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Abstract
There remains a significant un-met need to reduce the extent of myocardial injury caused by ischaemia and reperfusion injury 
in patients experiencing an ST-elevation MI. Although nitric oxide is central to many cardioprotective strategies currently 
undergoing investigation, cardioprotection from the delivery of nitrates/nitrites has been inconsistently observed. The route 
of administration appears to be a critical variable. The glyceryl trinitrate (GTN) patch is commonly used as a simple and 
practical means of delivering nitric oxide to patients with ischaemic heart disease, but whether acute cardioprotection can 
be achieved by application of a GTN patch has not been investigated before. Here, we use a mouse model to demonstrate 
that a GTN patch is highly cardioprotective when applied immediately prior to 40 min occlusion of the left anterior coronary 
artery followed by 2 h reperfusion, reducing infarct size from 54 ± 4% in control mice, to 28 ± 4% (P < 0.001, N = 7). The 
degree of protection was similar to that achieved with a standard remote ischaemic preconditioning protocol. Furthermore, 
and of greater potential clinical relevance, a GTN patch was also protective when applied well after the initiation of ischaemia 
and 15 min prior to reperfusion (28 ± 4 vs 59 ± 4%; P < 0.01, N = 5). Confirmatory experiments verified the expected effect 
increase in plasma nitrite levels and decrease in blood pressure. The simplicity and rapidity of GTN patch application (easily 
applied in an ambulance or cardiac catheterization laboratory), and low cost (potentially relevant to low-income countries), 
make it attractive for further investigation.
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Introduction

There remains a significant un-met need to reduce the extent 
of myocardial injury caused by ischaemia and reperfusion 
injury in patients experiencing an ST-elevation MI (STEMI) 
[11–13, 15]. The ideal cardioprotective modality would be 
simple, effective, and able to be easily and rapidly delivered 
by the first responder. One promising procedure that is being 
investigated at present is remote ischaemic preconditioning 
(RIPC), in which several brief episodes of ischaemia and 
reperfusion are applied to a limb, thereby signalling to the 
heart to stimulate cardioprotection. RIPC has shown promise 

in reducing infarct size in STEMI patients in numerous proof 
of concept studies and is now undergoing investigation in a 
large, multi-centre, randomized trial [3, 14, 28]. However, 
the application of RIPC takes at least 30 min. Although the 
precise mechanism of RIPC is still under investigation, cir-
culating nitrite originating from RIPC limb is believed to 
contribute to its cardioprotection [29, 36].

Organic nitrates, such as glyceryl trinitrate (GTN), are 
a highly effective means of rapidly delivering nitrate and 
nitrite into the blood stream, and are potent vasodilators. 
The transdermal GTN patch is widely used to reduce angina 
in patients with acute and chronic ischaemic syndromes due 
to coronary artery disease. Application of a GTN patch has 
been shown to induce delayed cardioprotection when applied 
to rabbits 72 h prior to infarction [19]. However, whether a 
GTN patch is protective when applied at a more clinically 
relevant time-point, such as during ischaemia, has never 
been investigated. We have investigated this hypothesis 
using an in vivo mouse model of ischaemia and reperfusion.
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Materials and methods

All animals received humane care in accordance with the 
United Kingdom Home Office Guide on the Operation of 
Animal (Scientific Procedures) Act of 1986. The investiga-
tion conforms to the guidelines from Directive 2010/63/
EU of the European Parliament on the protection of ani-
mals used for scientific purposes or the NIH guidelines. 
All experiments were approved by the appropriate ethics 
committee and have, therefore, been performed in accord-
ance with the ethical standards laid down in the 1964 Dec-
laration of Helsinki and its later amendments.

10- to 12-week-old C57Bl/6 male mice were anaes-
thetized by i.p. injection of 80 mg/kg pentobarbitone at 
a concentration of 20 mg/ml in 0.9% (w/v) saline and 
maintained at 36.5 ± 0.5 °C on a heating mat. Surgery 
was started once pedal and tail reflexes were abolished 
and depth of anaesthesia was monitored throughout. Mice 
were intubated using a 19G cannula and ventilated using 
a MiniVent, type 845, Small Animal Ventilator (Harvard 
Apparatus, Kent, UK), supplemented with either room air 
or 100% oxygen, at a flow rate of 1.0 l/min with 2 cmH2O 
PEEP, stroke volume 200 µl at 130 strokes/min. After oro-
tracheal intubation, the left common carotid artery running 
parallel to the trachea was carefully dissected and isolated, 
taking care not to damage the vagus nerve. The artery 
was cannulated using a thinned tip polyethylene tube (OD 
0.96 mm) that was pre-filled with saline containing 10 
units of heparin and was connected a calibrated pressure 
transducer. Mean arterial blood pressure was recorded 
using Labchart software.

A transdermal 5 mg GTN patch for human use was cut 
into eight equal pieces, and a single piece (containing 
0.6 mg GTN) was applied to the depilated abdomen of an 
anaesthetized mouse. Inactive tape was applied to control 
mice. The change in blood pressure was measured after 
10 min. The blood was then immediately removed by car-
diac puncture, directly into a syringe containing sodium 
citrate. Plasma was obtained by centrifugation at 13,000×g 
for 15 min. Blood plasma was used for determination of 
total nitrate and nitrite  (NOx) concentrations using ozone 
chemiluminescence. Plasma was filtered using Sartorius 
Vivaspin 500 3000 MWCO PES (Sartorius Stedim Bio-
tech, Germany) at 4 °C, 14,000g for 60 min. Prior to use, 
filters were washed twice with low  NOx containing 18 MΩ 
 dH2O. An NO analyser (NOA 280A, Sievers, UK) was 
used to measure NO based on the gas-phase chemilumi-
nescent reaction between NO and ozone. To determine 
total  NOx concentration, samples were added to the purge 
vessel containing 0.1 M vanadium(III) chloride in 1 M 
hydrochloric acid refluxing at 95 °C under nitrogen. Nitrite 
concentration was determined by addition of samples to 

the purge vessel containing 0.09 M potassium iodide in 
glacial acetic acid under nitrogen at room temperature. 
Both of these conditions result in NO generation in the gas 
phase which is carried from the purge vessel to the NOA 
analyser where it reacts with ozone to emit a photon of 
light which is detected by the analyser. Nitrate concentra-
tion was calculated by subtraction of the nitrite concentra-
tion from the total  NOx [4, 20].

In a second set of experiments, the left anterior descend-
ing (LAD) coronary artery of anaesthetized mice was 
occluded (verified by ST elevation, hypokinesia and pallor) 
for 40 min followed by 2 h reperfusion, after which infarct 
size was measured by tetrazolium staining and expressed as 
a percentage of area at risk, determined using Evan’s blue. 
A GTN patch (1/8) or inactive tape was applied 10 min prior 
to ischaemia and left throughout the experiment. Remote 
ischaemic preconditioning (RIPC) was induced using a 
6-mm lumen custom vascular occluder (Kent Scientific, CT, 
USA) around the right hind limb inflated to 250 mmHg to 
induce three cycles of 5 min ischaemia followed by 5 min 
reperfusion.

In a third set of experiments, ischaemia and reperfusion 
was performed as described above, but the patch (1/8) was 
applied after 25 min ischaemia, 15 min prior to reperfusion. 
All mice (i.e.: both control and those receiving the GTN 
patch) were transfused via the jugular vein with 250 µl blood 
from a donor mouse during reperfusion, in order to ensure 
blood pressure was maintained.

The results are shown as mean ± standard deviation of 
the mean. Statistical comparison of the groups was made by 
two-way ANOVA, with Bonferroni correction for multiple 
comparisons. A significance value of P < 0.05 was consid-
ered significant.

Results

In anaesthetized mice, application of the GTN patch resulted 
in a 13 ± 2% decrease in mean arterial blood pressure (MAP) 
after 10 min (P < 0.01, N = 7) (Fig. 1a). Plasma nitrite lev-
els were confirmed to be 6 ± 2-fold greater than in mice 
receiving the control tape (P < 0.05, N = 6-7) (Fig. 1b). 
Plasma nitrate and total nitrate + nitrite levels were simi-
larly increased, although the difference was not significant 
(Fig. 1c, d).

In a second set of experiments, application of a GTN 
patch 10 min prior to 40 min ischaemia followed by 2 h rep-
erfusion significantly reduced myocardial infarct size from 
54 ± 4 to 28 ± 4% (P < 0.001, N = 7) (Fig. 2a). The degree of 
protection was equivalent to a positive control consisting of a 
standard remote ischaemic preconditioning protocol of three 
cycles of 5 min hind-limb, blood-flow occlusion (Fig. 2a). 
It was important to verify that the GTN patch would reduce 
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infarct size when applied prior to reperfusion, as this better 
reflects the potential scenario in which it would be applied 
to a patient in an ambulance. Application of the GTN patch 
15 min prior to reperfusion was equally effective at reducing 
infarct size (28 ± 4 vs 59 ± 4%; P < 0.01, N = 5) (Fig. 2b).

Discussion

These results suggest that the simple application of a trans-
dermal GTN patch may be an effective means of protecting 
the heart against ischaemia and reperfusion injury, whether 
it is applied prior to ischaemia, or prior to reperfusion. 
Organic nitrates such as GTN are rapidly metabolized 
into nitrite, which is then reduced to the active vasodilator 
molecule, nitric oxide. Although nitric oxide is central to 
many cardioprotective strategies, including remote precon-
ditioning, cardioprotection from the delivery of nitrates/
nitrites has been inconsistently observed. The route and 
timing of administration appears to be a critical variable 
[19, 31]. For example, i.v. infusion of sodium nitrite at the 
time of reperfusion did not reproducibly protect animals 
in the CAESAR trial, but intracoronary or oral nitrite has 
successfully reduced infarct size in other animal studies 
[7, 16, 32, 36]. A recent systematic review of nitric oxide 
therapies given at reperfusion, which included 21 animal 
studies, found significant protection in the majority of 
studies, with a mean overall reduction in infarct size of 
17.93% (95% confidence interval: 22.05, 13.81) [2]. The 
exceptions in which no protection was observed included 5 
studies: two in which 2 µg/kg/min GTN was administered 
to rabbits or pigs via continuous IV infusion starting 5 
or 10 min prior to reperfusion [25, 30]; a study in rats 
in which 4 mg/kg  NaNO2 was administered IV starting 
10 s after the onset of reperfusion [1]; a study from 1997 
in which acidified  NaNO2 was infused IV in adult male 
mongrel dogs starting at the time of reperfusion [37]; and 
a study in which inhalation of 80 ppm NO was initiated 
0.5 min prior to reperfusion in mice [27].

Fig. 1  a The mean arterial blood pressure of anaesthetized mice 
decreased significantly 10 min after adhesion of a GTN patch to the 
abdomen (red), but not after control adhesive tape (blue). **P < 0.01 
by paired T test. b–d In mice treated with a GTN patch, plasma 

nitrite  (NO2
−) concentration was significantly elevated after 10  min 

(*P < 0.05 by unpaired T test). The difference in plasma nitrate 
 (NO3

−) and total nitrates and nitrites was not significant

Fig. 2  a Infarct size as a percentage of the area at risk was signifi-
cantly decreased by a GTN patch applied 10 min prior to ischaemia. 
A positive control of remote ischaemic preconditioning was equally 
protective (RIPC). b GTN patch applied 15 min prior to reperfusion 
was cardioprotective. ***P < 0.001 one-way ANOVA and Tukey 
post-test. **P < 0.01 by unpaired T test
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In humans, a 4-h intravenous infusion of GTN protects 
the heart against ischaemia during coronary angioplasty 
conducted 24 h later, as evidenced by reduced ST-segment 
elevation, ischaemic dysfunction, and pain [24]. However, 
how well these clinical endpoints relate to experimentally 
used endpoints of myocardial damage caused by ischaemia 
and reperfusion injury, and the precise relationship between 
GTN and preconditioning are not entirely clear [18]. Several 
studies of STEMI patients from the thrombolytic era, as well 
as a more recent study, have not found evidence for infarct 
size reduction after nitrate or nitrite infusion [2]. Interest-
ingly, in a recent study, intracoronary but not i.v. infusion 
of nitrites reduced infarct size in STEMI patients with com-
pletely occluded arteries at admission [21, 33], in whom 
reperfusion injury might be expected to be a significant fac-
tor. GTN is sometimes administered to patients undergoing 
surgical coronary revascularization, at the discretion of the 
anaesthesiologist. However, when comparing patients who 
do not receive GTN to those who receive 0.042 ± 0.024 mg/
kg GTN, no evidence for a reduction peri-procedural injury 
was found, as determined by cTnI release [23]. Surprisingly, 
the simple, practical, and cost-effective method of inducing 
acute cardioprotection by simply applying a GTN patch prior 
to reperfusion had not been previously investigated.

Nitrates and nitric oxide can protect the heart via multiple 
possible mechanisms, but this appears to be independent 
from their vasodilatory effects [5]. Nitric oxide can directly 
nitrosate proteins and also activate a pathway involving 
nitric oxide-sensitive guanylyl cyclase and cGMP-depend-
ent protein kinase type I (PKGI) in cardiomyocytes [6, 9]. 
Recently, these have been shown to activate cardioprotec-
tion via large-conductance,  Ca2+-dependent potassium (BK) 
channels [8, 17].

The GTN patch used here was designed to deliver 
5 mg/day, so the 1/8 patch we used is expected to deliver 
0.026 mg/h. However, we did not perform a dose–response 
experiment to establish the optimal dose of GTN. Basal lev-
els of plasma nitrite vary considerably and decrease with 
increasing numbers of cardiovascular risk factors [22]. 
Plasma nitrates are also affected by dietary nitrates. Dietary 
inorganic nitrate ingestion or supplementation causes a dose-
dependent elevation in plasma nitrite concentration with a 
consequent decrease in blood pressure in healthy volunteers. 
A meta-analysis found a significant association of the dose 
of inorganic nitrate supplementation with decline in systolic 
blood pressure, with a factor of − 0.12 mmHg/1.0 mmol 
nitrate (P < 0.05) [34]. Although it would be of interest 
to test for an association between infarct size and plasma 
nitrite, this was not possible in our study since the quantity 
of blood necessary for the nitrite assay made it impossible 
to perform infarction using the same mice.

When using this approach, it is important to be aware that 
excessive nitrate concentrations are potentially damaging, 

and in addition to nitrate tolerance, can cause nitro-oxidative 
stress. Endothelial dysfunction, formation of DNA adducts, 
and even apoptotic death of vascular cells has been seen 
when 10–50 mg/kg/day nitrate was administered to rats for 
3 days [26]. Furthermore, prolonged exposure to GTN can 
induce tolerance. For example, 7 days of transdermal GTN 
exposure abolished pacing-induced preconditioning in con-
scious rabbits [35] and abrogated the effectiveness of remote 
ischaemic conditioning in rat myocardium and human volun-
teers [10]. Interestingly, however, direct myocardial protec-
tion with glyceryl trinitrate (GTN) may be preserved in the 
state of vascular nitrate tolerance [5].

Clinical studies are required to establish the potential effi-
cacy of using the transdermal GTN patch in the setting of 
patients who are experiencing an STEMI. These will neces-
sitate careful determination of the appropriate dose and tim-
ing of administration. However, its simplicity and rapidity 
(easily applied in an ambulance or cardiac catheterization 
laboratory), and low cost (potentially relevant to low-income 
countries), make it attractive for further investigation.
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