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Food quality control is a mandatory task in the food
industry and relies on the availability of simple, cost-effective
and stable sensing platforms. In the present work, the
applicability of bare glassy carbon electrodes for routine
analysis of food samples was evaluated as a valid alternative
to chromatographic techniques, using caffeine as test analyte.
A number of experimental parameters were optimized and a
differential pulse voltammetry was applied for quantification
experiments. The detection limit was found to be 2 × 10−5 M
(3σ criterion) and repeatability was evaluated by the relative
standard deviation of 4.5%. The influence of sugars, and
compounds structurally related to caffeine on the current
response of caffeine was evaluated and found to have
no significant influence on the electrode performance. The
suitability of bare carbon electrodes for routine analysis was
successfully demonstrated by quantifying caffeine content in
seven commercially available drinks and the results were
validated using a standard ultra-high performance liquid
chromatography method. This work demonstrates that bare
glassy carbon electrodes are a simple, reliable and cost-
effective platform for rapid analysis of targets such as
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caffeine in commercial products and they represent therefore a competitive alternative to the existing
analytical methodologies for routine food analysis.

1. Introduction
Novel technological developments applicable to the area of food quality and safety are driven by
strong public interests [1] as well as by the growing numbers of new regulations introduced by
food agencies, to ensure that standards are upheld in commercialized products [2]. Most analytical
techniques and protocols developed for these purposes allow sensitive and precise quantitative
analysis, and rely on equipment-based systems such as capillary electrophoresis (CE) [3,4], gas
chromatography (GC) [5,6], high-pressure liquid chromatography (HPLC) [7,8], infrared (IR)-Raman
spectroscopy [9,10], surface-enhanced Raman spectroscopy (SERS) [11,12], nuclear magnetic resonance
(NMR) [13,14] and UV spectroscopy [15,16]. These techniques are accurate and selective, but require
expensive instruments and highly trained workers and in some cases additional steps due to
sample pre-treatment [17]. As a result there is a strong demand for new systems characterized
by minimal sample pre-treatment, short analysis time, long-term stability and low costs, while not
requiring hazardous chemicals or specialized technical support, and maintaining high analytical
performance [18,19].

Among the most promising approaches, electrochemistry has grown in interest, having been shown
to satisfy most requirements [20–23]. In particular, the development of modified electrodes starting
from bare carbon material (glassy carbon, boron-doped diamond, graphene, and screen-printed carbon
electrodes) has led to important results and interesting applications [24–27]. The surface modification is
key in obtaining excellent performance in terms of sensitivity and specificity, although the significant
additional costs, both in terms of added labour and final price of the device represent a limiting factor.
Moreover, the short-term stability and the reproducibility of the preparation of modified electrodes
has been highlighted recently as an important issue, which discourages further applications especially
in industry [28–30]. Bare electrodes, without functionalization, represent an interesting alternative,
in particular when high sensitivity is not required. This approach makes use of a simpler system,
resulting in reduced costs for both production and use, and a demonstrated long-term stability [31].
Among the different types of bare electrodes, glassy carbon electrodes (GCE) are the ones that
have been extensively studied thanks to the relative low cost, chemical inertness and wide anodic
potential window [32,33]. Some successful examples of an electrochemical sensor based on bare
GCE were recently reported in the literature, in particular in the area of pharmaceutical formulation
analysis [34–37].

In this work we explored the potential application of glassy carbon electrodes in quality controls
applied to the food industry, and for this purpose caffeine was identified as the model analyte. Caffeine
(CAF) is mainly found in coffee, where its concentration varies significantly depending on the type of
bean, the degree of roasting, the type of brewing and temperatures used [38,39]. However, in recent years
there has been a significant increase in the number of drinks commercially available which contains
caffeine, consumed not only by adults but by an increasing number of younger people. CAF is a
physiological stimulant acting as adenosine A-receptor antagonist, which has been shown to have both
positive and negative effects on health [40]. When the intake of CAF is moderate (less than 400 mg
per day), there are positive effects, such as higher concentration and decreased tiredness [41], and in
such doses its use has also been documented for the treatment of respiratory diseases [42]. However,
in high dosage CAF may cause cardiovascular and calcium balance problems [43], and there is still
a debate on what can be considered a safe amount of CAF intake, especially for children and young
adults [44]. In other commercially available drinks the content of caffeine can vary significantly, ranging
from 0.30 g l−1 in energy drinks, or 0.1 g l−1 in cola-based drinks or as active ingredient in tablets (usually
200 mg/tablet) or excipient (65 mg/tablet). Given the widespread presence, use and the biological effects
of CAF, the routine analysis of its content in all commercialized drinks is a primary task for their
manufacturers.

In the present work we demonstrate the validity of using bare GCE for the detection and
quantification of CAF content in a variety of commercial samples. The assay is simple, innovative
and efficient and most significantly is highly reproducible; the assay was validated with ultra-high
performance liquid chromatography.
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2. Material and methods
2.1. Chemicals and reagents
Caffeine, theophylline, theobromine, paraxanthine, glucose, sucrose, formic acid and acetonitrile were
purchased from Sigma-Aldrich with analytical grade purity. Double distilled water with resistivity above
18 MΩ cm was employed in all experiments. Sulfuric acid (ACS reagent, 95.0–98.0%), nitric acid (ACS
reagent, ≥69%), perchloric acid (ACS reagent, 70%) were tested as supporting electrolytes for CAF
sensing. CAF containing beverages were purchased from the local store. Coffee samples were prepared
by using medium roasting degree coffee (100% Coffea arabica L. blend) Iperespresso capsule (illycaffè
S.p.A., Trieste, Italy). Iperespresso coffee machine (mod. X2, illycaffè S.p.A., Italy) and tap water (total
hardness 18–20°f) were used to prepare three different types of espresso beverages according to the
typical Italian cup volume known as ristretto, regular or lungo [45].

2.2. Apparatus
Electrochemical measurements were conducted in a three-electrode single compartment glass cell using
Ag/AgCl (3 M KCl) as reference electrode, platinum as counter electrode and bare glassy carbon
electrode (GCE, MetrohmAutolab B.V., The Netherlands) with 2 mm active surface area as working
electrode. The experiments were performed using a small electrochemical analyser 910 PSTATmini
(MetrohmAutolab B.V., The Netherlands). The data were collected, handled and analysed using the
PSTAT 1.0 (MetrohmAutolab B.V., The Netherlands) and OriginPro 7.5 (OriginLab Corporation, USA)
softwares, respectively. The USC100TH ultrasonic bath (VWR, United Kingdom) was used for degassing.

2.3. Measurement procedures
Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques were used for the study
of the electrochemical behaviour of CAF and its reliable determination as well as for real sample analysis.
Firstly, in order to get the active surface area of the GCE clean, the standard procedure based on using
polishing with alumina (average grain size of 0.3 µm) was performed followed by an electrochemical
preconditioning of the electrode at +2.0 V for 30 s, prior to launching a measurement.

To select the appropriate supporting electrolyte for CAF sensing, three different strong acids in a
concentration range from 0.01 up to 0.5 M were tested, including H2SO4, HNO3 and HClO4, with a
fixed CAF concentration of 0.546 mM. Two consecutive cyclic voltammograms were recorded each time
and the second measurement was the one used. For the optimization of the DPV parameters, the pulse
potential, pulse time and scan rate were investigated from 10 to 200 mV, from 5 to 150 ms and from 2 to
30 mV s−1, respectively.

A calibration curve was built by subsequent additions of an appropriate volume of caffeine stock
solution (10 mM, in Milli-Q water) in the electrochemical cell where 20 ml of H2SO4 0.1 M were present
as supporting electrolyte. The caffeine concentration range evaluated was from 3 to 2725 µM, and for
each addition three consecutive DPV experiments were done.

2.4. Real samples analysis
All samples were analysed without any previous dilution or filtration steps. For carbonated soft drinks
(i.e. Coca-Cola, Pepsi-Cola, Kofola, Red Bull) the samples were degassed for 3 min prior to analysis,
using ultrasonic bath. The DPV measurements were performed into an electrochemical cell where 20 ml
of supporting electrolyte were present and an appropriate volume of the particular beverage was added,
i.e. 4 ml for soft drinks (Coca-Cola, Pesi-Cola, Kofola), 1 ml for Red-Bull, and 0.2 ml in the case of espresso
brews. The content of CAF was determined using standard addition method, by three consecutive
additions of 0.8 ml of a standard stock solution of caffeine (10 mM in Milli-Q water). After each addition
5 consecutive DP voltammograms were recorded.

2.5. Comparative ultra-high performance liquid chromatography method
Ultra-high performance liquid chromatography (UHPLC) was performed using a 1290 Infinity LC
system with DAD detector, equipped with a 4.6 mm × 150 mm, 2.7 µm 120 SB-C18 Poroshell column, for
the analysis of the chromatogram LC OpenLab was used (Agilent Technologies, Waldbronn, Germany).
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The experimental conditions were the following: the mobile phases were aqueous formic acid (0.1%) and
acetonitrile (flow rate equal to 1.2 ml min−1), starting at 90% of aqueous phase, reaching 60% at 10 min,
50% at 12 min and then back to initial conditions. CAF concentration was determined by monitoring the
absorbance at 273 nm.

The calibration curve was obtained by analysing different CAF solution in Milli-Q water, investigating
a concentration range from 0.12 to 1.03 mM. A good linearity was found within the entire concentration
range studied.

For real sample analysis, all beverages were diluted with Milli-Q water 1 : 10 (for energy and soft
drinks), 1 : 50 (espresso). The diluted solutions were filtered on Phenex NY 0.2 µm filters, prior to analysis.
The concentration of CAF was determined using the calibration curve, and each sample was analysed
five times. The calibration curve equation and an example of the analysis of a caffeinated beverage are
reported in the electronic supplementary material.

2.6. Data analysis and statistical evaluation
The experimental results were evaluated using OriginPro 7.5 software, and are reported with 95%
confidence level interval. For the calibration curve, each point was obtained by the average peak intensity
of three consecutive measurements, and the error bar was evaluated based on the standard deviation. The
linearity was evaluated using the least-square regression method. The limit of detection (LOD) and limit
of quantification (LOQ) were calculated using the 3σ and 10σ criterion, respectively.

With regards to the real sample analysis, in the case of the electrochemical method, the CAF content
was determined by interpolation, following the standard addition methodology. For UHPLC analysis,
the data are presented as the mean value of 5 repetitions. The error on the CAF content was evaluated
according to the following formula:

error = tn−1,α × Standard Deviation
SQRT(n)

with n = 5, α = 0.05, and t4,0.05 = 2.13.
For the paired t-test the QuickCalcs software (GraphPad Software Inc.) was employed. A more

exhaustive description of the standard addition methodology and the statistical evaluation is presented
elsewhere [46].

3. Results and discussion
3.1. Electrochemical behaviour study
The first step in the development of an electrochemical sensor is to study the behaviour of the analyte
on the electrode’s material, and find the best experimental condition (solvent, ionic strength, pH).
In particular, the electrochemical behaviour of CAF was previously reported, on bare and modified
electrode surfaces, elucidating that the process is highly irreversible, as evidenced by the absence of a
reduction signal in the reverse scan [24,31,47]. The process is well known to involve the transfer of four
electrons and four protons, leading to the formation of a trimethyl uric acid derivative [48,49]. Generally,
an acid medium is employed for electrochemical sensing of CAF. Therefore, in the present work,
three strong acids (H2SO4, HNO3, HClO4) at different concentrations were evaluated as supporting
electrolytes. Figure 1 shows the effect of changes in concentration of H2SO4, used as supporting
electrolyte, in the electrochemical oxidation of CAF using CV. The impact of the different concentrations
of HNO3 and HClO4 is reported in the electronic supplementary material (figures S1 and S2). When
different acids were evaluated all at the same concentration of 0.1 M, perchloric and nitric acids
performed similarly while in the case of sulfuric acid a narrower and sharper peak was obtained together
with a higher S/N ratio (electronic supplementary material, figure S3). A possible explanation for the
difference may be found in the variation in ionic strength between the monoprotic acids and the diprotic
sulfuric acid. A similar observation has been reported recently by Chalupczok et al. [50], using RuO2,
who conclude that changes in ionic strength have significant impact even when concentrations and
pHs of the solutions are the same. As evidenced in figure 1, the favourable voltammetric peak of CAF
with a maximum at +1.45 V was achieved using H2SO4 at a concentration of 0.1 M. Increases in H2SO4
concentration resulted in a higher peak for CAF; however, increase in the background current was
also noticed. Sulfuric acid was used at 0.1 M as the optimal concentration, as it gave the highest S/N
ratio (data shown in electronic supplementary material, table S1 and figure S4). In addition, at high
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Figure 1. The effect of different concentrations of sulfuric acid for electrochemical oxidation of 0.546 mM CAF on GCE using cyclic
voltammetry (scan rate of 100 mV s−1).
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Figure 2. CV records of 1.25 mM CAF for different scan rates (v): (a) 10, (b) 25, (c) 50, (d) 75, (e) 100, (f) 200, (g) 300, (h) 400 and
(i) 500 mV s−1 in 0.1 MH2SO4 on GCE. The peak current as a function of square root of the scan rate and logarithmic analysis are appended
in the inset.

acid concentration (i.e. 1 and 0.5 M) a broad band was observed in the direct scan at 1.6 V (electronic
supplementary material, figure S4). This signal is probably due to the oxidation of carbon atoms from
the GCE surface in highly acidic conditions. Previous works in the literature [51–53] have reported that
a change in morphology of glassy carbon can be observed when sulfuric acid is employed and long
electrochemical pre-treatments applied. However, in this proposed work, no long pre-treatments were
done and no electrochemical signals of the oxidation of glassy carbon were recorded, which suggests
that oxidation of the glassy carbon electrode is negligible under the experimental conditions used for this
work. Additionally, short electrochemical pre-treatment steps were done to improve the repeatability of
the oxidation signal. Both positive and negative potentials (−2.00, +1.00, +1.75, +2.00 V) were tested for
different lapses time (results not shown), and the best option was found by applying +2.0 V for 30 s.

GCE is well known for adsorbing molecules on its active surface during the electrochemical
measurement, usually leading to a decline of the peak of the particular analyte due to the surface
passivation by analyte and/or products of its electrode reaction. In our case, in order to assess whether
the redox reaction of CAF is controlled by adsorption or diffusion on the GCE, the effect of different
scan rates was studied. The scan rate value was examined from 10 up to 500 mV s−1 in 0.1 M H2SO4
containing 1.25 mM CAF. Figure 2 reveals that by increasing the scan rate, the oxidation peak shifted
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Figure 3. DPV records of 0.44 mM CAF in 0.1 M H2SO4 on GCE for various pulse potentials: (a) 10, (b) 25, (c) 50, (d) 100, (e) 150 and
(f) 200 mV. The optimization of pulse time: (a) 5, (b) 10, (c) 25, (d) 50, (e) 100 and (f) 150 ms appears in the inset.

towards higher potentials, which is a typical behaviour for electrochemically irreversible systems. The
linear relationship between the peak current of CAF (in µA) and the square root of the scan rate (mV s−1)
was noticed (inset of figure 2) with the following regression equation (equation (3.1)):

Peak current (μA) = 5.8(±1.8) + 4.2(±0.2) × square root of scan rate R2 = 0.984. (3.1)

The low intercept value and good linearity indicate that the redox process of CAF on GCE is
predominantly driven by diffusion. In addition, a plot of the logarithm analysis (inset of figure 2,
equation (3.2)) appeared to be linear, with the slope value of 0.41, in close conformity with the theoretical
value (0.50) for a diffusion-controlled process [54].

Peak current (μA) = 0.89(±0.06) + 0.41(±0.03) × log10 scan rate R2 = 0.975. (3.2)

Thus, the effect of adsorption in electrochemical CAF sensing may be considered as minor, even when
using GCE as the working electrode.

3.2. Analytical performance evaluation
Prior to constructing the calibration curve for the determination of CAF, the instrumental settings of DPV
have to be optimized to achieve the favourable analytical performance. This optimization involves the
searching for suitable values of pulse potential (from 10 to 200 mV), pulse time (from 5 to 150 ms) and
scan rate (from 2 to 30 mV s−1). The results showed that the best compromise between sharpness of the
oxidation peak of CAF and measurement period was found with a scan rate of 30 mV s−1. With regards to
the pulse potential (figure 3), its increase gave rise to the growth and widening of the oxidation signal of
CAF and at the same time the background current sharply increased. Hence, the best setting was found
to be 50 mV. The effect of the pulse time was also studied (inset of figure 3) and 10 ms was found to be
the best value, since further increases caused a decrease in the CAF signal.

Having optimized the instrumental parameters of DPV, the calibration curve for CAF was obtained. It
was found that the DPV gave a significant linear relationship of peak current against CAF concentration
from 28 to 479 µM (the origin studied range was from 3 up to 2725 µM) according to the following
equation (equation (3.3)):

Peak current (μA) = 1.583(±0.499) + 0.091(±0.008) × caffeine concentration (μM) R2 = 0.992. (3.3)

The LOD and LOQ were found to be 2 × 10−5 and 5 × 10−5 M, respectively. The DPV records,
demonstrating the distinct oxidation peaks for the various concentrations of CAF with the particular
calibration curve, are reported in figure 4. The reproducibility of the method was evaluated by measuring
five consecutive CVs of a 1.25 mM CAF solution with the reached relative standard deviation of
peak current of 4.5%. The low RSD value reveals the fact that GCE used in this work provides the
precise measurements for CAF sensing. Overall, the analytical performance obtained is suitable for the
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Table 1. Comparison of different analytical techniques for caffeine determination, based on recently reported work.

analytical method
limit of detection application references

liquid chromatography usually in the range of 10−7 M
but can be as low as 10−9 M

different matrix from beverages to biological
samples (blood, urine, saliva)

[55–57]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

capillary electrophoresis 5× 10−5 M serum samples [3]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

nuclear magnetic resonance 7× 10−7 M salivary samples [58]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

surface-enhanced Raman
scattering

2× 10−6 M tertiary solid mixture of paraxanthine
theobromine and caffeine

[11]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

voltammetry based on bare
glassy carbon electrode

2× 10−5 M caffeinated beverages this study

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

analysis of commercialized caffeinated products, where CAF content is in the mM range. In addition,
the long-term stability of the working electrode is ensured by the high chemical inertness of glassy
carbon [32,33].

Numerous analytical techniques and protocols have been previously developed and reported for
the detection and quantification of CAF. An overview of the most recent analytical methods for the
determination of CAF is presented in table 1, together with the LOD reported for each case.

Liquid chromatographic methods are the most employed techniques for CAF detection, thanks to the
excellent analytical performance (i.e. low sensitivity, wide linear range, selectivity and robustness) and
the possibility to be applied with a variety of matrices. Other analytical techniques were investigated for
the detection of CAF, like CE, NMR, SERS. All these methods were found suitable for the determination
of CAF content and the sensitivity was found to be lower compared to the voltammetric sensor
developed in this work. On the other hand, when the focus is on the application of a sensing platform for
an industrial application the proposed glassy carbon-based sensor has many advantages, compared with
the other methodologies. In fact, our device is small, portable and non-expensive; no hazard or highly
pure solvents are required; and no pre-treatments are necessary.

With regards to previously developed electrochemical sensors for CAF they are mostly based on
modified GCE and a comprehensive review on this topic was written by Švorc [21]. The functionalization
of the surface of GCE was investigated using different types of materials like Nafion [47], metallic
nanoparticles [25,59] and polymers [60]. Compared with our bare electrodes, the surface modification
enhances the performance in terms of LOD (which can as low as 1 × 10−9 M [61]). This high sensitivity
is necessary for the analysis of non-caffeinated beverages (where traces of caffeine are still present) or
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biological samples where the concentration of CAF is low (micromolar range). On the other hand, the
long-life stability of the sensing device is an issue, and in many cases the analytical performance is
not maintained after one month [26,62,63]. In addition, the chemical modification of the surface has a
significant impact on its production and costs, resulting in an increased final price of the sensor, which
can limit its widespread applicability.

Therefore in the case of industrial applications involving the routine analysis of commercialized
caffeinated beverages, modified electrodes although sensitive and precise are not suitable choices in
terms of long-life stability and costs. On the other hand, the proposed bare GCE is a suitable alternative
to the currently employed techniques, thanks to its adequate sensitivity at the required concentrations,
higher simplicity and high long-term stability. Furthermore, the electrode-based sensor has been used
regularly over a period of several months for the quantification of caffeine content in coffee samples, and
no significant variations in its performance were observed, suggesting that in the conditions employed
any changes in the morphology and properties of the glassy carbon electrode are not significant.

3.3. Interference study
The next step in the work focused on the evaluation of the specificity of the electrode when operating
in the presence of interfering agents frequently found in commercialized drinks. In fact, common
caffeinated beverages, such as coffee and soft drinks, contain other chemical species, which may interfere
with the signal of CAF, thus significantly affecting the reliability of method. The study focused on
the effect of glucose and sucrose, as these compounds are commonly present in various beverages.
Although these substances are not usually oxidized on bare carbon electrodes, they may be adsorbed
onto the working electrode surface, thus considerably affecting the analyte signal. The results revealed
that the peak potential and shape of CAF signal are not substantially influenced by the presence of these
substances up to 100 times higher concentration (electronic supplementary material, figures S5 and S6).
However, a moderate change in the background current was recorded, especially in the case of glucose,
which is probably due to its adsorption on the surface of the working electrode.

Subsequently, selectivity studies to evaluate the specificity of the detection towards structurally
related compounds, such as theophylline, theobromine and paraxanthine, were also performed.
Electronic supplementary material, figures S7 and S8 display the effect of the presence of theophylline
and paraxanthine (both from 1 : 1 up to 1 : 10 concentration ratio), respectively. It was found that the
oxidation of these dimethyl xanthines occurred at a lower potential compared with CAF (+1.26 and
+1.22 V for theophylline and paraxanthine, respectively). This peak-to-peak separation (towards CAF)
led to no differences in the shape and position of CAF signal. On the other hand, the peak current of CAF
decreased by approximately 10% when an equimolar concentration ratio between CAF and theophylline
was present. In the case of paraxanthine, the oxidation peak of CAF increased negligibly (2%). The
selectivity observed thus far is promising and provides important preliminary data for the potential use
of GCE for the simultaneous detection and quantification of CAF and paraxanthine and/or theophylline.
Moreover, in the case of theobromine, an increase in the CAF signal was observed in an equimolar ratio
(electronic supplementary material, figure S9). The DPV scan of a solution of 333.3 µM theobromine (not
shown here) shows that under the experimental conditions, theobromine rendered two oxidation peaks
at +1.10 and +1.42 V, the second one overlapping with CAF signal. Overall, when the concentration
ratio between the interfering xanthines and CAF was higher (up to 10 : 1), a partial overlapping of the
signals was observed for theophylline; in the case of paraxanthine a decrease of 50% in the intensity
was noticed. However, this limitation was not expected to affect the reliable determination of CAF in
caffeinated beverages (coffee, soft drinks) where the concentration of theophylline, theobromine and
paraxanthine is negligible [64,65] compared to the target analyte. On the other hand, in the case of coffee
samples, polyphenols are usually present in similar amount as CAF (2.14 g l−1 in the final brew) [66].
These compounds are electrochemically active; however, their oxidation peak potential (around 0–
600 mV), is different from CAF. Besides, their oxidation is strongly suppressed in acidic conditions [67].
As a consequence, no significant voltammetric peaks attributing to polyphenols and affecting the
CAF signal were observed during the analysis of coffee samples (electronic supplementary material,
figure S10).

3.4. Method validation
The validation of the data obtained using bare glassy carbon electrodes was obtained by the analysis
of four different commercially available caffeinated beverages and three different espresso brews. The
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Table 2. Real samples analysis of seven different caffeinated beverages (n= 5).

determined CAF contenta (g l−1)

commercial caffeinated beverage proposed DPV reference UHPLC

regular espresso coffee 3.047± 0.142 3.170± 0.195
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lungo espresso coffee 1.709± 0.178 1.672± 0.153
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ristretto espresso coffee 4.843± 0.291 5.326± 0.139
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Coca-Cola 0.098± 0.010 0.095± 0.008
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pepsi-Cola 0.100± 0.006 0.110± 0.010
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kofola 0.070± 0.010 0.063± 0.005
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Red Bull 0.361± 0.097 0.311± 0.028
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a95% confidence interval calculated according [mean± tn−1,α s.d./sqrt(n)]; t4,0.05 = 2.13.

standard addition method was applied for quantification of CAF in order to limit the matrix effect and
to prove that the accuracy was within the expected limits. Figure 5 reflects an illustrative example of
analysis of Coca-Cola sample using the developed platform. The results were compared with a reference
UHPLC method.

The data presented in table 2 clearly indicate that the results obtained by the new method (DPV)
are in good agreement with that obtained using the UHPLC method. The employed conditions for the
chromatographic analysis are reported in the Material and methods section. The calibration curve was
obtained using solutions of caffeine prepared in Milli-Q water and the equation obtained is reported
below.

Signal area (arb. units) = 6.698 + 4.611 × caffeine concentration (ng μl−1).

A good linearity was found in the concentration range between 0.12 and 1.03 mM, with an R2 = 0.9997.
In addition, the chromatographic analysis of real samples showed a clear and isolated CAF signal with
a retention time of 5.30 min. An illustrative example of the UHPLC analysis is reported in the electronic
supplementary material (figures S11 and S12). Besides, according to the paired t-test [46] under 95%
confidence level, no statistically significant differences were noticed between the values found by these
methods since calculated t value (1.04) was lower than the tabulated one (2.45 for α = 0.05 and number
of measurements n = 6). To summarize, no significant interference of the other compounds present in the
analysed coffee and soft drink samples was recorded and the developed method provided good accuracy
for the determination of CAF in caffeinated beverages. Moreover, the proposed procedure is simple and
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convenient, since it does not involve any pre-treatment of the samples and can be used as an innovative
alternative to conventional analytical methods in CAF assessment and assurance for routine beverage
analysis.

4. Conclusion
In the present work, bare GCE was evaluated as alternative sensing platform to chromatographic
methods for routine analysis in food samples, using CAF as the model analyte. The proposed sensor
was shown to allow the precise and selective analysis of CAF content in commercial preparations. The
wide applicability of the sensor was assessed by the analysis of seven commercially available caffeinated
beverages and the data were found to be in agreement with a standard UHPLC method, routinely
employed by a coffee company. The advantages of using the glassy carbon electrode instead of the
more complex modified ones are related to the absence of any problems connected with storage and
long-term stability. Furthermore, the use of this simple unmodified electrode avoids the use of costly
and time-consuming surface functionalization steps. Therefore, bare glassy carbon electrodes, thanks
to the chemical inertness, relative low costs and simplicity, can be considered good candidates for the
development of accurate and innovative devices for routine quality analysis in the food industry.
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