriptors are applied to
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each keyframe and the resulting keyframe-level representations are averaged in order
to obtain a final video-level representation.

For our experiments, similarly to several works in literature, initially each video is
divided into its shots using the shot detection method of [3]. Then, for each video,
we estimate the mean duration of its shots, and, considering that the shot transitions
can be either abrupt or gradual, we estimate for each of these transition types their
duration as a percentage of the whole video’s duration. This results in a 3-element
video-level vector.

Subsequently, one keyframe per second is extracted from the original raw video se-
quence (irrespective of shot boundaries), and photo- and motion- based features are
extracted for each one of them. Photo-based features include the simplicity, colorful-
ness, sharpness, pattern and overall aesthetic quality values, which are extracted based
on the still-image aesthetic quality assessment method proposed in [78]. Motion-based
features, adopted from [122], include: a) a measure of similarity between successive
frames (cross-correlation between these frames), b) a measure of the diversity of mo-
tion directions (motion direction entropy), c) a measure of the stability of the camera
during the capturing process (hand-shaking), and d) a measure which can distinguish
the difference between three categories of shots: focused shots, panorama shots and
static shots (shooting type). The above result in a 44-element keyframe-level fea-
ture vector. Concatenating with it the video-level feature vector, we end up with a
47-element vector as the final representation for each keyframe.

In contrast to other state-of-the-art approaches, which merely take the average of the
aforementioned keyframe-level video representations in order to obtain video-level ones,
we treat the keyframe-level vectors as observations of the input Gaussian distributions
that describe the training videos. That is, let X be a set of l annotated random vectors
representing the video-level feature vectors. We assume that each random vector is
distributed normally; i.e., for the random vector representing the i-th video, Xi, we
have Xi ∼ N (xi,Σi). Also, for each random vector Xi, a number, Ni, of observations,
{xti ∈ Rn : t = 1, . . . , Ni} is available; these are the keyframe-level feature vectors that
have been computed. Then, the mean vector and the covariance matrix of Xi are
computed as in the case of video event detection (see Sect. 4.3.1) using Eq. (4.12).
Then, again similarly to Sect. 4.3.1, due to the assumption for isotropic covariance
matrices, we approximate the above covariance matrices as multiples of the identity
matrix, i.e. Σ̂i = σ2

i In, setting σ2
i equal to the mean value of the elements of the main

diagonal of Σi.

Dataset and evaluation measures

Existing datasets for VAQ assessment, e.g., [122, 38], contain only very short video
segments (e.g., < 60 seconds) or segments that are extracted from professionally-
produced videos (e.g., Hollywood movies), thus not being sufficiently representative
of the user-generated content found in social platforms such as YouTube. We aim to
perform video aesthetic quality assessment under conditions that are as close to real-life
scenarios as possible, and for this reason we introduce a new video dataset that consists
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of user-created videos, capturing moments of everyday life, such as excursions, school
concerts, and training processes. We downloaded from YouTube 700 videos covering a
variety of categories, such as outdoor activities, do it yourself videos, make up tutorials,
lectures, and home-made video, licensed under Creative Commons Attribution [1]. The
duration of each of these videos ranges from 1 to 6 minutes.

Subsequently, we conducted an annotation process that involved 12 annotators
watching and evaluating the aesthetic value of these videos by assigning binary aes-
thetic quality ratings; 1 being assigned to videos of high aesthetic quality and 0 to
videos of low aesthetic quality. Each video was assessed by 5 different annotators.
Before the annotation process, the annotators watched some indicative examples of
videos of high and low aesthetic quality, and were instructed to remain as uninflu-
enced as possible by the video’s semantics. The final aesthetic score of each annotated
video was calculated as the median of the annotators’ individual scores, while the av-
erage of those annotators’ individual scores was also preserved such that the videos
can be distinguished into two main categories, those that were annotated as of high or
low aesthetic quality by all annotators, and those for which not all annotators were in
agreement. As a result of the annotation process, 350 videos are rated as being of high
aesthetic quality and another 350 as being of low aesthetic quality. Indicative frames
of such videos are shown in Fig. 4.2. We call this dataset CERTH-ITI-VAQ700 and
make it publicly available for research purposes4.

In our experiments, the above dataset is randomly split into a training subset (50%)
and an evaluation subset (50%), each maintaining a positive-negative ratio of 1:1. That
is, each of the training and evaluation subsets includes 175 positive (high aesthetic)
and 175 negative (low aesthetic) video examples. As discussed in section 4.3.2, for
video representation, 1 keyframe per second was extracted at regular time intervals
from each video, and each keyframe was represented using the proposed photo- and
motion-based features.

Since the problem of video aesthetic quality assessment can be naturally seen as a
retrieval application, where a user queries for videos of high aesthetic quality within a
dataset, for assessing the performance of our method we use (similarly to Sect. 4.3.1 for
the event detection problem) the average precision (AP) [88], as well as the precision
and the recall, which are measures that are typically used in the VAQ assessment
literature [78, 122, 82, 121, 76].

Experimental results and comparisons

The proposed KSVM-iGSU and Relevance Degree KSVM-iGSU (RD-KSVM-iGSU)
are tested and compared to the standard linear SVM (LSVM), the standard kernel
SVM (KSVM), the linear LSVM-iGSU, and the Relevance Degree Kernel SVM (RD-
KSVM). Linear and kernel SVMs are the state-of-the-art classifier for the problem
of VAQ assessment [78, 122, 82, 121, 81]. For all kernel-based classifiers, the radial
basis function (RBF) kernel was used. Training parameters λ, γ were obtained via

4Our video aesthetic quality assessment dataset and the corresponding ground-truth annotation
are publicly available at http://mklab.iti.gr/project/certh-iti-vaq700-dataset.
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: Indicative examples of videos of high (a,b,c) and low (d,e,f) aesthetic value,
available in our dataset.

Table 4.2: Performance of the proposed methods compared to the standard LSVM,
KSVM, and RD-KSVM in terms of average precision using CERTH-ITI-VAQ700 data-
set.

LSVM
(e.g. [10])

LSVM-
iGSU

(see Chap. 3)

KSVM
(e.g. [122, 82, 121])

KSVM-
iGSU

(proposed)

RD-
KSVM
[108]

RD-
KSVM-iGSU
(proposed)

0.6335 0.6889 0.6325 0.7084 0.6415 0.7117

a 3-fold cross-validation procedure (grid search) with λ being searched in the range
{2−4, 2−3, . . . , 26, 27} and γ in the range {2−7, 2−6, . . . , 23, 24}. Especially for the cases
of RD-KSVM and RD-KSVM-iGSU, the videos of the training set that were not annot-
ated with the same label by all the annotators, were assigned a relevance degree c that
was optimized by a cross-validation procedure (line search) with c being searched in
the range {0.05, 0.10, . . . , 0.95, 1.00}. In the latter cross-validation process, the values
of λ and γ were set to the optimal values found in the cases of KSVM and KSVM-
iGSU, respectively, i.e., where all samples were used with relevance degree equal to the
unity. Each of the above experiments was repeated 50 times using different random
training/evaluation subsets, similarly to [78].

Table 4.2 shows the average performance of KSVM-iGSU and RD-KSVM-iGSU
compared to the standard LSVM, KSVM, LSVM-iGSU, and RD-KSVM in terms of
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Figure 4.3: Precision-Recall curves for the proposed KSVM-iGSU and RD-KSVM-
iGSU, compared to the state-of-the-art LSVM, KSVM, RD-KSVM, and LSVM-iGSU
methods, on the CERTH-ITI-VAQ700 dataset.

average precision. We see that the proposed learning methods lead to better VAQ
assessment results compared to the state-of-the-art learning approaches. Specifically,
introducing uncertainty leads to AP being increased from 0.6325 (KSVM) to 0.7084
(KSVM-iGSU) – a relative boost of 12% – while also exploiting information about
the confidence of the training data ground-truth labels leads to AP being increased
from 0.6415 (RD-KSVM) to 0.7117 – a relative boost of 11%. The kernelization of our
previous learning method LSVM-iGSU, which had not been used for VAQ assessment
in [110], also leads to a moderate AP increase from 0.6889 (LSVM-iGSU) to 0.7084
(KSVM-iGSU) or 0.7117 (RD-KSVM-iGSU) – a relative boost of up to 3.3%.

Finally, Fig. 4.3 shows the recall-precision curves of the proposed methods (KSVM-
iGSU and RD-KSVM-iGSU) and standard LSVM, KSVM, LSVM-iGSU [110], and RD-
KSVM [108]. Again, we observe the superiority of RD-KSVM-iGSU and KSVM-iGSU
over their linear counterpart, LSVM-iGSU, and even greater performance differences
between them and LSVM, KSVM, and RD-KSVM.

4.4 Conclusions

Two new learning methods were proposed in this paper, building on the linear SVM-
GSU (see Chapter 3), which is a linear classifier that takes input uncertainty into
consideration. The first proposed method (KSVM-iGSU) results in non-linear de-
cision boundaries, while the second one (RD-KSVM-iGSU) additionally takes into
account the confidence in the ground-truth labels of the training data. We applied
the proposed methods to two challenging problems of video understanding and index-
ing: video event detection and video aesthetic quality assessment. For video event
detection, we experimented on the challenging TRECVID MED 2014 dataset, using
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a limited number of positive and related samples for training. Another challenging
video dataset, the CERTH-ITI-VAQ700, was used for experimenting on video aes-
thetic quality assessment. The experimental results of our methods show considerable
performance improvement in comparison to the state-of-the-art learning methods that
are used in the literature for the video event detection and aesthetic quality assessment
problems.
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Chapter 5

Exploiting Uncertainty in Deep
Convolutional Neural Networks
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In this chapter, we will investigate the potential use of the ideas presented in the
previous chapters under the Deep Convolutional Neural Networks (DCNNs) frame-
work. DCNNs, a class of deep feed-forward artificial neural networks, use a variation
of multi-layer perceptrons, and have been designed to require minimal preprocessing,
compared to other image classification algorithms. Deep Convolutional Neural Net-
works (DCNNs) have achieved state-of-the-art performance on various Computer Vis-
ion tasks, such as image classification [98, 44, 124]. Typical architectures comprise of
a set of layers implementing filtering and pooling operations, and a final classification
layer implementing a softmax operation. In the last years, research has focused mainly
on the architectural choices, as well, the elementary processing units (e.g., residual net-
works, non-linear filters, inception architectures [44, 124, 69, 102, 118, 128]).

While there has been significant research in the design of the architecture and of the
filters in the convolution layers, there is less work around the pooling layers. Pooling
layers, typically implemented as max and mean filters, are aimed at reducing the di-
mensionality of the input and producing feature maps that are robust to small spatial
tranformations. This has proven to be extremely effective and as a result, pooling
layers, are included in all state-of-the-art architectures such the WRN [124], Incep-
tion [103] and VGG [98]. Typically, they are introduced towards the last stages of
the networks, and almost invariably before the final classification layer. Despite their
success, their use has been pointedly criticised by Hinton [91], among others, since in-
formation about the exact spatial location of the activation maps is lost during pooling.
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Figure 5.1: A typical deep convolutional neural network architecture for image clas-
sification: input batch of images are passed through a set of convolution layers, and
before the classification stage (softmax + cross-entropy), the output of the last convo-
lution layer is passed through an averaging pooling layers called Global Pooling Layer
(GPL).

Some works model explicitly geometric transformations, (e.g., Jaderberg et al. [49]),
however this is typically done at the early layers and comes at a computational cost.

In addition, while the choice of the loss function has been an active problem be-
fore the Deep Learning (DL) era, typically classification DCNN use the cross-entropy
loss after a softmax layer [16]. Recently, the DL community has investigated on in-
corporating into the DL framework losses that were typically used in other learning
paradigms. Those losses are usually motivated by the specific problem domain in hand,
such the face recognition problem [113, 72]. Among them, some adopt a large-margin
loss function. For example, Liu et al. [73] proposed a generalized large-margin softmax
(L-Softmax) loss which explicitly encourages intra-class compactness and inter-class
separability between learned features. However, these works typically use prior know-
ledge about the problem domain (e.g., face recognition), for example by constraining
learned features to be discriminative on a hypersphere manifold where faces are as-
sumed to lie.

In this chapter we try to address the above issues by proposing a novel “uncertainty-
aware” maximum-margin loss function that is used to train the last two layers of the
network that implement an average pooling and a classification operation respect-
ively. Typical architectures that apply that averaging pooling operation before the
classification layer include most of the most competitive ones in recent years, such
as the AlexNet [62], VGG [98], Inception [103], ResNet [44], and Wide Residual Net-
work [124]. We propose, during training to not only compute the first-order statistics,
that is the mean that is calculated by the pooling layer, but also the second-order stat-
istics, that is the variance – clearly, those statistics are calculated in the area where the
mean pooling filter is applied. The means and the variances are used to model each
input example as a Gaussian distribution. That is, each input example is modeled as
a distinct Gaussian distribution. Then, at the classification layer, for each training
example, we compute the probability that it is misclassified and use this probability in
order to weight the squared hinge loss accordingly. The proposed method does not add
any further computational cost, and also does not affect the convergence, compared
to the standard approach.
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5.1 A typical CNN architecture for image classification

First, let us briefly review a typical (D)CNN architecture for the problem of image
classification. In Fig. 5.1, we illustrate such an architecture, which typically includes a
set of convolution layers (either using residual blocks or not), an average pooling layer
that is usually referred to as the Global Pooling Layer (GPL), and a classification
layer, which is typically implemented as a fully connected (FC) layer followed by the
softmax function and the cross-entropy loss function.

Since we are interested solely in the classification stage of a CNN, we will omit any
details concerning the exact architecture in hand; the latter could be substituted by
virtually any other architecture, so long as that the input to the classification layer
is the result of a pooling operation (see Fig. 5.1). This is the case for some of the
most successful networks used in recent years, such as the AlexNet [62], VGG [98],
Inception [103], ResNet [44], and Wide Residual Network [124].

Let us focus on the last layer of the network where the classification process is
realized. The input to this layer is the result of an averaging pooling layer (Global
Pooling Layer – GPL) that transforms its input (a 4-dimensional tensor – the output
of the last convolution layer) to a 2-dimensional matrix, which along with the ground
truth labels, forms the training set of the network’s classifier.

In Fig. 5.2 we illustrate the Global Pooling Layer (GPL) that is used in many
successful architectures (such as the WRN [124]). This layer receives as input a 4-
dimensional tensor of size n × B × ρ × ρ, that is, the output of the last convolution
layer, and outputs a 2-dimensional matrix of size n × B, where B denotes the batch
size, n the number of channels (i.e., the number of filters used in the last convolution
layer), and ρ× ρ the size of the activation maps after the last convolution layer. That
is, the output of this layer, along with the corresponding ground truth labels, form the
training set of the classifier of the CNN. Each input datum (image), after the spatial
pooling layer, is represented by an n-dimensional feature vector, whose elements have
been computed by averaging the corresponding ρ×ρ blocks (see Fig. 5.2). The value of
ρ varies across different CNN architectures; for instance, in the case of the WRN [124]
it holds that ρ = 8, and thus each element of the feature vector of an input datum is
the mean of 64 values, while in the case of the AlexNet [62] architecture, ρ = 2 and
thus the mean of 4 values form each element of each feature vector.

As discussed above, the output of the average pooling layer feeds the classification
layer of the network. The latter is typically performed by an FC layer, which in the case
of a K-class classification problem, is described by a set of K linear classifiers. That
is, the classifier for the j-th class, is usually given as a hyperplane Hj : w>j x + bj = 0,
where x ∈ Rn denotes the feature representation of an input datum (i.e., an image
of the input batch), and wj ∈ Rn, bj ∈ R are the parameters of the hyperplane.
The parameters of the FC layer, thus, can be encapsulated in a weights matrix W =
(w1 · · ·wj · · ·wK) ∈ Rn×K and a bias terms vector b = (b1, . . . , bj , . . . , bK)> ∈ RK .

The standard approach followed in literature (e.g., in [62, 98, 103, 44, 124]) merely
uses the mean vectors for computing a set of scores corresponding to each class and

55



5.1. A typical CNN architecture for image classification

Figure 5.2: A typical average pooling layer (Global Pooling Layer – GPL) preceding
the classification layer of a CNN, and its modification so as we compute not only the
first-order statistics (means), but also the second-order statistics (variances). These
statistics are calculated in the area where the mean pooling filter is applied. The means
and the variances are used to model each input example as a Gaussian distribution.

then applies the softmax function [16] for transforming these scores in [0, 1] so as to
be interpreted as a-posteriori class membership probabilities. More specifically, the
feature representation of an input datum, x ∈ Rn, is assigned a score sj(x) with
respect to the j-th class, that is given by

sj(x) = w>j x + bj , j = 1, . . . ,K. (5.1)

Then, a prediction probability pj ∈ [0, 1] is computed with respect to the j-th class
using the softmax function as follows

pj(x) =
exp(sj)∑K
k=1 exp(sk)

j = 1, . . . ,K. (5.2)

Finally, the (categorical) cross-entropy function is used for computing the classi-
fication loss. That is, an arbitrary input datum x which has been assigned with a
prediction pj and is labeled with yj ∈ {±1} with respect to the j-th class, introduces
a loss of the form

Lj(x) = −
K∑
j=1

yj log(pj) , j = 1, . . . ,K. (5.3)

The total loss introduced by a training example x is computed by aggregating all
the individual losses, i.e., L(x) =

∑K
j=1 Lj(x).
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5.2. A maximum-margin classifier for CNNs

(a) (b) (c)

Figure 5.3: (a) Illustration of the squared hinge loss: a training datum x is misclassified

when dj(x) = 1− yj(w>j x + bj) > 0 introducing a loss equal to
(

1− yj(w>j x + bj)
)2

.

(b) When x ∼ N (µx,Σx), there is uncertainty in the position (value) of the training
example x. (c) Proposed approach: we weight the square of the expected value of dj(x)
by the probability that the training example x is misclassified, i.e., P (dj(x) > 0).

5.2 A maximum-margin classifier for CNNs

Following the discussion and utilizing the formulation that presented above, we will
now proceed to the substitution of the standard classification layer of a typical CNN,
i.e., an FC layer followed by softmax and cross-entropy, with a maximum-margin classi-
fier that uses the hinge loss function. This new classification layer is again implemented
as an FC layer, parametrized by a weights matrix W ∈ Rn×K and bias terms vector
b ∈ RK , similarly to the standard FC layer discusses above. However, instead of using
the softmax function that subsequently would feed the cross-entropy loss function, we
directly use the outputs of the FC layer and compute the squared hinge loss. That is,
if an input datum x (i.e., the n-dimensional feature representation that corresponds
to an input image), is annotated with a truth label yj ∈ {±1} with respect to the j-th
class, then the loss that it introduces (with respect to the j-th class) is given by

Lj(x) = max
(

0, 1− yj(w>j x + bj)
)2
. (5.4)

This is illustrated in Fig. 5.3a, where we show two input examples, x and x′ – the
former being misclassified and the latter being correctly classified with respect to the
j-th class.

The former example, x, introduces a loss equal to
(

1− yj(w>j x + bj)
)2

, since 1 −
yj(w

>
j x+bj) > 0, while the latter, x′, introduces a zero loss, since 1−yj(w>j x′+bj) < 0.

Similarly to the hinge loss function, the total loss introduced by a training example x
is computed by aggregating all the individual losses, i.e., L(x) =

∑K
j=1 Lj(x).
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5.3 Exploiting uncertainty in DCNN

Let us revisit the pooling operation (see Figs. 5.1 and 5.2), since this is the stage
where the training set, which subsequently feeds the classifier, is formed. As shown
in Fig. 5.2 and discussed in Sect. 5.1, each feature that forms a feature vector that
represents an input datum, is the result of an averaging operation over ρ2 values (in
the case of a WRN [124], ρ = 8 and thus each feature is the mean value of 64 values).
That is, if x is the n-dimensional feature vector of an arbitrary input datum, then it
is of the following form:

x = (x1, . . . , xj , . . . , xn)>,

where xj = 1
ρ2

∑ρ2

t=1 x
t
j , j = 1, . . . , n, xtj is the t-th element of the j-th ρ × ρ block.

Clearly, an amount of information is lost during such a process. This is illustrated
in Fig. 5.3b. In order to exploit this additional source of information, besides the
above mean values, we also compute the corresponding variances. As a result, each
n-dimensional feature vector that corresponds to an input datum is described by a
pair of a mean vector µx and a (diagonal) covariance matrix Σx.

We consider the input datum x as a random vector that follows a multi-variate Gaus-
sian distribution with given mean vector and covariance matrix, i.e., x ∼ N (µx,Σx).
A sample x drawn from that distribution that is annotated with a ground truth label
yj ∈ {±1} with respect to the j-th class introduces a loss that can be expressed as

Lj(x) = max
(

0, 1− yj(w>j x + bj)
)2
, j = 1, . . . ,K (5.5)

and is misclassified when 1− yj(w>j x + bj) > 0. Let us for notation brevity define:

dj(x) = 1− yj(w>j x + bj), j = 1, . . . ,K. (5.6)

Since x ∼ N (µx,Σx), then dj , which is a linear transformation of x, is also random
and, more specifically, it is a uni-variate Gaussian variable, with mean value and
variance that are given with respect to x’s respective moments. More specifically, the
mean value of dj(x), µdj , and its variance, σ2

dj
, are given respectively as

µdj = E[dj(x)] = 1− yj(w>j µx + bj), (5.7)

and
σ2
dj

= E
[(
dj(x)− µdj

)2]
= w>j Σxwj . (5.8)

Then, the probability that an input example x with label yj is misclassified, that is
the probability that dj(x) is positive, can be calculated as follows

P (dj(x) > 0) = 1− P
(
dj(x)− µdj

σdj
< −

µdj
σdj

)
= 1− P

(
z < −

µdj
σdj

)
, (5.9)

where z ∼ N (0, 1) is the standard uni-variate Gaussian variable. If Φ denotes the
CDF of z, it follows that

P (dj(x) > 0) = 1− Φ

(
−
µdj
σdj

)
=

1

2

1 + erf

 µdj√
2σ2

dj

 . (5.10)
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(a) (b) (c) (d)

Figure 5.4: Illustration of the proposed loss function. In cases (a) and (d), the proposed
loss is equal to the standard squared hinge loss. In (b) the proposed loss has a positive
value, in contrast to the standard squared hinge loss that is zero, while in (c) the
proposed loss is less than the standard squared hinge loss, since there is a probability
that the example lies on the opposite halfspace than the one its mean lies.

The above probability can serve as a degree of confidence that the input training
example at hand is misclassified (see Fig. 5.3c). Thus, instead of using the standard
squared hinge loss, we propose using the following loss function

Lj(x) = P (dj(x) > 0)µ2
dj

=
1

2

1 + erf

 µdj√
2σ2

dj
)

µ2
dj
. (5.11)

It is worth noting that, the above loss degenerates to the standard squared hinge
loss when the input uncertainty is zero. Furthermore, in Fig. 5.4 we illustrate how
the proposed loss behaves under Gaussian input uncertainty and its relation to the
standard squared hinge loss.

5.4 Experimental results

We evaluate the proposed method on the well-known CIFAR-10 and CIFAR-100 data-
sets [61] for the problem of image classification using an experimental setup that is
similar to [124]. CIFAR-10 and CIFAR-100 datasets consist of 32 × 32 color images
drawn from 10 and 100 classes that are split into 50000 train and 10000 test images.
For data augmentation we do horizontal flips and take random crops from images
padded by 4 pixels on either side, filling missing pixels with reflections of the ori-
ginal image. Our experiments are based on the ResNet architecture proposed in [124]
that uses pre-activation residual blocks – we use this as a baseline. We preprocessed
the input images by simple mean/std normalization so that we can directly compare
with [124].

We compared the proposed method in terms of test error both to the baseline
WRN [124] that uses the cross-entropy loss, and to a variant of WRN that uses the
squared hinge loss (WRN+SVM). We experimented using three different variants of
the WRN architecture in terms of depth and width, similarly to [124]. That is, for each
of the above loss functions, we trained a 52-1, a 16-4, and a 28-10 network1. We show

1Following the nomenclature of [124], in a n-k WRN, n defines the depth parameter, and k defines
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Table 5.1: Comparison between our proposed loss function, the squared hinge loss
(WRN+SVM), and the standard cross-entropy (WRN) in terms of test error, using
the Wide Residual Network architecture [124] for various depth and width parameters.

CIFAR-10

depth width WRN WRN+SVM Ours

52 1 6.28 6.15 6.07

16 4 4.81 4.60 4.23

28 10 3.89 4.05 3.92

CIFAR-100

depth width WRN WRN+SVM Ours

52 1 29.65 29.45 29.32

16 4 23.39 22.80 22.43

28 10 18.87 18.73 18.62

the results in Table 5.1. Each reported result is the median of five runs, as in [124].
In CIFAR-10, our method outperforms both the baseline WRN (cross-entropy loss)
and the WRN+SVM (squared hinge loss) significantly2 in the case of the 16-4 network
architecture, while in the cases of 52-1 and 28-10 architectures the differences are not
statistically significant. For CIFAR-100, our method achieved better results for all
network architectures – in the case of 16-4 the differences are statistically significant.

The 52-1 network has approximately 760K parameters and is the “thinnest” network
architecture we experimented with. As a consequence, the dimensionality of the input
space of the classification layers is relatively low (64). This may explain why the SVM-
based classification layers do not exhibit large differences in comparison to the softmax
classification layers – it is generally acknowledged that linear SVM works better at high
dimensional input spaces. At the other end of the spectrum, that is the 28-10 network,
despite the fact that the dimensionality of the input space of the classification layer is
higher (640), it also contains more than 36.5M parameters, and thus modifying solely
the last layer (about 6500 parameters) does not seem to have a considerable impact
on the overall network’s classification performance. However, in the case of the 16-4
network that contains about 2.7M parameters and the dimensionality of the input
space of the classification layer is 256, that is, it is a moderately deep and wide one,
it seems that exploiting uncertainty can indeed improve the classification performance
significantly. Such architectures are typically used by the research community [19, 47],
since deeper and wider architectures (e.g., the WRN 28-10) are not feasible in large-
scale datasets, such as the ImageNet.

Finally, in Table 5.2 we provide experimental results for the WRN 16-4 network,
similarly to [117]. We show the results of our implementation (for the baseline WRN
using the cross-entropy loss, and the WRN with the squared hinge loss and the WRN

the width parameter.
2We used the two sample t-test [22].
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Table 5.2: Comparison between our proposed loss function (Ours), the squared hinge
loss (WRN+SVM), the standard cross-entropy (WRN), and GNPP [117] in terms of
test error, using the Wide Residual Network 16-4 architecture [124].

Our implementation As implemented in [117]

WRN WRN+SVM Ours WRN without GNPP WRN with GNPP

CIFAR-10

4.81 4.60 4.23 5.54 5.31

CIFAR-100

23.39 22.80 22.43 25.52 25.01

with the proposed one), as well as of the implementation used in [117] for the same
network with or without the GNPP layer.

5.5 Conclusion

In this chapter we investigated the introduction and exploitation of uncertainty into
the Deep Convolutional Neural Network learning paradigm. More specifically, we
proposed a method for improving a CNN’s classification performance by a) substituting
the classification layer of the network (i.e., softmax followed by the cross-entropy loss
function) with a maximum-margin classifier that uses the squared hinge loss, and b)
by additionally exploiting the uncertainty information derived from the pooling layer
of the network using an appropriate maximum-margin loss function. The proposed
method can be applied to any architecture that includes a pooling operation before
the classification stage, such as [62, 98, 103, 44, 124]. In this chapter, we modified
the WRN architecture by substituting the loss function at the classification layer (last
layer) of the network, and derived two variants using a) the standard squared hinge
loss, and b) a variant of the squared hinge loss that takes the uncertainty introduced
by the pooling layer into consideration. The latter, i.e. the uncertainty, is calculated
as the (diagonal) variance within the mean filter’s extend at the pooling layer, that
is, at training time, we keep track not only of the first-order statistics as calculated
by the pooling layer (i.e., the mean of the values within the mean-filter’s receptive
field), but also the second-order statistics (i.e., the variances of the values within the
mean-filter’s receptive field). We modified the loss function so as the variance of each
input datum is taken into account during training and experimented on two popular
datasets for image classification, i.e., CIFAR-10 and CIFAR-100, and three standard
WRN architectures. Our experimental results show that exploiting uncertainty can
improve testing accuracy of moderately deep and wide networks.
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Chapter 6

Conclusions

In this thesis we studied the problem of supervised learning under input uncertainty
using the maximum-margin SVM paradigm. We started by introducing the linear vari-
ant of our classifier and continued with its kernelization using the RBF kernel function.
Finally, we investigated the introduction and exploitation of input uncertainty in the
DCNN learning framework.

We started by defining the problem of supervised learning under input uncertainty,
which we studied in this thesis, by defining what an uncertain training datum is. That
is, in this thesis an uncertain training datum is an annotated multi-variate Gaussian
distribution with given moments; i.e., with given mean vector and covariance matrix.
Each training datum, or training example, can be a distinct Gaussian distribution; that
is; uncertainty characterizes each training example separately, not a whole class, for in-
stance. For modeling input uncertainty we chose a well-studied and ubiquitously-used
distribution, i.e., the multi-variate Gaussian distribution, for a plethora of reasons such
as the facts that a Gaussian distribution a) is expected to serve as a good model, since
it is the limit of the sum of a large number of unknown (but reasonably bounded) uncer-
tainty sources (Central Limit Theorem), b) IT is completely described by its first- and
second-order statistics, which is absent in other random distributions, c) it provides
greater convenience (in terms of mathematical manipulation) compared to other, even
conceptually simpler, distributions (e.g., multi-variate uniform distribution), and fi-
nally d) compared to other distributions that are inherently isotropic over the input
dimensions, or rigid over input dimensions, a Gaussian distribution provides flexibility
in modeling anisotropic uncertainty for arbitrary number of input dimensions. That
is, one can model the anisotropic uncertainty solely on a set of input dimensions of
interest. That is, one can introduce constraints on the covariance matrices, such as
them being diagonal, block diagonal, or multiples of the identity matrix. In this way
one can model different types of uncertainty.

Then, we used a popular maximum-margin classifier, i.e., the standard linear SVM
along with the hinge loss function, as our baseline learning algorithm, and modified it
so as the loss introduced by a training example takes its covariance information into
consideration. More specifically, we optimized for the soft margin using the expected
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value of the hinge loss. This essentially means that the loss that is potentially intro-
duced by a training example is measured not solely using a single feature vector (e.g.,
the mean feature vector of the input Gaussian), but rather using the knowledge of
the discrepancy of the respective distribution, i.e., its (co)variance. For this purpose,
we provided an analytical evaluation (in Appendix A) of the proposed loss in closed
form and we proved (in Appendix B) that it is convex with respect to the optimiz-
ation parameters. As result, we were allowed to obtain the global optimal solution
using an appropriate iterative gradient descent algorithm that is linear with respect
to the number training data. For this purpose, we modified and used a popular SGD
algorithm, namely the Pegasos algorithm. We also proposed a linear subspace learn-
ing approach in order to address the situation where most of the mass of the training
Gaussians lie in a low dimensional manifold that can be different for each Gaussian
and subsequently solve the problem in lower-dimensional spaces.

It is worth noting that, using the proposed classifier, one would arrive at the same
decision border with the classical SVM trained on a dataset containing samples drawn
from the Gaussians in question, as the number of samples tend to infinity. However, we
showed that as the dimensionality of the input space increases, one needs to generate
more samples from the Gaussians in order to preserve a desired approximation of the
loss and, thus, of the optimal decision function. We also showed that for spaces of high
dimensionality the number of samples needed can be prohibitively high. In addition,
we noted that our method degenerates to a classical SVM in the case that all of the
Gaussians are isotropic with a variance that tends to zero.

Next, we proceeded to the experimental evaluation of the proposed linear classifier on
five publicly available datasets; namely, the MNIST dataset of handwritten digits, the
WDBC, the DEAP for emotion analysis, the TV News Commercial Detection dataset
and TRECVID MED for the problem of video event detection. For each of the above
datasets and problems, either uncertainty information (e.g., variance for each example
and for all or some of the input space dimensions) was part of the original dataset,
or a method for modeling and estimating the uncertainty of each training example
was proposed. As shown in the experiments, SVM-GSU efficiently takes input uncer-
tainty into consideration and achieves better detection or classification performance
than standard SVM, previous SVM extensions that model uncertainty isotropically,
and other state of the art methods. For the important task of the modeling or the
estimation of input uncertainty, we showed that it is a domain- and/or dataset-specific
problem, and in this respect, similarly to all of the other methods in the literature that
model/use uncertainties, we did not offer a definitive answer on how this can or should
be done on any existing dataset. We addressed this important issue by providing a
number of methodologies that mainly depend on the specific problems, but can also
be applied in similar problems/datasets.

More specifically, in contrast to previous works that model uncertainty in the SVM
framework either by considering isotropic noise or by using expensive sampling schemes
to approximate their loss functions, our formulation allows for full covariance matrices
that can be different for each example. This allows dealing, among others, with cases
where the uncertainty of only a few examples, and/or the uncertainty along only a few
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of their dimensions, is known or modeled. In the experimental results section we show
several real-world problems in which such modeling is beneficial. More specifically,
we show cases, in which the variances along (some) of the dimensions are part of the
dataset – this includes medical data where both the means and the variances of several
measurements are reported, and large scale video datasets, where the means and the
variances of some of the features that are extracted at several time instances in the
video in question are reported. We then show a case in which means and variances
are a by-product of the feature extraction method, namely the Welch method for
extracting periodograms from temporal EEG data. And finally, we show a case in
which, for an image dataset (MNIST) we model the distribution of images under small
geometric transforms as Gaussians, using a first-order Taylor approximation to arrive
in an analytic form. In particular, the Taylor expansion method (Appendix B) that
is behind the modeling used in Sect. 3.5.2, has been used to model the propagation of
uncertainties due to a feature extraction process in other domains; for instance, in [26]
(Sect. II.B) this is used to model as Gaussian the uncertainty in the estimation of
illumination invariant image derivatives.

In the second main chapter of the thesis, we moved on to the extension of the
above linear classifier so as to result in non-linear boundaries. For this, we recast
the optimization problem of the linear SVM-GSU into a variational calculus problem;
that is, the original optimization problem was rewritten as a problem of minimizing
an equivalent (objective) functional, and, thus, instead of looking for a separating
hyperplane (i.e., its parameters) in the original input feature space, we looked for
a minimizer function that lives in a richer, higher-dimensional (in our case infinite-
dimensional) space. We proved that the above functional is such that its minimizer can
be represented as a finite linear combination of kernel products (in our case using the
RBF kernel function). Additionally, due to the convexity of our objective functional,
we could efficiently solve the problem using an appropriate SGD algorithm (i.e., the
Pegasos algorithm, similarly to the linear case).

Next, we combined our kernel classifier (i.e., KSVM-iGSU) with the previously pro-
posed Relevance Degree SVM (RD-SVM). In RD-SVM each training example is as-
sociated with a confidence value (called relevance degree) indicating the degree of
relevance of the respective training example with the class that it is related. This is
essentially a method that handles uncertainty in the truth labels, and combined with
the proposed KSVM-iGSU provide a methodology for handling uncertainty both in
label and feature representation.

We applied the above kernel classifiers in two challenging multimedia understanding
problems, namely the video event detection and aesthetic quality video assessment.
Especially in the visual understanding domain, the majority of the learning methods
employed in video understanding and indexing applications do not address the uncer-
tainty in the training data explicitly. That is, firstly, each training example is assumed
to be described by a fixed position in some vector space (feature representation). How-
ever, such an approach does not account for the fact that the underlying process of
extracting the feature representation may be imperfect or noisy, hence introducing
some degree of uncertainty to the generated features. Secondly, each training example
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is typically annotated with a binary ground-truth label. This is essentially the result
of a quantization process, where different pieces of data that may be perfect or not-
so-perfect examples of a class have to be assigned a binary label, and this inevitably
introduces some form of quantization error. For instance, in some cases the annotation
process could naturally lead to three types of labels, i.e., positive, negative, and “near-
miss” or “related”, the latter expressing the fact that the example is closely related
with the positive class but does not meet the exact requirements for being character-
ized as a positive instance; yet, for training a binary classifier, these annotations need
to be subsequently quantized to just two classes: positive and negative. Similarly, in
many cases the ground-truth annotation of training data is carried out by a number of
experts who decide on the label of each given example, and a final binary assignment
of each sample to the positive or negative class is made by averaging and binarizing,
or aggregating in another similar way, the responses of the different annotators. In
both the above examples, the ground truth annotation process endows every binary
annotation with some level of confidence on it, but this is typically ignored in the
subsequent training of a binary classifier. In thesis, we address the above using the
proposed KSVM-iGSU and RD-KSVM-iGSU.

Finally, in the last main chapter of the thesis, we investigated the introduction
and exploitation of uncertainty into the Deep Convolutional Neural Network learning
paradigm. For this purpose we chose a state-of-the-art architecture, i.e., the Wide
Residual Network (WRN) that extends the previously proposed Residual Network
(ResNet) in an attempt to address the problem of high number of ResNet’s layers
(depth) that results in high training times. We modified the WRN architecture by
substituting the loss function at the classification layer (last layer) of the network,
where we used a) the standard squared hinge loss, in an attempt to resemble the
standard linear SVM classifier at the top of the network, and b) a variant of the
squared hinge loss that takes input uncertainty into consideration. For extracting the
information about the uncertainty at the input space of the classification layer, we
modified the averaging pooling operation that precedes the classifier and, besides a
mean vector per each input datum, we additionally computed a (diagonal) covariance
matrix. Thus, each input datum can be represented as a multi-variate distribution with
given mean and covariance. Under the assumption of Gaussian uncertainty, similarly
to the previous chapters, we modified the loss function so as the variance of each
input datum is taken into account during training. We experimented on two popular
datasets for image classification, i.e., CIFAR-10 and CIFAR-100, and three standard
WRN architectures, and we showed that exploiting uncertainty can improve testing
accuracy under moderate network depth and width conditions.
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Appendix A

On Gaussian-like integrals over
halfspaces

Theorem 1. Let X ∈ Rn be a random vector that follows the multivariate Gaussian
distribution with mean vector µ ∈ Rn and covariance matrix Σ ∈ Sn++, where Sn++

denotes the space of n× n symmetric positive definite matrices with real entries. The
probability density function of this distribution is given by fX : Rn → R,

fX(x) =
1

(2π)
n
2 |Σ|

1
2

exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
.

Moreover, let H be the hyperplane given by a>x + b = 0. H divides the Euclidean
n-dimensional space into two halfspaces, i.e., Ω± = {x ∈ Rn : a>x + b ≷ 0}, so that
Ω+ ∪ Ω− = Rn and Ω+ ∩ Ω− = ∅. Then, the integrals I± : Rn × R→ R, defined as

I±(a, b) ,
∫

Ω±

(a>x + b)fX(x) dx,

are given by

I±(a, b) =
dµ
2

[
1± erf

(
dµ
dΣ

)]
± dΣ

2
√
π

exp

(
−
d2
µ

d2
Σ

)
, (A.1)

where dµ = a>µ + b and dΣ =
√

2a>Σa.

Proof. We begin with the integral I+. In our approach we will need several coordinate
transforms. First, we start with a translation in order to get rid of the mean, x = y+µ.
Then

I+(a, b) =
1

(2π)
n
2 |Σ|

1
2

∫
Ω+

1

(a>y + a>µ + b) exp

(
−1

2
y>Σ−1y)

)
dy,

where Ω+
1 = {y ∈ Rn : a>y + a>µ + b ≥ 0}. Next, since Σ ∈ Sn++, there exist an

orthonormal matrix U and a diagonal matrix D with positive elements, i.e. the ei-
genvalues of Σ, such that Σ = U>DU . Thus, it holds that Σ−1 = (U>DU)−1 =
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U−1D−1(U>)−1 = U>D−1U . Then, by letting z = Uy and a1 = Ua, we have a>y =
a>(U−1U)y = a>U>Uz = a>1 z, and y>Σ−1y = y>(U>DU)−1y = (y>U>)D−1(Uy) =
(Uy)>D−1(Uy) = z>D−1z. Then

I+(a, b) =
1

(2π)
n
2 |Σ|

1
2

∫
Ω+

2

(a>1 z + a>µ + b) exp

(
−1

2
z>D−1z

)
dz,

where Ω+
2 = {z ∈ Rn : a>1 z + a>µ + b ≥ 0}, since for the Jacobian J = |U |, it holds

that |J | = 1. Now, in order to do rescaling, we set z = D
1
2 v and a2 = D

1
2 a1. Thus

z>D−1z = (D
1
2 v)>D−1(D

1
2 v) = v>(D

1
2D−1D

1
2 )v = v>v.

Moreover, a>1 z = a>1 (D
1
2 v) = (D

1
2 a1)>v = a>2 v. Also, it holds that |D|

1
2 = |Σ|

1
2 and

dz = |D
1
2 |dv = |Σ|

1
2 dv. Consequently,

I+(a, b) =
1

(2π)
n
2

∫
Ω+

3

(a>2 v + a>µ + b) exp

(
−1

2
v>v

)
dv,

where Ω+
3 = {v ∈ Rn : a>2 v + a>µ+ b ≥ 0}. Let B be an orthogonal matrix such that

Ba2 = ‖a2‖en, which also means that a2 = B>‖a2‖en. Moreover, let m = Bv. Then,
a>2 v = (B>‖a2‖en)>v = ‖a2‖e>n (Bv) = ‖a2‖e>nm. Moreover, v>v = v>(B−1B)v =
m>m. Then

I+(a, b) =
1√
2π

∫ +∞

c

(
‖a2‖t+ a>µ + b

)
exp

(
−1

2
t2
)

dt,

where c = −a>µ+b
‖a2‖ . Since ‖a2‖2 = a>Σa,

I+(a, b) =
1√
2π

∫ +∞

c

(√
a>Σat+ a>µ + b

)
exp

(
−1

2
t2
)

dt,

which is easily evaluated as (A.1). Following similar arguments as above, we arrive at
I−.
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Appendix B

On the convexity of the SVM-GSU
loss function

Let J be the objective function of (3.3). We will show that J is convex with respect
to the optimization variables, w and b, over Rn × R. First, as every norm is convex,
and every non-negative weighted sum preserves the convexity, it suffices to show that
L, as shown in (3.4), is convex with respect to w, b for all i = 1, . . . , l. We will prove
an associated theorem first, which we will use to prove the convexity of L, ∀i.

Theorem 2. Let f : Rn → R+ be a non-negative, real-valued function. Then, φ : Rd →
R, given by

φ(θ) =

∫
Rn

max
(

0, h(θ,x)
)
f(x) dx, (B.1)

is convex with respect to θ over Rd, if the function h is convex with respect to θ over
Rd.

Proof. Let λ ∈ [0, 1] and θ1,θ2 ∈ Rd. Then,

φ(λθ1 + (1− λ)θ2) =∫
Rn

max
(

0, h(λθ1 + (1− λ)θ2,x)f(x) dx

≤
∫
Rn

max
(

0, λh(θ1,x)
)
f(x) dx

+

∫
Rn

max
(

0, (1− λ)h(θ2,x)
)
f(x) dx,

since h is convex and for p, q, r ∈ R it holds that p ≤ q+ r ⇒ max(0, p) ≤ max(0, q) +
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max(0, r). Moreover, max(0, λp) = λmax(0, p), for λ ≥ 0, p ∈ R, and thus,

φ(λθ1 + (1− λ)θ2) ≤

λ

∫
Rn

max
(

0, h(θ1,x)
)
f(x) dx

+(1− λ)

∫
Rn

max
(

0, h(θ2,x)
)
f(x) dx

= λφ(θ1) + (1− λ)φ(θ2).

Consequently, φ is convex with respect to θ over Rd.

Using the results of the above theorem, by setting f(x) = fXi(x), which is a real-
valued, non-negative function (as a probability density function), and h(θ,x) = 1 −
yi(w

>x + b), which is convex with respect to θ = (w>, b)> over Rd ≡ Rn × R, L is
proven to be convex for all i. Consequently, the objective function J is convex. That
means that every local minimum of J is also a global one.
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Appendix C

Modeling the uncertainty of an
image

Theorem 3 (Multivariate Taylor’s Theorem). Let t = (t1, . . . , tn)> ∈ Rn and consider
a function f : Rn → R. Let a = (a1, . . . , an)> ∈ Rn and suppose that f is differentiable
(all first partial derivatives with respect to t1, . . . , tn exist) in an open ball B around a.
Then, the first-order case of Taylor’s theorem states that:

If f is differentiable on an open ball B around a and t ∈ B, then

f(t) = f(a) +

n∑
k=1

∂f

∂tk
(b)(tk − ak) = f(a) +∇>f(b)(t− a), (C.1)

for some b on the line segment joining a and b.

Let f(0) = (f1(0), . . . , fj(0), . . . , fn(0))> ∈ Rn be an image with n pixels in row-wise
form, and let f(t) = (f1(t), . . . , fj(t), . . . , fn(t))> ∈ Rn be a translated version of it
by t = (h, v)> pixels. Clearly, fj : R2 → R denotes the intensity function of the j-th
pixel, after a translation by t. Fig. C.1 illustrates this case of study.

Figure C.1: Image translation by a random vector t.
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We will use the multivariate Taylor’s theorem in order to approximate the intensity
function of the j-th pixel of the given image; i.e., function fj . That is, the intensity is
approximated as follows

fj(t) = fj(0) +∇>fj(0)t.

Then,

f(t) = f(0) +

∇
>f1(0)

...
∇>fn(0)

 t. (C.2)

Let us now assume that t is a random vector distributed normally with mean µt and
covariance matrix Σt, i.e. t ∼ N (µt,Σt). Then, X = f(t) is also distributed normally
with mean vector and covariance matrix that are given, respectively, by

µ = E
[
X
]

= f(0) +

∇
>f1(0)

...
∇>fn(0)

E
[
t
]
, (C.3)

and

Σ = E
[(

X− µ
)(

X− µ
)>]

=

∇
>f1(0)

...
∇>fn(0)

Σt

∇
>f1(0)

...
∇>fn(0)


>

. (C.4)

Thus, by setting t ∼ N (µt,Σt), it holds that X ∼ N (µ,Σ), where the mean vector
µ and the covariance matrix Σ are given by (C.3) and (C.4), respectively.
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