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A B S T R A C T

Physically integrated energy storage devices are gaining increasing interest due to the rapid development of
flexible, wearable and portable electronics technology. For the first time, supercapacitor components have been
integrated into a printed circuit board (PCB) construct. This proof-of-concept study paves the way for integrating
supercapacitors into power electronics devices and hybridising with PCB fuel cells. Commercial Norit activated
carbon (NAC) was used as the electrode material and was tested in two types of electrolytes, sodium sulfate
(Na2SO4) aqueous electrolyte, and Na2SO4-polyvinyl alcohol (Na2SO4-PVA) gel electrolyte. Electrochemical
measurements compare the SC-PCBs to standard two-electrode button-cell supercapacitors. A volumetric energy
density of 0.56mWh cm−3 at a power density of 26mW cm−3 was obtained in the solid-state SC-PCB system,
which is over twice the values acquired in the standard cell configuration. This is due to the removal of bulky
components in the standard cell, and/or decreased thickness of the overall device, and thus a decrease in the
total volume of the SC-PCB configuration. The results show great potential for embedding supercapacitors into
PCBs for a broad range of applications. In addition, further advantages can be realised through close physical
integration with other PCB-based electrochemical power systems such as fuel cells.

1. Introduction

Supercapacitors (SC), also known as electrochemical capacitors or
ultracapacitors, are charge-storage devices, consisting of two parallel
electrodes, an electrolyte and usually a separator that electrically iso-
lates the electrode compartments [1]. Supercapacitors have gained in-
creasing interest in a range of applications including automotive and
hybrid electrochemical systems due to their long cycle life, rapid
charging-discharging and high power density compared to batteries
[2,3]. However, the major drawback of supercapacitors is their low
energy density, and hence the development of new electrode materials
to meet the requirements of both high energy and power densities is
gaining increasing interest [4]. Supercapacitors are classified into two
main categories: i) electrical double-layer capacitors (EDLCs), mainly
comprising of carbon materials, in which the charge is stored electro-
statically at the electrode surface, and ii) pseudo-capacitors, including

metal oxides and conductive polymers, whereby Faradaic reversible
reactions between the electrode materials and the electrolyte ions,
govern the charging and discharging mechanism [5]. Hybrid SCs with
asymmetrical configurations have recently gained increasing interest,
offering higher energy and power densities [6–8]. While extensive re-
search has been, and continues to be, dedicated to developing improved
materials for supercapacitors, much less attention has gone into looking
at how they are packaged and physically integrated with other power
sources to form unitised hybrid systems. This proof-of-concept study
shows how supercapacitors can be integrated into printed circuit board
(PCB) structures. The PCB construct offers a low-cost easily manu-
factured means of making supercapacitors and can directly integrate
supercapacitors with PCB fuel cells to make for a highly flexible hybrid
power source.

The advantages associated with integrating fuel cells into PCBs are
well known. Polymer electrolyte membrane fuel cells (PEMFC), direct
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formic acid fuel cells (DFAFC) and direct ethanol fuel cells have been
fabricated using the printed circuit board (PCB) technology [9–12], and
the approach is being commercialized by the likes of Bramble Energy in
the UK [13]. Printed circuit boards typically consist of fiberglass/epoxy
composites, coated with a thin layer of conductive copper [14]. The
flow-field can be constructed from the insulating composite and the
conducting layer (typically protected with an anti-corrosive layer) can
act as the current collector. The PCB approach to constructing fuel cells
provides a range of advantages, including robustness, rapid manu-
facture times, low cost and design flexibility [10]. The scope of in-
tegrating fuel cell and supercapacitor technology into a single in-
tegrated construct offers the opportunity to improve fuel cell
performance with only marginal increases in cost, weight and volume.

While the concept of PCB encapsulated capacitors has been asserted
in the patent literature [15,16], to our knowledge this is the first time
that a supercapacitor PCB has been demonstrated.

Supercapacitors using commercially available carbon electrodes
have demonstrated good specific capacitances as high as 120 F g−1 in
aqueous electrolyte [17–19], in addition to high power densities ran-
ging between 10 and 20 kW kg−1 [20,21]; such standard materials have
therefore been used for integration into PCB composites using neutral
electrolyte without a separator. In addition, an all-solid-state super-
capacitor PCB has been fabricated using a gel electrolyte. Results are
compared using the same materials in standard coin cells.

2. Experimental

2.1. Materials

Norit activated carbon (NAC) was provided by CABOT Corporation
(Georgia, USA). Polyvinylidene fluoride (PVDF) was supplied by PI-
KEM Ltd. (Staffordshire, UK) and Whatman glass microfiber filter pa-
pers, used as electrical separator materials, were purchased from
Sigma-Aldrich Ltd (UK). Sodium sulphate (Na2SO4) and polyvinyl al-
cohol (PVA) were used as electrolytes in the PCBs and were supplied by
Fisher Scientific (UK) and Tokyo Chemical Industry Co. Ltd (Japan),
respectively. All prepared electrodes were manually cast on an Arlon
DiClad PCB configuration manufactured by Arlon Electronic Materials
(UK) and supplied by ZOT Engineering Limited (UK). The pre-im-
pregnated (prepreg) composite bonding fibers, (Arlon-47 N) were also
manufactured by Arlon Electronic Materials (UK) and supplied by ZOT
Engineering Limited (UK). Nickel foam (Suzhou JSD Co. Ltd., China)
was used as the current collector in coin cell devices of CR2032 geo-
metry (Hohsen Corporation, Japan).

2.2. Preparation of electrode materials and gel electrolyte

Commercial carbon, NAC, was used as the electrode material and
was mixed with PVDF binder with 95:5 wt.% composition in N-methyl-
2-pyrrolidine (NMP) solvent. The carbon pastes were manually cast
onto the PCB, and on nickel foam current collector for the coin cell
devices, to obtain a constant mass loading of 2mg cm2 of active elec-
trode materials.

The flexible gel electrolyte was prepared by mixing 6 g PVA powder
in 60ml deionised water using magnetic stirring at 90 °C. 6 g of 0.5 M
Na2SO4 was subsequently added to the mixture and stirred until the
solution became clear.

2.3. PCB properties and assembly of the supercapacitor-PCBs

The 0.42mm thick DiClad PCBs (85mm × 70mm circuit size) were
used as supplied. The DiClad laminates, composed of woven fiberglass/
polytetrafluoroethylene (PTFE) composites were used as the substrate
for the PCB devices. A thin copper film (38 μm) was electrodeposited on
one side of each of the laminates, to provide electrical conductivity, and
a conductive carbon ink, which acts as a current collector for the

supercapacitor PCBs (SC-PCBs), was coated on top of the copper with a
thickness of 35.5 μm and 4 cm diameter circle. The prepared carbon
electrode pastes were cast on the conductive ink area and vacuum dried
overnight to give a final total mass of 2mg cm−2 of physical surface
area. Fig. 1 and S1 illustrate the PCB design used prior to assembly.

For the PCB device in aqueous electrolyte medium, the electrode-
coated DiClads were separated by two A-47 N prepregs, each of 80 μm
thickness, prior to hot pressing. The prepregs were laser-cut to the same
dimensions of the PCBs using a CO2 laser cutter/engraver LS3020 (HPC
Laser Ltd, UK) and pre-vacuumed at room temperature for 2 h. The
whole device, composed of the PCB and two prepregs, was then hot
pressed at 140 °C (curing temperature of prepregs) at a pressure of 2 bar
for 1 h in a multilayer press (RMP 210, Bungard, Germany). The final
thickness of each of the prepregs ranged between 40 μm and 50 μm
after the curing process in the hot press. The SC-PCB device was then
irrigated with 0.5 M Na2SO4 solution via an access hole in the PCB
which was subsequently taped to prevent any electrolyte loss.

The all-solid-state PCB was prepared using the same procedure as
the aqueous one without using the prepregs material. The Na2SO4-PVA
gel electrolyte was placed between both electrodes along with
Whatman filter papers, acting as a separator and gently pressed. Fig. 2a
and b demonstrates the layering of the two different configurations of
the supercapacitor PCB assemblies, with gel and aqueous electrolytes,
respectively.

2.4. Characterization

Suitable characterization of the electrode materials used in the SC-
PCB was necessary in order to make a fair comparison with other sys-
tems reported in the literature. The surface morphology of the activated
carbon was examined using scanning electron microscopy (SEM) op-
erating at 10 kV (EVO MA10, ZEISS, Germany). Degassing of the carbon
sample at 300 °C using a sample degas system (VacPrep 061 Sample
Degas System, Micrometrics, USA) was followed by collection of ni-
trogen sorption isotherms (3Flex Surface and Catalyst Characterization
System, Micromeritics, USA). The total pore volume of the activated
carbon was calculated at a relative pressure (P/Po) of 0.99 and specific
surface areas (SSA) were obtained using Brunauer-Emmet-Teller (BET)
method at relative pressure range between 0.001 and 0.2 [22]. Non-
local density functional theory (NLDFT) was used to determine the
micropore volume [23].

2.5. Electrochemical measurements

Electrochemical measurements were carried out in the aqueous and
all-solid-state coin cell configurations and SC-PCBs using a potentiostat
(Interface 1000, Gamry Instruments, USA). Cyclic voltammetry (CV) at
scan rates of 1, 2, 5, 10, 50, 100 and 200mV s−1 were performed in the
voltage range 0–2 V.

The specific capacitance was evaluated from the CV curves using
Eq. (1):

Fig. 1. PCB layout constituting the base of fiberglass/PTFE composite, a thin
layer of copper coating along with another layer of carbon ink on which the
activated carbon is deposited on.
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where I is the current (A), V is the voltage (V), s is the sweep rate of the
cyclic voltammogram (V s−1), ΔV is the voltage range the sweep is
carried within (V), and m is the mass of the electrode materials (g).

Galvanostatic charge-discharge cycles (GCD) at current densities
ranging between 1 A g−1 and 20 A g−1 (when possible) were con-
ducted, and the specific capacitances (Cs) were calculated from the GCD
curves for comparison to the values attained by CV measurements using
Eq. (2):

=C i t
ΔV
Δ

s (2)

where i is the current density (A g−1), tΔ is the time (s) needed for the
discharge half-cycle, and ΔV is the voltage range (V) in which the cy-
cling is applied.

The energy density (E) and power density (P) based on the area
specific volume of the device (SC-PCB or coin cell) on which the carbon
electrodes have been coated (without including the edge material) were
obtained from Eqs. (3) and (4):
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where C is the capacitance (F) and v is the volume of the device (cm3).
The energy density (Em) and power density (Pm) based on the total

mass of the active materials used in the device were calculated fol-
lowing Eqn. (5) and (6):
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Potentiostatic electrochemical impedance spectroscopy (EIS) was
performed in a frequency range between 0.1 Hz and 1MHz vs. open
circuit voltage with an AC perturbation of 10mV; the different re-
sistances were inferred from the impedance curves.

3. Results and discussion

3.1. Surface morphology characterization

The pore morphology and pore size distribution (PSD) of the com-
mercial carbon NAC was characterized using SEM and nitrogen sorption
isotherms, respectively. Table 1 and Fig. S2 and S3 summarize the
properties of the activated carbon. It is clear that NAC has a disordered
morphology with relatively high SSA and bulk density. However, the

values of this activated carbon are lower compared to functionalized
carbons with KOH, H3PO4 and other activating chemical agents, that
reach 3200m2 g−1 SSA and 0.91 g cm-3 bulk densities [24–28]. The
sorption isotherm and NAC exhibit a Type I isotherm, characteristic of
microporous solids.

The major parameters that enhance the electrochemical behaviour
of electrode materials in supercapacitor applications include high sur-
face areas, a wide pore size distribution and an interconnected porous
structure. In addition, low values of packing density can affect the
volumetric energy and power densities of the supercapacitor devices
[29]. The effect of these parameters on the electrochemical perfor-
mance in the coin cells and SC-PCBs is highlighted in the following
section.

3.2. Electrochemical characterization

Electrochemical measurements were first conducted in coin cell
devices using aqueous and gel electrolytes to assess the performance of
the activated carbons in standard operating cells. The coin cells were
fabricated in aqueous 0.5M Na2SO4 electrolyte solution and as a solid-
state coin cell with Na2SO4-PVA gel electrolyte. The total mass loading
of the active material was similar to that used in the SC-PCBs. The
electrochemical performance of both NAC coin cells is presented in
Figs. 3, 4, and S4. NAC exhibited a stable performance in the voltage
range of 0–2 V in the aqueous electrolyte with a CV profile approaching
a rectangular shape, in comparison with the activated carbon in the gel
electrolyte, which presented a quasi-rectangular profile (Fig. 3). The
performance of both of the symmetric devices exhibit a profile char-
acteristic of electrical double-layer capacitors [30]. It is note-worthy
mentioning that the nickel foam current collector in these configura-
tions has insignificant contribution to the electrochemical behaviour of
the activated carbons used (Fig. S5).

The specific capacitance at different sweep rates was evaluated and
is reported in Fig. 4a. Both NAC coin cells achieve specific capacitance
values of 91 F g−1 and 81 F g−1 in aqueous and solid systems, respec-
tively, at a scan rate 1mV s−1. However, the capacitance values
maintained 38% in the aqueous Na2SO4 electrolyte and 17% in Na2SO4-
PVA electrolyte, of the initial capacitances upon increasing the sweep
rate to 200mV s−1. The performances in both cells are attributed to the
disordered morphology of the activated carbon that does not facilitate
the electrolyte diffusion into the micropores and hence the decreased

Fig. 2. Schematic of the SC-PCBs: a) as an all-solid-state PCB using a gel electrolyte and b) in aqueous media.

Table 1
Structural properties, including bulk density, SSA determined by BET and total
pore volume determined by NLDFT method commercial carbon NAC.

Sample Bulk Density (g cm−3) SSA (m2 g−1) Total Pore Volume (cm3 g−1)

NAC 0.19 1466 0.74
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performance at high sweep rates [31]. In addition, the poorer perfor-
mance of the supercapacitor cell in the gel electrolyte is due to the
lower ionic conductivity of the gel and the lower wettability at the
electrode/electrolyte interface. These results corroborate the GCD ex-
periments conducted at different current densities, shown in Fig. S4.
The coin cell configurations recorded almost symmetrical charge-dis-
charge curves with an ohmic drop of 63mV and 312mV at 2 A g−1

current density in the aqueous and gel electrolytes, respectively. The
EIS data confirmed that the impedance values at high frequency are
higher for the all-solid-state cell (8.9 Ω cm2), compared to the coin cell
in 0.5 M Na2SO4 (1.3 Ω cm2), shown in Fig. 4b. This revealed that the
solid-state coin cell has a higher ohmic resistance due to the relatively
low conductivity of the gel electrolyte and poor wettability of the
electrode [32].

Upon cycling the coin cells for 5000 charge-discharge cycles, the
capacitance retention was found to be 44% for the coin cell in an
aqueous medium, and 70% for the solid-state coin cell at 2 A g−1 cur-
rent density (Fig. 5). The limited electrochemical stability is attributed
to the disordered structure of the commercial carbons that does not
consist of hierarchical porous structures, compared to fabricated carbon
materials reported in the literature [33–35]. In addition, the extended
potential window up to 2 V might lead to the evolution of nascent gases
that abrupt the electrolyte ion diffusion, and therefore diminishes the
capacitive performance; although different studies have demonstrated
good stability in aqueous Na2SO4 up to 2 V [36–40]. A current leap
usually occurs when the cell voltage is extended to 2 V in these elec-
trolytes, demonstrating the gas evolution at the anode and/or cathode,
thus implicating lower potential limits to ensure excellent stability and

cyclability of the supercapacitor device [41]. This may be extensively
enhanced if carbons with an optimised hierarchical porous network
were used as the electrode materials and decreasing the potential
window to 1.8 V in the electrolyte media used herein [42–44].

These results set the baseline for coin cell supercapacitor perfor-
mance using an established carbon electrode material operating in
aqueous and solid-state electrolyte systems. The electrochemical

Fig. 3. Normalized cyclic voltammograms of NAC coin cells in a) Na2SO4 electrolyte and b) Na2SO4-PVA electrolyte at different sweep rates increasing from 1mV s−1

to 200mV s−1.

Fig. 4. a) Variation of specific capacitance of NAC coin cells in aqueous Na2SO4 and Na2SO4-PVA electrolyte with the sweep rate and b) normalized Nyquist plots
with the coated surface area of the electrodes of the NAC coin cells comparing two different electrolytes in the frequency range 0.01 Hz–1MHz.

Fig. 5. Cycling stability test of NAC coin cells in Na2SO4 and Na2SO4-PVA
electrolytes.
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behaviour of SC-PCBs was tested in both aqueous 0.5 M Na2SO4 and
Na2SO4-PVA gel electrolytes. Cyclic voltammograms of the NAC in both
electrolyte solutions were performed at a range of scan rates from 1mV
s−1 to 200mV s−1 (Fig. 6a, b). NAC exhibited a stable performance in
the voltage range of 0–2 V in the aqueous electrolyte with a CV profile
of almost rectangular shape, in comparison with the activated carbon in
gel electrolyte, which presented a quasi-rectangular profile. The per-
formances of both flexible symmetric devices are characteristic of
electrical double-layer capacitors, which is similar to the behaviour
obtained in the coin cells. The specific capacitance at a scan rate of
1mV s−1 recorded values of 93 F g−1 and 84 F g−1 in aqueous and all-
solid-state devices, respectively. The results obtained demonstrate that
the SC-PCBs can deliver the capacitance achieved in coin cell systems
with the same active material and can be optimized with a smaller
coating surface area for the carbon electrodes.

Fig. 7a shows that the capacitive performance quickly diminished
upon increasing the sweep rate to 5mV s−1 in both electrolytes; how-
ever, the values of the specific capacitance decreased gradually with a
further increase of the scan rate to 200mV s−1. This is due to the
morphological structure of the activated carbon used as electrode ma-
terial, previously shown in the coin cell performance.

The GCD curves at different current densities demonstrated almost
symmetrical and triangular charge/discharge curves (Fig. S6). A
smaller voltage drop (iR drop) of 7mV at the start point of the dis-
charge curve was obtained in the aqueous system at 2 A g−1 current
density, compared to 186mV in the gel electrolyte. EIS plots of the SC-
PCB devices, illustrated in Fig. 7b, showed a similar trend for the
electrolytes obtained with the GCD curves, with a higher impedance
value in the all-solid-state system at high-frequency (10 kHz − 1MHz).
This is usually attributed to the lower conductivity of the gel electrolyte

caused by the addition of a polymer and therefore the difference in the
bulk electrolyte resistance and electrode/electrolyte resistances be-
tween Na2SO4 and Na2SO4-PVA [45]. The high-frequency impedance
(∼2.6 Ω cm2) in the aqueous electrolyte was slightly higher that
achieved in the coin cell due to the higher physical surface area of the
coated electrodes; however, the high-frequency impedance in the all-
solid state device of 21.7 Ω cm2 was much higher in the SC-PCB device
compared to the coin cell with the same electrolyte. These results in-
dicate that the internal resistances at the electrode/electrolyte inter-
face, indicated at high frequency, are higher in the all-solid state SC-
PCB, possibly due to the loss of water content upon exposure to air in
the SC-PCB and therefore decrease in the ionic mobility and con-
ductivity of the gel electrolyte [46].

Fig. 8 shows that the SC-PCB with the NAC electrodes retained 76%
of the initial capacitance in the Na2SO4 electrolyte after 5000 charge-
discharge cycles at a current density of 2 A g−1. However, SC-PCB in gel
electrolyte showed a capacitance retention of 42% of its initial value
after the cycling test. The stability of the aqueous system was higher
than that acquired in the coin cell, which is likely due to the undesir-
able evolution of gases in the sealed coin cell system occuring at the
upper voltage limit. This causes the rapid degradation of the coin cell
performance. On the other hand, the SC-PCB device incorporates drill
holes that allow evolved gas to be released from the setup, hence de-
laying the deterioration of the capacitive performance upon repetitive
cycling [47–49]. As for the all-solid state devices, the fully sealed design
of the coin cell system ensures that the water content of the gel elec-
trolyte is maintained throughout the cycling test; whereas the venti-
lated SC-PCB device can lead to electrolyte dehydration and thus di-
minished wettability and ionic conductivity of the gel upon its complete
solidification. The stability of the all-solid-state SC-PCB can be

Fig. 6. Normalized cyclic voltammo-
grams of NAC SC-PCBs at different
sweep rates increasing from 1mV s−1

to 200mV s−1, in the voltage range of
0–2 V in a) Na2SO4 electrolyte solution
and b) Na2SO4-PVA electrolyte.

Fig. 7. a) Variation of specific capacitance of NAC SC-PCBs in aqueous Na2SO4 and Na2SO4-PVA electrolyte with the sweep rate and b) normalized Nyquist plots with
the physical coated surface area of the electrodes of NAC SC-PCBs comparing two different electrolytes in the frequency range 0.01 Hz-1 MHz.
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improved by sealing the device and hence maintaining the water con-
tent of the gel electrolyte. This boosts the ion mobility, enhancing the
conductivity of the gel [46,50].

The volumetric energy densities at different power densities were
evaluated for the coin cell and PCB configurations in the different
electrolyte media. The Ragone plot of the coin cells in different elec-
trolytes demonstrates that a volumetric energy density of 0.27mWh
cm−3 and 0.2 mWh cm−3 are achieved at power densities of 8.8mW
cm−3 and 9.8 mW cm−3, in the aqueous and solid-state cells, respec-
tively (Fig. 9). The volumetric densities can be further boosted with
higher mass loadings of electrode materials whilst maintaining a good
capacitive performance [51]. The corresponding gravimetric energy
densities achieved were 31.2 Wh kg-1and 20.3 Wh kg-1 at a power
density of 1 kW kg-1 in the aqueous and all-state coin cells, respectively
(Fig. S7). The values achieved herein are higher than those reported in
the literature for the same activated carbon due to the extended po-
tential window of 2 V used in different electrolyte media [18,52].

In both electrolyte media, higher volumetric energy densities are
achieved in the SC-PCBs compared to the coin cell devices. The aqueous
and all-solid-state SC-PCBs achieved an energy density of 0.69mWh
cm−3 and 0.56mWh cm-3 at a power density of 37mW cm-3 and
26mW cm-3, respectively. The energy density values do not decrease
significantly upon increasing the power density, especially for the SC-
PCB in aqueous electrolyte, where an energy density of 0.35mWh
cm−3 at 555mW cm−3 power density is achieved. These values are

lower than those of the micro-supercapacitor devices reported in the
literature [53,54]. Hence, increasing the mass loading per geometric
surface area and using electrode materials with higher performance
rates (including pseudocapacitive materials) would be the next step in
fabricating SC-PCBs with higher performance [55–57].

4. Conclusion

Supercapacitor materials have been integrated and tested in a
composite printed circuit board construct for the first time. The elec-
trochemical performance of a commercial carbon electrode material
with both aqueous and gel electrolyte has been compared with that of a
conventional coin cell. The results show that the approach is feasible
and can deliver promising performance. Building on this proof-of-con-
cept study, higher performing, state-of-the-art materials, such pseudo-
capacitive electrode materials, can be used to improve performance and
act as a ‘drop-in’ to the PCB structural hardware. The approach also
offers the possibility of integrating both supercapacitor and polymer
electrolyte fuel cell into a single flexible design package to bring the
best of both power and energy density to a hybridised system.
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