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Summary

Behçet’s disease (BD) is an autoinflammatory, chronic relapsing/remitting

disease of unknown aetiology with both innate and acquired immune cells

implicated in disease pathogenesis. Peripheral blood natural killer (NK) cells

and their CD56Dim/CD56Bright subsets were surface phenotyped using CD27

and CD16 surface markers in 60 BD patients compared to 60 healthy

controls (HCs). Functional potential was assessed by production of

interferon (IFN)-g, granzyme B, perforin and the expression of

degranulation marker CD107a. The effects of disease activity (BDActive

versus BDQuiet) and BD medication on NK cells were also investigated.

Peripheral blood NK cells (P< 0�0001) and their constituent CD56Dim

(P< 0�0001) and CD56Bright (P 5 0�0015) subsets were depleted significantly

in BD patients compared to HCs, and especially in those with active disease

(BDActive) (P< 0�0001). BD patients taking azathioprine also had

significantly depleted NK cells compared to HCs (P< 0�0001). A stepwise

multivariate linear regression model confirmed BD activity and azathioprine

therapy as significant independent predictor variables of peripheral blood

NK percentage (P< 0�001). In general, CD56Dim cells produced more

perforin (P< 0�0001) and granzyme B (P< 0�01) expressed higher CD16

levels (P< 0�0001) compared to CD56Bright cells, confirming their increased

cytotoxic potential with overall higher NK cell CD107a expression in BD

compared to HCs (P< 0�01). Interestingly, IFN-g production and CD27

expression were not significantly different between CD56Dim/CD56Bright

subsets. In conclusion, both BD activity and azathioprine therapy have

significant independent depletive effects on the peripheral blood NK cell

compartment.

Keywords: Behçet’s disease, immunopathology, immunotherapies and

innate immunity, NK cells

Introduction

Behçet’s disease (BD) is a chronic relapsing/remitting multi-

system disease of poorly understood aetiology, characterized

primarily by orogenital ulceration, but also affecting other

body systems, including the eye (uveitis), joints (arthritis)

and skin [1,2]. BD can be life-threatening in severe forms

where the disease progresses to involve the large blood ves-

sels, central nervous system or the gastrointestinal tract. The

disease is increased approximately sixfold in patients with

human leucocyte antigen (HLA)-B51/B5 genetic polymor-

phisms [3] and is regarded widely as an autoinflammatory

condition, although autoimmune responses to certain spe-

cific antigens have been described in the disease [4,5]. Viral

infection with Epstein–Barr virus (EBV) and herpes simplex

virus (HSV) were also thought to be important in both the

initiation and in triggering acute exacerbations of affected

systems in BD [6,7] and natural killer (NK) cells are impor-

tant in controlling viral infections.

Loss of normal immune regulation is thought to play a

key role in BD pathology, with neutrophil activation and

recruitment to the site of inflammatory lesions thought to

be central in the disease process [8,9]. Additionally, T helper
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type 1 (Th1)/Th17 cytokine polarization of CD41 T cells is

a consistent finding in disease lesions and in peripheral

blood where increased interferon (IFN)-g, tumour necrosis

factor (TNF)-a, interleukin (IL)-8 and IL-17 levels have

been correlated with BD activity [10]. Conversely, a reduc-

tion in the regulatory T cells (Tregs) and the cytokine IL-10

has also been described in the disease [11,12]. While BD

lesions are predominated by neutrophils and CD41 T cells,

innate lymphoid cells including gd T cells and conventional

NK cells are also found in BD lesions, and may play a signifi-

cant role in driving the CD41 Th1 response characteristic of

BD lesions [13,14].

NK cells are CD3– granular cytotoxic lymphocytes

included in the type 1 group of innate lymphoid cells with

the ability to mount cytotoxic major histocompatibility

complex (MHC)-unrestricted responses against pathogens

without prior antigen priming [15–17]. They have been

characterized conventionally using CD56 [neural cell adhe-

sion molecule (NCAM)], dividing them into the predomi-

nant CD56Dim subset (approximately 90% in peripheral

blood) and the minority CD56Bright subset [18]. These sub-

sets are both phenotypically and functionally distinct, with

the more cytotoxic CD56Dim NK subset displaying

increased potential to produce perforin and granzyme B

[19,20]. This is in contrast to the CD56Bright NK subset,

which is less cytotoxic and is more immunoregulatory in

function, with a propensity to produce significantly more

IFN-g and TNF-a [21]. Two further surface markers that

have been used commonly to characterize NK cells and

their subsets are the low-affinity Fc-receptor, CD16 and the

TNF-receptor co-stimulatory surface molecule CD27

[22,23]. In general, CD56Dim NK cells have higher CD16

expression reflective of their more cytotoxic function, with

CD27 expression found mainly on the immunoregulatory,

cytokine-producing CD56Bright subset [23–25]. Peripheral

blood circulatory NK cells contain high concentrations of

preformed cytotoxic granules (e.g. granzyme B and per-

forin) in their cytoplasm, which can be used to kill target

cells on degranulation into the immunological synapse

[26]. The marker CD107a (lysosome-associated membrane

protein) lines the internal surface of cytotoxic granules and

is externalized to the cell surface upon degranulation,

where lysosomes fuse with the cell surface in cytotoxic

lymphocytes [27]. CD107a expression correlates well with

IFN-g and TNF-a cytokine secretion as well as NK cell-

mediated lysis of target cells, and is considered as a more

sensitive marker than intracellular cytokine assays or the

chromium release assay [28,29].

NK cell numbers and activity have been reported previ-

ously in BD with respect to disease activity and also to the

medication used to treat BD patients, e.g. azathioprine,

cyclosporin and corticosteroids [30]. The numbers and cyto-

toxic capacity of NK cells reported in BD lesions appear to

be variable [14,31–36], with uncertainty in the literature due

to the use of different markers to phenotype NK cells and

their subsets [22,23,37]. Several studies have found increased

NK cell numbers in the peripheral blood of BD patients

[14,32], especially during the active phases of disease [38],

while other studies have revealed that BD and matched

healthy controls had similar NK cell numbers in peripheral

blood [31,35,39]. However, there is no previous study, to

our knowledge, reporting on the proportion and functional

potential of NK subsets CD56Dim and CD56Bright in BD.

Another recent study in uveitis-affected BD patients demon-

strates that NK cell cytokine production favours Th1/NK1

cytokine production (TNF-a, IFN-g and IL-2) during peri-

ods of activity, with a relative switch towards Th2/NK2 cyto-

kines (IL-4 and IL-10) during remission [40].

Therefore, this study investigated peripheral blood NK

cells and their CD56Dim and CD56Bright subsets in a large

cohort of BD patients compared to healthy controls. Sub-

sets were characterized further by surface expression of

CD27 and CD16. Functional potential was assessed by pro-

duction of IFN-g, perforin and granzyme B, with degranu-

lation potential assessed using CD107a. Finally, the effect

of various systemic BD medication on the frequency of NK

cells was also investigated.

Materials and methods

Patients and healthy control cohorts

Peripheral blood was obtained from a BD patient cohort

(n 5 60; 20 males, 40 females; median age 5 42 years;

range 5 18–74 years) and compared to healthy controls

(HCs) (n 5 60; 29 males, 31 females; median age 5 33 years,

range 5 21–69 years). All the patients fulfilled the Interna-

tional Study Group for Behçet’s disease criteria (ISG 1990)

[41]. At the time of peripheral blood sampling, the patients

had various degrees of clinical disease activity. For the pur-

poses of this study, BD activity was determined by the pres-

ence (BDActive, n 5 44) or absence (BDQuiet, n 5 16) of any

single clinically active system, including: oral aphthous or

genital ulceration, skin lesions, ocular, vascular, rheumato-

logical, gastrointestinal or neurological involvement on the

day of sampling. In addition, the patient’s current systemic

BD medication was recorded (Table 1). The patient cohort

was recruited from those attending the Behçet’s Centre of

Excellence at The Royal London Hospital (Barts Health

NHS Trust). Peripheral blood samples and associated clinical

information was collected with informed consent from BD

patients and healthy controls. The study was approved by

the East London and the City Local Research Ethics Com-

mittee in full compliance with the Helsinki Declaration

(REC References: P/03/122 and 13/LO/0548).

Isolation of peripheral blood mononuclear cells

Peripheral blood mononuclear cells (PBMCs) were isolated

by Ficoll-Paque (GE Healthcare, Amersham, UK) density
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gradient centrifugation. Peripheral blood was layered onto

Ficoll-Paque and centrifuged at 400 g (brake-off) for 35

min at 208C. The interface containing mononuclear cells

was collected and washed in complete media (RPMI-1640;

Lonza, Slough, UK) containing 10% fetal bovine serum

(FBS), 2 mM L-glutamine, penicillin (100 IU/ml) (GIBCO,

Life Technologies, Paisley UK) and streptomycin (100 mg/

ml) (Sigma-Aldrich, Poole, UK) prior to experimental

processing and analysis

Flow cytometry

Fluorochrome-conjugated antibodies specific for the follow-

ing cell surface and intracellular molecules were used: CD3

(HIT3a), CD16 (3G8), CD27 (O323), CD28 (CD28.2), CD56

(HCD56), CD107a (H4A3), granzyme B (GB11), IFN-g

(4S.B3), perforin (dG9) and Vd2 (B6) (antibody reagents

were purchased from either Becton, Dickinson and Com-

pany, Oxford, UK, eBioscience, Lutterworth UK or Biole-

gend, London, UK). PBMCs were incubated on ice with

fluorochrome-conjugated antibodies diluted in fluorescence

activated cell sorter (FACS) buffer [phosphate-buffered saline

(PBS) supplemented with 2% FBS and 5 mM ethylenedia-

mine tetraacetic acid (EDTA) (Gibco, Life Technologies) for

cell surface staining. Cells were subsequently washed and

resuspended in FACS buffer prior to analysis. For intracellu-

lar cytokine staining, PBMCs were stimulated with 50 ng/ml

phorbol 12-myristate 13-acetate (PMA) (Sigma, Poole, UK)

and 1 lg/ml ionomycin (Sigma) for 5 h at 378C; 10 ll brefel-

din A (eBioscience) and 2 lM monensin (eBioscience) were

added during the last 2 h. Cells were stained for cell surface

markers, fixed with IC fixation buffer (eBioscience) for 15

min on ice, and subsequently permeabilized and stained with

intracellular cytokine-specific antibodies diluted in perme-

abilization buffer (eBioscience). Flow cytometry was carried

out using a FACS Canto II flow cytometer (BD Biosciences)

and data were analysed using FlowJo software (Tree Star, Inc.,

Ashland, OR, USA). NK cells were defined as

CD3–Vd2–CD561, subdivided into CD56Dim and CD56Bright

subsets and expressed relative to total gated lymphocytes.

Table 1. Characteristics of the Behçet’s disease (BD) patient cohort (BDActive and BDQuiet) and healthy controls together with current systemic

medication

HCs

(n 5 60)

BDQuiet

(n 5 16)

BDActive

(n 5 44)

BDTotal

(n 5 60)

Median

age, years

(range)

33

(21–69)

42�5
(26–74)

40

(18–74)

42

(18–74)

Gender (M : F) 29 M, 31 F 6 M, 10 F 14 M, 30 F 20 M, 40 F

No. of systems with BD activity 0 0 1 system (n 5 16)

2 systems (n 5 6)

3 systems (n 5 15)

4 systems n 5 5)

5 systems (n 5 1)

6 systems (n 5 1)

BD medication (total no. of

patients on each BD-associated

systemic therapy)

n.a Aza 5 5 Aza 5 14 Aza 5 19

Col 5 5 Col 5 9 Col 5 14

Pred 5 4 Pred 5 12 Pred 5 16

MMF 5 3 MMF 5 3 MMF 5 6

*Inf 5 1 Inf 5 0 Inf 5 1

*Met 5 0 Met 5 1 Met 5 1

No BD meds 5 2 No BD meds 5 16 No BD meds 5 18

BD medication combinations n.a. Aza only 5 2 Aza only 5 6 Aza only 5 8

Col only 5 4 Col only 5 5 Col only 5 9

MMF only 5 2 MMF only 5 1 MMF only 5 3

Pred only 5 1 Pred only 5 4 Pred only 5 5

Inf only 5 1 Inf only 5 0 Inf only 5 1

Aza1Col 5 1 Aza1Col 5 3 Aza1Col 5 4

Aza1Pred 5 2 Aza1Pred 5 4 Aza1Pred 5 6

MMF1Pred 5 1 MMF1Pred 5 2 MMF1Pred 5 3

Pred1Met 5 0 Pred1Met 5 1 Pred1Met 5 1

Aza1Pred1Col 5 0 Aza1Pred1Col 5 1 Aza1Pred1Col 5 1

No BD meds 5 2 No BD meds 5 16 No BD meds 5 18

*Patients on infliximab (n 5 1) and methotrexate (n 5 1) were excluded in evaluation of effect on natural killer (NK) cells due to only single

individuals in each of these subgroups. Aza 5 azathioprine; BD 5 Behçet’s disease; col 5 colchicine; MMF 5 mycophenolate mofetil;

pred 5 prednisolone; inf 5 infliximab; met 5 methotrexate; no BD meds: 5 no systemic BD-associated medication.

NK cells in Behçet’s disease
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The lymphocyte population was identified by assessment of

size and granularity of cells using light-scatter properties [for-

ward-scatter (FSC) versus side-scatter (SSC)] and NK per-

centage expressed as a proportion of total gated lymphocytes.

Gates were set using appropriate isotype/negative controls for

each intra- and extracellular antibody.

Degranulation assay

PBMCs were stimulated initially for 5 h in complete media

with 50 ng/ml phorbol-12-myristate-13-acetate (PMA;

Sigma) and 1 lg/ml ionomycin (Sigma) in the presence of

anti-CD107a (BioLegend) at 378C in 5% CO2. After 1 h of

stimulation, brefeldin (10 lg/ml) and monensin (2 lM)

were added and were present for the last 4 h of culture.

Cells were vortexed periodically to prevent cell settling.

PBMCs were then washed and stained for cell-surface

markers as described previously. Finally, cells were fixed

with intracellular (IC) fixation buffer (eBioscience) and

permeabilized and stained for detection of intracellular

granzyme B, as described above.

Statistical analysis

The results are expressed as mean values 6 standard error

of mean (s.e.m.). GraphPad Prism version 6 (GraphPad

Software, San Diego, CA, USA) was used for statistical

analysis. Differences between group variables were analysed

using non-parametric single and multiple comparison sta-

tistical tests where appropriate (Mann–Whitney U-test/

Kruskal–Wallis test). P-values of< 0�05 were considered

statistically significant. Non-parametric tests were used, as

samples were not demonstrated to be distributed normally

(Kolmogorov–Smirnov normality test). IBM SPSS Statistics

for Windows, version 22.0 (Armonk/IBM Corp., New York,

NY, USA) was used to calculate individual Pearson’s corre-

lation coefficients for each investigated predictor variable

(gender, age, BD activity and each specific BD medication)

against NK percentage. Subsequently, multivariate linear

regression analysis was performed to determine the relative

effect of each predictor variable on NK percentage using a

stepwise regression model.

Results

Peripheral blood NK cells are depleted significantly in
BD patients and correlates with disease activity

In accordance with previous literature [18], human natural

killer (NK) cells defined in this study as CD3–Vd2–CD561

lymphocytes could be separated broadly into CD56Dim and

CD56Bright subsets in all Behçet’s disease patients (BD) and

healthy controls (HC) (Fig. 1a).

NK cells expressed as a percentage of total gated

lymphocytes in the peripheral blood of all 60 BD patients

(6�53 6 0�66%) were found to be reduced significantly

compared to healthy controls (10�62 6 0�75%) (P< 0�0001).

Furthermore, when the total BD cohort was subdivided based

on current disease activity, the NK percentage was reduced

significantly only in BD patients with active disease (BDActive)

(6�08 6 0�78) (P< 0�0001), but just failed to reach signifi-

cance in those without current signs or symptoms (BDQuiet)

(7�76 6 1�21) (P 5 0�0552) (Fig. 1b).

When the HC and BD cohorts were subdivided by age,

NK depletion was seen in all three age range groups when

BD patients were compared to HCs, reaching statistical sig-

nificance in the 15–34-year-old (P 5 0�0071) and 35–54-

year-old subgroups (P 5 0�0166), but just failing to show

significance in the 55–75-year-old cohort (P 5 0�0535).

Interestingly, ageing did not affect NK cell percentage sig-

nificantly, with no significant changes when the three age

ranges were compared in HC or BD patients (P> 0�05).

This suggests that BD-associated NK depletion appears to

be age-independent (Fig. 1c). Additionally, there were no

significant gender differences in NK percentage within HC

or BD cohorts or when considered together as a single

group (P> 0�05) (Fig. 1d).

CD56Dim and CD56Bright NK cells are decreased
significantly in the peripheral blood of BD patients
with overall proportional increase in the CD56Bright

subset

BD patients had significantly depleted CD56Dim (HC 5 9�99

6 0�74% versus BD 5 6�02 6 0�65%) (P< 0�0001) and

CD56Bright (HC 5 0�62 6 0�05% versus BD 5 0�51 6 0�06%)

(P 5 0�0015) NK subsets compared to healthy controls relative

to total lymphocytes. Overall, this led to a net increase in the

proportion of the CD56Bright subset relative to total NK cells in

BD (12�80 6 1�82%) compared to HC (7�05 6 0�59%)

(P 5 0�0342) (Fig. 2a). Therefore, BD appears to be associated

with a shift in NK subsets with a relative increase in the

CD56Bright compared to CD56Dim cells on the background of

overall peripheral blood NK depletion.

CD56Dim and CD56Bright subsets are phenotypically
and functionally distinct in both HCs and BD

The expression of surface markers CD27 and CD16 as well

as the ability of NK subsets to produce IFN-g, perforin and

granzyme B and (as measured by median fluorescent inten-

sities of gated positive events) were compared in NK sub-

sets. CD56Dim NK cells were found to express 2�5–2�8 times

more surface CD16 (P< 0�0001) and produce significantly

higher levels of perforin (3�8–4 times) (P< 0�0001) and

granzyme B (1�3–1�5 times) (P< 0�05) compared to

CD56Bright cells. By contrast, the levels of CD27 surface

expression and production potential of IFN-g on a per cell

basis was not found to be different between subsets (Fig.

2b, c). These same differences were maintained in CD56Dim

and CD56Bright subsets from both HCs and BD patients,
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with no significant differences in the subsets between HCs

and BD on a per cell basis.

Increased percentage of IFN-g producing CD56Bright

cells in BD

When intracellular expression of IFN-g was analysed, the

percentage of IFN-g producing CD56Dim and CD56Bright

NK cells was higher in BD patients compared to HCs, but

this only reached statistical significance in the CD56Bright

subset (BD 43�92 versus HCs 30�72%) (P 5 0�0255) (Fig.

3a, b). By contrast, no differences in the percentage of per-

forin- and granzyme B-producing cells was observed

between HCs and BD patients in either subset, with the

majority of NK cells demonstrating a robust ability to pro-

duce these cytotoxic proteins. Furthermore, no significant

difference in IFN-g, perforin or granzyme B was observed

with respect to BD disease activity (BDquiet compared to

BDActive) (data not shown).

NK subsets show opposing trends in percentage of
CD56Dim and CD56Bright cells expressing CD27 and
CD16

The percentage of CD56Bright NK cells expressing CD16

was significantly higher in BD patients (37�14 6 1�47%)

when compared with HC (25�40 6 1�45%) (P< 0�0001)

(Fig. 3b). This was in direct contrast to the CD56Dim subset

which, although this had a higher and predominant expres-

sion of surface CD16, showed a significant decrease in sur-

face expression in BD (86�10 6 2�09%) compared to HCs

(93�54 6 0�87%) (P 5 0�0032) (Fig. 3a). However, the

opposite pattern of change was observed in CD27 expres-

sion where the percentage of CD56Dim subset expressing

CD27 was increased in BD (7�60 6 0�64%) compared to

HCs (4�58 6 0�33%) (Fig. 3a). In contrast, the CD56Bright

subset showed the opposite trend (BD 35�86 versus HCs

39�50%), which failed to reach statistical significance

(P 5 0�07) (Fig. 3b).
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Fig. 1. Natural killer (NK) cell peripheral blood percentage decreases independently of age in Behçet’s disease (BD)Active patients. (a) NK cells are

defined using flow cytometry as CD56(1) CD3(–), with two main subsets characterized by intensity of CD56 expression CD56Bright and CD56Dim

(dot-plot shown from a single healthy control sample to demonstrate population gating). (b) NK cells CD561CD3– are expressed as a

proportion of total gated lymphocytes in healthy controls (HC) (n 5 60) compared to BD patients with no clinical signs of activity BDQuiet
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Increased percentage of NK cells with degranulation
potential in BD patients compared to HC
individuals

Total NK cells exhibited higher overall percentage expres-

sion of the degranulation marker CD107a following activa-

tion in BD compared to HC individuals (P 5 0�026) (Fig.

3c), with no significant further increase in BDActive com-

pared to BDQuiet patients (P> 0�05). However, when NK

subsets were compared on a per cell basis, CD56Bright subset

expressed significantly higher levels of CD107a compared

to the CD56Dim subset within both the HC and BD groups

(P< 0�01). Overall, the CD107a expression on a per cell

basis was similar in both NK subsets between HC and BD

patients (P> 0�05) (Fig. 3d).

NK depletion is greatest in BD patients on current
azathioprine therapy

In order to determine whether NK cell depletion was due

to disease activity or as a result of specific immunomodula-

tory medication, the BD cohort was subdivided according

to current systemic BD drug therapy (azathioprine, colchi-

cine, prednisolone and mycophenolate mofetil). The effect

of these medications (when used as single/monotherapy)

on NK percentage was compared with both HCs and non-

medicated BD patients (Fig. 4a).

NK cells/total lymphocytes (%) were reduced signifi-

cantly only in azathioprine-treated BD patients compared

to HCs (P< 0�01) but, interestingly, not for BD patients on

other forms of therapy (BDCol, BDPred, BDMMF) (Fig. 4a).
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Importantly, BD patients not currently receiving active

drug therapy (BDNo therapy) also demonstrated reduced per-

centages of NK cells in comparison with HCs (P< 0�05)

(Fig. 4a).

Furthermore, when BD patients were subgrouped

according to both disease activity (BDQuiet/BDActive) and

whether or not they were taking azathioprine (BDAza/

BDNon-Aza), it was apparent that the two groups with the

lowest NK percentages were both currently taking azathio-

prine (BDAza/Quiet and BDAza/Active) (Fig. 4b). However,

BDNon-AZA/Active patients also showed significantly depleted

percentages of NK cells compared to HCs (Fig. 4b).

We further investigated the relative importance of the

following predictor variables (gender, age, BD activity and

BD medication) in relation to peripheral blood NK per-

centage by initially examining the Pearson correlation coef-

ficients of each predictor variable against NK percentage.

This revealed BD activity, azathioprine therapy and gender

to be correlated significantly with NK percentage (P

< 0�05) (Table 2). However, when stepwise multivariate

linear regression was used to generate the regression model,

only BD activity and azathioprine therapy were determined

as having significant depletive effects on the NK cell per-

centage from the variables analysed (P < 0�05) (Table 2). It

appears that both the systemic BD activity and azathio-

prine medication seem to have independent depletive

effects on peripheral blood NK cells. However, although

statistically significant, the regression model incorporating

these two variables together only explained 15�2% of the

variation on NK percentage (R2 5 0�152, P< 0�001***).

Discussion

This current cross-sectional experimental study represents

the largest study to date investigating NK cells, their subsets

and function in relation to BD systemic clinical activity

and common BD medication. While a number of previous

studies have investigated NK cells in BD patients [14,32],

the literature is somewhat contradictory, due probably to

the heterogeneity of the BD patient cohort in terms of age,
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Fig. 3. Comparison of percentage expression of CD27, CD16 and interferon (IFN)-g between natural killer (NK)Dim and NKBright subsets.

Percentage expression of surface markers CD27 and CD16 alongside intracellular staining for the cytokine IFN-g and cytotoxic proteins perforin

and granzyme B following 5-h phorbol myristate acetate (PMA)/ionomycin stimulation for (a) CD56Dim and (b) CD56Bright NK subsets. (c)

Percentage CD107a expression is shown on total NK cells in heathy control (HC) individuals (n 5 6) compared to Behçet’s disease (BD) patients

(n 5 14) following 5-h PMA/ionomycin activation (left panel). Summary median fluorescent intensities (MFI) of gated positive events are

shown for CD107a showing relative differences in expression intensities of markers on each of NK subset (CD56Dim and CD56Bright) in HC and

in BD patients. *P< 0�05; **P< 0�01; ***P< 0�001; n.s. 5 not significant.
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ethnicity and varied clinical presentation overlaid with an

often-complex drug management regimen. This unclear

picture is reflected in the findings of previous studies that

both support [35] and contradict [14,32] NK cell periph-

eral blood depletion and activity in BD.

In this study, both CD56Dim and CD56Bright NK cells

were found to be depleted within the peripheral blood

compartment of BD patients compared to healthy controls.

Indeed, NK cell depletion was not only associated with

patients diagnosed with BD but, interestingly, was more

marked in patients with current disease activity (BDActive)

compared to those diagnosed previously with BD but with-

out current active disease (BDQuiet). Overall, there was

depletion of both CD56Dim and CD56Bright NK subsets,

with a proportionately greater loss of the CD56Dim subset

resulting in an overall increase in the proportion of

CD56Bright cells relative to the total NK population.

NK cell depletion also appeared to be most marked in

BD patients taking azathioprine compared to those on

non-azathioprine BD medication. This finding is sup-

ported by a number of other studies that observed NK

depletion and reduced NK activity following azathioprine

therapy for rheumatoid arthritis [42], inflammatory bowel

disease [43] and in systemic lupus erythematosus [44].

Therefore, it is apparent from this study that both disease

activity and azathioprine therapy seem to have an
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Fig. 4. Natural killer (NK) cell peripheral blood percentage is reduced significantly in patients under azathioprine therapy. (a) NK cells expressed

as a percentage of total gated lymphocytes was compared in patients on different forms of Behçet’s disease (BD) medication; colchicine (BDCol),

prednisolone (BDPred), mycophenolate mofetil (BDMMF) and azathioprine (BDAza) and compared to healthy controls (HC) as well as patients not

currently taking BD-associated medication (BDNo therapy). (b) NK cell percentage expressed as a percentage of total lymphocytes in BD patients

subgrouped according to disease activity (BDQuiet/Active) and whether currently taking azathioprine or not (BDAza or BDNon-Aza). *P< 0�05;

**P< 0�001; ***P< 0�001. Aza 5 azathioprine; Col 5 colchicine; MMF 5 mycophenolate mofetil; Pred 5 prednisolone; Inf 5 infliximab;

Met 5 methotrexate; no BD meds 5 no systemic BD-associated medication. Patients on infliximab (n 5 1) and methotrexate (n 5 1) were

excluded in evaluation of effect on NK cells due to only single individuals in each of these subgroups. Numbers in parentheses above each bar

indicate number of individuals in each comparison group.

Table 2. Bivariate and multivariate linear regression investigating the relationship between various predictor variables and natural killer (NK) cell

percentage

Correlation Multiple linear regression

Variable Pearson P-value b-coefficient 95% CI P-value

Gender 20�203 0�013*

Age 20�070 0�225

BD activity 20�352 <0�001*** 23�070 25�275 to 20�864 **0�007

Azathioprine 20�315 <0�001*** 22�905 25�807 to 20�003 *0�049

Prednisolone 20�115 0�106

Colchicine 20�127 0�084

MMF 20�085 0�178

Individual Pearson’s correlation coefficient statistics with associated P-values for each independent predictor variable of NK cell percentage

alongside stepwise multiple linear regression model (R2 5 0�152, F(2, 117) 5 10�511, P 5 0�000063 (P< 0�001***). BD 5 Behçet’s disease;

CI 5 confidence interval; MMF 5 mycophenolate mofetil.
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independent depletive effect on NK cells, which was con-

firmed by multivariate analysis. Azathioprine, a purine

analogue, is thought to work by blocking the de-novo path-

way of purine synthesis which contributes to its relative

specificity to lymphocytes [45]. It has also been shown that

azathioprine inhibits proliferation in resting or newly acti-

vated cells but not pre-activated cells through an increase

in apoptosis [46]. Therefore, if a BD patient has experi-

enced an event that triggers relapse, azathioprine would

then eliminate newly activated cells. The cells that were

already activated will not be affected by azathioprine and

might be leaving the circulation for trafficking into the tis-

sues. While azathioprine inhibits cell proliferation, colchi-

cine acts primarily by inhibiting microtubule

polymerization, which results in decreased cytokine secre-

tion and migration [47]. Interestingly, reduced NK activity

has also been observed in mycophenolate mofetil (MMF)

therapy [48] as well as in patients on prednisolone therapy

in previous studies, but was not observed within this

cohort [49]. Prednisolone, a synthetic glucocorticoid, inter-

feres primarily with the cellular components of the micro-

circulation following an inflammatory response. This

results in decreased vasodilatation, vascular permeability

and suppression of leucocyte emigration [50]. Similarly,

MMF is thought to supress recruitment to inflammatory

sites by inhibiting glycosylation of adhesion molecules,

which in this case might maintain the circulating pool of

NK cells rather than allow them to migrate to inflamed tis-

sues [51].

NK cell peripheral blood depletion in BD pathology

therefore suggests different possibilities in terms of mecha-

nistic explanation. One possibility is that BD directly causes

NK cell depletion due to net trafficking from peripheral

blood into disease active tissue sites, and that BD activity

might correlate with an overall net loss of NK cells from

the peripheral blood compartment. This perhaps mirrors

other immunological NK-associated diseases such as psori-

asis [52], rheumatoid arthritis (RA) [53] and type 1 diabe-

tes mellitus (T1DM) [54], where this has similarly been

observed. Indeed, there is further supporting evidence for

NK tissue trafficking in active BD, with NK cells present in

histological BD samples in eye lesions (uveitis) [55], oral

aphthous ulcers and erythema nodosum [14]. An alterna-

tive possibility is that NK cells are depleted in both periph-

eral blood as well as in tissue sites as a direct consequence

of BD pathology, conceivably leaving individuals suscepti-

ble to chronic viral infections, a commonly hypothesized

environmental trigger of BD. We have confirmed that

depletion of NK cells, both in their number and function,

occurs in the BD patients. This may be a result of the

underlying immune-pathogenic process and/or consequen-

ces of azathioprine therapy in BD.

As mentioned previously, viral infectious agents such as

herpes simplex virus (HSV) and Epstein–Barr virus (EBV)

have been suggested as possible environmental triggers of

BD [6,7]. Therefore, it follows that the protective response

from anti-viral immune cells such as NK cells may play a

key role in regulating BD activity. Indeed, the pathological

and immunological consequences of NK cell depletion has

been studied in both animal and human studies, highlight-

ing the key role NK cells play in anti-viral immunity

[56,57]. While NK cells have an obvious role in the direct

lysis of virally infected cells, they also indirectly play a key

role in immunoregulating and dampening down anti-viral

CD41 and CD81 T cell responses [58,59]. In addition, NK

cells have also been shown capable of careful regulation of

T cell subpopulation specifically controlling Th1/Treg as

well as the Th17/Treg balance in one infection model [60].

Therefore, it is apparent that NK cells are not only impor-

tant in direct anti-viral responses; they are also key regula-

tory cells in controlling acquired specific immune

responses during viral infection and consequently may be

key cells in having a role in controlling BD activity.

NK depletion in BD was accompanied by a reduction in

the percentage of cells expressing CD16 and an increase in

CD27 percentage expression within the predominant

CD56Dim NK subset. In contrast, CD161CD56Bright NK

cells were increased in BD, suggesting the potential for

either direct lysis or antibody-dependent cell-mediated

cytotoxicity (ADCC) killing by this subset, which has been

shown to be an intermediate stage of NK cell differentia-

tion [61]. Additionally, the percentage of CD56Bright NK

cells with IFN-g production potential increased in BD

patients, which supports previous evidence indicating a

role for NK cells in Th1 cytokine production in BD [13].

Indeed, the switch to increased IFN-g production is also

seen in conventional CD41 T cells in active BD [13,62,63].

However, on a per cell basis we did not observe signifi-

cantly increased IFN-g production by the CD56Bright sub-

set, as has been observed in other studies [20,21].

This study also supports the conventional literature that

stimulated CD56Dim NK cells produce higher levels of cyto-

toxic mediators (i.e. perforin and granzyme B) and express

significantly more CD16 compared to CD56Bright cells.

However, while appearing to have greater ability to produce

more intracellular perforin and granzyme B, the degranula-

tion potential (CD107a expression) of this CD56Dim subset

was reduced compared to CD56Bright cells. Indeed, this

inverse relationship between levels of intracellular cytotoxic

protein and CD107a expression have been observed previ-

ously when cytotoxic lymphocytes are activated with phor-

bol myristate acetate (PMA) and ionomycin [64]. This

observation may simply reflect differences in granule

release kinetics during the 5 h of stimulation, inherent dif-

ferences in granule CD107a receptor density or rate of

internalization of the marker. Finally, when NK cells were

considered as a single population, the percentage CD107a

expression was found to be significantly higher in BD

patients compared to HC individuals, suggesting that NK

cells are inherently more cytotoxic in BD compared to

NK cells in Behçet’s disease
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health. As mentioned previously, CD107a has been shown

to be a more sensitive marker of NK activity when com-

pared to intracellular cytokine and chromium release

assays, and so may represent the most important functional

cytotoxic marker [28].

In summary, this present study suggests that both

CD56Dim and CD56Bright subsets are depleted in the periph-

eral blood of BD patients and that depletion is more marked

in patients with active disease as well as in BD patients tak-

ing azathioprine. NK peripheral blood depletion in BD

patients therefore may reflect an increased homing of these

cytotoxic cells to sites of inflammation in active BD initiat-

ing and maintaining tissue inflammation through produc-

tion of Th1 cytokines and cytotoxic mediators.

Further studies are clearly required to better understand

the mechanism of NK depletion in BD patients and the rel-

ative influence of disease activity and azathioprine medica-

tion on NK cells within the peripheral blood as well as in

the disease affected tissues.
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Immunol 2002; 32:356–65.

5 Chen P, Shi L, Jiang Y et al. Identification of heat shock protein

27 as a novel autoantigen of Behçet’s disease. Biochem Biophys
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