
A Case Study of R Performance Analysis and Optimization

Ruizhu Huang
Texas Advanced Computing Center

University of Texas
Austin, Texas

rhuang@tacc.utexas.edu

Weijia Xu
Texas Advanced Computing Center

University of Texas
Austin, Texas

xwj@tacc.utexas.edu

Silvia Liverani
School of Mathematical Science

Queen Mary University of London
London, U.K.

liveranis@gmail.com

 Dave Hiltbrand
Department of Biology and Marine

Biology
University of North Carolina
Wilmington, North Carolina

hiltbrandd@uncw.edu

Ann E. Stapleton
Department of Biology and Marine

Biology
University of North Carolina
Wilmington, North Carolina

stapletona@uncw.edu

ABSTRACT
Although R has become an analytic platform for many scientific
domains, high performance has rarely been a trait of R. The
inefficiency can come from the R programming specification
itself or the interpreter environment implementation. Profiling
and optimizing useful R code can not only directly benefit
domain science researchers but also increase the efficiency of R
code to run on high performance computing resources. We use
envirotyping analysis as an example. This analysis considers
both genetic information and environment conditions to
understand how these factors affect crop yields through multi-
dimensional data collected from fields and simulations. The
analysis has the potential to improve breeding schemes for
better global crop yield. A central tool used to support this
analysis is an R package, “PReMiuM: Dirichlet Process Bayesian
Clustering, Profile Regression”, whose computational complexity
increases as numbers of observations and features grow. The
package is a useful tool for Bayesian clustering and inference
with broad application potentials if computational bottlenecks
can be overcome. In this paper, we detail our experiences on
detecting the bottlenecks and optimizing its performance. We
present a general workflow for investigating general
performance issues such as execution time and memory usage to
understand R program behavior and thus helping the
optimization of the code. The workflow can be applied to other R
applications. With the approach presented here, R users can

easily identify inefficient code block, search for potential
optimization solutions, and efficiently utilize high performance
computing resources for scientific research.

CCS CONCEPTS
• General and reference → Cross-computing tools and
techniques → Performance • Mathematics of computing →
Mathematical software → Statistical software

KEYWORDS
R, software profiling, performance optimization, PReMiuM

ACM Reference format:
R. Huang, W. Xu, S. Liverani, D. Hiltbrand and A. Stapleton 2018. A Case
Study of R Performance Analysis and Optimization. In Proceedings of
ACM Practice & Experience in Advanced Research Computing Conference
2018 (PEARC’18), Pittsburgh, PA, USA, July 2018, 6 pages.
https://doi.org/10.1145/3219104.3219156

1. INTRODUCTION
R is a programming environment with its own language
specification and interpreter environment. R has interfaces that
enable user to access R and utilize subroutines written with
other programming languages. Profiling and optimizing useful R
code can not only directly benefit domain science researcher but
also allow R code to run more effectively on high performance
computing resources. Although R [1] has become an analytic
platform for many domain sciences, high performance has not
been a strong feature of R [2], [3]. The inefficiency can come
both from the programming specification itself and the
interpreter environment implementation [4]. Even many
packages available on the Comprehensive R Archive Network
(CRAN) have the need for performance improvement on
execution time or memory consumption when encountering
computation intensive simulation and big data.

With thousands of lines of code in an R package and
heterogeneous programming languages, identifying bottlenecks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.

PEARC’18, July 22-26, 2018, Pittsburgh, PA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6446-1/18/07…$15.00
https://doi.org/10.1145/3219104.3219156

PEARC’18, July 2018, Pittsburgh, PA USA R. Huang et al.

 2

is extremely difficult if no single profiling tool can easily track
all computations. Optimization and improvement of R
applications using high performance computing resources is an
even harder task and requires additional knowledge and
expertise. Currently, a freely available and easily applicable
workflow for investigating general performance issues is not
generally available to the R community.

In this paper, we consider an R application for a specific use
case, Envirotyping. Envirotyping analysis considers both genetic
information and environment conditions to understand how
those factors affect crop yield [5]–[7]. Progress in crop yield
improvement relies on the identification of genotypes better
adapted to their production environment. The analysis consists
of analyzing multi-dimensional data collected from fields as well
as through computational modeling for parameter optimization
and simulations to understand analysis power. This kind of
analysis has the potential to improve breeding schemes to
increase global crop yield.

A promising central tool to support envirotyping analysis is the
R package, “PReMiuM: Dirichlet Process Bayesian Clustering,
Profile Regression” [8], though the computational complexity of
the package increases as the number of observations and
features increase. If computational bottlenecks could be
overcome, the package would also be useful for Bayesian
clustering and inference for many types of data analysis. The
package uses Markov Chain Monte Carlo (MCMC) methods for
jointly fitting sub-models. Therefore, the overall computation is
costly even for moderate data sets. For example, before the
profiling and optimization, it took over 17 hours to process just
over 4,530 observations with 7 variables, 1 discrete and 6
continuous. The long running time was an insurmountable
barrier for academic research and industrial applications,
especially with current trends toward rapidly expanding sample
size and feature space.

In this paper, we detail our experiences when detecting the
bottlenecks in the R package PReMiuM and optimizing its
implementation. In Section 2, we provide some statistical
background on profile regression and an overview of software
profiling tools in R. Section 3 presents a general workflow for
code profiling and optimization in R using the R package
PReMiuM as an example. We conclude and briefly discuss
ongoing works in Section 4.

2. BACKGROUND AND RELATED WORK
2.1 Software profiling with R
Software profiling is the analysis of the time and memory
consumption on each line or a function of code during its
execution. The development of efficient code relies on
identification of key bottlenecks [9]. In interpreted languages
(including R) a few lines can form major bottlenecks and
strikingly slow down a program, especially with big datasets.

With the increasing popularity of machine learning, data mining
and big data analytics, code profiling is becoming extremely
prominent for efficient programming. For many domain science
fields, one potential barrier to scientific advance is inefficient
code, which is very common in many R packages [2]. Since
many factors involved in affecting the execution time and
memory usage are difficult to foresee, and the bottlenecks are
very difficult to identify, especially within thousands of lines of
code for an R package, a profiling tool is becoming absolutely
indispensable in efficient programming.

We have reviewed eight major profiling tools for R. Our
assessment considers five criteria including: profiling results

presentation format; quality of trace back the function call
history; resolution of code profiling; ability to profile memory
usage along with CPU time; and how actively the tools are
updated and maintained. Table 1 shows a comparison between
the functionalities of eight major R profiling tools. The first
column indicates if the package generates an HTML report. The
second column indicates if the package generates some visual
graphical output to show the results. The “Function nesting”
column shows whether the package is able to display the
function invocation history and hierarchy across the set of
functions. The “Line profiling” column states whether the
package provides information related with each of the lines in
the code, not only functions. The “Memory profiling” column
states whether the package shows results of profiling memory
usage and finally, the “Latest update” column is an indication on
how actively the tools are being maintained and developed [10].
Since profvis [11] package covers all functionalities and has an
active development status, it was used for profiling our use case.
The profivs tool has a convenient interactive graphical interface
for visualizing profiling results. However, none of the packages
in Table 1 offer insights into code that is implemented in
languages other than R (e.g. C, C++, or Fortran), which is a
serious limitation for all current R profiling tools.

Table 1: Overview of profiling tools in R

HTML
report

Graphical
output

Function
nesting

Line
profiling

Memory
profiling

Latest
update

GUIProfiler [12] yes yes yes yes no 8/23/15
summaryRprof
[13] no no no yes minimal -----
proftable
(Github) [14] no no yes yes no 7/19/15

aprof [15] no yes yes yes yes 12/14/17

proftools [16] no yes yes no no 1/13/16

profr [17] no yes yes no no 4/22/14

Lineprof * yes yes yes yes yes 11/13/15

profvis [11] yes yes yes yes yes 2/22/18

* lineprof is deprecated and replaced by profvis

2.2 Software profiling with C
Since many R packages involve some functions written in C/C++
language, and currently no profiling tools in R can evaluate
performance, Intel® VTune amplifier [18] can be a complement
to R profiling tools. It provides advanced profiling capabilities
with a single, friendly analysis interface. It can be used to
profile mixed language program such as Python, C++, C and
Fortran, but it cannot provide line by line profiling for R
programs such as the line profiling provided by profvis. The
usefulness of Intel® VTune amplifier to R profiling lies in the top
hotspots summary where optimizing these hotspots typically
results in improving overall performance. The column of module
in the summary provides general information on whether the
C/C++ or R program components need improvement.

2.3 Profile Regression
Profile regression is one type of mixture model with regression
used to comprehensively cope with highly correlated and multi-
level data. Traditional regression analyses that attempt to fit
main effects and interactions of increasing order to such data
become quickly unwieldy and lose effectiveness. One way to
deal with these difficulties is to adopt a more top-down point of
view, where inference is based on clusters representing covariate
patterns as opposed to individual risk factors and specific
interactions. Partition and clustering methods are semi-
parametric approaches that aim to discretize a multi-dimensional
risk surface into cells, also called clusters, having similar risks.

A Case Study of R Performance Analysis and Optimization PEARC’18, July 2018, Pittsburgh, PA USA

 3

These clusters aim to represent groups of individuals that share
common characteristics, leading to similar risk profiles.
Heterogeneity is thus broken down by augmenting the model
with an underlying latent structure that partitions the
observations into more homogeneous subgroups or clusters [8].

For the envirotyping studies, the combined effect of climate, soil
and genotype variables on crop yield arise from complex
mixtures consisting of highly correlated combinations of
individual components. Profile regression is a statistical
modeling framework that is inherently suitable for modeling
highly correlated data. PReMiuM profiling can thus be used to
examine patterns of genotype and weather variants and relate
these patterns to crop yield. The overall approach is to cluster
joint patterns of exposures using a flexible mixture of
distributions.

3. WORKFLOW OVERVIEW
In this section, we profile the execution time of functions in the
R package PReMiuM following the workflow as shown in Figure
1, we identify the bottlenecks, and we provide solutions to
optimize the performance. The runtime of top level functions
can be profiled by the proc.time() function in R environment.
After locating the time-consuming functions, the profvis R
package can be used to identify bottleneck functions. To
optimize these functions, improvement can be made by replacing
with efficient functions or parallelizing independent processes
with multicore or multi-node approaches [2], [19]–[21]. With
comparison of different solutions via a speed-up test, the
improved program can be further examined using the Intel®
VTune amplifier to find out whether the remaining hotspots
exist in R or C parts of the program. If hotspots still exist in R,
additional R profiling is needed. Otherwise, the C/C++ program
components in the R package should be optimized.

Figure 1: Workflow for R performance improvement

3.1 Testing Environment
All tests were conducted using Wrangler cluster at Texas
Advanced Computing Center (TACC). Wrangler is a computer
dedicated to run data intensive computing tasks. The Wrangler

system at TACC includes 96 nodes. Each node has dual Intel
Xeon E5 processors with 12 cores and 128GB memory. Each
node has access to two file systems. One is a 10PB disk based
Lustre file system. The other file system is a 0.5PB shared NAND
flash storage system. All computing nodes are connected
through one infiniband Mellanox switch with network transfer
bandwidth up to 54Gbits/seconds as well as 40Gbits Ethernet.
The flash storage system is directly accessible from each
compute node through PCIe interface.

3.2 Functions and Dataset
To optimize the performance of the R package PReMiuM in
solving envirotyping problems, we examined functions and the
dataset features used in the analysis in order to detect
bottlenecks in the source code.

3.2.1 Functions in the R package PReMiuM
In the preliminary investigation, a subset of implemented
functions in PReMiuM package was used, including profRegr
calcDissimilarityMatrix, calcOptimalClustering,
calcAvgRiskAndProfile and plotRiskProfile. As shown in Figure 2,
the post-processing functions have sequential dependency. The
profRegr function is one of the core computational steps to fit the
profile regression model. The current implementation is a
subroutine implemented with C++ that can be invoked through
R scripts. The output consists of a set of files containing traces
and logs of the MCMC process. The results are used by the
calcDissimilarityMatrix function to compute a dissimilarity
matrix among all data objects. From the dissimilarity matrix, an
optimal clustering assignment can be derived using the
calcOptimalClustering function. The clustering results are then
be used for post-result analyses to compute statistics and
generate plots, two of which used in the envirotyping studies are
calcAvgRiskAndProfile and plotRiskProfile. All functions except
profRegr and calcDissimilarityMatrix are implemented using the
R programming language. All functions are implemented as
serial jobs with shared memory computing architecture.

Figure 2: Function dependencies in PReMiuM

3.2.2 Dataset
The initial testing dataset for the envirotyping use case had 4,530
observations with outcome variable as yield, one factor covariate
as brand-hybrid (847 levels) and 6 continuous weather variables:

PEARC’18, July 2018, Pittsburgh, PA USA R. Huang et al.

 4

air temperature (in Kelvin), wind (omega), air pressure, relative
humidity, crosswind velocity, and vertical wind velocity.

3.3 Profiling Results
3.3.1 Top level profiling
Complexity of the sequential functions in PReMiuM (version
3.1.4) used in envirotyping research was tested by varying the
number of observations and feature. These functions are also
essential functions in PReMiuM, where the profRegr function fits
a profile regression model and returns a number of files in the
output directory and those output files are subsequently used by
postprocessing functions including calcDissimilarityMatrix,
calcOptimalClustering, calcAvgRiskAndProfile and plotRiskProfile.
As shown in Figure 3, when 40, 80, 160, and 320 rows were
randomly selected from the 4530 observations, the relative
runtime to the baseline 40 rows of data increases with the
number of observations and the plotRiskProfile function
consumes almost 99% of the total runtime of the envirotyping
analysis. In Figure 4, with an increasing simulated number of
features and randomly selected 60 observations, the relative
runtime for calcAvgRiskAndProfile and plotRiskProfile increase
dramatically when increasing the number of covariates from 48
to 96, especially with larger numbers of clusters detected. The
number of clusters detected varies with increasing number of
rows and covariates and has substantial impact on the runtime.
When the number of covariates becomes significantly larger
than the number of clusters detected, the runtime of
calcAvgRiskAndProfile grows faster than plotRiskProfile, because
the calcAvgRiskAndProfile function computes the risks and
profiles for all covariates and all clusters while plotRiskProfile
only combines the profiles of the clusters for each covariate. For
increasing number of continuous covariates, the most time
consuming function shifts to calcAvgRiskAndProfile, but
currently with only 6 continuous covariates for 4530 data points
in the envirotyping dataset, the most urgent need was to identify
the bottleneck within the plotRiskProfile function. Thus, the
following code analysis focuses on this function.

Figure 3: Complexity of top level functions by number of rows
(baseline 40 rows)

Figure 4: Complexity of top level functions by number of
continuous covariates (baseline 12 covariates)

3.3.2 plotRiskProfile Function profiling
To examine the detailed runtime on each line of R code in
plotRiskProfile function, we used a random sample of 60
observations in the full dataset. The reason for not using a
full/big dataset for profiling is that the profvis package will run
into out of memory issues when visualizing the profiling graph.
A representative small sub-sample as a test set is sufficient and
efficient in order to show which functions consume most of the
time, especially when examining the code block with the major
bottleneck.

The flame graph generated by profvis (Figure 5) shows the
runtime by different levels of call stack in the plotRiskProfile
function. The horizontal direction represents time in
milliseconds, and the vertical direction represents the call stack.
At the bottom-most items on the stack is the plotRiskProfile
function being profiled. One level up on top of plotRiskProfile,
when moving the censor to the cell, a popup window shows the
label, total time, memory, aggregated total time and call stack
depth. By examining second level of call stack, three functions,
rbind, rownames and print, are called by the plotRiskProfile
function. Note that for those functions that spent almost no time,
information will not show up on the graph.

Figure 5: Flame graph of profvis result on plotRiskProfile
function in PReMiuM package

The data view (Figure 6) shows detailed memory allocation and
de-allocation. Interpreting this information can be misleading,
because it does not necessarily reflect memory allocated and de-
allocated at that line of code. The sampling profiler records
information about memory allocations that happen between the
previous sample and the current one. This means that the
allocation/de-allocation values on that line may have actually
occurred in a previous line of code [11].

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

40	 80	 160	 320	

Re
la
ti
ve
	r
un
ti
m
e	
to
	4
0	
ro
w
s	

Row	

profRegr	

calcDissimilarityMatrix	

calcOptimalClustering	

calcAvgRiskAndProDile	

plotRiskProDile	

0	

50	

100	

150	

200	

250	

300	

12	 24	 48	 96	

Re
la
ti
ve
	r
un
ti
m
e	
to
	1
2	
co
va
ri
at
es
	

Number	of	continuous	covariates	

profRegr	

calcDissimilarityMatrix	

calcOptimalClustering	

calcAvgRiskAndProDile	

plotRiskProDile	

A Case Study of R Performance Analysis and Optimization PEARC’18, July 2018, Pittsburgh, PA USA

 5

Figure 6: Date view of profvis result on plotRiskProfile
function

3.4 Optimization of plotRiskProfile function
By looking at the plotRiskProfile in the Postprocess.R source
code, we found 17 rbind and 17 rownames assignment function
calls within for loops. They are the bottlenecks. These loops are
used to combine outputs from previous post processing
functions for plotting. The rownames assignment placed within
for loops is unnecessary and can be done after completion of
iterations.

The challenge here is dealing with combining data frames using
the rbind function. Although rbind is a common and frequently
used function in the R programming language, it has several
drawbacks when encountering increasing volume of data: first,
appending rows to a data frame using rbind is very slow because
it fails to pre-allocate data structures. Second, each time we add
a row, R needs to find a new contiguous block of memory to fit
the data frame in, so the rbind operation leads to lots of copying.
Third, the rbind also checks that the columns in the various data
frames match by name. If they don’t match, it will re-arrange
them accordingly.

We found three solutions for optimizing the performance of the
plotRiskProfile functions to address the drawbacks above:

Solution A. do.call('rbind', list): Use list <- vector(‘list’, n)
to initialize and pre-allocate a predefined size of list to
store dataframe and after the assignment of the list in
the for loop, do.call('rbind', myList) can be used to
execute the rbind function in order to combine a list of
data frames all at once at the end.

Solution B. rbindlist: The rbindlist(myList) in the
data.table [22] package can be used to efficiently
append rows to a data table. The data.table is an
enhanced version of data.frame and designed for fast
operation of big data. It offers fast aggregation of large
data (e.g. 100GB in RAM), fast ordered joins, fast
add/modify/delete of columns by group using no
copies at all, list columns, a fast friendly file reader and
parallel file writer.

Solution C. rbindlist and doMC: The for loop used to
combine the data frame can be parallelized by using
foreach package [23] and doMC packages [24] in R.
The foreach packge allows users to parallelize the for
loop with minimal modification of their source code by
adding %dopar% after the foreach() statement. The
doMC package is a “parallel backend” for the foreach
package. It provides a mechanism needed to execute
foreach loops in parallel. The foreach package must be
used in conjunction with a package such as doMC in
order to execute code in parallel.

The pseudo code for each of the optimization solutions is listed
in Table 2.

Table 2: Pseudo code of original and optimization solutions

Original
for (c in myVector) {
 myDF<-rbind(myDF, data.frame(“x1”=…, “x2”=…))
}

Solution A
myList <- vector('list', n)
for (z in 1:n) {
 myList[[z]] <- data.frame(data.frame(“x1”=…, “x2”=…))
}
myDF <- do.call('rbind', myList)
Solution B
library(data.table)
myList <- vector('list', n)
for (z in 1:n) {
 myList[[z]] <- data.frame(data.frame(“x1”=…, “x2”=…))
}
myDF <- rbindlist(myList)

Solution C
library(foreach)
library(doMC)
registerDoMC(detectCores()-2)
tmp = foreach(z = 1:n) %dopar% {
 data.frame(data.frame(“x1”=…, “x2”=…))
}
myDF <- rbindlist(tmp)

The performance of the three optimization solutions developed
for the plotRiskProfile function was measured by the speedup
(runtime before optimization/runtime after optimization) as
shown on Figure 7. Using Solution B or C for the full
envirotyping dataset with 4530 rows of observation,
optimization achieves runtime about 120 times faster than the
original rbind within the for loop in the original plotRiskProfile
function, dramatically reducing the runtime from 17 hours to
less than 10 minutes. With increasing volume of data, the benefit
of rbindlist is apparent as the speedup increases significantly
compared to Solution A. It is worthwhile to note that Solution C
performs a little better than Solution B with increasing rows of
data because the rbindlist is not computation intensive in the for
loop to be parallelized in plotRishProfile. The total runtime for
the plotRiskProfile function includes other functions such as
plotting which cannot be easily parallelized, so the parallel
solution overall is not very appealing.

Figure 7: Performance of three optimization solutions to the
plotRiskProfile function by sample size

After updating the PReMiuM package with Solution C, the Intel®
VTune amplifier was used to examine the hotspots and show
that top hotspots still exists in R program instead of within the
C++ program, as shown in Figure 8. There are some copying
operations from R module in PReMiuM that will need to
improve.

0	

20	

40	

60	

80	

100	

120	

140	

40	 80	 160	 320	 640	 4530	

Sp
ee
du
p	

Row	

Solution	A	

Solution	B	

Solution	C	

PEARC’18, July 2018, Pittsburgh, PA USA R. Huang et al.

 6

Figure 8: Hotspots detected by Intel VTune amplifier after
optimization

4. SUMMARY AND ONGOING WORK
The performance improvement presented here make the
promising new envirotyping analysis and modeling methods
scalable and efficient and directly contribute to the development
of relevant, publicly accessible known-truth genotype-
environment simulations to allow improved breeding schemes
for better global crop yield. The total runtime for the whole
envirotypging analysis including modeling, postprocessing, and
plotting has been significantly reduced from 17 hours to 17
minutes, by optimizing the R code of plotRiskProfile function in
PReMiuM package. PReMiuM has been updated to include the
improvements presented here and versioned as 3.1.6 on CRAN.

The method and process of profiling R code, detecting
bottlenecks and testing solutions used in the envirotyping
analysis can benefit the R user and developer communities. Most
user developed programs or R packages on CRAN may perform
well when dataset sizes are small, but large volumes of data
could dramatically deteriorate the functionalities. Our example
and explanation of how to profile and detect bottlenecks should
be integrated as an essential part of testing in the R software
development. Commonly used functions in R may not be the
most efficient ones because of their implementations and
specifications. For example, rbind is the most commonly used
function in combining dataframes, but it lacks efficiency and
should be replaced by rbindlist which is designed for fast
operation and is available in the data.table package. Solutions to
optimize R programs could be diverse and in the future there is a
need to evaluate and compare under different circumstances
using shared benchmarks.

Furthermore, many independent procedures can be parallelized
via existing high performance R packages, which can be
categorized into two types on the basis of the hardware
requirement: single-node parallelism that requires multiple
processing cores within a computer system and multi-node
parallelism that requires access to computing clusters [2].

We are working on other functions required in the envirotyping
analysis in PReMiuM package including calcOptimalClustering
and calcAvgRiskAndProfile by following similar workflow
described here. For the profRegr and calcDissimilarityMatrix
functions written in C++, we do expect improvements by using
parallelism solutions.

ACKNOWLEDGMENTS
This project was supported by National Research Initiative
Competitive Grant no. 2017-67013-26188 from the USDA
National Institute of Food and Agriculture and completed on the

Wrangler cluster, which is generously funded by the National
Science Foundation (NSF) through award #ACI-1447307. The
funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

REFERENCES
[1] R Development Core Team, “R: A language and environment for statistical

computing.” Vienna, Austria, 2005.

[2] W. Xu, R. Huang, H. Zhang, Y. El-Khamra, and D. Walling, “Empowering R
with high performance computing resources for big data analytics,” in
Conquering Big Data with High Performance Computing, 2016.

[3] R. Huang and W. Xu, “Performance Evaluation of Enabling Logistic
Regression for Big Data with R,” 2015 IEEE International Conference on Big
Data, 2015.

[4] H. Wickham, Advanced R. CRC Press, 2014.

[5] Y. Xu, “Envirotyping for deciphering environmental impacts on crop plants,”
Theoretical and Applied Genetics. 2016.

[6] M. Cooper et al., “Predicting the future of plant breeding: complementing
empirical evaluation with genetic prediction,” Crop and Pasture Science, vol.
65, no. 4, pp. 311–336, 2014.

[7] K. Chenu, “Characterizing the crop environment–nature, significance and
applications,” in Crop Physiology (Second Edition), Elsevier, 2015, pp. 321–348.

[8] S. Liverani, D. I. Hastie, L. Azizi, M. Papathomas, and S. Richardson,
“PReMiuM: An R Package for Profile Regression Mixture Models Using
Dirichlet Processes,” Journal of Statistical Software, 2015.

[9] G. Wilson et al., “Best practices for scientific computing,” PLoS Biology, 2014.

[10] A. Rubio and F. de Villar, “Code Profiling in R: A Review of Existing Methods
and an Introduction to Package GUIProfiler.,” R Journal, vol. 7, no. 2, 2015.

[11] W. Chang and J. Luraschi, “profvis: Interactive visualizations for profiling R
code [Software].” 2016.

[12] F. de Villar and A. Rubio, “GUIProfiler: Profiler Graphical User Interface,” R
package version 0.1, vol. 2, 2014.

[13] R Development Core Team, “Writing R extensions,” R Foundation for
Statistical Computing, 1999.

[14] N. Ross, “proftable.” [Online]. Available:
https://github.com/noamross/noamtools/blob/master/R/proftable.R.
[Accessed: 26-Mar-2018].

[15] M. D. Visser, “aprof: Amdahl’s Profiler, Directed Optimization Made Easy,”
URL http://CRAN. R-project. org/package= aprof. R package version 0.2, vol. 4,
2014.

[16] L. Tierney and R. Jarjour, “proftools: Profile Output Processing Tools for R,”
R package, p. 0, 2007.

[17] H. Wickham, “profr: An alternative display for profiling information,” R
package. URL http://had. co. nz/profr, 2008.

[18] Intel Developer Zone, “Intel VTune Amplifier, 2017,” Documentation at the
URL: https://software. intel. com/en-us/intel-vtune-amplifier-xe-
support/documentation.

[19] F. C. Liu, W. Xu, M. Belgin, R. Huang, and B. C. Fleischer, “Insights into
Research Computing Operations using Big Data-Powered Log Analysis,” in
Proceedings of the Practice and Experience in Advanced Research Computing
2017 on Sustainability, Success and Impact - PEARC17, 2017.

[20] W. Xu, R. Huang, M. Esteva, J. Song, and R. Walls, “Content-based
comparison for collections identification,” in Proceedings - 2016 IEEE
International Conference on Big Data, Big Data 2016, 2016.

[21] R. Huang, W. Xu, and R. McLay, “A web interface for XALT log data
analysis,” in Proceedings of the XSEDE16 Conference on Diversity, Big Data,
and Science at Scale, 2016, p. 31.

[22] M. Dowle, T. Short, S. Lianoglou, R. Saporta, A. Srinivasan, and E. Antonyan,
“data. table: Extension of data. frame,” 2014.

[23] Revolution Analytics and S. Weston, “foreach: Provides Foreach Looping
Construct for R,” R package version, vol. 1, no. 3, p. 1, 2015.

[24] Revolution Analytics, “doMC: Foreach parallel adaptor for the multicore
package,” R package version, vol. 1, no. 3, 2014.

