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Identification and functional characterization of regulatory elements in the human
genome is a challenging task. A sequence feature commonly used to predict regula-
tory activity is the co-occurrence of transcription factor binding sites (TFBSs) in reg-
ulatory regions. In this work, we present a graph-based approach to detect frequently
co-occurring TFBSs in evolutionarily conserved non-coding elements (CNEs). We intro-
duce a graph representation of the sequence of TFBSs identified in a CNE that allows
us to handle overlapping binding sites. We use a dynamic programming algorithm to
align such graphs and determine the relative enrichment of short sequences of TFBSs
in the alignments. We evaluate our approach on a set of functionally validated CNEs.
Our findings include a regulatory signature composed of co-occurring Pbx-Hox and Meis
binding motifs associated with hindbrain enhancer activity.

Keywords: regulatory element prediction; transcription factor binding site co-occurrence;

partial order graphs; dynamic programming.

1. Introduction

Identification of regulatory elements in the human genome is a fundamental chal-

lenge in the field of genomics. Regulatory elements that coordinate the expression

of genes act through the process of transcriptional regulation. Transcriptional reg-
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ulation is mediated by transcription factors (TFs) that bind to specific motifs in

the DNA in a cooperative manner. Thus, combinations of multiple transcription

factor binding sites (TFBSs) co-occurring in close proximity are good predictors

both of regulatory activity and to some extent of biological function [3, 21, 16]. This

assumption, that TFBSs in clusters are more likely to act as regulatory elements

than solitary binding sites, has formed the basis for the development of a number

of algorithms. Examples of such algorithms are Cluster Buster [6], MSCAN [12],

MCAST [2] and Ahab [18].

Motivated by the same assumption, we introduce a graph-based approach to

detect over-represented co-occurring TFBSs in conserved regulatory regions. We

do not directly use the DNA sequence of conserved non-coding elements (CNEs);

instead, we consider the sequence of TFBSs identified in each CNE. The idea is to

align such sequences of TFBSs and find the short subsequences of TFBSs that are

frequently matched in the alignments, i.e. TFBSs that co-occur in the CNEs. This

reduces the effect of spurious matches that are unlikely to occur in the same order

in multiple sequences, while taking into consideration the spatial order of TFBSs.

A similar approach was proposed in [10] which uses local alignments of TFBSs to

predict regulatory elements. Analyzing the co-occurrence of TFBSs is complicated

by the fact that binding sites may overlap. This rules out the use of classic alignment

algorithms [17, 20] (that cannot handle overlapping subsequences) and k-mer-based

methods (that count the occurrences of subsequences and would enumerate the

overlapping subsequences indiscriminately). We use partial order graphs to handle

the overlap of TFBSs.

We represent each sequence of TFBSs identified in a CNE as a directed acyclic

graph (DAG). We then find the optimal alignment between two sequences of TFBSs

by aligning their corresponding graphs using a modified dynamic programming-

based alignment algorithm called the Partial Order-Partial Order (PO-PO) align-

ment algorithm [8], originally developed in the context of multiple sequence align-

ment. Finally, we measure the relative frequency of aligned TFBSs in the alignments

with respect to a background distribution.

This article is organized as follows: in Section 2.1, we show how the partial order

graph representing the sequence of TFBSs in a CNE is constructed. In Section 2.2,

we overview the PO-PO alignment algorithm in a graph framework. Measuring

the relative enrichment of co-occurring TFBSs in the alignments is discussed in

Section 2.3. In Section 3, we present the results of testing our method on a set of

functionally validated CNEs from the CONDOR database [22].

2. Methods

2.1. Graph representation of a CNE

Given a conserved non-coding sequence S = s1s2 . . . sn over the alphabet N =

{A, T,C,G}, its graph representation is constructed in the following steps: first,

we assign a symbol to each TFBS identified in S to obtain the partially ordered
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Fig. 1: (a) A CNE with seven identified TFBSs. (b) Graph representation of the CNE shown
in (a). Vertices have the same color as the corresponding binding sites. In this example, TFBSs
represented by vertices β and γ overlap with the TFBS represented by vertex δ.

multiset T = {t1, t2, . . . , tm}. Elements in T are in the same order as they are in

S, i.e. ti < tj (i 6= j) if and only if in S, every nucleotide in ti comes before every

nucleotide in tj . Next, we transform this set into a directed acyclic graph (DAG)

G. For each symbol in T , we create a vertex and label it with that symbol. In the

case where the same TF binds to overlapping sites in a CNE, only a single vertex

is created. We add an edge between two vertices if their corresponding symbols are

consecutive in T . In this graph, each path from a source to a sink vertex (note that

there may exist multiple source/sink vertices since G can start/end with overlapping

vertices) corresponds to a sequence of non-overlapping TFBSs that were identified

in S. An example of the graph representation of a CNE is shown in Figure 1.

2.2. PO-PO alignment of CNEs

We use the Partial Order-Partial Order (PO-PO) alignment algorithm [8] for align-

ing a pair of CNEs. The PO-PO alignment algorithm is a generalization of the Par-

tial Order Alignment (POA) algorithm [13], which was proposed as an approach

to Multiple Sequence Alignment (MSA). In [13], linear representation of an MSA

was replaced by a DAG called a Partial Order MSA (PO-MSA); classic dynamic

programming-based alignment algorithms [17, 20] were modified to find the optimal

alignment between a sequence and a PO-MSA. This involved adding the branches

of the PO-MSA as additional surfaces to the dynamic programming matrix. The

set of possible moves at each position in the matrix was extended accordingly to

allow moves to any surface at junctions between the surfaces. The PO-PO align-
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ment algorithm generalized the above approach to align two PO-MSAs. Here, we

use this algorithm to find the optimal alignment between a pair of DAGs, each rep-

resenting a CNE. An elegant derivation of this algorithm can be obtained using the

graph-based approach that we introduced in [1] in the context of Mercer kernels for

partial order graphs. In this framework, the PO-PO algorithm becomes a dynamic

programming approach to finding the optimal path (corresponding to an optimal

alignment) in the strong product graph of two DAGs.

We denote the vertex set and the edge set of a DAG G by V (G) and E(G),

respectively. A directed edge from vertex u to vertex v is written as uv. Given two

DAGs G1 and G2, their strong product G1⊠G2 has vertex set V (G1)×V (G2), where

vertices (v1, v2) and (u1, u2) are connected if and only if for k ∈ {1, 2} either vk =

uk or vkuk ∈ E(Gk). In this graph (which generalizes the dynamic programming

matrix), each path corresponds to an alignment of a path in G1 against a path in

G2. The objective is to find the path with the optimal alignment score in the set

of all paths in G1 ⊠ G2. This requires finding the move (incoming edge) with the

optimal score at every vertex (m,n) in G1 ⊠ G2. Possible moves are aligning two

symbols with substitution score s(m,n) and indels (insertions or deletions) with

gap penalty g. Vertices in G1 and G2 can have multiple predecessors. Hence when

computing score S(m,n) of a vertex (m,n), all possible combinations of its incoming

edges must be considered:

S(m,n) = max















S(p, q) + s(m,n) pm ∈ E(G1) and qn ∈ E(G2)

S(m, q) + g qn ∈ E(G2)

S(p, n) + g pm ∈ E(G1)

(1)

In the case of sequences that do not contain overlapping TFBSs, the correspond-

ing DAGs do not branch, and m and n can be thought of as simply positions in

the sequences. Tracing the path that leads to the optimal alignment is done in

the same way as in classic dynamic programming-based alignment algorithms. For

global alignments, back-tracking starts from vertex (m,n), where m and n are sink

vertices in G1 and G2, respectively. For semi-global alignments, back-tracking starts

from the highest scoring vertex (m,n), where either m or n is a sink vertex. Starting

from the chosen start node, the optimal alignment is traced back along the product

graph to vertex (s1, s2), where si is a source vertex in Gi for at least one i ∈ {1, 2}

(semi-global alignment) or both (global alignment). An example of an alignment is

shown in Figure 2.

We note that using the Needleman-Wunsch [17] alignment algorithm, finding the

optimal alignment between two sequences with overlapping subsequences requires

aligning all possible pairs of sequences (without overlapping subsequences) corre-

sponding to the alternative paths in their DAGs, which will result in an exponential

complexity as the number of overlaps increases. In contrast, the above algorithm

finds the optimal alignment between two DAGs efficiently, with a time complexity

that is quadratic with respect to the number of vertices in each DAG.
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Fig. 2: (c) Strong product graph of DAGs shown in (a) and (b). The path corresponding to the

optimal global alignment shown in (d) is coloured in red. (d) Optimal global alignment between
the two sequences represented by DAGs shown in (a) and (b).
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2.3. Measuring the frequency of co-occurring TFBSs

We find the optimal alignment between all pairs of CNEs in the dataset. For each

pair of CNEs, we obtain two alignments, one for each of the two possible relative

orientations of the sequences. The optimal alignment between the CNEs is chosen

as the one with the highest score.

We search the alignments for words composed of up to four aligned symbols,

i.e. co-occurring TFBSs. We then compute the relative frequency of each word with

respect to a background distribution (see Section 3.1 for details) as follows: let

nC(w) be the number of occurrences of word w in the alignments of sequences in

the main dataset (denoted by C), and let nB(w) be the number of occurrences of w

in the alignments of sequences in the background distribution (denoted by B) using

the same type of alignment (global or semi-global). We denote the length of w by

|w|. Not all words occurring in C are present in B, and vice versa, i.e. nB(w) = 0 or

nC(w) = 0 for some w. To account for unseen words, we apply Laplace smoothing

by adding the constant λ to all counts of w. The probability of occurrence of w in

the alignment of main sequences is computed as follows:

PC(w) =
nC(w) + λ

∑

w′∈C∪B
|w′|=|w|

(nC(w′) + λ)
(2)

Note that in computing PC(w), only words of the same length as w are consid-

ered. The probability of occurrence of w in the alignment of background sequences,

PB(w), is computed in the same way. The relative frequency of w is computed as

follows:

RCB(w) =
PC(w)

PB(w)
(3)

3. Evaluation

We tested our approach on a set of CNEs downloaded from the CONDOR

database [22]. Many of these CNEs have been functionally validated previously [9].

We found both the optimal global and semi-global alignments of CNEs in this

dataset, which we will refer to as the global and semi-global sets, respectively. We

then extracted the words of length two, three and four in the alignments and com-

puted their relative frequency with respect to a background distribution (see below).

Finally, we selected the over-represented words and compared them to the results

of functional assays.

3.1. Data

The main dataset consists of four orthologous sets of human, mouse, rat and fugu

CNEs retrieved from the CONDOR database. We chose a set of 31 binding sites

of representative family members of TFs known to play a role in developmental
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Table 1: Names of TF families from which the representative TFs were chosen.

Transcription Factor Families

Cdx Meis Runx

Ets Nkx Six

Forkhead Nrf Sox

Gata Pax Tcf

Hmx Pbx Tfap

Hox Pitx Zic

Irx Pou

Maf Rfx

patterning (Table 1). The binding preferences for these TFs were extracted from

the UniPROBE [19] and JASPAR [14] databases. We scanned the CNEs for the

occurrence of all TFBSs using FIMO [7]. For more details on the data see [9].

The relative frequency of each word in the PO-PO alignments of the above

dataset was computed with respect to a background distribution obtained by shuf-

fling the sequences in the main dataset. Each sequence in the background distribu-

tion was generated by randomly shuffling a CNE in the main dataset. We repeated

this process ten times to generate ten sets of shuffled sequences. The number of

occurrences of a word in the alignments of background sequences was averaged over

the ten sets.

3.2. Parameters

The alignment parameters and the Laplace smoothing constant were set as follows:

the matching score between two TFBSs was defined in a way that takes the count

of each TFBS in the main dataset into consideration. Let n(t) be the number of

times that TFBS t has been detected in CNEs in the main dataset and N be the

total number of detected TFBSs in the main dataset. The matching score s(t, r) is

defined as:

s(t, r) =







log
1

P 2(t)
if r = t

0 otherwise
(4)

where P (t) = n(t)/N . The linear gap penalty is -1. The smoothing constant (λ)

was set to 1.

3.3. Results

The global and semi-global sets contain 229 and 270 words, respectively. The number

of words of length three and four is low and collectively, they constitute less than
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Table 2: Top five Over-represented words of length two in the global set and their relative
frequency (symbols used to represent TFBSs are arbitrary and are only included to allow a rapid
assessment of the similarity between the words).

Word TFs Relative Frequency

γδ Meis, Pbx-Hox 20.3

δǫ Pbx-Hox, Zic 5.4

γǫ Meis, Zic 2.3

αγ Cdx-2, Meis 1.8

βγ Hoxd10-Hoxd13, Meis 1.5

15% of the words in the sets. The two sets have 207 words in common. In 99%

of cases, the words in the global set that are over-represented with respect to the

background distribution are also over-represented in the semi-global set, and vice

versa. Hence, the results are stable irrespective of the type of alignment. The top

five co-occurring TFBSs with the highest relative frequency are listed in Table 2.

The words ‘δǫ’ and ‘γǫ’ are of note since Zic has been shown to regulate retinoic

acid (RA) signaling during the early development of the embryo, which affects the

expression levels of Hox and Meis during the hindbrain patterning [5]. Moreover,

both Meis and Zic are involved in the patterning of the brain and the spinal cord, and

as such are likely to be co-expressed spatially and temporally in the embryo [4, 15].

The word ‘βγ’ represents the known interaction of Meis with Hox [11].

The regulatory activity driven by the highest ranked word ‘γδ’, composed of

co-occurring Meis and Pbx-Hox binding motifs, has been previously functionally

validated in our dataset [9]. In [9], this syntax was identified in a set of conserved ver-

tebrate hindbrain enhancers. The authors showed that Meis TFBSs are frequently

proximal (within 100bp) to Pbx-Hox TFBSs, and that both TFBSs are required

for hindbrain enhancer function. They then used this syntax to accurately predict

hindbrain enhancers in 89% of cases from our dataset. Furthermore, they refined

and used this syntax to predict over 3,000 hindbrain enhancers across the human

genome, demonstrating the predictive power of this approach.

4. Conclusion

We presented an approach to identify over-represented combinations of TFBSs in

conserved regulatory regions based on the alignment of sequences of TFBSs appear-

ing in CNEs. We showed how the overlap of TFBSs can be handled by representing

the sequences as partial order graphs and described a modified dynamic program-

ming algorithm to align these graphs. Moreover, we discussed a way to measure the

relative frequency of subsequences of TFBSs in the pairwise alignments in order to

detect frequently co-occurring binding motifs. Comparison between the results ob-

tained using our approach and those obtained using functional assays showed that
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our approach can be employed to computationally identify combinations of TFBSs

which can then be prioritized for functional validation.
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