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Abstract  

Little is known about the economic sources that may generate the abnormal returns 
observed in put index options. We show that the learning process followed by investors 
may be one such source. We develop an equilibrium model under partial information in 
which a rational Bayesian learner prices put option contracts. Our model generates put 
option returns similar to the empirical returns of S&P 500 put index options. This result is 
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1 Introduction 

An important goal of financial economics research is to explain anomalies observed in asset 

prices. One such anomaly is related to the fact that the returns of put index options have 

been too high relative to their risk (e.g., Coval and Shumway, 2001; Bondarenko, 2003; 

Jones, 2006; and Constantinides et al., 2013). To date, the economic sources driving this 

abnormal behaviour have remained unexplored by the literature.  

 In this paper, we provide one potential explanation for the high abnormal returns 

observed in put index option contracts: the learning process followed by investors. The 

intuition behind this hypothesis is simple. The expected put option return of a hold-to-

maturity naked strategy, 𝑅𝑅𝑡𝑡+𝜏𝜏
𝑃𝑃𝑃𝑃𝑃𝑃, is defined as 𝑅𝑅𝑡𝑡+𝜏𝜏

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐸𝐸𝑡𝑡
ℙ[max(𝐾𝐾 − 𝑆𝑆𝑡𝑡+𝜏𝜏, 0)]/𝑃𝑃𝑡𝑡(𝐾𝐾, 𝜏𝜏) − 1, 

where 𝐸𝐸𝑡𝑡
ℙ[∙] is the expectation operator under the ℙ (real-world) probability measure at 

time 𝑡𝑡, 𝑃𝑃𝑡𝑡(𝐾𝐾, 𝜏𝜏) is the price of a put option contract, 𝑆𝑆𝑡𝑡+𝜏𝜏 is the underlying asset at time 𝑡𝑡 +

𝜏𝜏, 𝐾𝐾 is the strike price, and 𝜏𝜏 is the option’s time to maturity. Thus, the value of 𝑅𝑅𝑡𝑡+𝜏𝜏
𝑃𝑃𝑃𝑃𝑃𝑃 can 

also be written as 𝑅𝑅𝑡𝑡+𝜏𝜏
𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐸𝐸𝑡𝑡

ℙ[max(𝐾𝐾 − 𝑆𝑆𝑡𝑡+𝜏𝜏, 0)]/𝐸𝐸𝑡𝑡
ℚ[max(𝐾𝐾 − 𝑆𝑆𝑡𝑡+𝜏𝜏, 0)] − 1, with 𝐸𝐸𝑡𝑡

ℚ[∙] 

denoting the expectation operator under the ℚ (risk-neutral) probability measure, which 

implies that the potential differences between the ℙ and ℚ probability measures determine 

𝑅𝑅𝑡𝑡+𝜏𝜏
𝑃𝑃𝑃𝑃𝑃𝑃. Moreover, there is evidence that the process followed by investors to learn about 

unknown market variables can induce differences between the ℙ and ℚ probability 

measures (e.g., David and Veronesi, 2002; Guidolin and Timmermann, 2003). Thus, this 

learning process is a natural candidate to explain the abnormal returns observed in put 

index option contracts. 
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 We develop a simple equilibrium model under partial information, in which a 

rational Bayesian learner prices a set of put option contracts. Our model extends 

Timmermann (2001) by including put options in the market. Similarly to Timmermann 

(2001), our model reflects a Lucas (1978) discrete-time endowment economy with a 

representative agent. In the model, there is partial information because the mean dividend 

growth rate, 𝑔𝑔𝑡𝑡, is unknown. However, the agent recursively learns about 𝑔𝑔𝑡𝑡 through a 

Bayesian updating procedure as new signals arrive.  

 In the model, learning does not disappear asymptotically because the number of 

signals cannot increase infinitely. This is because the mean dividend growth rate 𝑔𝑔𝑡𝑡 is 

subject to structural breaks. After each structural break, a new value for 𝑔𝑔𝑡𝑡 is drawn from a 

uniform density and kept constant until the next break. Therefore, the new value of 𝑔𝑔𝑡𝑡 after 

a break must be learned by using only post-break information.  

 We find that our model generates abnormal put option returns for a naked option 

strategy, as well as for a straddle option portfolio (which is not affected by changes in the 

underlying stock). The put option returns generated by our model exhibit the same 

behaviour as the corresponding returns from actual S&P 500 index option data. Conversely, 

we cannot obtain similar results when we analyse alternative scenarios that do not include 

a learning process.  

 We also show that the put option returns generated by our modelling setup under 

learning can be described by a linear factor model that includes the volatility risk premium 

(i.e., the difference between the volatilities under the ℚ and ℙ probability measures) as a 

factor. This result is also observed in put option returns obtained from S&P 500 index 
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option contracts. This finding is consistent with our argument that learning generates 

differences between the ℚ and ℙ probability measures, which may be one of the economic 

explanations for the abnormal returns observed in put index options.  

 The findings drawn from our theoretical model are related to the empirical 

literature that provides evidence of abnormal returns on put index option contracts. For 

example, Coval and Shumway (2001), who pioneer a focus on option returns rather than on 

implied volatilities or option prices, document strong negative average returns on zero-

beta at-the-money straddles. Bondarenko (2003) shows that naked puts yield large returns 

for option sellers. In a multifactor analysis, Jones (2006) and Constantinides et al. (2013) 

find high abnormal returns associated with short-term out-of-the-money puts.  

 Our model is closely related to Broadie et al. (2009), who show that option returns 

can be explained by models that incorporate a jump risk premium and estimation risk 

(Chambers et al., 2014, replicate the analysis of Broadie et al., 2009, and find similar 

results). In particular, Broadie et al.’s (2009) estimation risk argument is closely linked to 

our model. Estimation risk appears when the true parameter values used in pricing models 

cannot be accurately estimated from short time series. Broadie et al. (2009) take a 

reduced-form approach to analyse the impact of estimation risk on put option returns by 

increasing/decreasing the parameters of the ℚ probability measure by one standard 

deviation compared to the ℙ-parameters. However, they state in their conclusion, “Our 

results are silent on the actual economic sources of the gaps between the ℙ and ℚ 

measures. It is important to test potential explanations that incorporate investor 

heterogeneity, discrete trading, model misspecification, or learning". Therefore, our study 

complements Broadie et al. (2009), since our model micro-founds the possibility of 
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estimation risk through learning, which endogenously induces differences between the ℙ 

and ℚ probability measures and yields abnormally high put option returns. 

 Our paper is also related to theoretical studies in which stock returns are explained 

by the learning process followed by a representative agent (e.g., Timmermann, 1993, 1996, 

2001; Veronesi, 1999, 2000; Brandt et al., 2004; Guidolin, 2006; and Guidolin and 

Timmermann, 2007). In particular, our paper is closely related to the model developed in 

Timmermann (2001). His model is based on a Lucas (1978) economy where the mean 

dividend growth rate has breaks and is not known by a representative agent. He shows that 

learning generates volatility clustering and serial correlation in stock returns, in 

combination with an increase in their skewness and kurtosis. Departing from Timmermann 

(2001), we analyse whether learning can explain put option returns rather than stock 

returns. Therefore, we present an extended model that contains put option contracts in 

addition to the bonds and stocks present in a Lucas (1978) economy. 

 Our study is also associated with equilibrium models in which learning is used to 

explain the implied volatility surface (e.g., David and Veronesi, 2002; Guidolin and 

Timmermann, 2003; Shaliastovich, 2009; and Benzoni et al., 2011). The observable implied 

volatility surface (hereafter 𝐼𝐼𝐼𝐼𝐼𝐼) is the variation of the implied volatility of option contracts 

written on the same underlying asset as a function of the option’s strike price and time to 

maturity. The 𝐼𝐼𝐼𝐼𝐼𝐼 should not be observed under the assumption of Black and Scholes’ 

(1973) model, which is that the volatility of the returns of the underlying asset is constant. 

For example, David and Veronesi (2002) propose a model where the dividend drift follows 

a two-state stochastic process, and a representative agent is uncertain about which state is 

currently governing the economy. Guidolin and Timmermann (2003) present an 
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equilibrium model based on a Lucas (1978) economy, which is closer to our modelling 

setup. In their model, dividends evolve based on a binomial path with unknown state 

probability, which is recursively updated. Notably, in Guidolin and Timmermann (2003), 

the impact of rational Bayesian learning on option prices asymptotically disappears as the 

number of signals increases, which does not occur in our model due to structural breaks in 

the unknown parameter. Shaliastovich (2009) also offers a model in which the 

consumption growth rate is uncertain and investors learn about its value. Benzoni et al. 

(2011) extend a general equilibrium setting with an Epstein-Zin representative agent by 

including jumps and a Bayesian updating process for learning the unknown probability of 

future jumps in the growth and volatility of consumption.  

 Our paper differs in two ways from the above studies that use learning to explain 

the 𝐼𝐼𝐼𝐼𝐼𝐼. First, rather than explaining the variation in implied volatilities of option contracts 

across strike prices and times to maturity, our objective is to provide an economic 

explanation for the anomalous behaviour of put option returns. Second, from a modelling 

perspective, our unknown parameter is simply the mean dividend growth rate, rather than 

the current state of the economy, the state probability, the consumption growth rate, or the 

probability of future jumps in consumption growth and volatility. This is important since 

our objective is to show that learning can induce abnormal put option returns even in a 

simple model, where the unknown parameter is the mean dividend growth rate in a Lucas 

(1978) economy (despite the fact that similar results may be obtained with more 

sophisticated models, such as the ones described above). 
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 The remainder of this paper is structured as follows. Section 2 presents the model, 

Section 3 describes its implementation, Section 4 analyses the theoretical results, and 

Section 5 concludes. 

 

2 The model 

2.1 An economy under full information 

 We first consider an economy under full information about economic fundamentals, 

wherein a representative agent prices four asset types: a bond, a stock, put option 

contracts, and change-of-state (hereafter COS) securities. Thus, there is a one-period zero-

coupon default-free bond, 𝐵𝐵𝑡𝑡, in zero net supply at any time 𝑡𝑡. There is also a stock, 𝑆𝑆𝑡𝑡, with 

net supply normalised at one. In each period, the stock pays a real dividend, 𝐷𝐷𝑡𝑡 , which 

follows a geometric random-walk process with drift 𝜇𝜇𝑡𝑡 and volatility 𝜎𝜎: 

 ln �
𝐷𝐷𝑡𝑡

𝐷𝐷𝑡𝑡−1
� = 𝜇𝜇𝑡𝑡 + 𝜎𝜎𝜀𝜀𝑡𝑡 ,    𝜀𝜀𝑡𝑡 ∽ 𝐼𝐼𝐼𝐼𝐼𝐼(0,1), (1) 

where the mean dividend growth rate, 𝒈𝒈𝒕𝒕 (and thus, 𝝁𝝁𝒕𝒕, given that 𝝁𝝁𝒕𝒕 = 𝐥𝐥𝐥𝐥(𝟏𝟏 + 𝒈𝒈𝒕𝒕) − 𝝈𝝈𝟐𝟐/

𝟐𝟐), is subject to breaks. Time periods between breaks follow a geometric distribution with 

parameter 𝝅𝝅. Therefore, 𝒈𝒈𝒕𝒕 changes over time, but its value remains constant between 

breaks. We assume that as soon as a break occurs, a new value for the mean dividend 

growth rate, 𝒈𝒈𝒕𝒕, is drawn from a uniform distribution, 𝒈𝒈𝒕𝒕+𝒎𝒎 ∽ 𝑮𝑮(∙), with lower and upper 

bounds of 𝒈𝒈𝒅𝒅 and 𝒈𝒈𝒖𝒖, respectively.  

 In Internet Appendix A, we examine the time series of daily dividends for the S&P 

500 index to assess the validity of the assumption of breaks in the mean dividend growth 

rate. The results reported in Internet Appendix A (based on the Chu et al., 1996, and Bai 
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and Perron, 1998, tests) show evidence of breaks. In addition, we choose a geometric 

distribution to characterise the time between breaks because it is a memoryless stochastic 

process. We assume a memoryless process in order to be consistent with the assumption 

that agents cannot predict the future and are thus unable to predict future breaks in 𝒈𝒈𝒕𝒕. The 

previous literature has also used a memoryless process to characterise periods between 

breaks (e.g., Pesaran et al., 2006; Koop and Potter, 2007). 

 At time 𝒕𝒕, there is a set of European put option contracts with price 𝑷𝑷𝒕𝒕(𝑲𝑲, 𝝉𝝉) written 

on the stock, where 𝑲𝑲 is the strike price and 𝝉𝝉 is the time to maturity. There is also a COS 

security with price 𝑨𝑨𝒕𝒕 at any time 𝒕𝒕, which pays one unit in any period in which there is a 

break in 𝒈𝒈𝒕𝒕. COS securities make the market dynamically complete, as they are used to 

hedge the uncertainty generated by the breaks in the mean dividend growth rate, because 

the uncertainty generated by the breaks in 𝒈𝒈𝒕𝒕 and the term 𝜺𝜺𝒕𝒕 in equation (1) cannot be 

dynamically hedged with the stock and the bond alone (Harrison and Pliska, 1981; Duffie 

and Huang, 1985). The use of COS securities to complete markets has been considered by 

Guo (2001), Mamon and Rodrigo (2005), and Yuen and Yang (2010).  

We define the break indicator 𝒃𝒃𝒕𝒕, which indicates the occurrence of a break in 𝒈𝒈𝒕𝒕 at 

time 𝒕𝒕; 𝒃𝒃𝒕𝒕 equals 1 if there is a break at 𝒕𝒕 and zero otherwise. Since periods between breaks 

follow a geometric distribution with parameter 𝝅𝝅, 𝒃𝒃𝒕𝒕 follows a Bernoulli distribution with 

parameter 𝝅𝝅, where 𝐏𝐏𝐏𝐏(𝒃𝒃𝒕𝒕 = 𝟎𝟎) = (𝟏𝟏 − 𝝅𝝅) and 𝐏𝐏𝐏𝐏(𝒃𝒃𝒕𝒕 = 𝟏𝟏) = 𝝅𝝅. Thus, we assume that the 

COS security 𝑨𝑨𝒕𝒕 pays one unit at 𝒕𝒕 + 𝒎𝒎 if 𝒎𝒎 = 𝒊𝒊𝒊𝒊𝒊𝒊{𝒎𝒎 ≥ 𝟎𝟎: 𝒃𝒃𝒕𝒕+𝒎𝒎 = 𝟏𝟏}. The COS security is 

analogous to an insurance policy that pays out in the case of a particular event. The COS 

security becomes worthless after a break, and a new COS security is issued that pays one 

unit in the period following the next break.  
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 We assume a perfect capital market in which there are no taxes or transaction costs, 

unlimited short-sale possibilities, perfect liquidity, and a lack of borrowing or lending 

constraints. We assume that the representative agent has preferences described by a 

power utility function: 

𝑢𝑢(𝐶𝐶𝑡𝑡) = �
𝐶𝐶𝑡𝑡

1−𝜂𝜂 − 1
1 − 𝜂𝜂

      𝜂𝜂 ≥ 0, 𝜂𝜂 ≠ 1

𝑙𝑙𝑙𝑙𝐶𝐶𝑡𝑡                 𝜂𝜂 = 1
, (2) 

where 𝐶𝐶𝑡𝑡 is the real consumption at time 𝑡𝑡 and 𝜂𝜂 is the coefficient of relative risk aversion. 

We assume that dividends are the economy’s single source of income and that they are 

consumed as soon as they are received (i.e., 𝐶𝐶𝑡𝑡 = 𝐷𝐷𝑡𝑡). The representative agent chooses 

asset holdings in order to maximise her lifetime expected utility: 

 max
�𝑤𝑤𝑡𝑡+𝑘𝑘

𝑆𝑆 ,𝑤𝑤𝑡𝑡+𝑘𝑘
𝐵𝐵 ,𝑤𝑤𝑡𝑡+𝑘𝑘

𝐴𝐴 �
𝐸𝐸𝑡𝑡 �� 𝛽𝛽𝑘𝑘𝑢𝑢(𝐷𝐷𝑡𝑡+𝑘𝑘)

∞

𝑘𝑘=0

�, (3) 

in which 𝛽𝛽 = 1/(1 + 𝜌𝜌), 𝜌𝜌 is the rate of impatience and 𝑤𝑤𝑡𝑡+𝑘𝑘
𝑆𝑆 , 𝑤𝑤𝑡𝑡+𝑘𝑘

𝐵𝐵 , and 𝑤𝑤𝑡𝑡+𝑘𝑘
𝐴𝐴  are the shares 

of assets 𝑆𝑆𝑡𝑡, 𝐵𝐵𝑡𝑡, and 𝐴𝐴𝑡𝑡  in the agent's portfolio, respectively. Note that put option contracts 

are not considered in the agent’s maximisation problem described in equation (3), because 

markets are complete due to the existence of COS securities; thus, options are redundant. 

Prices 𝑆𝑆𝑡𝑡, 𝐵𝐵𝑡𝑡 and 𝐴𝐴𝑡𝑡  can be calculated by solving the respective Euler equations:  

𝑆𝑆𝑡𝑡 = 𝐸𝐸𝑡𝑡[𝑚𝑚𝑡𝑡+1(𝑆𝑆𝑡𝑡+1 + 𝐷𝐷𝑡𝑡+1)], (4) 

𝐵𝐵𝑡𝑡 = 𝐸𝐸𝑡𝑡[𝑚𝑚𝑡𝑡+1],  (5) 

𝐴𝐴𝑡𝑡 = 𝐸𝐸𝑡𝑡[𝑚𝑚𝑡𝑡+1𝑏𝑏𝑡𝑡+1], (6) 
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where 𝑚𝑚𝑡𝑡+1 = 𝛽𝛽(𝐷𝐷𝑡𝑡+1/𝐷𝐷𝑡𝑡)−𝜂𝜂 is the stochastic discount factor. In the case of full 

information, Proposition I provides expressions for the equilibrium prices 𝑆𝑆𝑡𝑡, 𝐵𝐵𝑡𝑡, and 𝐴𝐴𝑡𝑡 , 

which are determined by solving equations (4)-(6).  

Proposition I: Under full information and breaks in the dividend process, the equilibrium 

prices 𝑆𝑆𝑡𝑡, 𝐵𝐵𝑡𝑡, and 𝐴𝐴𝑡𝑡  are given by: 

𝑆𝑆𝑡𝑡 = 𝐷𝐷𝑡𝑡
1+𝜌𝜌−(1−𝜋𝜋)(1+𝑔𝑔𝑡𝑡)1−𝜂𝜂 �(1 − 𝜋𝜋)(1 + 𝑔𝑔𝑡𝑡)1−𝜂𝜂 + 𝜋𝜋 �𝐼𝐼1+(1−𝜋𝜋)𝐼𝐼2

1−𝜋𝜋𝐼𝐼3
�� = 𝐷𝐷𝑡𝑡𝜓𝜓(𝑔𝑔𝑡𝑡), (7) 

𝐵𝐵𝑡𝑡 = 1
(1+𝜌𝜌)

�(1 − 𝜋𝜋)(1 + 𝑔𝑔𝑡𝑡)−𝜂𝜂 + 𝜋𝜋 ∫ (1 + 𝑔𝑔𝑡𝑡)−𝜂𝜂𝑑𝑑𝑑𝑑(𝑔𝑔𝑡𝑡)𝑔𝑔𝑢𝑢
𝑔𝑔𝑑𝑑

�, (8) 

𝐴𝐴𝑡𝑡 = 1
(1+𝜌𝜌)

𝜋𝜋 ∫ (1 + 𝑔𝑔𝑡𝑡)−𝜂𝜂𝑑𝑑𝑑𝑑(𝑔𝑔𝑡𝑡)𝑔𝑔𝑢𝑢
𝑔𝑔𝑑𝑑

, (9) 

 where 𝐼𝐼1 = ∫ (1 + 𝑔𝑔𝑡𝑡)1−𝜂𝜂𝑑𝑑𝑑𝑑(𝑔𝑔𝑡𝑡)𝑔𝑔𝑢𝑢
𝑔𝑔𝑑𝑑

, 𝐼𝐼2 = ∫
(1+𝑔𝑔𝑡𝑡)2−2𝜂𝜂

1+𝜌𝜌−(1−𝜋𝜋)(1+𝑔𝑔𝑡𝑡)1−𝜂𝜂 𝑑𝑑𝑑𝑑(𝑔𝑔𝑡𝑡)𝑔𝑔𝑢𝑢
𝑔𝑔𝑑𝑑

, 

𝐼𝐼3 = ∫
(1+𝑔𝑔𝑡𝑡)1−𝜂𝜂

1+𝜌𝜌−(1−𝜋𝜋)(1+𝑔𝑔𝑡𝑡)1−𝜂𝜂 𝑑𝑑𝑑𝑑(𝑔𝑔𝑡𝑡)𝑔𝑔𝑢𝑢
𝑔𝑔𝑑𝑑

, 

with 1 + 𝜌𝜌 > (1 + 𝑔𝑔𝑢𝑢)1−𝜂𝜂 to obtain positive stock prices. 

Proof: Timmermann (2001). 

 Proposition I shows that the price-dividend ratio and the bond price are time 

varying, since they depend on 𝑔𝑔𝑡𝑡. Note that the one-period interest rate is given by 1 + 𝑟𝑟𝑡𝑡 =

1/𝐵𝐵𝑡𝑡; thus, the interest rate is also time varying. When there are no breaks in the economy 

(i.e., 𝜋𝜋 = 0), stock and bond prices are 𝑆𝑆𝑡𝑡 = 𝐷𝐷𝑡𝑡(1 + 𝑔𝑔𝑡𝑡)1−𝜂𝜂/{1 + 𝜌𝜌 − (1 + 𝑔𝑔𝑡𝑡)1−𝜂𝜂} and 𝐵𝐵𝑡𝑡 =

(1 + 𝑔𝑔𝑡𝑡)−𝜂𝜂/(1 + 𝜌𝜌), whereas the COS security is priced at zero (i.e., 𝐴𝐴𝑡𝑡 = 0). In relation to 

option contracts, Proposition II provides the put option price when there are breaks in the 

mean dividend growth rate and full information (i.e., the agent knows the true mean 

dividend growth rate).  
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Proposition II: Under full information and breaks, the price 𝑃𝑃𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝐾𝐾, 𝜏𝜏) of a European put 

option issued on the stock at time 𝑡𝑡 with strike price 𝐾𝐾and time to maturity 𝜏𝜏 is given by: 

𝑃𝑃𝑡𝑡(𝐾𝐾, 𝜏𝜏) = ∫ 1
1+𝑟𝑟𝑡𝑡,𝑡𝑡+𝜏𝜏

𝑚𝑚𝑚𝑚𝑚𝑚{𝐾𝐾 − 𝑆𝑆𝑡𝑡+𝜏𝜏, 0}𝑓𝑓𝑄𝑄(𝑆𝑆𝑡𝑡+𝜏𝜏)𝑑𝑑𝑆𝑆𝑡𝑡+𝜏𝜏
∞

0 , (10) 

with  

𝑓𝑓𝑡𝑡
𝑄𝑄(𝑆𝑆𝑡𝑡+𝜏𝜏) = 𝑚𝑚𝑡𝑡+𝜏𝜏𝑓𝑓𝑃𝑃(𝑆𝑆𝑡𝑡+𝜏𝜏)

𝐸𝐸𝑡𝑡[𝑚𝑚𝑡𝑡+𝜏𝜏] = 𝜙𝜙𝑄𝑄(𝜀𝜀𝑡𝑡+𝜏𝜏) ∏ 𝑃𝑃𝑃𝑃𝑄𝑄(𝑏𝑏𝑡𝑡+𝑖𝑖)𝜚𝜚ℚ(𝑔𝑔𝑡𝑡+𝑖𝑖|𝑏𝑏𝑡𝑡+𝑖𝑖 = 1)𝜏𝜏
𝑖𝑖=1 , (11) 

where 𝑓𝑓𝑄𝑄(𝑆𝑆𝑡𝑡+𝜏𝜏) is the risk-neutral density under full information and 𝑆𝑆𝑡𝑡+𝜏𝜏 is defined in 

equation (7), while 𝐷𝐷𝑡𝑡+𝜏𝜏 = 𝐷𝐷𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒�√𝜏𝜏𝜎𝜎𝜀𝜀𝑡𝑡+𝜏𝜏 − 𝜏𝜏𝜏𝜏2/2� ∏ (1 + 𝑟𝑟𝑡𝑡+𝑖𝑖)𝜏𝜏
𝑖𝑖=1 , with 1 + 𝑟𝑟𝑡𝑡+𝑖𝑖 =

1/𝐵𝐵𝑡𝑡+𝑖𝑖−1, where 𝐵𝐵𝑡𝑡+𝑖𝑖−1 is the price of the risk-free one-period bond in period 𝑡𝑡 + 𝑖𝑖 − 1 (as 

defined in equation (8)). In addition, 1 + 𝑟𝑟𝑡𝑡,𝑡𝑡+𝜏𝜏 = ∏ (1 + 𝑟𝑟𝑗𝑗−1,𝑗𝑗)𝜏𝜏
𝑗𝑗=1 . In equation (11), 

𝜙𝜙ℚ(𝜀𝜀𝑡𝑡+𝜏𝜏) is a normal density with mean zero and volatility 𝜎𝜎𝑄𝑄 = √𝜏𝜏𝜎𝜎; 𝑃𝑃𝑃𝑃ℚ(𝑏𝑏𝑡𝑡+𝑖𝑖) is the 

probability function of a break in the mean dividend growth rate, which is a Bernoulli 

distribution with parameter 𝜋𝜋𝑡𝑡+𝑖𝑖
𝑄𝑄 = 𝐴𝐴𝑡𝑡+𝑖𝑖/𝐵𝐵𝑡𝑡+𝑖𝑖 (where 𝐴𝐴𝑡𝑡+𝑖𝑖 is defined in equation (9)); and 

𝜚𝜚ℚ(𝑔𝑔𝑡𝑡+𝑖𝑖|𝑏𝑏𝑡𝑡+𝑖𝑖 = 1) is a uniform density with lower and upper bounds 𝑔𝑔𝑙𝑙 and 𝑔𝑔𝑢𝑢, 

respectively, which is used to obtain a new value of 𝑔𝑔𝑡𝑡+𝑖𝑖 in the case of a break.  

Proof: Internet Appendix B. 

 Equation (10) shows that the option price is obtained by integrating the option’s 

payoff over risk-neutral density 𝑓𝑓𝑄𝑄(𝑆𝑆𝑡𝑡+𝜏𝜏). The prices of the stock, the bond, and the COS 

security are explicitly considered in equation (10), either in the option's payoff or in the 

risk-neutral density. Notably, the market is incomplete without COS securities in the 

economy, as mentioned earlier. In an incomplete market, the no-arbitrage conditions do 

not pin down a unique state price density (hereafter referred to as 𝑆𝑆𝑆𝑆𝑆𝑆), which can take 
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infinite forms. In this case, the 𝑆𝑆𝑆𝑆𝑆𝑆 is not unique, which also implies that there are multiple 

risk-neutral (ℚ) probability measures. For example, the exclusion of COS securities from 

our model would cause the probability of a break under the risk-neutral measure, 𝜋𝜋𝑡𝑡
𝑄𝑄 , to 

take an infinite number of values. 

 The potential set of forms of the 𝑆𝑆𝑆𝑆𝑆𝑆 can be reduced in an incomplete market by 

imposing bounds to rule out “good deals” (i.e., by reducing the profitability of investments) 

based on either the Sharpe ratio (see Cochrane and Saa-Requejo, 2000) or the gain-loss 

ratio (see Bernardo and Ledoit, 2000). However, the 𝑆𝑆𝑆𝑆𝑆𝑆 is still defined in a continuum set 

under bounds to rule out “good deals”. For instance, the price bounds of a European put 

option contract are given by � inf
ℚ∈𝒬𝒬∗

𝐸𝐸[𝑚𝑚𝑚𝑚], sup
ℚ∈𝒬𝒬∗

𝐸𝐸[𝑚𝑚𝑚𝑚]�, where 𝑋𝑋 reflects the future option’s 

payoff and 𝒬𝒬∗ is a subset of risk-neutral probability measures in a setup where “good deals” 

are ruled out. 

 In contrast, in a complete market, there exists a unique 𝑆𝑆𝑆𝑆𝑆𝑆 (and thus, a unique ℚ 

probability measure), which means that the price bounds mentioned above coincide (i.e., 

inf
ℚ∈𝒬𝒬∗

𝐸𝐸[𝑚𝑚𝑚𝑚] = sup
ℚ∈𝒬𝒬∗

𝐸𝐸[𝑚𝑚𝑚𝑚]), since 𝒬𝒬∗ is a singleton. Thus, in our model, where markets are 

complete (thanks to COS securities), the probability of a break under the risk-neutral 

measure is defined by 𝜋𝜋𝑡𝑡
𝑄𝑄 = 𝐴𝐴𝑡𝑡/𝐵𝐵𝑡𝑡, where 𝐴𝐴𝑡𝑡  and 𝐵𝐵𝑡𝑡 are the prices of the COS security and 

the bond, respectively, defined in Proposition I, because the expected value of the COS 

security is the same under both the ℙ and ℚ probability measures (i.e., 𝐴𝐴𝑡𝑡
𝑃𝑃 = 𝐴𝐴𝑡𝑡

𝑄𝑄). Under the 

ℙ probability measure, 𝐴𝐴𝑡𝑡  is defined by equation (6) in Proposition I, whereas under the ℚ 

probability measure, 𝐴𝐴𝑡𝑡
𝑄𝑄 = 𝜋𝜋𝑡𝑡

𝑄𝑄/(1 + 𝑟𝑟𝑡𝑡); thus, 𝜋𝜋𝑡𝑡
𝑄𝑄 = 𝐴𝐴𝑡𝑡/𝐵𝐵𝑡𝑡. 
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 We cannot obtain a closed-form solution to equation (10) in Proposition II to 

calculate the prices of put options, since there are breaks in the economy. In the special 

case of no breaks and full information, option prices can be obtained through Rubinstein's 

(1976) discretised version of the Black-Scholes formula. However, when breaks are 

present, the underlying process of the dividends is non-stationary (i.e., the drift in equation 

(1) changes over time), and the interest rate is not constant. Thus, we use a numerical 

method, which we explain in Section 3. Moreover, in Section 3, we describe the additional 

complexity that the numerical method faces in an economy with partial information and 

Bayesian learning, which we develop in Section 2.2. 

 

2.2 An economy under partial information and rational Bayesian learning 

 We now relax the full information assumption by assuming that 𝑔𝑔𝑡𝑡 is unknown. 

Nevertheless, the agent observes the dividends paid by the stock and uses them to learn 

about the new value of 𝑔𝑔𝑡𝑡 after a break. Note that historical information (before a break) 

does not help the agent to learn the new post-break value of 𝑔𝑔𝑡𝑡. In particular, the signals 

used to learn 𝑔𝑔𝑡𝑡 are the 𝑛𝑛 historical dividend returns, {𝐷𝐷𝑖𝑖/𝐷𝐷𝑖𝑖−1}𝑖𝑖=𝑡𝑡−𝑛𝑛
𝑡𝑡 , assuming that 𝑛𝑛 + 1 

periods have passed since the most recent break. Moreover, the agent knows that 

dividends follow a geometric random walk, as in equation (1); thus, she knows that signals 

are noisy and only partially reveal the true value of 𝑔𝑔𝑡𝑡. Consequently, after each break, the 

agent has access to a short historical dataset that does not allow her to accurately estimate 

the unknown parameter. As more signals are received, the learning process increases the 

accuracy of the parameter estimation.  
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 Similarly to Timmermann (2001), we assume that the agent does not know the 

future dates of breaks ex ante but recognises breaks as soon as they occur (the agent 

recognises the timing of the breaks), which allows us to isolate the impact of one source of 

learning (i.e., the process of learning 𝑔𝑔𝑡𝑡) on the put option return, rather than considering 

simultaneous learning about both the timing of the break and the value of 𝑔𝑔𝑡𝑡. Nevertheless, 

as a robustness check, in Internet Appendix C, we present an extension of the model where 

the representative agent knows neither the timing of the breaks nor the value of 𝑔𝑔𝑡𝑡. We find 

that the presence of both effects yields qualitatively similar results to the case where the 

agent learns only about 𝑔𝑔𝑡𝑡.  

 We assume that the representative agent uses the available information efficiently 

by updating her beliefs through a rational Bayesian updating procedure. We express the 

Bayesian updating process in terms of 𝜇𝜇𝑡𝑡 rather than 𝑔𝑔𝑡𝑡 (given the relation between 𝜇𝜇𝑡𝑡 and 

𝑔𝑔𝑡𝑡: 1 + 𝑔𝑔𝑡𝑡 = exp(𝜇𝜇𝑡𝑡 + σ2/2)). We do so because the signals used to learn about this 

parameter are the log returns of dividends, {ln (𝐷𝐷𝑖𝑖/𝐷𝐷𝑖𝑖−1)}𝑖𝑖=𝑡𝑡−𝑛𝑛
𝑡𝑡 , which are normally 

distributed (see equation (1)); thus, using 𝜇𝜇𝑡𝑡 makes the model mathematically simpler.  

 Under Bayesian learning, the representative agent views the unknown parameter 𝜇𝜇𝑡𝑡 

as a random variable. The learning process starts with a prior belief about the density of 𝜇𝜇𝑡𝑡, 

𝑓𝑓ℙ(𝜇𝜇𝑡𝑡), in the physical world ℙ. The prior density 𝑓𝑓ℙ(𝜇𝜇𝑡𝑡) is the density function of 𝜇𝜇𝑡𝑡, from 

which its new value is drawn after a break. Given that the new post-break value of 𝑔𝑔𝑡𝑡 is 

drawn from a uniform density 𝜚𝜚ℙ(𝑔𝑔𝑡𝑡) = 1/(𝑔𝑔𝑢𝑢 − 𝑔𝑔𝑑𝑑), the new post-break value of 𝜇𝜇𝑡𝑡 has 

the following probability density: 𝑓𝑓ℙ(𝜇𝜇𝑡𝑡) = exp(𝜇𝜇𝑡𝑡 + 𝜎𝜎2/2) /(𝑔𝑔𝑢𝑢 − 𝑔𝑔𝑑𝑑), where 𝜇𝜇𝑑𝑑 =

ln(1 + 𝑔𝑔𝑑𝑑) − 𝜎𝜎2/2 and 𝜇𝜇𝑢𝑢 = ln(1 + 𝑔𝑔𝑢𝑢) − 𝜎𝜎2/2. 
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 The Bayesian agent recursively updates her prior belief as new information is 

received, thus obtaining a posterior belief regarding the density of 𝜇𝜇𝑡𝑡, 𝑓𝑓ℙ(𝜇𝜇𝑡𝑡|𝛏𝛏𝑡𝑡), through 

Bayes’ rule: 

𝑓𝑓ℙ(𝜇𝜇𝑡𝑡|𝛏𝛏𝑡𝑡) =
𝑓𝑓ℙ(𝝃𝝃𝑡𝑡|𝜇𝜇𝑡𝑡)𝑓𝑓ℙ(𝜇𝜇𝑡𝑡)

𝑓𝑓ℙ(𝝃𝝃𝑡𝑡)
, (12) 

where 𝝃𝝃𝑡𝑡 = [ln (𝐷𝐷𝑡𝑡/𝐷𝐷𝑡𝑡−1). . . ln (𝐷𝐷𝑡𝑡−𝑛𝑛/𝐷𝐷𝑡𝑡−𝑛𝑛−1)] is the vector of 𝑛𝑛 historical signals used to 

learn about 𝜇𝜇𝑡𝑡 from the most recent break, and 𝑓𝑓ℙ(𝛏𝛏𝑡𝑡|𝜇𝜇𝑡𝑡) is the sample likelihood function: 

𝑓𝑓ℙ(𝝃𝝃𝑡𝑡|𝜇𝜇𝑡𝑡) =
1

�2𝜋𝜋(𝜎𝜎2/𝑛𝑛)
exp �

−(𝜉𝜉𝑡̅𝑡 − 𝜇𝜇𝑡𝑡)2

2(𝜎𝜎2/𝑛𝑛) �, (13) 

which is a normal probability density function with mean 𝜉𝜉𝑡̅𝑡 = (1/𝑛𝑛) ∑ 𝜉𝜉𝑖𝑖
𝑡𝑡
𝑖𝑖=𝑡𝑡−𝑛𝑛+1  and 

variance 𝜎𝜎2/𝑛𝑛, since the agent knows that historical signals follow the geometric random 

walk as described in equation (1), where the most recent break happened 𝑛𝑛 + 1 periods 

ago. Thus, we can rewrite equation (12) as: 

𝑓𝑓ℙ(𝜇𝜇𝑡𝑡|𝝃𝝃𝑡𝑡) =
𝑓𝑓ℙ(𝝃𝝃𝑡𝑡|𝜇𝜇𝑡𝑡)𝑓𝑓ℙ(𝜇𝜇𝑡𝑡)

∫ 𝑓𝑓ℙ(𝝃𝝃𝑡𝑡|𝜇𝜇𝑡𝑡)𝑓𝑓ℙ(𝜇𝜇𝑡𝑡)𝑑𝑑𝜇𝜇𝑡𝑡
𝜇𝜇𝑢𝑢

𝜇𝜇𝑑𝑑

, (14) 

given that 𝑓𝑓ℙ(𝛏𝛏𝑡𝑡) = ∫ 𝑓𝑓ℙ(𝛏𝛏𝑡𝑡|𝜇𝜇𝑡𝑡)𝑓𝑓ℙ(𝜇𝜇𝑡𝑡)𝑑𝑑𝜇𝜇𝑡𝑡
𝜇𝜇𝑢𝑢

𝜇𝜇𝑑𝑑
. Let 𝜆𝜆𝑡𝑡

𝐵𝐵𝐵𝐵(𝜇𝜇𝑡𝑡) be the price of any asset under 

partial information and Bayesian learning (e.g., 𝜆𝜆𝑡𝑡
𝐵𝐵𝐵𝐵(𝜇𝜇𝑡𝑡) can be the Bayesian value of the 

stock price, 𝑆𝑆𝑡𝑡
𝐵𝐵𝐵𝐵(𝜇𝜇𝑡𝑡), the bond price, 𝐵𝐵𝑡𝑡

𝐵𝐵𝐵𝐵(𝜇𝜇𝑡𝑡), or the price of put option contracts, 

𝑃𝑃𝑡𝑡
𝐵𝐵𝐵𝐵(𝐾𝐾, 𝜏𝜏)). Then, by using equation (14), the expected value of 𝜆𝜆𝑡𝑡

𝐵𝐵𝐵𝐵(𝜇𝜇𝑡𝑡) can be obtained as 

follows: 

𝜆𝜆𝑡𝑡
𝐵𝐵𝐵𝐵 = � 𝜆𝜆𝑡𝑡

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝜇𝜇𝑡𝑡)𝑓𝑓ℙ(𝜇𝜇𝑡𝑡|𝛏𝛏𝑡𝑡)𝑑𝑑𝜇𝜇𝑡𝑡

𝜇𝜇𝑢𝑢

𝜇𝜇𝑑𝑑

=
∫ 𝜆𝜆𝑡𝑡

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝜇𝜇𝑡𝑡)𝑓𝑓ℙ(𝛏𝛏𝑡𝑡|𝜇𝜇𝑡𝑡)𝑓𝑓ℙ(𝜇𝜇𝑡𝑡)𝑑𝑑𝜇𝜇𝑡𝑡
𝜇𝜇𝑢𝑢

𝜇𝜇𝑑𝑑

∫ 𝑓𝑓ℙ(𝛏𝛏𝑡𝑡|𝜇𝜇𝑡𝑡)𝜇𝜇𝑢𝑢
𝜇𝜇𝑑𝑑

𝑓𝑓ℙ(𝜇𝜇𝑡𝑡)𝑑𝑑𝜇𝜇𝑡𝑡
, (15) 
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where 𝜆𝜆𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝜇𝜇𝑡𝑡) represents the value of the asset under full information (i.e., the asset 

prices under full information as defined in Proposition I and Proposition II), which depends 

on the unknown parameter 𝜇𝜇𝑡𝑡.  

 

2.3 Option returns under Bayesian learning 

 The expected hold-to-maturity return of a put option contract under full 

information is:  

 𝑅𝑅𝑡𝑡+𝜏𝜏
𝑝𝑝 =

𝐸𝐸𝑡𝑡
𝑃𝑃[max (𝐾𝐾 − 𝑆𝑆𝑡𝑡+𝜏𝜏, 0)]

𝑃𝑃𝑡𝑡(𝐾𝐾, 𝜏𝜏)
− 1 =

𝐸𝐸𝑡𝑡
𝑃𝑃[max(𝐾𝐾 − 𝑆𝑆𝑡𝑡+𝜏𝜏, 0)]

𝐸𝐸𝑡𝑡
𝑄𝑄[𝑒𝑒−𝑟𝑟𝑟𝑟 max(𝐾𝐾 − 𝑆𝑆𝑡𝑡+𝜏𝜏, 0)]

− 1. (16) 

Under Bayesian learning, the expected hold-to-maturity put option return is: 

𝑅𝑅𝑡𝑡+𝜏𝜏
𝑝𝑝,𝐵𝐵𝐵𝐵 =

𝐸𝐸𝑡𝑡
𝑃𝑃,𝐵𝐵𝐵𝐵[max (𝐾𝐾 − 𝑆𝑆𝑡𝑡+𝜏𝜏, 0)|𝛏𝛏𝑡𝑡]

𝐸𝐸𝑡𝑡
𝑄𝑄,𝐵𝐵𝐵𝐵[𝑒𝑒−𝑟𝑟𝑟𝑟max (𝐾𝐾 − 𝑆𝑆𝑡𝑡+𝜏𝜏, 0)|𝛏𝛏𝑡𝑡]

− 1. (17) 

The numerators of equation (16) and equation (17) are obtained under the physical 

probability measure ℙ, whereas their denominators are obtained under risk-neutral 

probability measure ℚ. Consequently, differences between the ℙ and ℚ probability 

measures affect the level of the expected hold-to-maturity put option returns. Under full 

information, the risk-neutral probability measure 𝑓𝑓ℚ(𝑆𝑆𝑡𝑡+1) is obtained from the physical 

probability measure 𝑓𝑓ℙ(𝑆𝑆𝑡𝑡+1) as follows: 

𝑓𝑓ℚ(𝑆𝑆𝑡𝑡+1) =
𝑚𝑚𝑡𝑡+1𝑓𝑓ℙ(𝑆𝑆𝑡𝑡+1)

𝐸𝐸𝑡𝑡[𝑚𝑚𝑡𝑡+1]
, (18) 

where 𝑚𝑚𝑡𝑡+1 is the stochastic discount factor. However, under partial information and 

Bayesian learning, the ℙ probability measure is conditional on the information received 

after each break. Hence, 𝑓𝑓ℙ,𝐵𝐵𝐵𝐵(𝑆𝑆𝑡𝑡+1|𝛏𝛏𝑡𝑡) can be written as: 
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𝑓𝑓ℙ,𝐵𝐵𝐵𝐵(𝑆𝑆𝑡𝑡+1|𝛏𝛏𝑡𝑡) = � 𝑓𝑓ℙ(𝑆𝑆𝑡𝑡+1|𝛏𝛏𝑡𝑡, 𝜇𝜇𝑡𝑡)𝑓𝑓ℙ(𝜇𝜇𝑡𝑡|𝛏𝛏𝑡𝑡)
𝜇𝜇𝑢𝑢

𝜇𝜇𝑑𝑑

𝑑𝑑𝜇𝜇𝑡𝑡 . (19) 

Here, 𝑓𝑓ℙ(𝜇𝜇𝑡𝑡|𝛏𝛏𝑡𝑡) is the posterior belief of the Bayesian agent defined in equation (14). 

Equation (19) shows that in a learning environment, the conditional distribution of 

potential estimated values of the unknown parameter, given the information set 𝛏𝛏𝑡𝑡 , affects 

the ℙ probability measure of the future stock price.  

 The risk-neutral probability measure is also affected by the Bayesian learning 

process, as it is also conditional on the signals received. Accordingly, in the case of Bayesian 

learning, the risk-neutral probability measure 𝑓𝑓ℚ,𝐵𝐵𝐵𝐵(𝑆𝑆𝑡𝑡+1) is calculated as: 

𝑓𝑓ℚ,𝐵𝐵𝐵𝐵(𝑆𝑆𝑡𝑡+1|𝛏𝛏𝑡𝑡) = � 𝑓𝑓ℚ(𝑆𝑆𝑡𝑡+1|𝛏𝛏𝑡𝑡 , 𝜇𝜇𝑡𝑡)𝑓𝑓ℙ(𝜇𝜇𝑡𝑡|𝛏𝛏𝑡𝑡)
𝜇𝜇𝑢𝑢

𝜇𝜇𝑑𝑑

𝑑𝑑𝜇𝜇𝑡𝑡 = �
𝑚𝑚𝑡𝑡+1𝑓𝑓ℙ(𝑆𝑆𝑡𝑡+1|𝛏𝛏𝑡𝑡, 𝜇𝜇𝑡𝑡)

𝐸𝐸𝑡𝑡[𝑚𝑚𝑡𝑡+1]
𝑓𝑓ℙ(𝜇𝜇𝑡𝑡|𝛏𝛏𝑡𝑡)𝑑𝑑𝜇𝜇𝑡𝑡

𝜇𝜇𝑢𝑢

𝜇𝜇𝑑𝑑

. (20) 

 Equation (20) shows that learning can generate a gap between the ℙ and ℚ 

probability measures when changes in the parameter estimations (given the information 

available at 𝑡𝑡) are statistically associated with the agent's opinion regarding the dynamics 

of the stochastic discount factor. In fact, this is the case in our model because a change in 

the perception of the dividend drift induces a change in the agent's view about how the 

future stochastic discount factor evolves over time. Moreover, the gap between the ℙ and ℚ 

probability measures is dynamic and depends on the number of signals received after each 

break. Consequently, learning should affect option returns (see equation (17)), given that 

the Bayesian learning process modifies the wedge between the ℙ and ℚ probability 

measures, as described by equations (19) and (20). 
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2.4 Properties of the model that affect the learning process  

 In terms of the properties of the model, we analyse three key elements that affect 

the agent's learning process: (i) the presence of breaks in the mean dividend growth rate, 

(ii) the noise in the signals, and (iii) the representative agent’s relative risk aversion. First, 

in terms of the presence of breaks, suppose that there are no breaks in the mean dividend 

growth rate (i.e., 𝜋𝜋 = 0). In this case, as 𝑡𝑡 → ∞, the agent can use an infinite number of 

observations to learn about the unknown parameter (i.e., 𝑛𝑛 → ∞, since the value of 𝑛𝑛 is 

never reset); thus, the estimated parameter value converges towards the true value. In this 

case, learning effects on option pricing vanish asymptotically, as in Guidolin and 

Timmermann (2003), and asset prices gradually converge towards those obtained under 

full information (as in Propositions I and II).  

 Conversely, when 0 < 𝜋𝜋 < 1, learning never ends, even asymptotically, because the 

learning process is reinitiated after a break in 𝑔𝑔𝑡𝑡, which can be seen in equation (13), 

where the number of signals 𝑛𝑛 is immediately reset to zero after a break. Under the 

learning process in our model, the estimation error of the unknown parameter is 

proportional to 1/𝑛𝑛 (see equation (13)). Thus, the inaccuracy of the parameter estimation 

is reduced as more information is received (i.e., when the number of signals 𝑛𝑛 increases). 

Note that the market is complete under partial information and learning, just as it is under 

full information, because the inaccuracy of the parameter estimation decreases following a 

deterministic path with a reduction factor of order 1/𝑛𝑛, as more signals are observed and 

processed via the learning mechanism.  
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 Second, the signals used to learn the unknown parameter (i.e., log dividend returns) 

are noisy. The accuracy of the parameter estimation depends on the number of signals 𝑛𝑛 as 

well as on the variance 𝜎𝜎2 of the dividend process (i.e., historical signals, {ln (𝐷𝐷𝑖𝑖/

𝐷𝐷𝑖𝑖−1)}𝑖𝑖=𝑡𝑡−𝑛𝑛
𝑡𝑡 , are normally distributed with variance 𝜎𝜎2). Thus, the value of 𝜎𝜎 controls the 

level of noise contained in the historical information used by the agent to learn about the 

unknown parameter and, consequently, the speed at which the agent learns. For instance, 

suppose that 𝜎𝜎 → ∞. In this case, the agent cannot learn from the information received 

(even asymptotically), since the signals are excessively noisy. Thus, the agent can use only 

the expected value of the parameter based on her prior belief. In contrast, when 𝜎𝜎 = 0 (i.e., 

the signals are not noisy at all), learning stops after the first signal is received, since signals 

are constant over time. Thus, 𝜇𝜇𝑡𝑡 equals any element of the vector of historical signals 𝛏𝛏𝑡𝑡 =

[ln (𝐷𝐷𝑡𝑡/𝐷𝐷𝑡𝑡−1) … ln (𝐷𝐷𝑡𝑡−𝑛𝑛/𝐷𝐷𝑡𝑡−𝑛𝑛−1)]. In this paper, we assume a value of 𝜎𝜎 based on market 

data (which is explained in the following section). As a robustness check, we use a different 

level of 𝜎𝜎 in the Internet Appendix C to analyse the effect of a change in this parameter on 

put option returns. 

 The coefficient of relative risk aversion, 𝜂𝜂, also plays an important role in the 

learning process. For example, learning does not affect the value of the stock price when 

𝜂𝜂 = 1, as documented in Guidolin and Timmermann (2003), because the expression 

(1 + 𝑔𝑔𝑡𝑡)1−𝜂𝜂 in the stock price equals one (see equation (7)). Thus, in this case, when the 

Bayesian updating process is used (i.e., through equation (15)), learning has no effect on 

the stock price because its value no longer depends on 𝑔𝑔𝑡𝑡 (i.e., the unknown parameter). 

However, learning is still present in the bond price, thus affecting the price and the return 

of put option contracts. In the implementation of the model, we use different levels of 
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relative risk aversion to evaluate the effect of a change in the level of 𝜂𝜂 on put option 

returns. 

 

3 Implementation of the model  

 We use a simulation analysis based on the model presented in Section 2, with 

different parameter setups, to analyse the effects of learning on put option returns. We 

perform 10,000 simulations per combination of parameters. In each of these simulations, 

we generate 12 years (3,024 trading days) of daily dividends, which are the signals that the 

representative agent observes and uses to learn about 𝑔𝑔𝑡𝑡. Thus, our simulation set 

represents  simulated trading days for any given choice of 

parameter values.  

 We simulate daily dividends using two nested stochastic processes. First, we use the 

dividends’ geometric random-walk process, ln(𝐷𝐷𝑡𝑡+1/𝐷𝐷𝑡𝑡) = 𝜇𝜇𝑡𝑡 +  𝜎𝜎𝜀𝜀𝑡𝑡, to simulate the time 

series of 12 years of daily dividends. Second, in each 12-year time series, we generate 

random breaks in 𝑔𝑔𝑡𝑡 (and thus breaks in 𝜇𝜇𝑡𝑡), which affect the simulation of dividends by 

the random-walk process. In the generation of breaks, the times between breaks follow a 

geometric distribution with parameter 𝜋𝜋, and when each break occurs, a new value for 𝑔𝑔𝑡𝑡 is 

drawn from a uniform distribution 𝑔𝑔𝑡𝑡~𝐺𝐺(∙). 

 Prices 𝑆𝑆𝑡𝑡 and 𝐵𝐵𝑡𝑡 on each of the 3,024 trading days (and in each of the 10,000 

simulations) are obtained using equation (15), calculated by means of numerical 

integration through the adaptive Simpson quadrature. Between breaks, 𝐴𝐴𝑡𝑡  is calculated 

using equation (9), since the COS security’s price does not depend on 𝑔𝑔𝑡𝑡 and thus is not 

10,000 3,024 30,240,000× =
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affected by learning. When there is a break in the economy, 𝐴𝐴𝑡𝑡  is equal to one (as defined in 

the model). European put option prices are also calculated using equation (15). Thus, we 

can write the following equation for the price of a put option contract: 

 𝑃𝑃𝑡𝑡
𝐵𝐵𝐵𝐵(𝐾𝐾, 𝜏𝜏) =

∫ �∫ 1
1+𝑟𝑟𝑡𝑡,𝑡𝑡+𝜏𝜏

max{𝐾𝐾 − 𝑆𝑆𝑡𝑡+𝜏𝜏, 0}𝑓𝑓ℚ(𝑆𝑆𝑡𝑡+𝜏𝜏) 𝑑𝑑𝑆𝑆𝑡𝑡+𝜏𝜏
∞

0 � 𝑓𝑓ℙ(𝛏𝛏𝑡𝑡|𝜇𝜇𝑡𝑡)𝑓𝑓ℙ(𝜇𝜇𝑡𝑡)𝑑𝑑𝜇𝜇𝑡𝑡
𝜇𝜇𝑢𝑢

𝜇𝜇𝑑𝑑

∫ 𝑓𝑓ℙ(𝛏𝛏𝑡𝑡|𝜇𝜇𝑡𝑡)𝜇𝜇𝑢𝑢
𝜇𝜇𝑑𝑑

𝑓𝑓ℙ(𝜇𝜇𝑡𝑡)𝑑𝑑𝜇𝜇𝑡𝑡
. (21) 

 European put option prices are calculated using equation (21) on a monthly basis to 

obtain non-overlapping one-month option returns. In each month of the 12-year simulated 

period (and for each of the 10,000 simulations), equation (21) is solved through a two-step 

procedure. As a first step, we address the internal integral in equation (21), which contains 

the max (∙) function. This integral is solved by Monte Carlo simulation, in which 𝑗𝑗 ∈

{1,2, … , 𝐽𝐽) is a simulated independent path of the stock price, where 𝐽𝐽 = 20,000.  

 Each of the 20,000 paths in the Monte Carlo simulation is generated using the risk-

neutral density, which is decomposed into a sequence of one-period risk-neutral 

probabilities. Thus, each path is generated through the repetition of several single-period 

steps. Suppose that we generate path 𝑗𝑗, in which the first break (after current time 𝑡𝑡) 

occurs in period 𝑡𝑡 + 𝑚𝑚, where 𝑚𝑚 ≤ 𝜏𝜏. Thus, between periods 𝑡𝑡 and 𝑡𝑡 + 𝑚𝑚 − 1, the dividend 

drift is equal to the current unknown value at time 𝑡𝑡, 𝜇𝜇𝑡𝑡. In this path 𝑗𝑗, the Bayesian agent 

learns about 𝜇𝜇𝑡𝑡 from the set of signals 𝛏𝛏𝑡𝑡 . Since we also have to integrate with respect to 𝜇𝜇𝑡𝑡 

in the exterior integral (due to the Bayesian learning process used to learn 𝜇𝜇𝑡𝑡) in equation 

(21), we leave the expression generated in path 𝑗𝑗 as a symbolic expression that depends on 

𝜇𝜇𝑡𝑡 between periods 𝑡𝑡 and 𝑡𝑡 + 𝑚𝑚 − 1. After period 𝑡𝑡 + 𝑚𝑚, the new value of the dividend drift 

does not depend on the set of signals 𝛏𝛏𝑡𝑡  (which is also the case if there are new breaks 
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between periods 𝑡𝑡 + 𝑚𝑚 and 𝜏𝜏). Thus, we obtain an analytical expression for the option 

payoff, which depends on 𝜇𝜇𝑡𝑡 in each path of the Monte Carlo simulation. 

 In the second step, we integrate the analytical expression for the option payoff with 

respect to 𝜇𝜇𝑡𝑡 (which is obtained in each path in the first step of the procedure) using 

numerical integration through the adaptive Simpson quadrature. Thus, in this second step, 

we solve the exterior integral that depends on 𝜇𝜇𝑡𝑡 in each of the Monte Carlo paths. We then 

average the outcomes from the 20,000 paths, thereby obtaining the put option price for a 

given simulated month. The denominator of equation (21) is also solved through numerical 

integration using the adaptive Simpson quadrature. 

 Notably, in a model under full information (i.e., when there is no learning, as in 

Section 2.1), the two-step procedure is not required to solve equation (10). Under full 

information, the integral in equation (10) is solved on a monthly basis using standard 

Monte Carlo simulation, again with 20,000 independent paths. Each of the 20,000 paths in 

this Monte Carlo simulation is generated by means of the risk-neutral density. Then, we 

average the outcomes from the 20,000 paths to obtain the simulated put option price for a 

given month. 

 In terms of the parameterisation of the model, we consider the following parameter 

setup. Since the new post-break mean dividend growth rate is taken from uniform 

distribution 𝐺𝐺(∙), we assume that its lower and upper bounds are 𝑔𝑔𝑙𝑙 = −0.126% and 𝑔𝑔𝑢𝑢 =

0.705%, respectively, on a monthly basis. The values of 𝑔𝑔𝑙𝑙 and 𝑔𝑔𝑢𝑢 are consistent with the 

real dividend growth rate of the S&P 500 index during the period of our empirical analysis. 

For example, the annual dividend log returns of the S&P 500 index in real terms between 
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1996 and 2007 (taken from Robert Shiller's database) have a mean and standard deviation 

of 3.39% and 5.27%, respectively. Thus, the interval with centre 3.39%, plus and minus 

5.27%, is [-1.88%, 8.66%] on an annual basis, which is equivalent to the interval [-0.16%, 

0.69%] on a monthly basis. This interval, based on market data, is close to the assumed 

lower and upper bounds of the uniform distribution 𝐺𝐺(∙).  

 We set the rate of impatience, 𝜌𝜌, at 0.713% on a monthly basis or, equivalently, 

8.900% on a yearly basis, because the rate of impatience is constrained in the model by 1 +

𝜌𝜌 > (1 − 𝜋𝜋)(1 + 𝑔𝑔𝑢𝑢)1−𝛼𝛼 in order to obtain positive stock prices (see equation (7)), where 

the value of 𝑔𝑔𝑢𝑢 was set in the previous paragraph. The rate of impatience is high in relation 

to the real interest rates observed during the period 1996–2007, but as mentioned above, 

we need this level of 𝜌𝜌 to obtain positive stock prices. We could calibrate 𝜌𝜌 using market 

data and then adjust 𝑔𝑔𝑢𝑢 using 1 + 𝜌𝜌 > (1 − 𝜋𝜋)(1 + 𝑔𝑔𝑢𝑢)1−𝛼𝛼. However, we prefer to select 𝑔𝑔𝑢𝑢 

and then adjust 𝜌𝜌 (thus sacrificing the accuracy of its calibration to some degree), since 𝑔𝑔𝑡𝑡 

is the variable that must be learned by the Bayesian agent in our model. While our model 

does not match real interest rates closely, it is important to note that our focus is on 

providing a simple model of a learning environment, with the objective of offering a 

potential explanation for the abnormal put option returns rather than perfectly calibrating 

all variables in the economy.  

 The volatility of the geometric random walk is set at 1.44% on a monthly basis (i.e., 

5.00% on an annual basis), which is also consistent with market data (the standard 

deviation between 1996 and 2007 of real dividend log returns on the S&P 500 index was 

5.27%). For the coefficient of relative risk aversion, 𝜂𝜂, we use levels of 0.2, 0.5, and 5.0. In 

an attempt to reproduce reality, we obtain the probability of breaks, 𝜋𝜋, using a dynamic test 
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for structural breaks as proposed by Chu et al. (1996) with data on daily real dividends 

from the S&P 500 index during the period 1996–2007 (see Internet Appendix A). We 

detect eight breaks in the mean dividend growth rate over the 3,024 trading days of the 12 

years analysed; thus, we set 𝜋𝜋 at 0.056 (on a monthly basis).  

 

4 Results 

4.1 Index put option returns 

 We calculate returns obtained from a hold-to-maturity naked trading strategy. In 

each 12-year simulation, following Broadie et al. (2009) and Chambers et al. (2014), we 

generate time series of one-month non-overlapping put option returns, 𝑟𝑟𝜏𝜏+𝑇𝑇
𝑝𝑝 , given by: 

𝑟𝑟𝑡𝑡+𝜏𝜏
𝑝𝑝 =

max (𝐾𝐾 − 𝑆𝑆𝑡𝑡+𝜏𝜏, 0)
𝑃𝑃𝑡𝑡(𝐾𝐾, 𝜏𝜏) − 1, (22) 

where 𝑃𝑃𝑡𝑡(𝐾𝐾, 𝜏𝜏) is the put option price. Figure 1 presents the results of one such 12-year 

simulation under three scenarios: full information with no breaks, full information with 

breaks, and partial information with breaks and learning. The first two scenarios are 

special cases of the model presented in Section 2. In the scenario under full information 

with no breaks, our model is equivalent to Rubinstein’s (1976) discrete version of the 

Black-Scholes model. In the scenario under full information with breaks, we calculate put 

option prices using Proposition II. The third scenario is the full model presented in Section 

2, which represents an economy with breaks, partial information and learning. 

[Insert Figure 1 here] 
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 Figure 1 reports option returns with a strike-to-price ratio of 1.00. In this 

simulation, the coefficient of relative risk aversion is set at 0.5. Figure 1 shows that in all 

three scenarios, a naked investment strategy generates put option returns that are far from 

normal, reflecting high levels of skewness and kurtosis. Interestingly, under partial 

information and learning, put option returns take negative values more frequently than 

they do under full information (with and without breaks). 

 Table 1 reports summary statistics of empirical and simulated put option returns. 

This table reports the average values of one-month hold-to-maturity put option returns for 

different moneyness levels (ranging from 0.96 to 1.02). We focus on this particular range of 

moneyness levels because most options’ trading activity occurs within that range (see 

Broadie et al., 2009). 

[Insert Table 1 here] 

Empirical put option returns, presented in Panel A of Table 1, are calculated using 

S&P 500 European put index options obtained from the OptionMetrics Ivy DB database 

spanning 1996–2007. We exclude option prices that violate arbitrage conditions, have an 

ask price that is lower than the bid price, have a bid price of zero, and/or have no option 

open interest (see Bernales and Guidolin, 2014). We obtain option returns for fixed 

moneyness and time-to-maturity levels by interpolating linearly across the returns of the 

four S&P 500 put option contracts that surround the required values of moneyness and 

time to maturity.  

 In Panels B-D of Table 1, as in Figure 1, simulations are based on an economy under 

three scenarios: full information with no breaks, full information with breaks, and partial 
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information with breaks and learning. We use three values for the coefficient of relative 

risk aversion (𝜂𝜂 = 0.2, 0.5, and 5.0 in Panels B, C, and D, respectively).  

Panel A of Table 1 shows that empirical put option returns are negative and 

significantly different from zero. In addition, the absolute values of empirical option 

returns decrease as the moneyness level increases, which is in line with the behaviour of 

put option returns derived in Coval and Shumway (2001). For instance, an S&P 500 put 

option contract with a ratio of 𝐾𝐾/𝑆𝑆 = 0.96 (𝐾𝐾/𝑆𝑆 = 1.00) has an average return of −0.69 

(−0.27). 

Panels B-D of Table 1 report that simulated put option returns are also negative and 

that their absolute values decrease as the moneyness level increases, which is observed for 

all scenarios and coefficients of relative risk aversion. However, the simulated results 

obtained under the two scenarios without learning (i.e., full information with no breaks 

and full information with breaks) stand in sharp contrast to the empirical results presented 

in Panel A. The simulated put option returns with no learning are smaller (and in general 

not significant) than the empirical put option returns (which are significant with t-statistics 

of at least -4.27).  

In contrast to the scenarios without learning, simulated put option returns are large 

in absolute value when there is learning in the economy (i.e., the last four columns on the 

right-hand side of Table 1). For example, a one-month-to-maturity put option with 𝐾𝐾/𝑆𝑆 =

1.00 has an average monthly return of −0.55, −0.38, and −0. 93 for coefficients of relative 

risk aversion 0.2, 0.5, and 5.0, respectively. In addition, the simulated put option returns 
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under learning are generally significant, similar to the observed put option returns of S&P 

500 option contracts presented in Panel A.  

Importantly, the difference in the levels and t-statistics of simulated put option 

returns marginally increases from the “full information, no breaks” scenario to the “full 

information with breaks” scenario (signalling a small effect of breaks on the returns on put 

option contracts). However, very few of the simulations for these first two scenarios have 

significant values in relation to the simulations under information with breaks and 

learning, which suggests that learning matters more than breaks in generating large 

returns on put option contracts.  

 

4.2 Abnormal put option returns under the CAPM 

 There is empirical evidence that put option returns are too high to be explained by 

the capital asset pricing model (CAPM) – see, e.g., Bondarenko, 2003. Thus, we analyse 

whether our model generates put option returns that are also too high relative to the 

CAPM. In particular, we estimate the CAPM 𝛼𝛼, which reflects whether the expected return 

of an investment is abnormal relative to the expected return obtained by the CAPM. To this 

end, we run the following regression: 

�𝑟𝑟𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑟𝑟𝐹𝐹� = 𝛼𝛼 + 𝛽𝛽(𝑟𝑟𝑚𝑚 − 𝑟𝑟𝐹𝐹) + 𝜀𝜀, (23) 

where 𝑟𝑟𝑂𝑂𝑂𝑂𝑂𝑂 is the return on put option contracts, 𝑟𝑟𝑚𝑚 is the return of the market portfolio, 

and 𝑟𝑟𝐹𝐹 is the risk-free rate. Table 2 reports the average values of the CAPM 𝛼𝛼 estimated 

from the empirical and simulated put option returns. Panel A reports the estimates of the 

CAPM 𝛼𝛼 obtained from empirical option data. In this case, 𝑟𝑟𝑂𝑂𝑂𝑂𝑂𝑂 is obtained from the S&P 
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500 put option contracts, 𝑟𝑟𝐹𝐹 is the one-month LIBOR rate, and 𝑟𝑟𝑚𝑚 is the S&P 500 index 

return.  

[Insert Table 2 here] 

 Panels B-D of Table 2 report the estimated values of the CAPM 𝛼𝛼 from simulated put 

option returns under the same three scenarios used in Figure 1 and Table 1 (i.e., full 

information with no breaks, full information with breaks, and partial information with 

breaks and learning). In the simulations generated by our model, 𝑟𝑟𝑂𝑂𝑂𝑂𝑂𝑂 is calculated through 

option prices obtained from our model using equation (22). The risk-free rate, 𝑟𝑟𝐹𝐹, is 

obtained from the bond price (i.e., 𝑟𝑟𝐹𝐹 = 1/𝐵𝐵 − 1). In the scenario without breaks, 𝑟𝑟𝑚𝑚 is the 

market portfolio formed by the stock. In the scenarios with breaks, the market portfolio is 

formed by the stock and the COS security, in which the weight of the stock, 𝜔𝜔𝑆𝑆, and the 

weight of the COS security, 𝜔𝜔𝐴𝐴, are given by the tangency portfolio lying on the efficient 

frontier. Thus, 𝜔𝜔𝑆𝑆 = (𝜎𝜎𝐴𝐴
2𝐸𝐸(𝑟𝑟𝑆𝑆 − 𝑟𝑟𝐹𝐹) − 𝜎𝜎𝑆𝑆,𝐴𝐴𝐸𝐸(𝑟𝑟𝐴𝐴 − 𝑟𝑟𝐹𝐹)/(𝜎𝜎𝐴𝐴

2𝐸𝐸(𝑟𝑟𝑆𝑆 − 𝑟𝑟𝐹𝐹) − 𝜎𝜎𝑆𝑆,𝐴𝐴𝐸𝐸(𝑟𝑟𝐴𝐴 − 𝑟𝑟𝐹𝐹) +

𝜎𝜎𝑆𝑆
2𝐸𝐸(𝑟𝑟𝐴𝐴 − 𝑟𝑟𝐹𝐹) − 𝜎𝜎𝑆𝑆,𝐴𝐴𝐸𝐸(𝑟𝑟𝑆𝑆 − 𝑟𝑟𝐹𝐹)) and 𝜔𝜔𝐴𝐴 = 1 − 𝜔𝜔𝑆𝑆, where 𝐸𝐸(𝑟𝑟𝑆𝑆) and 𝐸𝐸(𝑟𝑟𝐴𝐴) are the expected 

returns of the stock and the COS security, respectively. The values of 𝜎𝜎𝑆𝑆
2 and 𝜎𝜎𝐴𝐴

2 are the 

variances of the returns on the stock and the COS security, respectively, while 𝜎𝜎𝑆𝑆,𝐴𝐴 is the 

covariance between these two assets. Expected returns, variances and the covariance are 

calculated in each simulation using daily simulated data. In Internet Appendix C, we also 

consider a scenario under partial information with breaks and learning in which the COS 

security is not included in the market portfolio when calculating the value of the CAPM 𝛼𝛼 

(despite the fact that COS security is part of the economy). Our results scarcely change 

when we omit the COS security because its weight is low in the market portfolio. 
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 Panel A of Table 2 shows that the estimated CAPM 𝛼𝛼 values from the empirical data 

are negative, with large and statistically significant absolute values. The absolute values of 

the CAPM 𝛼𝛼 decrease as the moneyness level increases. In terms of simulated option 

returns, Panels B-D of Table 2 report that in an environment without learning (under full 

information with no breaks and full information with breaks), the simulated results of the 

CAPM 𝛼𝛼 are negative but lower in absolute value than the empirical results presented in 

Panel A of Table 2. Most importantly, in the scenarios without learning (see Panels B-D), 

the simulated put option returns are generally not abnormal, since few of the simulations 

for either scenario have significant CAPM 𝛼𝛼 values. Thus, these results suggest that the 

abnormal put option returns observed in S&P 500 option contracts cannot be explained by 

models in which no learning process exists. 

Panels B-D of Table 2 show that in the scenario with learning, the simulated values 

of the CAPM 𝛼𝛼 are negative and larger in absolute value than those in the other two 

simulated scenarios, where there is no learning in the economy. In addition, in the scenario 

with learning, the simulated values of the CAPM 𝛼𝛼 are abnormal since their values are in 

most cases significant, similar to the empirical results of the CAPM 𝛼𝛼 reported in Panel A.  

We can observe in Table 2 that the simulated results of the CAPM 𝛼𝛼 generated by 

our model in the scenario with learning are not exactly the same as those empirically 

observed in the S&P 500 option contracts. However, it is important to note that the main 

purpose of our study is to provide a potential explanation for the abnormal returns 

observed on put option contracts by using a simple model under a learning environment. 

We do not seek to fully describe all features of the option market, since the option pricing 

process could be affected by elements outside the scope of our model, such as jump risk 
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(e.g., Broadie et al., 2009; Constantinides et al., 2013) and individual investors’ net option 

demand (e.g., Bollen and Whaley, 2004; Gârleanu et al., 2009). Therefore, the objective of 

our study is not to propose a better model for option pricing but to suggest that the 

learning process followed by investors may be one of the reasons for the anomalous high 

returns of put option contracts. 

 

4.3 A multifactor analysis of option returns 

 In this section, we analyse whether put option returns are related to other factors in 

addition to the market factor from the CAPM. In particular, we use the volatility risk 

premium and the price-to-dividend ratio (𝑆𝑆/𝐷𝐷). The volatility risk premium is the 

difference between the volatilities of the ℚ and ℙ probability measures. As explained in 

equation (17), the volatility risk premium is a natural factor for describing option returns 

in an economy with learning, as it is a proxy for the differences between the ℚ and ℙ 

probability measures. Regarding the use of the price-to-dividend ratio, there is theoretical 

evidence that this measure can explain stock returns when agents follow a learning 

process, which may also affect option returns (for an overview of the literature on the 

effect of learning on the relation between the price-to-dividend ratio and stock returns, see 

Pastor and Veronesi, 2009). 

In line with Bollerslev et al. (2009), we calculate the volatility risk premium as the 

difference between the option’s implied volatility (𝐼𝐼𝐼𝐼) and the realised volatility (𝑅𝑅𝑅𝑅). In 

the case of the empirical analysis using S&P 500 option contracts, we calculate the 𝐼𝐼𝐼𝐼 

through the Black-Scholes model with at-the-money one-month-to-maturity put option 
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contracts. We use linear interpolation based on the 𝐼𝐼𝐼𝐼s of the four contracts around the 

moneyness and the time to maturity required. 

 In the case of the simulated results, we obtain the 𝐼𝐼𝐼𝐼 (i.e., the volatility under the ℚ 

probability measure) numerically from the Monte Carlo simulation used to obtain the 

option prices each month (as explained in Section 3). Thus, the option’s implied volatility is 

calculated as the annualised standard deviation of the simulated one-month stock returns 

under ℚ (namely, from the 20,000 Monte Carlo paths generated by the two-step procedure 

explained below equation (21)).  

 We calculate the 𝑅𝑅𝑅𝑅 as the annualised standard deviation of the daily stock log 

returns over each month to avoid overlapping periods. For the empirical results, we use 

daily S&P 500 index data; for the theoretical results, we calculate the 𝑅𝑅𝑅𝑅 using simulated 

daily stock log returns.  

We explore whether the computed factors explain the empirical and simulated 

option returns by using a naked strategy (as in Tables 1 and 2) and a straddle portfolio. We 

also include the straddle portfolio because it is not affected by price changes in the 

underlying stock. The analysis of option returns using the straddle strategy is important as 

a robustness check, since the agent's learning process simultaneously affects the option 

contracts and the stock prices. Thus, one may conjecture that the effect of learning on 

option returns is mainly driven by changes in the underlying stock. However, the straddle 

portfolio allows us to isolate the impact of learning on option returns because this portfolio 

is free of risk derived from changes in the underlying stock price. 
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The straddle portfolio is formed by buying one European put option contract and 

one European call option contract with the same moneyness and time to maturity. The call 

option price is calculated using the same procedure that is used for the put option price (as 

explained in equation (21)); however, the call option payoff is used this time. We calculate 

only straddle portfolios with at-the-money contracts because no other straddle position 

represents a market-neutral strategy.  

Table 3 presents results for the empirical and simulated option returns from the 

multifactor analysis. In our model, we use three coefficients of relative risk aversion (𝜂𝜂 =

0.2, 𝜂𝜂 = 0.5, and 𝜂𝜂 = 5.0 in Panels B, C, and D, respectively). Unlike Tables 1 and 2, Table 3 

reports only the results for the scenario under partial information with breaks and 

learning, since the volatility risk premium (𝐼𝐼𝐼𝐼 − 𝑅𝑅𝑅𝑅) is equal to zero in the scenarios 

without learning. It is important to mention that the difference in volatility between the ℚ 

and ℙ probability measures generated by our model is, on average, 6.9%, 3.4%, and 34.0% 

when the coefficient of relative risk aversion is set at 0.2, 0.5, and 5.0, respectively (see 

Internet Appendix D). 

[Insert Table 3 here] 

 Table 3 reports that empirical and simulated straddle portfolios are abnormal under 

the CAPM (see the fifth column of results in the table), similar to the ones reported in Table 

2 for a naked investment strategy under a learning environment. For example, the value of 

the CAPM 𝛼𝛼 of the straddle portfolio using S&P 500 contracts (using our model with 𝜂𝜂 =

0.5) is -0.08 (-0.33).  
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 Most importantly, Table 3 shows that the volatility risk premium is a significant 

factor in explaining the empirical and simulated returns of both the naked investment 

strategy and the straddle portfolio. In addition, the values of the CAPM 𝛼𝛼 estimated from 

empirical and simulated option returns, as well as their levels of significance, are strongly 

reduced in absolute value once a factor model that incorporates the volatility risk premium 

is used. This result further supports our study, as it highlights that learning generates 

differences between the ℙ and ℚ probability measures, which affects put option returns (as 

explained in Section 2.3). Note that we show only the results of the volatility risk premium 

as a proxy for differences between the ℙ and ℚ probability measures. However, learning 

generates differences in the entire distribution of the ℙ and ℚ probability measures, 

including differences in volatility, skewness and kurtosis (see, e.g., David and Veronesi, 

2002; Guidolin and Timmermann, 2003). 

  

5 Conclusion 

 The economic sources that generate the empirically observed excessive put index 

option returns have not been studied extensively. We suggest that the learning process 

followed by investors may be one potential source. We present an equilibrium model under 

partial information about the mean dividend growth rate, in which a rational Bayesian 

learner prices put option contracts. We show that our model generates abnormal put 

option returns similar to those we compute from actual S&P 500 index option data. In 

addition, we document that this result is not obtained in an economy without learning. Our 

model is simple and intuitive and opens a number of potential avenues for future research. 

For instance, future research may address the impact of learning on the returns of other 
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derivative securities, the effect of learning in a setup with asymmetric information where 

informed agents reveal information to other market participants via their trading 

strategies, and the role of learning in an environment with liquidity shocks that also need 

to be learned. 
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Figure 1. Dynamics of put option returns under three scenarios: full information with no breaks, full 
information with breaks, and partial information with breaks and learning. This figure presents the time series 
of simulated put option returns (with a naked investment strategy) for one 12-year simulation under three 
scenarios: full information with no breaks, full information with breaks, and partial information with breaks 
and learning. The figure reports one-month hold-to-maturity returns with a strike-to-price ratio of 1.00. In 
this simulation, the coefficient of relative risk aversion is set at 0.5.  
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Table 1. Summary statistics of empirical and simulated put option returns. This table reports summary 
statistics of empirical and simulated returns on put option contracts using a naked investment strategy, 𝑹𝑹𝒑𝒑𝒑𝒑𝒑𝒑. 
The table reports average one-month hold-to-maturity option returns for non-overlapping intervals, with 
strike-to-price ratios ranging from 0.96 to 1.02 (with an increment of 0.02). Empirical option returns are 
obtained from S&P 500 option contracts between 1996 and 2007. Simulated option returns are obtained from 
simulations of the model under three scenarios: full information with no breaks, full information with breaks, 
and partial information with breaks and learning. Simulations of the model are performed using three 
coefficients of relative risk aversion (𝜼𝜼 = 𝟎𝟎. 𝟐𝟐, 𝜼𝜼 = 𝟎𝟎. 𝟓𝟓, and 𝜼𝜼 = 𝟓𝟓. 𝟎𝟎). The values for the simulated option 
returns are the averages over 10,000 simulations of 12 years each. The percentage of simulations with a 
significant mean return is reported in parentheses at 5% significance (since there is only one time series for 
empirical S&P 500 option returns, the value in parentheses can only be 0% or 100%).  

 

 

 

 

K/S 0.96 0.98 1.00 1.02 0.96 0.98 1.00 1.02 0.96 0.98 1.00 1.02

Mean -0.69 -0.36 -0.27 -0.22
t -stat -10.64 -4.61 -4.59 -4.27

p -value 0.00 0.00 0.00 0.00
(100%) (100%) (100%) (100%)

Volatility 1.39 1.74 1.36 1.08
Skewnes 6.01 4.04 2.79 1.83
Kurtosis 45.80 22.59 13.71 7.69

Mean -0.23 -0.13 -0.09 -0.05 -0.29 -0.22 -0.14 -0.07 -0.96 -0.84 -0.55 -0.23
t -stat -0.59 -0.62 -1.30 -1.27 -0.64 -0.81 -1.34 -1.41 -182.77 -18.73 -8.48 -3.85

p -value 0.59 0.57 0.26 0.21 0.51 0.39 0.18 0.17 0.00 0.00 0.00 0.01
(11%) (11%) (34%) (36%) (11%) (16%) (35%) (38%) (100%) (99%) (99%) (96%)

Volatility 8.90 4.95 1.62 0.79 11.56 6.56 2.30 1.10 1.03 0.84 0.76 0.63
Skewnes 10.36 7.14 2.11 0.49 14.62 9.18 3.29 0.67 10.85 4.99 2.03 0.64
Kurtosis 65.61 56.64 4.48 -0.32 86.06 76.55 6.90 -0.47 107.26 31.11 7.88 2.88

Mean -0.21 -0.11 -0.08 -0.04 -0.25 -0.15 -0.11 -0.04 -0.97 -0.73 -0.38 -0.10
t -stat -0.57 -0.59 -1.15 -1.25 -0.64 -0.70 -1.18 -1.34 -110.70 -9.95 -4.45 -1.51

p -value 0.60 0.58 0.30 0.27 0.57 0.50 0.29 0.15 0.02 0.01 0.02 0.02
(10%) (11%) (27%) (31%) (10%) (15%) (31%) (36%) (100%) (99%) (99%) (96%)

Volatility 8.56 4.89 1.61 0.77 9.50 5.54 2.26 0.78 0.93 0.73 1.03 0.54
Skewnes 9.82 6.90 2.20 0.50 11.94 8.09 2.63 0.65 10.61 5.55 1.95 0.57
Kurtosis 70.28 59.76 4.61 -0.28 82.90 65.01 5.27 -0.37 116.46 37.38 6.91 2.74

Mean -0.25 -0.14 -0.10 -0.05 -0.42 -0.30 -0.16 -0.07 -1.00 -0.96 -0.93 -0.65
t -stat -0.61 -0.72 -1.37 -1.43 -0.70 -0.78 -1.46 -1.49 -142.91 -146.08 -59.71 -32.16

p -value 0.49 0.54 0.19 0.16 0.47 0.55 0.16 0.13 0.00 0.00 0.01 0.00
(12%) (12%) (37%) (43%) (10%) (15%) (39%) (46%) (100%) (99%) (99%) (96%)

Volatility 9.13 4.98 1.62 0.73 13.05 8.43 2.65 1.14 0.81 0.61 0.30 0.22
Skewnes 11.30 7.25 2.17 0.52 17.05 12.29 3.43 0.93 9.41 9.33 7.20 4.18
Kurtosis 69.45 58.34 4.94 -0.24 104.17 89.00 8.30 -0.37 97.92 93.45 64.64 33.09

No Breaks - Full Inf. (No Learning) Breaks - Full Inf. (No Learning) Breaks - Partial Inf. (Learning) 

No Breaks - Full Inf. (No Learning) Breaks - Full Inf. (No Learning) Breaks - Partial Inf. (Learning) 

Panel D.  Simulated R put  with η =5.0

No Breaks - Full Inf. (No Learning) Breaks - Full Inf. (No Learning) Breaks - Partial Inf. (Learning) 

Panel C. Simulated R put  with η =0.5

Panel A. Empirical R put  (with S&P 500 Options)

Panel B. Simulated R put  with η =0.2
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Table 2. Simulated and empirical values of the CAPM α of put option returns. This table displays the CAPM  
values of empirical and simulated returns on put option contracts using a naked investment strategy, 𝑹𝑹𝒑𝒑𝒑𝒑𝒑𝒑. 
The table reports average one-month hold-to-maturity option returns for non-overlapping intervals, with 
strike-to-price ratios ranging from 0.96 to 1.02 (with an increment of 0.02). Empirical option returns are 
obtained from S&P 500 option contracts between 1996 and 2007. Simulated option returns are obtained from 
simulations of the model under three scenarios: full information with no breaks, full information with breaks, 
and partial information with breaks and learning. Simulations of the model are performed using three 
coefficients of relative risk aversion (𝜼𝜼 = 𝟎𝟎. 𝟐𝟐, 𝜼𝜼 = 𝟎𝟎. 𝟓𝟓, and 𝜼𝜼 = 𝟓𝟓. 𝟎𝟎). The values for the simulated option 
returns are the averages over 10,000 simulations of 12 years each. This table presents averages of the alpha’s 
t-statistics computed using Newey-West standard errors to correct for heteroscedasticity and serial 
correlation. The percentage of simulations with a significant CAPM  is reported in parentheses at 5% 
significance (since there is only one time series for the empirical S&P 500 option returns, the value in 
parentheses can only be 0% or 100%). 

 

 

 

 

 

 

 

 

α

α

K/S 0.96 0.98 1.00 1.02 0.96 0.98 1.00 1.02 0.96 0.98 1.00 1.02

CAPM α -0.59 -0.28 -0.15 -0.09
t -stat -10.78 -4.90 -4.28 -3.66

p -value 0.00 0.00 0.00 0.00
(100%) (100%) (100%) (100%)

CAPM α -0.13 -0.03 -0.02 -0.01 -0.20 -0.09 -0.03 0.00 -0.97 -0.95 -0.54 -0.24
t -stat -0.89 -0.77 -0.52 -0.41 -0.96 -0.90 -0.65 -0.47 -116.31 -21.79 -14.37 -15.18

p -value 0.34 0.44 0.47 0.53 0.23 0.34 0.45 0.52 0.00 0.00 0.00 0.00
(32%) (23%) (14%) (11%) (43%) (26%) (17%) (11%) (100%) (100%) (100%) (100%)

CAPM α -0.11 -0.02 -0.02 -0.01 -0.19 -0.07 -0.03 0.00 -0.95 -0.72 -0.42 -0.12
t -stat -0.60 -0.59 -0.36 -0.32 -0.77 -0.68 -0.55 -0.34 -89.43 -12.23 -8.50 -8.00

p -value 0.27 0.48 0.57 0.64 0.32 0.38 0.45 0.70 0.01 0.00 0.00 0.00
(29%) (23%) (10%) (9%) (37%) (22%) (14%) (11%) (99%) (99%) (99%) (97%)

CAPM α -0.21 -0.03 -0.04 -0.01 -0.29 -0.17 -0.06 0.00 -1.08 -0.99 -0.96 -0.63
t -stat -1.34 -1.13 -0.70 -0.61 -1.62 -1.53 -1.14 -0.92 -109.38 -91.44 -79.42 -53.82

p -value 0.17 0.23 0.41 0.24 0.11 0.10 0.41 0.24 0.00 0.00 0.00 0.00
(42%) (32%) (26%) (15%) (54%) (29%) (19%) (22%) (100%) (100%) (100%) (100%)

No Breaks - Full Inf. (No Learning) Breaks - Full Inf. (No Learning) Breaks - Partial Inf. (Learning) 

Panel A. Dependent Variable: Empirical R put  (with S&P 500 Options)

Panel B. Dependent Variable: Simulated R put  with η =0.2
No Breaks - Full Inf. (No Learning) Breaks - Full Inf. (No Learning) Breaks - Partial Inf. (Learning) 

Panel C. Dependent Variable: Simulated R put  with η =0.5
No Breaks - Full Inf. (No Learning) Breaks - Full Inf. (No Learning) Breaks - Partial Inf. (Learning) 

Panel D. Dependent Variable: Simulated R put  and η =5.0
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Table 3. Relation between option returns and different factors (based on empirical and simulated option data). 
This table reports the coefficients of factors (in addition to the market factor from the CAPM) that may 
explain empirical and simulated returns on put option contracts using a naked investment strategy, 𝑹𝑹𝒑𝒑𝒑𝒑𝒑𝒑, and 
a straddle investment strategy, 𝑹𝑹𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺. In this table, 𝑹𝑹𝒎𝒎 is the excess market return, and 𝑰𝑰𝑰𝑰 − 𝑹𝑹𝑹𝑹 is the 
volatility risk premium where 𝑰𝑰𝑰𝑰 is the volatility under the ℚ probability measure and 𝑹𝑹𝑹𝑹 is the volatility 
under the ℙ probability measure. 𝑺𝑺/𝑫𝑫 is the price-to-dividend ratio. Empirical option returns are obtained 
from S&P 500 option contracts between 1996 and 2007. Simulated option returns are obtained from 
simulations of the model under partial information with breaks and learning, since 𝑰𝑰𝑰𝑰 − 𝑹𝑹𝑹𝑹 is only different 
from zero in this scenario. Simulations of the model are performed using three coefficients of relative risk 
aversion (𝜼𝜼 = 𝟎𝟎. 𝟐𝟐, 𝜼𝜼 = 𝟎𝟎. 𝟓𝟓, and 𝜼𝜼 = 𝟓𝟓. 𝟎𝟎). The values for the simulated option returns are the averages over 
10,000 simulations of 12 years each. This table presents averages of the alpha’s t-statistics computed using 
Newey-West standard errors. The percentage of simulations with a significant factor is reported in 
parentheses at 5% significance. For S&P 500 options, we report t-statistics in square brackets. 

 

Constant -0.15 -0.08 -0.15 -0.08 -0.08 -0.02 -0.08 -0.02
[4.28] [1.83] [4.26] [1.81] [2.64] [0.61] [2.64] [0.62]

R m -26.90 -25.29 -26.89 -25.28 0.06 1.25 0.05 1.25
[30.33] [25.70] [30.29] [25.66] [0.08] [1.59] 0.07 [1.58]

IV - RV 0.00 -3.62 -3.63 0.00 -2.70 0.00 -2.70
0.00 [3.61] [3.61] 0.00 [3.36] 0.00 [3.35]

S/D 0.00 0.00 0.00 0.00 0.00 0.00
[0.31] [0.33] 0.00 0.00 [0.31] [0.30]

Adj. R 2 0.64 0.64 0.63 0.64 0.00 0.02 0.00 0.02

Constant -0.54 -0.07 -0.53 -0.16 -0.47 -0.06 -0.55 0.10
(100%) (19%) (99%) (6%) (100%) (18%) (97%) (8%)

R m -33.07 -34.34 -28.47 -31.68 4.46 4.61 4.68 4.72
(100%) (100%) (100%) (100%) (60%) (67%) (65%) (70%)

IV - RV 0.00 -6.76 0.00 -7.60 0.00 -7.07 0.00 -7.10
(0%) (82%) (0%) (82%) (0%) (83%) (0%) (87%)

S/D 0.00 0.00 -0.62 -3.41 0.00 0.00 0.06 -2.95
(0%) (0%) (7%) (7%) (0%) (0%) (7%) (8%)

Adj. R 2 0.65 0.66 0.65 0.71 0.06 0.13 0.07 0.14

Constant -0.42 -0.02 -0.43 -0.39 -0.33 -0.01 -0.33 -0.26
(99%) (13%) (97%) (8%) (100%) (10%) (86%) (7%)

R m -51.16 -42.50 -49.17 -47.80 1.08 1.16 1.16 1.30
(100%) (100%) (100%) (100%) (69%) (72%) (66%) (71%)

IV - RV 0.00 -13.32 0.00 -11.59 0.00 -10.12 0.00 -10.13
(0%) (71%) (0%) (72%) (0%) (76%) (0%) (76%)

S/D 0.00 0.00 -3.78 -6.16 0.00 0.00 2.28 3.89
(0%) (0%) (8%) (7%) (0%) (0%) (6%) (7%)

Adj. R 2 0.62 0.63 0.60 0.66 0.07 0.12 0.07 0.12

Constant -0.96 -0.41 -0.83 -0.33 -0.91 -0.47 -0.84 -0.31
(100%) (46%) (82%) (43%) (100%) (55%) (83%) (52%)

R m -11.34 -12.47 -12.66 -12.03 5.04 5.45 5.38 5.41
(98%) (98%) (98%) (98%) (88%) (92%) (79%) (83%)

IV - RV 0.00 -1.25 0.00 -1.04 0.00 -1.19 0.00 -1.29
(0%) (87%) (0%) (84%) (0%) (89%) (0%) (84%)

S/D 0.00 0.00 -2.42 -3.60 0.00 0.00 1.50 0.64
(0%) (0%) (30%) (32%) (0%) (0%) (28%) (23%)

Adj. R 2 0.33 0.45 0.40 0.48 0.30 0.39 0.32 0.40

Panel D. Simulated Results with η =5.0

Panel B. Simulated Results with η =0.2

Panel C. Simulated Results with η =0.5

Dependent Variable R put Dependent Variable R Strdl 

Panel A. Empirical Results (with S&P 500 Options) 
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Appendix A: Evidence of breaks in the mean dividend growth rate 

 Our model assumes a geometric random walk for dividends, whose drift is subject to 

breaks. In this appendix, we analyse whether this specification is a realistic representation 

of the dynamics of actual dividend data. Thus, as a first step, we apply the Chu et al. (1996) 

test to the daily dividend time series of the S&P 500 index between 1996 and 2007, which 

have been deseasonalised using the Hodrick-Prescott filter and adjusted by the consumer 

price index, as in Shiller (2000). It is important to analyse deseasonalised time series 

because there is evidence of seasonality in dividends throughout the year. This seasonality 

occurs because many firms issue their quarterly dividends at approximately the same time 

(e.g., Cornell and French, 1983; Lakonishok and Smidt, 1988; Golez, 2014). 

 Chu et al. (1996) propose a dynamic test to detect structural breaks in real time. We 

apply this test, and we identify eight breaks in the time series of log return dividends using 

a significance level of 5%, as shown in Figure A1. As a robustness check, we also implement 

the Bai and Perron (1998) methodology of consistent estimation of multiple breaks. They 

present tests for both the number and the timing of breaks, which we use to detect multiple 

structural breaks in the drift of the dividend random-walk process. The MATLAB codes for 

this test were obtained from Pierre Perron's webpage. 

 The number of breaks is identified through three separate criteria by setting the 

maximum potential number of breaks at 12. The first criterion represents a sequential 

break test, which uses a significance level of 5%. The other two criteria – the Bayes 

information criterion (BIC) and the Akaike information criterion (AIC) – are based on a 

penalised likelihood function. All three criteria provide multiple breaks in 𝒈𝒈𝒕𝒕. The 
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sequential approach chooses five breaks, the BIC leads to seven breaks, and the AIC 

chooses the maximum allowed number of breaks (i.e., 12 breaks). Therefore, the 

implementation of the Chu et al. (1996) and Bai and Perron (1998) tests suggests that the 

assumption of breaks in the mean dividend growth rate is reasonable in terms of 

describing market data. 

 

Appendix B: Proof of Proposition II  

 Proof of Proposition II: To obtain equation (10), one needs the probabilities 

described by the state price density to be risk-neutralised. First, we divide both sides of the 

Euler equation (4) used to price the stock at 𝑡𝑡 + 𝑘𝑘 by the bond price in equation (8): 

 
(1 + 𝜌𝜌)𝑆𝑆𝑡𝑡+𝑘𝑘

(1 − 𝜋𝜋)(1 + 𝑔𝑔𝑡𝑡+𝑘𝑘)−𝜂𝜂 + 𝜋𝜋 ∫ (1 + 𝑔𝑔𝑡𝑡+𝑘𝑘)−𝜂𝜂𝑑𝑑𝑑𝑑(𝑔𝑔𝑡𝑡+𝑘𝑘)𝑔𝑔𝑢𝑢
𝑔𝑔𝑑𝑑

= E𝑡𝑡+𝑘𝑘 �𝛽𝛽 �
𝐷𝐷𝑡𝑡+k+1
𝐷𝐷𝑡𝑡+𝑘𝑘

�
−𝜂𝜂

∙ (𝑆𝑆𝑡𝑡+𝑘𝑘+1 + 𝐷𝐷𝑡𝑡+𝑘𝑘+1)
(1 + 𝜌𝜌)

(1 − 𝜋𝜋)(1 + 𝑔𝑔𝑡𝑡+𝑘𝑘)−𝜂𝜂 + 𝜋𝜋 ∫ (1 + 𝑔𝑔𝑡𝑡+𝑘𝑘)−𝜂𝜂𝑑𝑑𝑑𝑑(𝑔𝑔𝑡𝑡+𝑘𝑘)𝑔𝑔𝑢𝑢
𝑔𝑔𝑑𝑑

�.  

(B1) 

 Under full information, the forward stock price and the forward cumulative 

dividend process are given by: 

𝑆𝑆𝑡𝑡+𝑘𝑘
∗ =

(1 + 𝜌𝜌)𝑆𝑆𝑡𝑡+𝑘𝑘
(1 − 𝜋𝜋)�1 + 𝑔𝑔𝑡𝑡+𝑘𝑘�

−𝜂𝜂
+ 𝜋𝜋∫ �1 + 𝑔𝑔𝑡𝑡+𝑘𝑘�

−𝜂𝜂
𝑑𝑑𝑑𝑑(𝑔𝑔𝑡𝑡+𝑘𝑘)𝑔𝑔𝑢𝑢

𝑔𝑔𝑑𝑑

 (B2) 

and 

𝐷𝐷𝑡𝑡+𝑘𝑘
∗ = �𝐷𝐷𝑡𝑡+𝑠𝑠

k

s=0

(1 + 𝜌𝜌)
(1 − 𝜋𝜋)�1 + 𝑔𝑔𝑡𝑡+𝑠𝑠�

−𝜂𝜂
+ 𝜋𝜋∫ �1 + 𝑔𝑔𝑡𝑡+𝑠𝑠�

−𝜂𝜂
𝑑𝑑𝑑𝑑(𝑔𝑔𝑡𝑡+𝑠𝑠)

𝑔𝑔𝑢𝑢
𝑔𝑔𝑑𝑑

, (B3) 

while the definition of the pricing kernel yields: 
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E𝑡𝑡 �𝛽𝛽 �
𝐷𝐷𝑡𝑡+k+1

𝐷𝐷𝑡𝑡+𝑘𝑘
�
−𝜂𝜂 (1 + 𝜌𝜌)

(1 − 𝜋𝜋)�1 + 𝑔𝑔𝑡𝑡+𝑘𝑘�
−𝜂𝜂

+ 𝜋𝜋∫ �1 + 𝑔𝑔𝑡𝑡+𝑘𝑘�
−𝜂𝜂
𝑑𝑑𝑑𝑑(𝑔𝑔𝑡𝑡+𝑘𝑘)𝑔𝑔𝑢𝑢

𝑔𝑔𝑑𝑑

� = 1. (B4) 

Adding 𝐷𝐷𝑡𝑡+𝑘𝑘∗  to equation (B1) and combining the resulting expression with equation (B4) 

yields: 

 𝑆𝑆𝑡𝑡+𝑘𝑘∗ + 𝐷𝐷𝑡𝑡+𝑘𝑘∗

= E𝑡𝑡+𝑘𝑘 �𝛽𝛽 �
𝐷𝐷𝑡𝑡+k+1
𝐷𝐷𝑡𝑡+𝑘𝑘

�
−𝜂𝜂 (1 + 𝜌𝜌)

(1 − 𝜋𝜋)(1 + 𝑔𝑔𝑡𝑡+𝑘𝑘)−𝜂𝜂 + 𝜋𝜋 ∫ (1 + 𝑔𝑔𝑡𝑡+𝑘𝑘)−𝜂𝜂𝑑𝑑𝑑𝑑(𝑔𝑔𝑡𝑡+𝑘𝑘)𝑔𝑔𝑢𝑢
𝑔𝑔𝑑𝑑

(𝑆𝑆𝑡𝑡+𝑘𝑘+1∗ + 𝐷𝐷𝑡𝑡+𝑘𝑘+1∗ )�. 
(B5) 

 Equation (B5) shows that 𝑆𝑆𝑡𝑡+𝑘𝑘∗ + 𝐷𝐷𝑡𝑡+𝑘𝑘∗  follows a martingale under the risk-neutral 

(ℚ) probability measure. We know that the ℚ probability measure can be expressed as: 

𝑓𝑓ℚ(𝑆𝑆𝑡𝑡+𝑘𝑘+1) =
𝑚𝑚𝑡𝑡+𝑘𝑘+1𝑓𝑓𝑡𝑡

ℙ(𝑆𝑆𝑡𝑡+𝑘𝑘+1)
𝐸𝐸𝑡𝑡[𝑚𝑚𝑡𝑡+𝑘𝑘+1]

. (B6) 

Given that equation (7) in Proposition I shows that 𝑆𝑆𝑡𝑡+𝑘𝑘 = 𝐷𝐷𝑡𝑡+𝑘𝑘𝜓𝜓(𝑔𝑔𝑡𝑡+𝑘𝑘), we can write the 

one-period physical (ℙ) probability measure in equation (B6) as:  

𝑓𝑓𝑡𝑡
ℙ(𝑆𝑆𝑡𝑡+𝑘𝑘+1) = 𝜙𝜙ℙ(𝜀𝜀𝑡𝑡+𝑘𝑘+1)Prℙ(𝑏𝑏𝑡𝑡+𝑘𝑘+1)𝜚𝜚ℙ�𝑔𝑔𝑡𝑡+𝑘𝑘+1�𝑏𝑏𝑡𝑡+𝑘𝑘+1 = 1�, (B7) 

In equation (B7), 𝜀𝜀𝑡𝑡+𝑘𝑘+1 is the innovation term of the dividends’ geometric random walk 

characterised by normal density 𝜙𝜙ℙ(𝜀𝜀𝑡𝑡+𝑘𝑘+1) with mean zero and variance 𝜎𝜎2, while 

Prℙ(𝑏𝑏𝑡𝑡+𝑘𝑘+1) follows a Bernoulli distribution with parameter 𝜋𝜋. In addition, in the case of a 

break, 𝑔𝑔𝑡𝑡+𝑘𝑘+1 is drawn from uniform density 𝜚𝜚ℚ(𝑔𝑔𝑡𝑡+𝑘𝑘+1|𝑏𝑏𝑡𝑡+𝑘𝑘+1 = 1) with 𝑔𝑔𝑙𝑙 and 𝑔𝑔𝑢𝑢 being 

the lower and upper bounds, respectively.  

 We can also rewrite equation (B6) as: 

𝑓𝑓𝑡𝑡
ℚ(𝑆𝑆𝑡𝑡+𝑘𝑘+1) = 𝜙𝜙ℚ(𝜀𝜀𝑡𝑡+𝑘𝑘+1|0, 𝜎𝜎)Prℚ(𝑏𝑏𝑡𝑡+𝑘𝑘+1) 𝜚𝜚ℚ(𝑔𝑔𝑡𝑡+𝑘𝑘+1) (B8) 
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where 

𝜙𝜙ℚ(𝜀𝜀𝑡𝑡+𝑘𝑘+1) = � � 𝑓𝑓𝑡𝑡
ℚ(𝑆𝑆𝑡𝑡+𝑘𝑘+1)

𝑏𝑏𝑡𝑡+𝑘𝑘+1𝑔𝑔𝑡𝑡+𝑘𝑘+1
𝑑𝑑𝑏𝑏𝑡𝑡+𝑘𝑘+1𝑑𝑑𝑔𝑔𝑡𝑡+𝑘𝑘+1

= � �
𝑚𝑚𝑡𝑡+𝑘𝑘+1𝑓𝑓𝑡𝑡ℙ(𝑆𝑆𝑡𝑡+𝑘𝑘+1)

𝐸𝐸𝑡𝑡[𝑚𝑚𝑡𝑡+𝑘𝑘+1]𝑏𝑏𝑡𝑡+𝑘𝑘+1𝑔𝑔𝑡𝑡+𝑘𝑘+1
𝑑𝑑𝑏𝑏𝑡𝑡+𝑘𝑘+1𝑑𝑑𝑔𝑔𝑡𝑡+𝑘𝑘+1

= � �
𝑚𝑚𝑡𝑡+𝑘𝑘+1𝜙𝜙ℙ(𝜀𝜀𝑡𝑡+𝑘𝑘+1)Prℙ(𝑏𝑏𝑡𝑡+𝑘𝑘+1)𝜚𝜚ℙ(𝑔𝑔𝑡𝑡+𝑘𝑘+1|𝑏𝑏𝑡𝑡+𝑘𝑘+1 = 1)

𝐸𝐸𝑡𝑡[𝑚𝑚𝑡𝑡+𝑘𝑘+1]𝑏𝑏𝑡𝑡+𝑘𝑘+1𝑔𝑔𝑡𝑡+𝑘𝑘+1
𝑑𝑑𝑏𝑏𝑡𝑡+𝑘𝑘+1𝑑𝑑𝑔𝑔𝑡𝑡+𝑘𝑘+1 

 

Prℚ(𝑏𝑏𝑡𝑡+𝑘𝑘+1)

= � �
𝑚𝑚𝑡𝑡+𝑘𝑘+1𝜙𝜙ℙ(𝜀𝜀𝑡𝑡+𝑘𝑘+1)Prℙ(𝑏𝑏𝑡𝑡+𝑘𝑘+1)𝜚𝜚ℙ(𝑔𝑔𝑡𝑡+𝑘𝑘+1|𝑏𝑏𝑡𝑡+𝑘𝑘+1 = 1)

𝐸𝐸𝑡𝑡[𝑚𝑚𝑡𝑡+𝑘𝑘+1]𝜀𝜀𝑡𝑡+𝑘𝑘+1𝑔𝑔𝑡𝑡+𝑘𝑘+1
𝑑𝑑𝜀𝜀𝑡𝑡+𝑘𝑘+1𝑑𝑑𝑔𝑔𝑡𝑡+𝑘𝑘+1 

𝜚𝜚ℚ(𝑔𝑔𝑡𝑡+𝑘𝑘+1)

= � �
𝑚𝑚𝑡𝑡+𝑘𝑘+1𝜙𝜙ℙ(𝜀𝜀𝑡𝑡+𝑘𝑘+1)Prℙ(𝑏𝑏𝑡𝑡+𝑘𝑘+1)𝜚𝜚ℙ(𝑔𝑔𝑡𝑡+𝑘𝑘+1|𝑏𝑏𝑡𝑡+𝑘𝑘+1 = 1)

𝐸𝐸𝑡𝑡[𝑚𝑚𝑡𝑡+𝑘𝑘+1]𝑏𝑏𝑡𝑡+𝑘𝑘+1𝜀𝜀𝑡𝑡+𝑘𝑘+1
𝑑𝑑𝑏𝑏𝑡𝑡+𝑘𝑘+1𝑑𝑑𝜀𝜀𝑡𝑡+𝑘𝑘+1 

 Thus, after some algebra, we find that 𝜙𝜙ℚ(𝜀𝜀𝑡𝑡+𝑘𝑘+1) is a normal density with mean 

zero and volatility 𝜎𝜎ℚ = 𝜎𝜎, Prℚ(𝑏𝑏𝑡𝑡+𝑘𝑘+1) follows a Bernoulli distribution with parameter 

𝜋𝜋𝑡𝑡+𝑘𝑘+1
ℚ = 𝐴𝐴𝑡𝑡+𝑘𝑘+1/𝐵𝐵𝑡𝑡+𝑘𝑘+1, and 𝜚𝜚ℚ(𝑔𝑔𝑡𝑡+𝑘𝑘+1) is a uniform density with 𝑔𝑔𝑙𝑙 and 𝑔𝑔𝑢𝑢 being the 

lower and upper bounds, respectively (alternatively, the value of parameter 𝜋𝜋𝑡𝑡+𝑘𝑘+1
ℚ  can be 

obtained from the fact that 𝐴𝐴𝑡𝑡+𝑘𝑘+1ℙ = 𝐴𝐴𝑡𝑡+𝑘𝑘+1
ℚ , 𝐴𝐴𝑡𝑡+𝑘𝑘+1

ℚ = 𝜋𝜋𝑡𝑡+𝑘𝑘+1
ℚ /(1 + 𝑟𝑟𝑡𝑡+𝑘𝑘+1) and 𝐵𝐵𝑡𝑡+𝑘𝑘+1 =

1/(1 + 𝑟𝑟𝑡𝑡+𝑘𝑘+1); thus, 𝜋𝜋𝑡𝑡+𝑘𝑘+1
ℚ = 𝐴𝐴𝑡𝑡+𝑘𝑘+1/𝐵𝐵𝑡𝑡+𝑘𝑘+1).  

 Therefore, given that the market is complete, the risk-neutral measure for any single 

period is unique and exists, which is a sufficient condition for having a unique, risk-neutral 

measure in an infinite-period economy obtained by the repetition of several single periods 



6 

(for proof, see Pliska, 1997). We then define our infinite-period risk-neutral measure by 

considering all states that the mean dividend growth rate could achieve in 𝑡𝑡 + 𝜏𝜏 and by 

using the independence property of breaks. Therefore, 𝑓𝑓ℚ(𝑆𝑆𝑡𝑡+𝜏𝜏) is the risk-neutral density 

of all paths that lead to a certain state in which the dividend is 𝐷𝐷𝑡𝑡+𝜏𝜏, where its expected 

value is: 

𝐸𝐸𝑡𝑡
ℚ[𝐷𝐷𝑡𝑡+𝜏𝜏] = 𝐷𝐷𝑡𝑡𝐸𝐸𝑡𝑡

ℚ �
𝐷𝐷𝑡𝑡+1

𝐷𝐷𝑡𝑡
𝐸𝐸𝑡𝑡+1
ℚ ��

𝐷𝐷𝑡𝑡+2

𝐷𝐷𝑡𝑡+1
�…𝐸𝐸𝑡𝑡+𝜏𝜏−1

ℚ ��
𝐷𝐷𝑡𝑡+𝜏𝜏
𝐷𝐷𝑡𝑡+𝜏𝜏−1

���� (B9) 

 We know that the innovation term of the random-walk process, 𝜀𝜀𝑡𝑡, and the breaks in 

𝑔𝑔𝑡𝑡 are independent; thus, the expected value of 𝐷𝐷𝑡𝑡+𝜏𝜏 can be written as: 

𝐸𝐸𝑡𝑡
ℚ[𝐷𝐷𝑡𝑡+𝜏𝜏] = 𝐷𝐷𝑡𝑡𝐸𝐸𝑡𝑡

ℚ �exp�√𝜏𝜏𝜎𝜎𝜀𝜀𝑡𝑡+𝜏𝜏 − 𝜏𝜏𝜎𝜎2/2��(1 + 𝑟𝑟𝑡𝑡+𝑖𝑖)
𝜏𝜏

𝑖𝑖=1

� (B10)  

 Therefore, in each path we have: 

𝐷𝐷𝑡𝑡+𝜏𝜏 = 𝐷𝐷𝑡𝑡exp�√𝜏𝜏𝜎𝜎𝜀𝜀𝑡𝑡+𝜏𝜏 − 𝜏𝜏𝜏𝜏2/2��(1 + 𝑟𝑟𝑡𝑡+𝑖𝑖)
𝜏𝜏

𝑖𝑖=1

 (B11) 

where 𝜀𝜀𝑡𝑡+𝜏𝜏 is the innovation term of the dividends’ geometric random walk. Consequently, 

since we know that 𝑆𝑆𝑡𝑡+𝜏𝜏 = 𝐷𝐷𝑡𝑡+𝜏𝜏𝜓𝜓(𝑔𝑔𝑡𝑡+𝜏𝜏), similarly to equation (B8), we can write: 

𝑓𝑓𝑡𝑡
ℚ(𝑆𝑆𝑡𝑡+𝜏𝜏) = 𝜙𝜙ℚ(𝜀𝜀𝑡𝑡+𝜏𝜏|0,𝜎𝜎)� Prℚ(𝑏𝑏𝑡𝑡+𝑖𝑖) 𝜚𝜚ℚ(𝑔𝑔𝑡𝑡+𝑖𝑖)

𝜏𝜏

𝑖𝑖=1

 (B12) 

where 𝜙𝜙ℚ(𝜀𝜀𝑡𝑡+𝜏𝜏|0,𝜎𝜎) is a normal density with mean zero and volatility 𝜎𝜎ℚ = √𝜏𝜏𝜎𝜎, Prℚ(𝑏𝑏𝑡𝑡+𝑖𝑖) 

follows a Bernoulli distribution with parameter 𝜋𝜋𝑡𝑡+𝑖𝑖
ℚ = 𝐴𝐴𝑡𝑡+𝑖𝑖/𝐵𝐵𝑡𝑡+𝑖𝑖, and in the case of a break, 
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𝑔𝑔𝑡𝑡+𝑖𝑖 is drawn from a continuous uniform density 𝜚𝜚ℚ(𝑔𝑔𝑡𝑡+𝑖𝑖) in which 𝑔𝑔𝑙𝑙 and 𝑔𝑔𝑢𝑢 are also the 

lower and upper bounds, respectively. 

□ 

 

Appendix C: Robustness check using alternative setups of the model 

 In this appendix, we present the outcomes of a robustness check with respect to 

analysing three alternative setups of the model presented in Section 2. The first alternative 

setup is a model in an economy under partial information with breaks and learning. In this 

setup, we vary the level of 𝜎𝜎 to evaluate the effect of a change in this parameter on put 

option returns. It is important to analyse the impact of a change in 𝜎𝜎 in our model, since 

that level affects the noisiness of the signals received by the Bayesian representative agent. 

The level of noisiness of the signals affects the agent’s learning process and hence put 

option returns (as explained in Section 2.4).  

 The second alternative setup is an extension of our model in an economy under 

partial information with breaks and learning. In this setup, the representative agent does 

not know the time at which a break in 𝑔𝑔𝑡𝑡 has occurred. We extend the model presented in 

Section 2 by assuming that the agent does not know exactly when a break has occurred; 

however, she uses the dynamic test presented in Chu et al. (1996) to detect breaks in the 

mean dividend growth rate in real time. 

 The third alternative setup is the same model presented in Section 2 in an economy 

under partial information with breaks and learning. However, the COS securities are not 
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considered in the market portfolio when calculating the value of the CAPM 𝛼𝛼 (despite the 

fact that this risky security is part of the economy).  

 Table C1 shows the average CAPM 𝛼𝛼 for hold-to-maturity returns on naked 

strategies using the three alternative setups of the model as described above. In the first 

alternative setup, we use a level of 𝜎𝜎 that is six times higher than the level used in Table 2 

(while keeping all other parameters the same). Table C1 shows that an increase in the level 

of noisiness of the signals increases the values of the CAPM 𝛼𝛼 when those values are 

compared to the values presented in Table 2 (the last four columns on the right-hand side). 

Nevertheless, despite the increase in the values of the CAPM 𝛼𝛼, which are induced by a high 

level of 𝜎𝜎, the results presented in Table C1 are qualitatively similar to the simulated and 

empirical results reported in Table 2. Thus, Table C1 shows that the features of the model 

(in relation to an economy with partial information and learning) used to explain put 

option returns are still valid after a change in the level of noisiness of the signals.  

[Insert Table C1 here] 

In the second alternative setup, the main difference between the extension of the 

model presented in Table C1 and the model described in Section 2 is the knowledge of the 

dates of breaks. On the one hand, the results in Table 2 (the last four columns on the right-

hand side) are calculated using the model with breaks, partial information and learning in 

which the agent detects a break as soon as it happens. On the other hand, in Table C1 

(under the second alternative setup), the agent uses the Chu et al. (1996) test to determine 

when a break has occurred in real time. Thus, the agent's beliefs regarding the break dates 

in Table C1 do not necessarily represent the “true” dates on which breaks happened. 
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Therefore, the agent does not know with certainty when to reset the counter of signals, 𝑛𝑛, 

in equation (13) to zero in order to start the new post-break learning process. 

 Table C1, under the second alternative setup, shows that simulated values of the 

CAPM 𝛼𝛼 are significant for a naked put strategy, which is consistent with the results 

presented in Table 2 (the last four columns on the right-hand side). Notably, the absolute 

values of the CAPM 𝛼𝛼 in Table C1 are slightly greater than those observed in the model in 

which the timing of breaks is known (see Table 2). The reported values of the CAPM 𝛼𝛼 are 

larger in absolute terms in Table C1 than they are in Table 2, as there is a new source of 

learning associated with the detection of breaks. However, the results in Table C1 are in 

line with the theoretical and empirical results presented in Table 2. 

 In relation to the third alternative setup, Table C1 presents a similar analysis to that 

presented in Table 2, but the market portfolio includes only the stock this time. This 

analysis is important because we want to examine the impact of COS securities on the 

values of the CAPM 𝛼𝛼, given that COS securities may not be directly considered in the 

market portfolio (e.g., if we use the S&P 500 index as the market portfolio, this index 

includes only 500 assets despite the fact that we know there are more assets in the 

economy). Table C1 shows that the results hardly change when we omit the COS security 

from the market portfolio. The differences in absolute values between Table C1 (under the 

second alternative setup) and Table 2 (also in the last four columns on the right-hand side) 

are small because the weight of the COS securities in the market portfolio is low, as 

explained in Section 4.2. Thus, Table C1 suggests that not considering COS securities in the 

market portfolio does not significantly modify the results obtained from the model 

described in the body of our paper. 
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Appendix D: Simulated and empirical volatility risk premium 

 As explained in our study, a gap between the ℚ and ℙ probability measures should 

affect the expected hold-to-maturity returns on put option contracts, because the expected 

hold-to-maturity return on a put option contract is defined as 𝑅𝑅𝑡𝑡+𝜏𝜏𝑃𝑃𝑃𝑃𝑃𝑃 = (𝐸𝐸𝑡𝑡ℙ[max(𝐾𝐾 −

𝑆𝑆𝑡𝑡+𝜏𝜏, 0)]/𝐸𝐸𝑡𝑡
ℚ[max(𝐾𝐾 − 𝑆𝑆𝑡𝑡+𝜏𝜏, 0)] − 1). Therefore, it is important to analyse whether our 

model under partial information and learning can generate differences between the ℚ and 

ℙ probability measures. Thus, Table D1 presents summary statistics on the difference in 

volatilities obtained under the risk-neutral and physical probability measures (i.e., the 

volatility risk premium). We examine volatility risk premium obtained from the model 

presented in Section 2 and the volatility risk premium calculated from the S&P 500 option 

data between 1996 and 2007.  

[Insert Table D1 here] 

 The calculation of volatility under the ℚ and ℙ probability measures (using our 

model and S&P 500 option contracts) is explained in Section 4.3. Table D1 shows that the 

difference in volatility between the ℚ and ℙ probability measures in our model is, on 

average, 6.9%, 3.4% and 34.0% when the coefficient of relative risk aversion is 0.2, 0.5 and 

5.0, respectively. The difference in volatility between the ℚ and ℙ probability measures 

estimated from S&P 500 option contracts is 2.5%.  

 Table D1 shows that our model under partial information and learning induces a 

gap in volatility between the ℚ and ℙ probability measures. However, we can observe in 

Table D1 that the difference in volatilities under the ℚ and ℙ probability measures 

generated by our model is not exactly the same as the difference obtained from the actual 
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S&P 500 option data. However, it is important to note (as mentioned in the paper) that our 

focus is on providing a simple model under partial information and learning, with the 

objective of explaining option returns rather than calibrating all variables in the economy 

perfectly. Therefore, our model can be considered a first step in terms of a research 

endeavour to relate put option returns to learning. We have left the analysis of a richer 

model that would include other elements that may also affect the option pricing process 

(e.g., jump risk, investors’ net option demand, among others) for future research. 
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Figure A1. Structural breaks identified using the Chu et al. (1996) test. This figure presents the outcomes of 
applying the Chu et al. (1996) test to dividend log returns for the S&P 500 index in the period 1996–2007. 
The solid line reflects the mean of the dividend log returns, calculated with a rolling window of 125 trading 
days. The dotted line shows the breaks identified through the test. Breaks were identified in Dec. 1996, Aug. 
1999, Sept. 2000, Apr. 2001, Oct. 2001, Aug. 2002, Nov. 2003 and Oct. 2004. 
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Table C1. Robustness check using alternative setups of the model. This table presents a robustness check 
in terms of analysing three alternative setups of the model presented in Section 2 in an economy under 
partial information with breaks and learning. This table displays simulated CAPM 𝛼𝛼 values of put option 
returns, using a naked option strategy, 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝, and three coefficients of relative risk aversion (𝜂𝜂 = 0.2, 𝜂𝜂 = 0.5 
and 𝜂𝜂 = 5.0). The first alternative setup is a model with a high level of noisiness in the signals used in the 
learning process. In this first alternative setup, the volatility of the geometric random walk is equal to 8.6% 
on a monthly basis (which is equivalent to 30% on an annual basis) instead of a volatility of 1.44% (which is 
equivalent to 5% on an annual basis), as in the body of the paper. The second alternative setup is a model that 
includes the effect of not knowing the time at which a break occurred. The second alternative setup 
represents an extension of the model presented in Section 2 in which the representative agent does not know 
the dates of breaks. Thus, the agent uses the test presented in Chu et al. (1996) to detect the presence of a 
break in the dividend drift contemporaneously. The third alternative setup is the same model that is 
presented in Section 2; however, the COS securities are not considered in the market portfolio when 
calculating the value of the CAPM 𝛼𝛼. The numbers in the table for the simulated option returns are the 
average values over 10,000 simulations of 12 years. This table presents averages of the alpha’s t-statistics 
computed using Newey-West standard errors to correct for heteroscedasticity and serial correlation. The 
percentages of simulations with a significant CAPM 𝛼𝛼 are reported in parentheses at 5% significance.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

K/S 0.96 0.98 1.00 1.02 0.96 0.98 1.00 1.02 0.96 0.98 1.00 1.02

CAPM α -1.92 -1.61 -0.88 -0.48 -1.18 -1.06 -0.67 -0.29 -1.02 -0.86 -0.54 -0.23
t -stat -238.83 -45.72 -22.98 -25.66 -118.59 -24.51 -15.16 -18.22 -110.21 -22.36 -15.35 -15.14

p -value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

CAPM α -1.63 -1.42 -0.74 -0.36 -1.07 -1.02 -0.77 -0.34 -0.93 -0.80 -0.43 -0.12
t -stat -162.70 -34.01 -21.16 -21.08 -132.82 -28.95 -20.19 -19.89 -88.79 -11.70 -8.14 -8.03

p -value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00
(100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (97%) (99%) (99%) (98%)

CAPM α -1.74 -1.69 -1.52 -1.31 -1.21 -1.16 -1.12 -0.71 -1.03 -1.00 -1.00 -0.69
t -stat -182.86 -147.07 -166.25 -110.18 -123.91 -95.17 -80.73 -55.91 -104.72 -94.36 -74.66 -56.37

p -value 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

Panel A. Dependent Variable: Simulated R put  with η =0.2

Panel B. Dependent Variable: Simulated R put  with η =0.5

Panel C. Dependent Variable: Simulated R put  with η =5.0

Model with the level of σ  six 
times higher than the value used 

in our study

Extended model including 
uncertainty about dates of breaks

 Model with market portfolio only 
includes the stock (without the 

COS security)
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Table D1. Empirical and simulated volatility risk premium. This table reports the empirical and simulated 
volatility risk premium (𝐼𝐼𝐼𝐼𝑡𝑡 − 𝑅𝑅𝑅𝑅𝑡𝑡). 𝐼𝐼𝐼𝐼𝑡𝑡  and 𝑅𝑅𝑅𝑅𝑡𝑡  are explained in Section 4.3. In the case of simulated option 
returns, simulations of the model are based on an economy under Bayesian learning, with three coefficients 
of relative risk aversion (𝜂𝜂=0.2, 𝜂𝜂=0.5 and 𝜂𝜂=5.0). The numbers in the table for the simulated option returns 
are the average values over 10,000 simulations of 12 years. Empirical option returns are obtained from S&P 
500 option contracts between 1996 and 2007.  

 
 
 
 

0.2 0.5 5.0

Mean 0.025 0.069 0.034 0.340
Std. Dev. 0.048 0.018 0.013 0.090

Skewness -0.536 -0.274 -0.080 -0.569
Kurtosis 6.365 5.704 4.833 5.471

Empirical S&P 500 Options IV t  - RV t 

 Simulated IV t  - RV t (Breaks with Partial 
Inf.  and Learning)

Volatility Risk Premium

Relative Risk Aversion (η )
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