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Abstract: Smart self-sensing composites with integrated damage detection capabilities are 

of particular interests in various applications ranging from aerospace and automotive 

structural components, to wearable electronics and healthcare devices. Here, we 

demonstrate a feasible strategy to introduce and localise conductive nanofillers into existing 

elastomeric coatings of reinforcing cords for interfacial damage detection in cord-rubber 

composites. A simple swelling and infusion method was developed to incorporate carbon 

nanotubes (CNTs) into the elastomeric adhesive coating of glass cords. Conductive CNT-

infused glass cords with good self-sensing functions were achieved without affecting the 

bonding provided by the coating with rubber matrix. The effectiveness of using these smart 

cords as interfacial strain and damage sensors in cord-rubber composites was demonstrated 

under static and cyclic loading. It showed the possibility to identify both reversible 

deformation and irreversible interfacial damage. The simplicity of the proposed swelling 

and infusion methodology provides great potential for large-scale industrial production or 

modification of CNT functionalised elastomeric products such as cord-rubber composites. 
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1. Introduction 

Since its first application in engineering composites [1], structural health monitoring 

(SHM) based on real-time resistivity measurements has evolved rapidly during the last few 

years, ranging from various conductive polymer composites (CPCs) to nano-engineered 

carbon or glass fibre reinforced composites [2-5]. Conductive networks based on carbon 

nanotubes (CNTs) or graphene have been employed to detect various failure modes 

particularly in electrically insulating composites. For instance, Chou et al. [6, 7] 

successfully demonstrated the possibility to identify ply delamination, transverse micro-

cracking and fibre breakage in glass fibre reinforced epoxy laminates under both tensile and 

flexural conditions by resistivity measurements with CNTs dispersed in the epoxy matrix. 

By this top-down method, a resistivity change has been successfully correlated to 

deformation of the entire percolated CNT network throughout the bulk matrix whereas 

damage at the fibre-matrix interfacial region associated with stress transfer has been 

disregarded [8]. Moreover, nanofiller loading needs to be carefully controlled to avoid 

excessive resin viscosity increase and nanoparticle filtration effects during the composite 

manufacturing process [9]. 

Self-sensing smart yarns were developed as a bottom-up method to address some of the 

aforementioned issues by locally modifying the surface of non-conductive fibres with 

CNTs or graphene for interfacial strain and damage sensing [10-12]. Mäder et al. [8, 12] 

first reported an approach based on the incorporation of CNT-filled sizing on glass fibre 

(GF) surfaces via a solution-based process and demonstrated its potential usage as 
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interfacial sensors upon both static and dynamic tensile loading. Bilotti et al. [13] 

fabricated a highly conductive thermoplastic polyurethane/carbon nanotube (TPU/CNT) 

fibre via a continuous extrusion process with good strain sensing ability. Furthermore, they 

demonstrated the possibility to obtain self-sensing yarns by coating a commercially 

available Spandex yarn with a TPU/CNT conductive polymer composite coating [10, 14]. 

Other techniques used to develop CNT-coated smart textile materials include 

electrophoretic deposition (EPD) [15, 16], chemical vapour deposition (CVD) [17, 18], 

electrospray [19] and spray coating [20, 21]. For instance, hierarchical CNT-GF with 

preferred CNT alignment was achieved by CVD and employed for in-situ SHM of glass 

fibre reinforced composites during flexural testing [11]. A novel EPD process was 

developed for coating CNTs onto glass fibre surfaces and these functional interphases were 

exploited for damage detection [15]. The effectiveness of CNT deposition onto carbon fibre 

prepregs by a simple spray coating technique was also reported with a good correlation 

between crack propagation and electrical resistivity signals during in-situ damage sensing 

tests [20]. 

However, most of above-mentioned research works on SHM have focused on fibre 

reinforced plastics (FRPs) while no study has been conducted on real-time damage 

detection of cord-rubber composites. One of the difficulties in developing health 

monitoring systems based on CNTs for cord-rubber composites is in achieving an even 

spatial distribution of CNTs throughout the highly viscous rubber matrix and the 

complexity of depositing CNTs onto the cord surface using the techniques mentioned 

previously. The latter is particularly complicated by the presence of an elastomeric 

adhesive coating on commercially available cords. Different types of cords are used in 

reinforced rubber products such as glass, aramid, nylon and polyester. These cords are often 
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treated with bespoke coatings to enhance the adhesion with rubber matrix. Adhesion can be 

improved by varying the resorcinol formaldehyde latex (RFL) impregnation system, or by 

adding an external adhesive coating which is often based on chlorosulphonated 

polyethylene (CSM) [22-24]. The wide applications for cord-rubber composites [22, 25-27] 

in critical engineering such as aircraft, subsea seals, naval transportation and automotive 

components have resulted in an interest in developing real-time health monitoring systems 

during usage to maintain structural safety and avoid catastrophic failure. 

Recently, Coleman et al. [28] pioneered an interesting novel approach to incorporate 

graphene into rubber bands by a simple swelling process, opening up a new route to 

introduce nanofillers into rubber materials without complex manufacturing procedures. 

Inspired by the work of Coleman et al. [28-30] and taking advantage of the presence of 

the elastomeric coating on reinforcing cords for rubber products, in the present work, CNTs 

were introduced into this coating via a simple swelling and infusion method. This resulted 

in CNT infused glass cords with self-sensing properties that can be utilised as interfacial 

strain and damage sensors for cord-rubber composites. The electrical conductivity and 

surface morphologies of these CNT infused glass cords swollen in different CNT 

dispersions have been investigated. These CNT infused glass cords exhibited good strain 

sensing abilities and reproducibility. For the first time, in-situ health monitoring of cord-

rubber composites has been demonstrated, unveiling insightful interfacial health conditions 

such as local interface failure under both static and cyclic tensile loading. Further 

investigations involved single cord pull-out tests while fractographic analysis revealed no 

detrimental effects of the presence of the CNTs on cord-rubber adhesion. The proposed 

methodology is an easy and efficient process to produce smart reinforcing cords with 

tailored sensing functionalities, which is also compatible with current cord manufacturing 
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procedures for potential industrial scale-up. These smart cords can be used for a multitude 

of SHM systems of cord reinforced rubber products. 

2. Experimental 

2.1. Materials 

The multiwall carbon nanotubes (MWCNTs) (NC7000) used in this study were supplied 

by Nanocyl S.A. (Belgium). The E-glass cords with an average diameter of 1.1 mm were 

supplied by NGF Europe Limited (UK) and used as-received. The cords had been dipped 

through a proprietary resorcinol formaldehyde latex (RFL) bath as the strand coating and 

subsequently chlorosulfonated polyethylene synthetic rubber (CSM) bath as the cord 

adhesive overcoat prior to reception. Both strand coating and cord coating are elastomeric 

coatings. The same CSM used for the preparation of the adhesive overcoat was provided in 

the form of dry sheets. A commercial hydrogenated acrylonitrile butadiene rubber (HNBR) 

compound was used as matrix for embedding the glass cord. The solvents N-

methylpyrrolidone (NMP) and Dimethylformamide (DMF) were purchased from Sigma-

Aldrich Company Ltd, while toluene, methanol and chloroform were purchased from VWR 

Chemicals. Acetone was purchased from Honeywell International Inc. Silver paint and MG 

Chemicals 8481 carbon conductive grease were purchased from RS Components Ltd (UK). 

2.2. Sample preparation 

Preparation of CNT infused glass cords 

The various CNT dispersions were made by dispersing MWCNTs in three different 

solvents (NMP, DMF, acetone) at a concentration of 50 mg/100 ml using an ultrasonic 

processor (Sonics VCX500) for 20 min with a pulse of 2 s on and 2 s off at 25 % 

amplitude. 
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Afterwards, the as-received glass cords with lengths of ~80 mm were soaked into the 

various CNT dispersions using an ultrasonic bath (PS-60A, 360W) for 0.5 h, 1 h, 2 h, 3 h, 4 

h, 5 h and 6 h, respectively. After this swelling and infusion step, the CNT infused glass 

cords were washed in ethanol without sonication for 20 s, followed by sonication in ethanol 

for 20 s and a final ethanol wash for 20 s to remove any CNTs that are attached loosely to 

the surface of the glass cords as well as residual solvent. All sonication processes were 

performed with ice-bath to avoid temperature build-up. The infused glass cords were then 

dried in an oven at 60 °C for 20 h. As-received glass cord and CNT-infused glass cord are 

illustrated in Figure 1 (a). 

Fabrication of the glass cord-rubber pull-out sample 

A specially designed mould was used for making the model composite samples (Figure 

1b). Glass cords were sandwiched between two HNBR compound sheets with a 5 N 

preload attached to either end of the cords to ensure their straightening and then moulded 

using a hydraulic hot press at 180 °C for 20 min. A composite sample with a long cord 

extending out from either end was obtained. The middle part was then cut away using a 

razor blade, leaving a resulting pull-out sample with an embedded cord length of 

approximately 15 mm in the HNBR matrix. A cross-sectional view of the pull-out sample is 

shown in Figure 1 (c). 

2.3. Characterisations 

Electrical conductivity measurements 

The various dried CNT infused glass cords were cured at 180 °C for 20 min in an oven 

before their conductivity was measured by a Keithley 2400 sourcemeter (Tektronix). Silver 

paint was applied to the circumference of the CNT infused glass cord at 20 mm intervals in 
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order to reduce the surface contact resistance. Three measurements were taken at different 

positions of the treated cords. 

Morphology 

Scanning electron microscopy (SEM) (FEI, Inspector-F) on gold coated samples was 

employed to assess the CNT distribution and location from both longitudinal and cross-

sectional views of the CNT infused glass cord after the curing. The fracture surfaces after 

pull-out tests were investigated to examine the failure mode before and after CNT infusion. 

Single cord in-situ strain sensing tests 

Static tensile tests of the CNT-infused cords were carried out on an Instron 5566 

universal mechanical tester equipped with a 1 kN load cell at a crosshead speed of 20 

mm/min coupled with simultaneous electrical measurements recorded by a 34401A 

multimeter (Agilent). The gauge length of the cord was 200 mm, while two electrodes were 

attached to the middle of the cord at distances of 100 mm with silver paint applied to the 

contact points. 

Single cord pull-out tests 

Static single cord pull-out tests were carried out on an Instron 5566 universal mechanical 

tester equipped with a 1 kN load cell at a crosshead speed of 20 mm/min. A minimum of 

three measurements for each sample were recorded. The sample was fixed in the bottom 

grip without compressing the lateral surfaces of the sample and the glass cord was extracted 

by a tensile force from the HNBR matrix. By assuming constant interfacial shear stress 

along the interface during the pull-out process, the interfacial shear strength (IFSS) τ  was 

calculated from the peak pull-out force maxF  and the cord embedded area dlπ  [17], given 

by 

/ ( )maxF dlτ π=                                                                                                                               Equation 1 
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where d  is the glass cord diameter and l is the embedded length. 

In-situ damage and strain sensing tests of cord-rubber composites 

Both static and cyclic strain and damage sensing tests of the CNT infused cord-rubber 

composite pull-out samples were performed. To enable real-time electrical measurements, 

the entire bottom surface of the pull-out sample was coated with carbon grease, while a 

copper wire was attached to the sample using a high strength flexible acrylic tape as an 

electrode. Another electrode was directly attached to the CNT-infused glass cord at a 

distance of 20 mm away from the top surface of the rubber matrix using silver-paint applied 

to the contact points. A schematic illustration of the in-situ sensing test setup is shown in 

Figure 1 (d). Cyclic loading and unloading of the pull-out specimen was applied using 

different displacement levels with 1 min dwell in between each cycle at the same 

displacement level while the specimen was held for 5 min before being reloaded to a higher 

displacement level. 

 

Figure 1. Schematic of (a) CNT infused glass cord preparation, (b) glass cord-HNBR pull-

out specimen preparation, (c) cross-sectional view of pull-out specimen, (d) in-situ damage 
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sensing tests of pull-out of CNT infused glass cord from HNBR matrix (not drawn to 

scale). 

 

3. Results and discussions 

3.1. The distribution of CNTs on the surface of various CNT-infused cords 

A good swelling capacity of the elastomeric adhesive coating material induced by the 

organic solvent is favourable to provide enough free volume for CNT infusion. Based on 

initial swelling tests of adhesive overcoat chlorosulfonated polyethylene (CSM) (see SI Fig. 

S1 and Table S1), NMP, DMF and acetone were chosen as potential solvents due to their 

good swelling capacity and compatibility with MWCNTs.  

To evaluate the effectiveness of the introduction of CNTs via the swelling and infusion 

method, a treatment time of 1 h was used initially for the fabrication of CNT-infused glass 

cords. This is to limit CSM dissolution, which is of particular importance considering the 

very thin adhesive coating on the as-received glass cords. Figure 2 shows SEM images of 

the lateral surface of CNT infused glass cords and as-received glass cord prior to the 

swelling process. CNT networks were uniformly distributed along the entire cord surface 

after swelling in CNT/acetone dispersions (Figure 2a). A dense and thick CNT network was 

observed, indicating that a considerable amount of CNTs was attached to the cord surface. 

In contrast, less dense CNT networks were formed after swelling in CNT/NMP (Figure 2b) 

and CNT/DMF dispersions (Figure 2c) owning to the partial dissolution of CSM in the 

strong polar NMP and DMF solvents. Moreover, in the case of CNT/DMF dispersions, a 

relatively inhomogeneous CNT network was observed with the presence of some CNT 

agglomerates at the cord surface indicated by the arrows. The as-received glass cords 

(Figure 2d) exhibited a similar elastomeric surface morphology but without the presence of 
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fibrous CNTs. As such acetone stood out as the optimum dispersion solvent in terms of 

CNT infusion. 

 

Figure 2. SEM images of the lateral surface of CNT-infused glass cords in (a) 

CNT/acetone, showing a uniform and dense CNT network covering the entire cord surface, 

(b) CNT/NMP, showing a less dense CNT network, (c) CNT/DMF, showing a relatively 

inhomogeneous CNT network with the presence of some CNT agglomerates indicted by the 

arrows for 1 h and (d) as-received glass cord prior to the swelling process without the 

presence of CNTs. 

 

3.2. Morphology of CNT infused glass cords from CNT/acetone dispersions 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

11 

 

Since acetone was selected as the most promising solvent for CNT infusion, further SEM 

observations of cross-sections of the cords were performed. Figure 3 shows the cross-

sectional view of as-received glass cord and CNT infused glass cord from CNT/acetone 

dispersions for 1 h. Each glass cord has 11 strands of glass fibres (Figure 3a). A 

representative strand is indicated by the dashed yellow line. A two-step coating process was 

involved on both strands and the outer surface of the cord during manufacturing as 

described in experimental section, leading to two distinctive coating layers: the RFL 

coating on the glass fibre strand and the CSM coating on the RFL coated glass cord. The 

average thickness of the CSM layer around the cord is approximately 25 µm (Figure 3b) 

which provides improved adhesion between cord and rubber matrix. It can be seen that 

most of the CNTs were accumulated on the coating with an infusion depth of 2-4 µm, while 

very few traces of CNTs were found at a distance of 5-10 µm from the CSM layer (Figure 

3d). Apparently, the current swelling and infusion process introduces CNTs preferentially 

into the outer CSM coating rather than in the interior of the RFL coated glass fibre strands. 
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Figure 3. SEM cross-sectional views of glass cord embedded into an acrylic resin. (a) As-

received glass cord consisting of 11 strands. The dashed yellow line indicates the location 

of a single strand in the image, (b) Higher magnification of the region as indicated by the 

yellow box in (a), showing RFL layer around the strand and CSM layer around the cord, (c) 

CNT traces in the CSM layer after swelling in CNT/acetone dispersions, (d) Higher 

magnification of the infused region as indicated by the yellow box in (c), showing a CNT 

infusion depth of 2-4 µm. 

3.3. Electrical conductivity of CNT infused glass cords 

Since the total amount of CNTs introduced via the simple swelling and infusion process 

was extremely low it was difficult to quantify the exact amount of CNT from 
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thermogravimetric analysis (TGA) data (see SI Fig. S2). However, a good level of electrical 

conductivity was successfully imparted in all the intrinsically insulating glass cords. As 

such it demonstrates the efficiency of the proposed methodology to introduce conductive 

nanocarbons into glass cords with added functionalities. 

Figure 4 (a) compared the electrical conductivity of CNT infused glass cords via various 

dispersions as a function of swelling time. Not surprisingly, glass cords swollen in 

CNT/acetone dispersions reached the highest electrical conductivity with levels above 10-2 

S/m after only 30 min soaking time, implying the formation of a continuous CNT network 

as previously depicted in Figure 2a. No obvious change in electrical conductivity was 

observed with longer soaking times (> 30 min), suggesting that a saturated CNT network 

was formed in the swollen elastomeric coating within a relatively short period of time. 

The electrical conductivity of the glass cords swollen in CNT/NMP and CNT/DMF 

dispersions were slightly lower compared to those swollen in CNT/acetone dispersions, in 

the range of 10-3 S/m after 30 min swelling. An increase in cord conductivity was observed 

for treatments with both dispersions, until a drop was seen after 3 h soaking. This decrease 

was attributed to a reduced amount of free volume for CNT infusion, resulting from a 

gradual dissolution of CSM after prolonged swelling in both dispersions. This effect was 

also indicated by the observed solvent colour change after swelling as-received glass cords 

for 1 h in acetone, DMF and NMP without CNTs under the same conditions, as shown in 

Figure 4 (b). Clearly, a certain amount of CSM material has been removed from the cord 

surface and migrated into NMP and DMF. Repeats were carried out in order to ensure batch 

to batch consistency on electrical performance (see SI Fig. S3). It was concluded that the 

obtained conductivity results of the CNT infused glass cords are highly consistent, 

confirming the reliability of the current method. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

14 

 

 

Figure 4. (a) Electrical conductivity of CNT infused glass cords via various CNT 

dispersions as a function of swelling time, (b) Solvent colour change after swelling of as-

received glass cords in acetone, DMF and NMP for 1 h, confirming the partial removal of 

the CSM coating from the glass cords especially in the case of DMF and NMP. 

3.4. In-situ strain and damage sensing during static and cyclic loading 

With successful manufacturing of the conductive CNT infused glass cord, its strain 

sensing properties were first evaluated by recording its electrical resistance change  

simultaneously during static tensile loading. Subsequently these cords were embedded into 

a HNBR matrix. Both static and cyclic loading tests, coupled with real-time electrical 

measurements were performed to examine its potential as interfacial strain and damage 

sensors for cord-rubber composites. As CNT infused glass cords made from CNT/acetone 

dispersions reach the optimum conductivity after 1 h swelling and infusion, 1 h treatment 

time was also chosen for the other two systems for sensing investigations. 

 

Strain sensing behaviour of CNT infused glass cord 

Figure 5a shows the electrical resistance change and its relationship with load and 

displacement under static tensile loading of CNT infused glass cord specimens swollen in 

0/R R∆

0/R R∆
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CNT/acetone dispersions for 1 h. A small drop in the value of  was initially 

observed due to the interlocking of glass fibre strands within the cord by straightening them 

along the direction of the applied force (Figure 5d), also known as setting effect [31]. This 

was then followed by a continuous rise in  as the CNT network starts to deform 

with increasing applied extension until cord fracture. A nearly linear relationship between 

sensing signal and applied load can be seen with sensing signals ( ) passing the zero 

value point, indicating a clear correlation between applied extension and sensing signal 

[10]. Similar findings were also observed in the other two systems (Figure 5b and 5c) with 

less obvious setting effects and slightly larger sensitivity owning to fewer conductive 

pathways arisen from a lower density of CNTs [32]. 

 

Figure 5. Static electro-mechanical response of CNT infused glass cord fabricated from (a) 

CNT/acetone, (b) CNT/NMP, (c) CNT/DMF, as dispersions for 1 h swelling and infusion 

time, (d) Straightening of twisted glass fibre strands along the direction of the applied force. 

0/R R∆

0/R R∆

0/R R∆
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Static damage sensing of the CNT infused glass cord-rubber composites 

After examining and confirming the good sensing properties of CNT infused glass cord, 

the sensing characterisation was applied to cord-rubber composites to demonstrate the 

feasibility to use these conductive cords as interfacial damage sensors. 

Figure 6 shows a correlation between resistance change and applied load during pull-out 

tests for various CNT infused glass cord-rubber composites. Three well defined regions can 

be identified from the resistance change data, in agreement with findings reported by Mäder 

and Rausch on CNT-modified sizings on GF in PP matrix [33]. For the case of 

CNT/acetone dispersions, the value of  increased gradually for the first 7 mm of 

extension. This behaviour is reversible, as confirmed later in the cyclic sensing section, and 

is due to the elastic deformation of the interfacial region. The first reversible region is 

followed by a second stage characterised by an increase in the slope of the sensing signal 

for the following 5 mm extension. At a critical point just before catastrophic interfacial 

failure, the resistance suddenly increases to beyond the multimeter limits, followed by 

visible macroscopic interfacial failure at the top surface of the pull-out sample as a result of 

shear stress concentration, propagating along the interface (see schematic (d)-②). The cord 

was eventually pulled out from the HNBR matrix by a frictional sliding mechanism after 

interface failure was complete at the end of the test (schematic (d)-③). 

Similar trends of the electro-mechanical response were observed in cord-rubber 

composite specimens with conductive glass cords made from CNT/NMP and CNT/DMF 

dispersions respectively (Figure 6b and 6c). However, unlike the CNT/acetone specimen, 

the other conductive glass cords were only able to detect damage that occurred at the early 

stages of the test, which was then followed by a sharp increase in electrical resistance 

0/R R∆
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beyond the measurable range much earlier before catastrophic interface failure. This early 

signal loss was attributed to the relatively high initial resistance compared to that of the 

glass cord infused in a CNT/acetone dispersion. It is worthy to point out that the sensing 

properties of these cords made from CNT/NMP and CNT/DMF dispersions could be tuned 

and improved by adjusting the period of swelling and infusion treatment time. 

In addition, the observed  change for the CNT/acetone specimen was also much 

higher (up to 850 %) than that of other composite pull-out specimens, demonstrating a 

strongly enhanced interface damage monitoring capability. The sensing properties of 

different systems including displacement values corresponding to the last measurable 

electrical signal point 1D∆  and maximum pull-out force 2D∆  are summarized (see SI Table 

S2). 

 

Figure 6. Static electro-mechanical response of the pull-out of a CNT infused glass cord 

from a HNBR matrix using (a) CNT/acetone, (b) CNT/NMP, (c) CNT/DMF, as dispersions 

for a swelling and infusion time of 1 h, (d) Illustration showing the interfacial failure 

0/R R∆
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process during single cord pull-out: ① perfectly bonded to matrix, ② crack initiation at 

the top surface, ③ completely debonded interface with the cord pulled out by frictional 

sliding. 

 

Cyclic strain and damage sensing of CNT infused glass cord-rubber composites 

As the glass cord swollen in CNT/acetone dispersions had a more continuous and 

sensitive sensing signal among all other composite samples when applied as interfacial 

damage sensor under static loading, it was selected for further evaluation in cyclic in-situ 

damage sensing. 

Figure 7 shows the cyclic electro-mechanical behaviour of the same composite pull-out 

specimen subjected to a series of cyclic loading conditions before the application of a static 

tensile load to ultimate interfacial failure. At low displacement levels (Figure 7a) with an 

applied cyclic extension from 3.5 mm to 7 mm, the sensing signals increased up to 80 % 

with applied load while recovered to initial levels upon unloading, indicating good 

reversibility at given extension levels. This was attributed to the reversible deformation of 

the elastomeric interphase without the permanent break-down of the CNT network. This is 

consistent with previous static sensing results of glass cord-rubber composite pull-out 

specimens (see Figure 6a) where the resistance change was roughly the same value when 

displaced to 7 mm.  

When the applied strain increased from an extension level of 3.5 mm to 10.5 mm (Figure 

7b), a clear change in 0/R R∆  values (about 50~80 % increment) was observed after the 

first loading cycle. Instead of returning to initial levels, the following sensing signals went 

up gradually upon unloading, which can be explained by a partial interruption of 

conductive paths as a result of some degree of permanent interfacial damage. Upon further 
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static tensile loading (Figure 7c), the sensing signals increased continuously with a sharp 

and clear jump until catastrophic interface failure was achieved. 

The potential of conductive glass cords made using the proposed infusion method for 

structural integrity monitoring of interfacial damage in cord-rubber composites has, 

therefore, been demonstrated. Glass cords made by swelling in CNT/acetone dispersions 

offered the most sensitive and continuous sensing signals just before catastrophic interfacial 

failure. 

 

Figure 7. Cyclic electro-mechanical characterisation of the CNT infused glass cord-rubber 

composite pull-out specimen using CNT/acetone dispersions subjected to cyclic extension 

from (a) 3.5 mm to 7.0 mm with 1 min relaxation time between each cycle, showing 

reversible interfacial deformation, (b) 3.5 mm to 10.5 mm extension with 1 min relaxation 

time, showing some degree of permanent interfacial damage, (c) continuous increased 

extension until complete pull-out, with a clear sharp increment in sensing signals. Note: 

The specimen was held for 5 min before reloaded to a higher displacement level. 

 

3.5. Interfacial shear strength 
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After demonstrating the potential of the developed CNT infused glass cord as smart 

reinforcements for rubber products, with added interfacial damage and strain sensing 

capabilities, efforts were made to evaluate the effect of CNT infusion on adhesion between 

cord and rubber. 

Several micromechanical characterisations can be used to quantitatively evaluate the 

interfacial shear strength (IFSS) between a reinforcing fibre and its surrounding matrix, 

including single fibre pull-out and fibre fragmentation tests [34]. Figure 8a presents the 

single cord pull-out test results of various CNT infused glass cord-rubber and as-received 

glass cord-rubber composites swollen in various solvents without the presence of CNTs 

(acetone, NMP, and DMF, respectively) for 1 h under the same conditions before 

embedded into the HNBR matrix. It can be seen that no significant change in IFSS values 

was observed, within typical experimental error [16, 19, 35]. Fractographic analysis (Figure 

8b and 8c) of fracture surfaces after pull-out indicated a change from failure mode of the 

elastomeric coating/HNBR interface failure to failure at the elastomeric coating/glass fibre 

interface, indicating a toughening of the elastomeric coating/HNBR interphase due to the 

presence of CNTs. 

 

Figure 8. (a) Single cord pull-out test results of glass cord-rubber composites with and 

without CNT treatment. (b) Fracture surface of reference cord specimens after pull-out 
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testing, showing failure at the elastomeric coating/HNBR interface with most of the 

elastomeric coating remaining present on the cord surface, (c) Fracture surface of cord 

specimens swelled in CNT/acetone dispersions showing failure at the elastomeric 

coating/glass fibre interface with glass fibres exposed at the fracture surface. 

4. Conclusions 

A simple and efficient method was developed for the fabrication of self-sensing CNT 

infused glass cords based on a swelling and infusion process. The percolated CNT network 

has been successfully localised into the existing elastomeric coating present on the 

reinforcing cords, acting as an integrated interfacial strain and damage sensors for cord-

rubber composites. The effect of various solvents on CNT infusion has been investigated. 

Good electrical conductivity (10-2 S/m) was achieved with extremely low amounts of CNTs 

after only 30 min of swelling, with no detrimental effects on original mechanical 

performance of the composites. 

For the first time, the internal health status of cord-rubber composites has been in-situ 

monitored based on fabricated smart sensing cords. Stable and repeatable sensing signals 

were obtained under both static and cyclic loading conditions, providing insightful 

information of the interfacial structural integrity of the system. With such smart 

hierarchical cord-rubber composites, early detection of interfacial damage before 

catastrophic failure becomes viable. 
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