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Abstract Gradient-based optimisation using adjoints is an increasingly common
approach for industrial flow applications. For cases where the flow is largely
unsteady however, the adjoint method is still not widely used, in particular because
of its prohibitive computational cost and memory footprint. Several methods have
been proposed to reduce the peak memory usage, such as checkpointing schemes
or checkpoint compression, at the price of increasing the computational cost even
further. We investigate incomplete checkpointing as an alternative, which reduces
memory usage at almost no extra computational cost, but instead offers a trade-off
between memory footprint and the fidelity of the model. The method works by
storing only selected physical time steps and using interpolation to reconstruct time
steps that have not been stored. We show that this is enough to compute sufficiently
accurate adjoint sensitivities for many relevant cases, and does not add significantly
to the computational cost. The method works for general cases and does not require
to identify periodic cycles in the flow.

1 Introduction

The adjoint method is commonly used in academia and industry to compute the
derivative of a cost function with respect to its design variables. Its greatest appeal
lies in the fact that the computational cost is constant in the number of design
variables, in contrast to simpler approaches such as finite differences or tangent-linear
derivatives. This makes the method feasible for industrial applications with rich
design space [4].

Jan Christian Hueckelheim
Queen Mary University of London, London, UK e-mail: j.c.hueckelheim@qmul.ac.uk

Jens-Dominik Mueller
Queen Mary University of London, London, UK e-mail: j.mueller@qmul.ac.uk

1

j.c.hueckelheim@qmul.ac.uk
j.mueller@qmul.ac.uk


2 Jan Christian Hueckelheim and Jens-Dominik Mueller

Many real-world problems however still present a challenge for the adjoint
method. A particular problem is severe unsteadiness, as can be found in turbines,
including wind turbines, aircraft wings in high-lift configuration, car engines and
many more [12]. The adjoint method has been formulated for this kind of problem
in frequency [13] and temporal space [15], but requires the storage of the full flow
history, resulting in prohibitive memory requirements in most cases.

A well-known way to mitigate this problem is the REVOLVE checkpointing
algorithm [5]. It stores checkpoints only at carefully chosen time steps, and recomputes
each time step when it is needed, starting from the time steps that have been
stored. Another approach that has recently been proposed [16] is the compression
of checkpoints. Both ideas have one thing in common: the memory requirements
are relaxed at the cost of increased computational expense. Furthermore, lossless
data compression does not offer large savings in storage space[14], and so the
method becomes more useful if lossy compression is used, resulting in errors in
the reconstruction of the primal flow field.

We investigate incomplete checkpointing as an alternative, which reduces memory
usage at no extra computational cost, but instead offers a direct trade-off between
memory footprint and the fidelity of the model. We use a dual timestepping scheme
in which the inner iterations are fully converged, so that only physical time steps
need to be stored and the adjoint field can be reconstructed based on the fully
converged checkpoint, which preserves the accuracy of the result if the innter
iteration was fully converged [3]. In addition, we store only selected physical time
steps and use interpolation to reconstruct time steps that have not been stored.

The scheme comes at negligible cost for linear or other low order interpolation
methods. In particular, the reconstruction from data available in memory is significantly
faster than reading the checkpoint from disk, which would be another possible
(but slow) way of addressing the memory limitations. Finally, our method does not
require any assumptions about the flow such as periodicity.

Since the computational cost of interpolation is negligible in most cases, this
work focuses on assessing the accuracy of the adjoint results obtained with this
approach.

2 Background

We use an unsteady viscous flow solver for unstructured grids, BDF2 dual time
stepping and an implicit solver to converge the inner iterations which was presented
in [19]. The adjoint solver is generated using the automatic differentiation tool
Tapenade [7] with some hand-coded optimisations for improved speed [2].
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2.1 Solving the flow and adjoint equations

The viscous unsteady flow equations can be written as

∂U
∂ t

+R(U) = 0

and can be discretised using a third-order accurate BDF2 time marching scheme as

∂U
∂ t

+R(Ut) =
Ut−2−4 ·Ut−1 +3 ·Ut

2∆ t
+R(Ut)

:= R̂(Ut−2,Ut−1,Ut)

The above system can be evolved in time by solving the linearised system for Uk
and successively updating the converged flow solution Ut at time t[

∂ R̂(Ut−2,Ut−1,Uk)

∂Uk

]
δUk =−R̂(Ut−2,Ut−1,Uk)

Ut =Ut−1 +δUk

The unsteady adjoint system can be written as

−∂v
∂ t

+

(
∂R
∂U

)T

v−
(

∂J
∂U

)T

︸ ︷︷ ︸
:=Rv

= 0

and can, like the primal equation, be discretised using BDF2 as

−vt−2−4 · vt−1 +3 · vt

2∆ t
+Rv(vt)

:= R̂v (Ut−2,Ut−1,Ut)

and solved using the same method as the primal equation.
The solution of the adjoint equation requires the history of the flow solution

Ut at each time step for the calculation of Rv and the preconditioning matrix
PT . This flow field can be stored during the flow solution and loaded during
the adjoint solution, recomputed by running the flow solver again (e.g. following
the REVOLVE algorithm), restored approximately from a compressed data, or
reconstructed using interpolation, following our new approach.

2.2 Physical checkpointing

We use an approach in which only the physical time steps are stored during
the primal computation and restored during the adjoint computation, as presented
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in [9] and Algorithm 1. The memory requirements are orders of magnitude smaller
compared to the brute-force method of storing every iteration.

Algorithm 1: Dual timestep with physical checkpointing
n← 0;
U0,V0← initial guess;
while t < t f inal do // primal loop

n← 0;
while R(Ut,n) ¿ cutoff do // primal loop

Ut,n+1← flow pseudostep(Ut,n);
n← n+1

end
t← t +∆ t;
Ut+1,0←Ut,n; // init for next step
store(Ut );

end
while t > tinit do // adjoint loop

load(Ut );
Vt,0←Vt+1,n; // init for next step
t← t−∆ t;
while R(Vt) ¿ cutoff do // primal loop

Vt,n+1← adjoint pseudostep(Vt,n,Ut );
n← n+1

end
end

Aside from the memory requirements that arise from storing the flow trajectory,
one major challenge in this approach lies in the need to fully converge the inner loop
so that an efficient adjoint method for fixed-point loops can be used[3]. To address
this, we use an implicit solver with geometric multigrid and ILU preconditioning to
converge in an acceptable time[19].

For our proposed method, the calls to store() and load() in this algorithm
are replaced by calls to augmented routines gappyStore() and gappyLoad()
as described below.

3 Checkpointing with gaps

The routine gappyStore() contains a logic that selects certain snapshots worth
storing, which are denoted by the set of stored time steps Ts which are a subset of
all time steps T .

In the simplest incarnation of this method, Ts would contain only every n-th
time step, for some fixed n. In some special cases it might be beneficial to vary
the checkpoint density over time, e.g. to capture a particular phenomenon with a
higher accuracy. This was not investigated in this work.
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If our method is regarded as a very simple form of data compression, then the
data compression ratio is ‖T‖/‖Ts‖. Obviously we get better compression ratios
if we store fewer time steps. For evenly spaced snapshots as suggested above, we
obtain a compression ratio ‖T‖/‖Ts‖= n.

Checkpoints that have not been stored need to be reconstructed. If linear interpolation
is used, we can formalise this method as follows. Let t denote the time for which
a checkpoint needs to be reconstructed. Also, let t+ and t− denote the unique time
steps for which all of the following conditions hold:

t+, t− ∈ Ts

6 ∃t∗ ∈ Ts : t < t∗ < t+

6 ∃t∗ ∈ Ts : t− < t∗ < t

In other words, t+ and t− are the closest stored time steps just after and before t,
respectively.

We can then implement the gappyLoad() routine that can perform linear
interpolation or constant interpolation as follows:

Function gappyLoad(t)
if t ∈ Ts then // t was stored

return load(Ut );
else

U−← load(Ut− );
U+← load(Ut+ );
return U−+ t−t−

t+−t− · (U
+−U−);

end

If the gap t+ − t− is larger than two, this method can be implemented much
more efficiently by storing most of the intermediate results. The routine could be
implemented for higher orders of interpolation, taking into account more of the
surrounding stored time steps.

4 Test case

4.1 Primal solver setup

To test our method we use a RAE2822 aerofoil with a trailing edge that ia truncated
at 10% cord length and a 30◦ angle of attack to provoke a high amount of shedding.
The freestream velocity is 0.2 Ma, we use viscous flow. The mesh has around 25000
cells, the solver is node-centred and uses 4 levels of geometric multigrid for faster
convergence. The setup and the primal and adjoint flow field are shown in fig. 1.
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Fig. 1: Snapshots after 1.5 s (1500 time steps) and 1.52 s (1520 time steps). Left:
Specific entropy, showing strong vortex shedding above the airfoil with a frequency
of roughly 70 time steps per period (0.07s). Right: Adjoint momentum at the same
time steps. A high sensitivity close to the top surface in step 1500 appears where
a vortex is about to form, which can be seen in the primal flow at step 1520. This
adjoint peak stems from the small adjoint momentum peaks that are above the airfoil
in step 1520 and are propagated back to the airfoil surface during the reverse sweep.

For the reference setup, we use a time step size of tre f = 1 ms which corresponds
to ca. 70 checkpoints for each flow period. While this flow does exhibit periodic
cycles, our solver does not exploit this periodicity. Our findings should therefore
apply to non-periodic flow as well.

To validate that the chosen time step is fine enough to resolve the primal
flow sufficiently we perform another simulation with a time step size of 0.5 · tre f .
Furthermore, to obtain benchmark results for the incomplete checkpointing method
we run a series of 6 additional simulations with time step sizes 2, 4, 8, 16, 64 and
256 times tre f . We will refer to these setups as t0.5, t2 . . . t256.

4.2 Incomplete checkpointing setup

We use the primal results generated with tre f to initialise the adjoint solver. To
investigate if this temporal resolution is also sufficient to get accurate adjoint results,
we perform another adjoint simulation with time step size 0.5 · tre f for comparison.

Finally, we create incomplete checkpoint trajectories from the reference primal
result tre f as follows: For the setup that we will refer to as a2, we discard all primal
states at even time step numbers, and reconstruct them using linear interpolation
from the nearest odd time steps. We replace all but every 4th time step by linear
interpolation for the a4 setup and proceed likewise to obtain a8, a16, a64 and a256.
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4.3 Adjoint solver setup

The adjoint solver is set to the same time step size as the primal sovler for the
t0.5, t2 . . . t256 setups. For the a2 . . .a256 setups the numerical time step size is tre f .

The cost function is total drag of the airfoil averaged over a time window with a
weight function ω to progressively switch the averaging process on and off. Given
the total drag at each time step J(t), the average drag Javg can be formulated as

Javg =

t∞
∑

t=1
J(t) ·ω(t)

t∞
∑

t=1
ω(t)

(1)

We use a weight function that ramps up linearly for 0.05 s until it reaches its peak
at which it remains for 0.175 s, then ramps down to deactivate the averaging after
another 0.05 s. We study three design parameters that are shown in previous works:

1. Flow control: (e.g. [6, 8, 1]) We consider a valve that can inject or remove
tangential momentum on the airfoil top just behind the leading edge. This design
parameter can vary in time and thus allows us to study transient behaviour of the
adjoint field. We compute this sensor for each time step by integrating the adjoint
momentum field over a small circular area around the valve location.

2. Surface node displacement: (e.g. [18, 10]) We consider the surface nodes’
displacement in normal direction as the design vector, which is common for
shape optimisation applications. The design parameter does not allow variations
in time and is thus based on the time-averaged adjoint field. We use this to study
the spatial behaviour of the adjoint field. The spring analogy model is used to
project volume sensitivities onto the surface.

3. Angle of attack: (e.g. [11]) We consider the shape fixed and only allow an
adjustment of the angle of attack. Since this will hide oscillatory errors in space
and time, it can be used to study the overall trend of the adjoint field. This sensor
is computed based on the cross product of surface sensitivity vectors and point
vectors of surface nodes, integrated over the entire airfoil surface.

For the surface sensitivity and angle of attack sensors we require a time-averaged
adjoint field. The average is taken over a time window given by the window function
ωa. The adjoint averaging window is twice as long as the cost averaging window.

5 Results

The reference and t0.5 solution show very similar primal flow features and lift/drag
values match well, suggesting that the reference step size is small enough to resolve
the primal flow. Using coarser time steps t2 . . . t8, the primal flow is no longer
correctly resolved, see fig. 2.



8 Jan Christian Hueckelheim and Jens-Dominik Mueller

1000

2000

1000 2000 3000 4000 5000

dr
ag

lift

∆ t×0.5
∆ t×2
∆ t×4
∆ t×8

ref

tre f× lift drag
0.5 3530 ± 1291 1552 ± 465

1 3517 ± 1192 1561 ± 458
2 2747 ± 846 1219 ± 318
4 2659 ± 700 1175 ± 242
8 1680 ± 134 797 ± 42

16 1446 ± 10−12 702 ± 10−12

64 1446 ± 10−2 702 ± 10−2

256 1445 ± 0.3 701 ± 0.15

Fig. 2: Lift/drag history of fully developed flow for various time step sizes. The
reference solution and the twice refined solution agree qualitatively. With coarser
time steps, we are unable to resolve the transient behaviour correctly. The table
shows that results for tre f and t0.5 differ by 0.4%, which is acceptable for many
applications. With larger time steps, the unsteadiness vanishes and mean values for
lift and drag differ from the reference by more than 60%.

We observe strong unsteadiness for the adjoint field, see fig. 1, with peaks of
sensitivity close to the leading and trailing edges, and a reverse wake propagated
from the leading edge towards the incoming flow. Just like in the primal solution,
the unsteadiness is strongest downstream of the airfoil.

5.1 Overall accuracy: angle of attack

We first consider dJ
dα

, which is the sensitivity of drag J with respect to changes in
angle of attack α . This is the crudest sensor that we have, in the sense that it regards
a time- and space-averaged result which allows temporal and spatial error modes to
cancel out to some extent, see Table 1 for results.

Coarsening the primal temporal solution has a strong effect on the sensitivity
results: relative errors rise above 60% for setup t8 . . . t256. In contrast to this, we
observe that the sensitivity results produced with incomplete checkpointing are
acceptable. To give an example from the table: the a64 setup only keeps every 64th

time step and results in a sensitivity that differs from the reference by less than 0.2%.
This is achieved with the same memory requirements as for the t64 setup, which has
an error of over 60%. The a4 result agrees with the reference result within 0.003%,
but requires 75% less memory than the reference computation.
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step/gap dJ
dα

for step dJ
dα

for gap
0.5 3844.451056 N/A
1.0 3612.203084 3612.203084
2.0 2541.615522 3612.235254
4.0 2227.642980 3612.317687
8.0 1504.326992 3615.459025

16.0 1288.293729 3612.068629
64.0 1262.006153 3606.972954

256.0 1228.272627 3364.129272

Table 1: Centre column: dJ
dα

for different
time step sizes. Right column: dJ

dα

for different gap sizes using incomplete
checkpointing. The sensitivity is more
dependent on the time step size than
the primal result: The reference and t0.5
sensitivities differ more than 6%, an order
of magnitude more than the primal drag.
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Fig. 3: Surface sensitivity scaled by a factor of 2e− 4 for plotting, superimposed
on the airfoil surface. Top: Results for different primal time step sizes. The results
agree qualitatively, although the sensitivity modes are shifted along the top surface.
Reducing the temporal accuracy leads to a decrease in sensitivity. For t8 and above,
the surface sensitivity on the airfoil top is almost zero (i.e. is aligned with the
current shape). The airfoil bottom shows a strong sensitivity which is resolved
correctly regardless of time step size. Bottom: Different gap sizes for incomplete
checkpointing. The sensitivities match that of the reference solution to plotting
accuracy.
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5.2 Spatial accuracy: Surface sensitivity

We investigate the spatial accuracy of the adjoint field by studying the sensitivity
dJ

d(x·n) of the cost function with respect to normal displacements of airfoil surface
nodes. This is based on the time-averaged adjoint field.

This sensor also shows that the temporal primal accuracy is crucial. There is a
significant difference in surface sensitivities between the tre f and t0.5 setup, and an
even larger one for coarser time steps. For setup t8 and beyond, the sensitivity on
the airfoil top vanishes completely, which is an indicator that the unsteadiness is no
longer resolved. The surface sensitivity on the airfoil bottom is resolved correctly
for large time step sizes and is the only contributor to the angle of attack sensitivity
above 8 · tre f .

Incomplete checkpointing results in relatively small errors for this case, see fig. 3.
The error grows somewhat with the gap size. Surprisingly, the a16 setup is more
accurate than the a8 setup in this case, see fig. 4. Looking at the spatial distribution
of errors, we find that errors are highest on the airfoil top and several orders of
magnitude smaller at the airfoil bottom, see fig. 4. This is due to the more intense
unsteadiness above the airfoil.
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Fig. 4: Left: Surface sensitivity error along the airfoil surface. Node 1 is at the
bottom centre, all other nodes are numbered continuously and clockwise as shown
in the bottom of the left plot. Errors are larger on the airfoil top (nodes 50 to 95)
than at the bottom (nodes 105 to 132 and 1 to 20). Right: Maximum relative error of
surface sensitivity for different gap sizes. The relative error for a2 . . .a16 is labeled
and surprisingly smaller for a16 than for a8.
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5.3 Temporal accuracy: Flow control
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Fig. 5: Left: Time history of flow control sensitivities for the reference, t0.5 and
t2 . . . t8 setups. The oscillation range for the finest 3 setups are highlighted with
background colour. Due to the nonlinear behaviour of the primal flow, sensitivity
values at any particular time are highly dependent on the temporal resolution. Right:
Range of oscillation (difference between minimum and maximum value over time)
for a range of time step and gap sizes. Coarsening the time steps removes temporal
oscillations in the adjoint field, while incomplete checkpointing with increasing
gap sizes leads to stronger oscillations as the gap size becomes very large. The
a2 and a4 setups reduce the oscillation range to 91% and 71% of the original range,
respectively.

Finally, we study the sensitivity of average drag with respect to momentum
injection close to the leading edge by means of a flow control valve, the location
of which is shown in fig. 7. The time window in which the drag is averaged is
illustrated in fig. 6. We observe that the adjoint momentum field for all time step and
gap sizes is zero after the end of the cost function window, which is to be expected:
An injection of momentum at any given time will not affect the drag in the past.

If the flow is chaotic [17] or almost chaotic [?] the sensitivities can start to diverge
as the adjoint field is computed backwards in time. For some simpler test cases we
can expect the adjoint field to converge to zero as we proceed backwards in time
from the beginning of the cost averaging window. This behaviour can be observed
for our test case and is shown in fig. 6. The sensitivity is largest for all points in
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Fig. 6: Bottom: cost function averaging time window ω . Top: Sensitivity of drag
with respect to momentum injection above the leading edge, plotted over time for
a series of incomplete checkpointing gap sizes. We observe a zero adjoint field for
time step 1700 and above, as any change happening after the averaging window can
not affect the cost function. The sensitivity peaks for a time frame that is slightly
longer than the cost averaging window and shifted towards lower time step numbers.
The a8 setup is oscillatory with a growing amplitude towards earlier time steps.

time from which an injection of momentum could be propagated to some point of
the airfoil surface during the cost function averaging time.

For gap sizes 8 and above, we find that the sensitivity does not settle down as
we proceed backwards in time, and instead starts to oscillate with an exponentially
growing magnitude. Surprisingly, this growing error mode canceled out in the
time-averaging process that we used for the angle of attack and surface sensitivity
studies.

In contrast to this, a coarsening of primal temporal resolution leads to a decrease
in transient oscillations. Due to the highly nonlinear nature of the primal flow, it
is impractical to compare the results of different time step or gap sizes directly
for a given point in time, since even a minor change in the frequency of oscillations
introduced by a change in time step size can accumulate over time, see fig. 5. Hence,
we compare the range in which the sensitivity oscillates over time.
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t=1500

adjoint energy magnitude
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t=1520

Fig. 7: Adjoint energy magnitude field after 1.5 s and 1.52 s. The flow control valve
is marked with a sphere above the leading edge. The flow control sensitivity results
are based on a design variable that is the momentum injection rate in airfoil surface
tangential direction at this location.

6 Conclusion, possible extensions

We show that gaps in the stored time trajectory are an easy and effective way
of reducing the memory footprint of unsteady adjoint calculations. The effect on
the sensitivity accuracy is acceptable for many industrial cases even for relatively
large gap sizes, making our approach worth considering as an alternative to lossy
checkpoint compression, with a significantly smaller implementation effort and
computational cost.

In particular, the error introduced by storing an incomplete trajectory is much
smaller than the error introduced by under-resolving the physical time during the
primal flow computation. It is therefore preferable to perform the primal simulation
with a fine temporal resolution and to use incomplete checkpointing, compared to
the alternative of reducing the number of primal time steps to a number that fits into
memory.

An error estimation strategy for incomplete checkpointing would be useful
to choose the gap size and interpolation order. This could be used to adapt the
checkpoint storing interval during the primal simulation and the restoration order
during the adjoint simulation dynamically, e.g. to capture some flow features with a
higher accuracy.

Finally, a similar method could be implemented for spatial coarsening, using
interpolation or coarse grid multigrid solutions if available.
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