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ABSTRACT 
Although R has become an analytic platform for many scientific 
domains, high performance has rarely been a trait of R. The 
inefficiency can come from the R programming specification 
itself or the interpreter environment implementation. Profiling 
and optimizing useful R code can not only directly benefit 
domain science researchers but also increase the efficiency of R 
code to run on high performance computing resources. We use 
envirotyping analysis as an example. This analysis considers 
both genetic information and environment conditions to 
understand how these factors affect crop yields through multi-
dimensional data collected from fields and simulations.  The 
analysis has the potential to improve breeding schemes for 
better global crop yield. A central tool used to support this 
analysis is an R package, “PReMiuM: Dirichlet Process Bayesian 
Clustering, Profile Regression”, whose computational complexity 
increases as numbers of observations and features grow. The 
package is a useful tool for Bayesian clustering and inference 
with broad application potentials if computational bottlenecks 
can be overcome. In this paper, we detail our experiences on 
detecting the bottlenecks and optimizing its performance. We 
present a general workflow for investigating general 
performance issues such as execution time and memory usage to 
understand R program behavior and thus helping the 
optimization of the code. The workflow can be applied to other R 
applications. With the approach presented here, R users can 

easily identify inefficient code block, search for potential 
optimization solutions, and efficiently utilize high performance 
computing resources for scientific research. 

 
CCS CONCEPTS 
• General and reference →  Cross-computing tools and 
techniques →  Performance  •  Mathematics of computing →  
Mathematical software →  Statistical software 
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1. INTRODUCTION 
R is a programming environment with its own language 
specification and interpreter environment. R has interfaces that 
enable user to access R and utilize subroutines written with 
other programming languages.  Profiling and optimizing useful R 
code can not only directly benefit domain science researcher but 
also allow R code to run more effectively on high performance 
computing resources. Although R [1] has become an analytic 
platform for many domain sciences, high performance has not 
been a strong feature of R [2], [3].  The inefficiency can come 
both from the programming specification itself and the 
interpreter environment implementation [4]. Even many 
packages available on the Comprehensive R Archive Network 
(CRAN) have the need for performance improvement on 
execution time or memory consumption when encountering 
computation intensive simulation and big data.   

With thousands of lines of code in an R package and 
heterogeneous programming languages, identifying bottlenecks 
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is extremely difficult if no single profiling tool can easily track 
all computations. Optimization and improvement of R 
applications using high performance computing resources is an 
even harder task and requires additional knowledge and 
expertise. Currently, a freely available and easily applicable 
workflow for investigating general performance issues is not 
generally available to the R community. 

In this paper, we consider an R application for a specific use 
case, Envirotyping. Envirotyping analysis considers both genetic 
information and environment conditions to understand how 
those factors affect crop yield [5]–[7]. Progress in crop yield 
improvement relies on the identification of genotypes better 
adapted to their production environment. The analysis consists 
of analyzing multi-dimensional data collected from fields as well 
as through computational modeling for parameter optimization 
and simulations to understand analysis power.  This kind of 
analysis has the potential to improve breeding schemes to 
increase global crop yield. 

A promising central tool to support envirotyping analysis is the 
R package, “PReMiuM: Dirichlet Process Bayesian Clustering, 
Profile Regression” [8], though the  computational complexity of 
the package increases as the number of observations and 
features increase. If computational bottlenecks could be 
overcome, the package would also be useful for Bayesian 
clustering and inference for many types of data analysis. The 
package uses Markov Chain Monte Carlo (MCMC) methods for 
jointly fitting sub-models. Therefore, the overall computation is 
costly even for moderate data sets. For example, before the 
profiling and optimization, it took over 17 hours to process just 
over 4,530 observations with 7 variables, 1 discrete and 6 
continuous.  The long running time was an insurmountable 
barrier for academic research and industrial applications, 
especially with current trends toward rapidly expanding sample 
size and feature space. 

In this paper, we detail our experiences when detecting the 
bottlenecks in the R package PReMiuM and optimizing its 
implementation. In Section 2, we provide some statistical 
background on profile regression and an overview of software 
profiling tools in R. Section 3 presents a general workflow for 
code profiling and optimization in R using the R package 
PReMiuM as an example. We conclude and briefly discuss 
ongoing works in Section 4. 

 

2. BACKGROUND AND RELATED WORK 
2.1 Software profiling with R 
Software profiling is the analysis of the time and memory 
consumption on each line or a function of code during its 
execution. The development of efficient code relies on 
identification of key bottlenecks [9]. In interpreted languages 
(including R) a few lines can form major bottlenecks and 
strikingly slow down a program, especially with big datasets. 

With the increasing popularity of machine learning, data mining 
and big data analytics, code profiling is becoming extremely 
prominent for efficient programming. For many domain science 
fields, one potential barrier to scientific advance is inefficient 
code, which is very common in many R packages [2]. Since 
many factors involved in affecting the execution time and 
memory usage are difficult to foresee, and the bottlenecks are 
very difficult to identify, especially within thousands of lines of 
code for an R package, a profiling tool is becoming absolutely 
indispensable in efficient programming.  

We have reviewed eight major profiling tools for R. Our 
assessment considers five criteria including: profiling results 

presentation format; quality of trace back the function call 
history; resolution of code profiling; ability to profile memory 
usage along with CPU time; and how actively the tools are 
updated and maintained.  Table 1 shows a comparison between 
the functionalities of eight major R profiling tools.  The first 
column indicates if the package generates an HTML report. The 
second column indicates if the package generates some visual 
graphical output to show the results. The “Function nesting” 
column shows whether the package is able to display the 
function invocation history and hierarchy across the set of 
functions. The “Line profiling” column states whether the 
package provides information related with each of the lines in 
the code, not only functions. The “Memory profiling” column 
states whether the package shows results of profiling memory 
usage and finally, the “Latest update” column is an indication on 
how actively the tools are being maintained and developed [10]. 
Since profvis [11] package covers all functionalities and has an 
active development status,  it was used for profiling our use case. 
The profivs tool has a convenient interactive graphical interface 
for visualizing profiling results. However, none of the packages 
in Table 1 offer insights into code that is implemented in 
languages other than R (e.g. C, C++, or Fortran), which is a 
serious limitation for all current R profiling tools.  
 

Table 1: Overview of profiling tools in R 

  
HTML 
report 

Graphical 
output 

Function 
nesting 

Line 
profiling 

Memory 
profiling 

Latest 
update 

GUIProfiler [12] yes yes yes yes no 8/23/15 
summaryRprof  
[13] no no no yes minimal ----- 
proftable 
(Github) [14] no no yes yes no 7/19/15 

aprof  [15] no yes yes yes yes 12/14/17 

proftools [16] no yes yes no no 1/13/16 

profr [17] no yes yes no no 4/22/14 

Lineprof * yes yes yes yes yes 11/13/15 

profvis [11] yes yes yes yes yes 2/22/18 

* lineprof is deprecated and replaced by profvis 

  
2.2 Software profiling with C 
Since many R packages involve some functions written in C/C++ 
language, and currently no profiling tools in R can evaluate 
performance, Intel® VTune amplifier [18] can be a complement 
to R profiling tools. It provides advanced profiling capabilities 
with a single, friendly analysis interface.  It can be used to 
profile mixed language program such as Python, C++, C and 
Fortran, but it cannot provide line by line profiling for R 
programs such as the line profiling provided by profvis. The 
usefulness of Intel® VTune amplifier to R profiling lies in the top 
hotspots summary where optimizing these hotspots typically 
results in improving overall performance. The column of module 
in the summary provides general information on whether the 
C/C++ or R program components need improvement. 

 

2.3 Profile Regression   
Profile regression is one type of mixture model with regression 
used to comprehensively cope with highly correlated and multi-
level data.  Traditional regression analyses that attempt to fit 
main effects and interactions of increasing order to such data 
become quickly unwieldy and lose effectiveness. One way to 
deal with these difficulties is to adopt a more top-down point of 
view, where inference is based on clusters representing covariate 
patterns as opposed to individual risk factors and specific 
interactions. Partition and clustering methods are semi-
parametric approaches that aim to discretize a multi-dimensional 
risk surface into cells, also called clusters, having similar risks. 
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These clusters aim to represent groups of individuals that share 
common characteristics, leading to similar risk profiles. 
Heterogeneity is thus broken down by augmenting the model 
with an underlying latent structure that partitions the 
observations into more homogeneous subgroups or clusters [8]. 

For the envirotyping studies, the combined effect of climate, soil 
and genotype variables on crop yield arise from complex 
mixtures consisting of highly correlated combinations of 
individual components. Profile regression is a statistical 
modeling framework that is inherently suitable for modeling 
highly correlated data. PReMiuM profiling can thus be used to 
examine patterns of genotype and weather variants and relate 
these patterns to crop yield. The overall approach is to cluster 
joint patterns of exposures using a flexible mixture of 
distributions. 

 

3. WORKFLOW OVERVIEW 
In this section, we profile the execution time of functions in the 
R package PReMiuM following the workflow as shown in Figure 
1, we identify the bottlenecks, and we provide solutions to 
optimize the performance. The runtime of top level functions 
can be profiled by the proc.time() function in R environment. 
After locating the time-consuming functions, the profvis R 
package can be used to identify bottleneck functions. To 
optimize these functions, improvement can be made by replacing 
with efficient functions or parallelizing independent processes 
with multicore or multi-node approaches [2], [19]–[21]. With 
comparison of different solutions via a speed-up test, the 
improved program can be further examined using the Intel® 
VTune amplifier to find out whether the remaining hotspots 
exist in R or C parts of the program. If hotspots still exist in R, 
additional R profiling is needed. Otherwise, the C/C++ program 
components in the R package should be optimized.  
 

 
 

Figure 1: Workflow for R performance improvement  
 

3.1 Testing Environment   
All tests were conducted using Wrangler cluster at Texas 
Advanced Computing Center (TACC). Wrangler is a computer 
dedicated to run data intensive computing tasks. The Wrangler 

system at TACC includes 96 nodes. Each node has dual Intel 
Xeon E5 processors with 12 cores and 128GB memory. Each 
node has access to two file systems. One is a 10PB disk based 
Lustre file system. The other file system is a 0.5PB shared NAND 
flash storage system. All computing nodes are connected 
through one infiniband Mellanox switch with network transfer 
bandwidth up to 54Gbits/seconds as well as 40Gbits Ethernet. 
The flash storage system is directly accessible from each 
compute node through PCIe interface.  
 

3.2 Functions and Dataset   
To optimize the performance of the R package PReMiuM in 
solving envirotyping problems, we examined functions and the 
dataset features used in the analysis in order to detect 
bottlenecks in the source code. 
 

3.2.1 Functions in the R package PReMiuM 
In the preliminary investigation, a subset of implemented 
functions in PReMiuM package was used, including profRegr 
calcDissimilarityMatrix, calcOptimalClustering, 
calcAvgRiskAndProfile and plotRiskProfile. As shown in Figure 2, 
the post-processing functions have sequential dependency. The 
profRegr function is one of the core computational steps to fit the 
profile regression model. The current implementation is a 
subroutine implemented with C++ that can be invoked through 
R scripts. The output consists of a set of files containing traces 
and logs of the MCMC process. The results are used by the 
calcDissimilarityMatrix function to compute a dissimilarity 
matrix among all data objects. From the dissimilarity matrix, an 
optimal clustering assignment can be derived using the 
calcOptimalClustering function.  The clustering results are then 
be used for post-result analyses to compute statistics and 
generate plots, two of which used in the envirotyping studies are 
calcAvgRiskAndProfile and plotRiskProfile. All functions except 
profRegr and calcDissimilarityMatrix are implemented using the 
R programming language. All functions are implemented as 
serial jobs with shared memory computing architecture. 
 

 
Figure 2: Function dependencies in PReMiuM 
 

3.2.2 Dataset  
The initial testing dataset for the envirotyping use case had 4,530 
observations with outcome variable as yield, one factor covariate 
as brand-hybrid (847 levels) and 6 continuous weather variables: 
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air temperature (in Kelvin), wind (omega), air pressure, relative 
humidity, crosswind velocity, and vertical wind velocity.  

 

3.3 Profiling Results  
3.3.1 Top level profiling 
Complexity of the sequential functions in PReMiuM (version 
3.1.4) used in envirotyping research was tested by varying the 
number of observations and feature. These functions are also 
essential functions in PReMiuM, where the profRegr function fits 
a profile regression model and returns a number of files in the 
output directory and those output files are subsequently used by 
postprocessing functions including calcDissimilarityMatrix, 
calcOptimalClustering, calcAvgRiskAndProfile and plotRiskProfile. 
As shown in Figure 3, when 40, 80, 160, and 320 rows were 
randomly selected from the 4530 observations, the relative 
runtime  to the baseline 40 rows of data increases with the 
number of observations and the plotRiskProfile function 
consumes almost 99% of the total runtime of the envirotyping 
analysis. In Figure 4, with an increasing simulated number of 
features and randomly selected 60 observations, the relative 
runtime for calcAvgRiskAndProfile and plotRiskProfile increase 
dramatically when increasing the number of covariates from 48 
to 96, especially with larger numbers of clusters detected. The 
number of clusters detected varies with increasing number of 
rows and covariates and has substantial impact on the runtime. 
When the number of covariates becomes significantly larger 
than the number of clusters detected, the runtime of 
calcAvgRiskAndProfile grows faster than plotRiskProfile, because 
the calcAvgRiskAndProfile function computes the risks and 
profiles for all covariates and all clusters while plotRiskProfile 
only combines the profiles of the clusters for each covariate. For 
increasing number of continuous covariates, the most time 
consuming function shifts to calcAvgRiskAndProfile, but 
currently with only 6 continuous covariates for 4530 data points 
in the envirotyping dataset, the most urgent need was to identify 
the bottleneck within the plotRiskProfile function. Thus, the 
following code analysis focuses on this function. 

 
Figure 3: Complexity of top level functions by number of rows 
(baseline 40 rows) 

 

 
Figure 4: Complexity of top level functions by number of 
continuous covariates (baseline 12 covariates) 

 

3.3.2  plotRiskProfile Function profiling 
To examine the detailed runtime on each line of R code in 
plotRiskProfile function, we used a random sample of 60 
observations in the full dataset. The reason for not using a 
full/big dataset for profiling is that the profvis package will run 
into out of memory issues when visualizing the profiling graph. 
A representative small sub-sample as a test set is sufficient and 
efficient in order to show which functions consume most of the 
time, especially when examining the code block with the major 
bottleneck.  

The flame graph generated by profvis (Figure 5) shows the 
runtime by different levels of call stack in the plotRiskProfile 
function. The horizontal direction represents time in 
milliseconds, and the vertical direction represents the call stack. 
At the bottom-most items on the stack is the plotRiskProfile 
function being profiled. One level up on top of plotRiskProfile, 
when moving the censor to the cell, a popup window shows the 
label, total time, memory, aggregated total time and call stack 
depth. By examining second level of call stack, three functions, 
rbind, rownames and print, are called by the plotRiskProfile 
function. Note that for those functions that spent almost no time, 
information will not show up on the graph.  

 
Figure 5: Flame graph of profvis result on plotRiskProfile 
function in PReMiuM package 

The data view (Figure 6) shows detailed memory allocation and 
de-allocation. Interpreting this information can be misleading, 
because it does not necessarily reflect memory allocated and de-
allocated at that line of code. The sampling profiler records 
information about memory allocations that happen between the 
previous sample and the current one. This means that the 
allocation/de-allocation values on that line may have actually 
occurred in a previous line of code [11]. 
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Figure 6: Date view of profvis result on plotRiskProfile 
function 

3.4 Optimization of plotRiskProfile function  
By looking at the plotRiskProfile in the Postprocess.R source 
code, we found 17 rbind and 17 rownames assignment function 
calls within for loops. They are the bottlenecks. These loops are 
used to combine outputs from previous post processing 
functions for plotting. The rownames assignment placed within 
for loops is unnecessary and can be done after completion of 
iterations.  

The challenge here is dealing with combining data frames using 
the rbind function. Although rbind is a common and frequently 
used function in the R programming language, it has several 
drawbacks when encountering increasing volume of data: first, 
appending rows to a data frame using rbind is very slow because 
it fails to pre-allocate data structures. Second, each time we add 
a row, R needs to find a new contiguous block of memory to fit 
the data frame in, so the rbind operation leads to lots of copying. 
Third, the rbind also checks that the columns in the various data 
frames match by name. If they don’t match, it will re-arrange 
them accordingly.  

We found three solutions for optimizing the performance of the 
plotRiskProfile functions to address the drawbacks above: 

Solution A. do.call('rbind', list): Use list <- vector(‘list’, n) 
to initialize and pre-allocate a predefined size of list to 
store dataframe and after the assignment of the list in 
the for loop, do.call('rbind', myList) can be used to 
execute the rbind function in order to combine a list of 
data frames all at once at the end. 

Solution B. rbindlist: The rbindlist(myList) in the 
data.table [22] package can be used to efficiently 
append rows to a data table. The data.table is an 
enhanced version of data.frame and designed for fast 
operation of big data. It offers fast aggregation of large 
data (e.g. 100GB in RAM), fast ordered joins, fast 
add/modify/delete of columns by group using no 
copies at all, list columns, a fast friendly file reader and 
parallel file writer. 

Solution C. rbindlist and doMC: The for loop used to 
combine the data frame can be parallelized by using 
foreach package [23] and doMC packages [24] in R.  
The foreach packge allows users to parallelize the for 
loop with minimal modification of their source code by 
adding %dopar% after the foreach() statement. The 
doMC package is a “parallel backend” for the foreach 
package. It provides a mechanism needed to execute 
foreach loops in parallel. The foreach package must be 
used in conjunction with a package such as doMC in 
order to execute code in parallel.  

The pseudo code for each of the optimization solutions is listed 
in Table 2. 

Table 2: Pseudo code of original and optimization solutions 

Original 
for ( c in myVector) { 
    myDF<-rbind(myDF, data.frame(“x1”=…, “x2”=…)) 
} 

Solution A 
myList <- vector('list', n) 
for ( z in 1:n) { 
    myList[[z]] <- data.frame(data.frame(“x1”=…, “x2”=…)) 
} 
myDF <- do.call('rbind', myList) 
Solution B 
library(data.table) 
myList <- vector('list', n) 
for ( z in 1:n) { 
    myList[[z]] <- data.frame(data.frame(“x1”=…, “x2”=…)) 
} 
myDF <- rbindlist(myList) 

Solution C 
library(foreach) 
library(doMC) 
registerDoMC(detectCores()-2) 
tmp = foreach(z = 1:n) %dopar% { 
    data.frame(data.frame(“x1”=…, “x2”=…)) 
} 
myDF <- rbindlist(tmp) 

The performance of the three optimization solutions developed 
for the plotRiskProfile function was measured by the speedup 
(runtime before optimization/runtime after optimization) as 
shown on Figure 7. Using Solution B or C for the full 
envirotyping dataset with 4530 rows of observation, 
optimization achieves runtime about 120 times faster than the 
original rbind within the for loop in the original plotRiskProfile 
function, dramatically reducing the runtime from 17 hours to 
less than 10 minutes. With increasing volume of data, the benefit 
of rbindlist is apparent as the speedup increases significantly 
compared to Solution A. It is worthwhile to note that Solution C 
performs a little better than Solution B with increasing rows of 
data because the rbindlist is not computation intensive in the for 
loop to be parallelized in plotRishProfile. The total runtime for 
the plotRiskProfile function includes other functions such as 
plotting which cannot be easily parallelized, so the parallel 
solution overall is not very appealing. 

 
Figure 7: Performance of three optimization solutions to the 
plotRiskProfile function by sample size 

 

After updating the PReMiuM package with Solution C, the Intel® 
VTune amplifier was used to examine the hotspots and show 
that top hotspots still exists in R program instead of within the 
C++ program, as shown in Figure 8. There are some copying 
operations from R module in PReMiuM that will need to 
improve.  
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Figure 8: Hotspots detected by Intel VTune amplifier after 
optimization 

  

4. SUMMARY AND ONGOING WORK 
The performance improvement presented here make the 
promising new envirotyping analysis and modeling methods 
scalable and efficient and directly contribute to the development 
of relevant, publicly accessible known-truth genotype-
environment simulations to allow improved breeding schemes 
for better global crop yield. The total runtime for the whole 
envirotypging analysis including modeling, postprocessing, and 
plotting has been significantly reduced from 17 hours to 17 
minutes, by optimizing the R code of plotRiskProfile function in 
PReMiuM package. PReMiuM has been updated to include the 
improvements presented here and versioned as 3.1.6 on CRAN.  

The method and process of profiling R code, detecting 
bottlenecks and testing solutions used in the envirotyping 
analysis can benefit the R user and developer communities. Most 
user developed programs or R packages on CRAN may perform 
well when dataset sizes are small, but large volumes of data 
could dramatically deteriorate the functionalities.  Our example 
and explanation of how to profile and detect bottlenecks should 
be integrated as an essential part of testing in the R software 
development. Commonly used functions in R may not be the 
most efficient ones because of their implementations and 
specifications. For example, rbind is the most commonly used 
function in combining dataframes, but it lacks efficiency and 
should be replaced by rbindlist which is designed for fast 
operation and is available in the data.table package. Solutions to 
optimize R programs could be diverse and in the future there is a 
need to evaluate and compare under different circumstances 
using shared benchmarks. 

Furthermore, many independent procedures can be parallelized 
via existing high performance R packages, which can be 
categorized into two types on the basis of the hardware 
requirement: single-node parallelism that requires multiple 
processing cores within a computer system and multi-node 
parallelism that requires access to computing clusters [2].  

We are working on other functions required in the envirotyping 
analysis in PReMiuM package including calcOptimalClustering 
and calcAvgRiskAndProfile by following similar workflow 
described here. For the profRegr and calcDissimilarityMatrix 
functions written in C++, we do expect improvements by using 
parallelism solutions.  
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