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Abstract—Offshore wind operation and maintenance (O&M)
costs can reach up to 1/3 of the overall project costs. In order
to accelerate the deployment of these clean energy assets, costs
need to come down. This requires, a good understanding of the
different operations along with a robust planning, maintenance
and monitoring strategy. Asset management tools have been
developed, which require reliability inputs, able to estimate
the lifetime operational expenditure (OPEX) and optimize the
maintenance strategies for the assets. The lack of large datasets
with offshore wind failure rate data in the literature increases
the uncertainty in the estimations made by those tools. This
paper aims to compare whether the publicly available data
could provide an accurate information of the lifetime reliability
predictions of the assets. It initially uses a generic average failure
rate, taken from literature to model the wind farm; as most wind
farm developers will not have any detailed understanding of the
reliability of the asset prior to construction. It then uses a more
detailed, turbine-specific model, taking into account reliability
data from an operational wind farm. Results show a small overall
difference when the model uses the data-informed parameters,
by up to 0.4% in the overall availability. Moreover, it is shown
that the use of generic values can create more pessimistic results
compared to the data-informed data. The results of the paper
are of interest to offshore wind farm developers and operators
aiming to improve their lifetime reliability estimations and reduce
the O&M costs of the offshore wind farms.

Index Terms—Offshore wind, failure rates, availability, envi-
ronmental conditions, alarms

I. INTRODUCTION

Offshore wind operation and maintenance (O&M) costs

could reach up to 30% of the total project costs [1]. These

costs are relatively high due to accessibility issues and the

need of dedicated vessels and personnel for the turbines’
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repair. Moreover, weather limitations can delay or abort the

operations, which can result in longer waiting times for the

turbine to be repaired, causing downtime and loss of energy

production. During the planning stage of an offshore wind

asset, it is crucial to be able to estimate these parameters

accurately. Thus wind farm developers are using different asset

management tools in order to be able to predict the resources

needed, the overall operational expenditure (OPEX) and to

optimize their future O&M strategy. The two key challenges

here, which are further discussed below, are the accuracy of the

tool to provide a realistic representation of the sequence of the

different maintenance tasks and events, as well as the quality

and availability of the input data used for the simulation.

A. O&M tools

There have been several OPEX estimation and O&M strat-

egy tools developed over the years for offshore wind farms.

These include both commercial and academic solutions. Two

studies have compared the findings of the different tools

against each other, but neither has been validated through

the lifetime of an offshore wind farm [2], [3]. The studies

performed are usually simulating the designed lifetime of the

assets which is typically 20 years, but they could also be

used after the end of the lifetime in order to decide whether

or not a lifetime extension would be profitable. In the latter

case, more data will be available for the asset and a more

accurate estimation can be made. For this study, an in-house

asset management tool is used, developed by EDF R&D, able

to simulate any type of offshore operation and tested for both

installation and maintenance operations [4].

B. Reliability data

Onshore wind turbines have a larger pool of operating expe-

rience and more published information is readily available, due
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to their longer time of operation. Most of the studies are based

on; RELIAWIND database that comprises of 350 turbines [5],

Windstats and LWK databases that include 6000 turbines at

11 years of operation [6], [7]. Although these databases have

small capacity turbines, most of them under 1MW, they pro-

vide interesting reliability statistics that show the differences

in failure rates for same capacity turbines between different

manufacturers. For example, a difference with a factor up to

2, 3, and 4 has been shown for the blade, pitch and generator

subassemblies respectively. Similar results can be seen in

[8], where failure rates are grouped with the wind turbine’s

capacity, where large differences between different capacities

are noticed. This makes reliability modelling, especially for

new multi-MW turbines, very challenging.

In terms of offshore wind reliability data, there is only one

study that has a population of roughly 350 offshore wind

turbines, presenting failure rate statistics of up to 9 years of

operation [9]. Moreover Dinwoodie et al. [2] have presented

failure rate statistics for offshore wind farm from ”expert”

knowledge. Less detailed studies to the public include the

SPARTA database, developed by Offshore Renewable Energy

(ORE) Catapult and featuring all the offshore wind farms in

the UK [10]. SPARTA provides a list of key performance

indicators to the wind farm operators that are part of this

initiative and annual reports are published with some generic

outputs. By comparing the onshore and offshore studies, a

difference of up to 10 times in failure rates can be seen. This

emphasises the point on the importance of the accuracy of the

reliability parameters.

One approach to better understand how failures are oc-

curring is to closely investigate the effect of environmental

conditions on wind turbine failures. Previous studies have

explored the effect of wind speed and turbulence intensity

on turbine failures, by using wind speed measurements and

work order information [9], [11], [12], [13]. Having a good

understanding of that information could potentially provide

a more accurate estimation of the OPEX costs, as not all

wind turbines at the same farm are exposed to the same

environmental conditions and not all have the same failure

rates [14], [15].

This paper presents a data-informed analysis for the 27

turbine Teesside offshore wind farm. It uses literature findings

and turbine specific reliability data generated at Teesside in

order to compare the level of analysis that is required by

offshore wind farm developers to estimate their OPEX costs

and their O&M strategies prior to the construction of the

farm or during the lifetime extension analysis. The paper is

structured in 3 parts. Part II presents the methodology for

the collection and pre processing of the wind turbine data

to create the input parameters, as well as a description of the

asset management used and the final input parameters. Part III

presents and discusses the different results of the simulations;

including a single turbine, a farm with generic data, a farm

with data-informed data parameters and a comparison of the

different findings. Finally, part IV concludes and proposes

future work on this topic.

II. METHODOLOGY

This study uses reliability data from literature in order to

run different scenarios for an operational wind farm in the UK,

enhanced with observed data. The site is Teesside offshore

wind farm, shown in Fig. 1, comprising of 27 wind turbines,

rated at 2.3MW. It further uses an asset management tool to

run the different lifetime reliability estimations.

Fig. 1. Teesside Offshore Wind Farm layout [16]

A. Reliability data analysis

There is very limited research on failure rates for offshore

wind farms, with only one study having been presented so

far, analysing 300 offshore wind turbines for up to 8 years

of operations [9]. It also provides values for a range of

subassemblies for minor/ major repairs and major replacement.

Manual reset values are missing and are used from Dinwoodie

et al. [2]. For the simulations, the ageing of the components

is taken into account. There is only one study for onshore

wind turbines’ ageing characteristics, in terms of power output,

which is used as an input for the reliability parameters [17].

This work aims to consider the environmental parameters,

thus a data-informed approach is used, by enhancing the

literature parameters with site specific ones. This is achieved

by analysing 5 years of operation of turbine alarms from

the site. Turbine alarms can be a good indicator to detect

when a failure has occurred. Historical work order information

can also help to create failure rate statistics [4], but do not

always indicate the exact time that a failure has occurred;

only the time a failure has been detected, repaired or a

component has been replaced. An analysis and categorisation

of the turbine alarms at Teesside offshore wind farm has been

performed. The methodology is summarised in Fig. 2; once the

alarms have been retrieved, they are assigned to the different

subassemblies, as defined by [9], and then the repetitive alarms

are grouped into one instance in order to count it as a single

event and then they are assigned to the closest 10minute

interval. The work orders are also categorized in subassemblies

and converted to a timestamp and both sources are integrated

into a relational database, as shown in [14]. The outputs of

the model used for this study are shown in Fig. 3. A more



in depth description and correlation of the alarms with the

environmental conditions can be found at Koltsidopoulos et

al. [18].

Fig. 2. Teesside alarm data analysis

B. O&M tool description

The different scenarios are run using an integrated asset

management tool for strategic planning of O&M activities,

developed internally by EDF R&D. The tool is comprised of

6 modules; weather, reliability, wind turbine, logistic, project

and economic, as shown in Fig. 4. The weather and reliability

modules are two separate engines generating the weather

conditions and the failures that are the intervention instances,

which are then simulated by the other four modules. The tool

provides as outputs the different associated operational expen-

diture (OPEX) costs, reliability and availability information of

the assets and statistics about the different operations taking

place. It runs on a Monte Carlo simulation for all the input

parameters and all simulations in this paper have used 10,000

repetitions.

A description of the different modules is shown below.

1) Weather generation: The tool allows different types of

weather models to be used; one that uses directly the historical

data provided, another one that uses the historical data to create

a synthetic weather series using a Neural Networks model

and another one that uses historical data to create a synthetic

weather series using Markov Switching Autoregressive Model

(HS-AR). The parameters used for the weather generation are

the wind speed and the wave height of the site. The synthetic

time series can create some stochastic weather outputs, which

can provide better results when simulating multiple future

scenarios. For this study, the HS-AR model is used, as it

has previously been validated for the selected site. It uses

the homogeneous MS-AR model with Gaussian innovations,

embedded within the METIS Matlab simulation tools. A

detailed description of the model and its validation can be

found at Paterson et al. [19].

2) Reliability: it is used for generating probabilistic or

calendar based events. In the first case, the events are generated

to simulate unexpected failures of the components and the

latter one to simulate preventive maintenance tasks that have

been scheduled for a specific period of the year. The generated

failures can be designed for as many components as the

user requires to every level of detail; from a component

up to the system level. The failures are not linked and are

governed by the individual input parameters. The tool is able

to handle different reliability distribution types; exponential,

Weibull, Dirac and a user defined one. Once the failure mode

has been triggered, a maintenance task is activated; when

the maintenance task is complete the repaired or replaced

component can be modelled to be as good as new, as bad

as old or to have a new reliability value.

3) Wind Turbine: The wind turbine modules are then

linked with the different reliability components triggering the

maintenance actions. It is possible to determine the nominal

power of the turbine, as well as the capacity factor for every

month. These values are used for estimating the total power

generation, as well as the economic parameters required.

4) Project management: This module is used to specify

the different tasks taking place and are linked to the reliability

components. This allows the modelling of all the tasks required

for an offshore maintenance operation. For example the transit

in and out of the vessel as well as the duration of the task or

of individual sub-tasks. It is possible to add restrictions to the

tasks, such as weather limitations, as well as technicians’ shift

time.

5) Logistics: It includes all the resources needed to per-

form an operation and it is linked to the individual tasks.

This includes the available vessels, personnel, equipment and

consumables needed for each operation.

6) Economic: All of the operations taking place are linked

to a cost, which are then discounted to the present value and

aggregated to provide the total OPEX costs.

A more detailed description of the different functionalities

of the tool can be found at Lonchampt et al [4].



Fig. 3. Normalized failure alarm count, categorized by subassembly for a 5 year period at Teesside offshore wind farm [15]

Fig. 4. Overview of the asset management tool

C. Model Inputs

Table I shows the generic model input values used for

the simulations, taken from [2], [9]. Table II the overall

multiplication factors, as derived from Fig. 3 values.

Following is a list of assumptions that are taken under

consideration in the model:

• 60 hours of annual maintenance for every turbine, per-

formed during the summer period.

• 10 days of delay for major component replacement, in

order to wait for the jack-up vessel to arrive.

• Operations are taking place the whole week (including

weekends) from 7:00 until 18:00.

• Operational limits are considered for weather conditions

TABLE I
GENERIC MODEL INPUTS

Model Inputs Manual Minor Major Major
Reset Repair Repair Replacement

Failure rate/ turbine/ year 7.5 6.81 1.17 0.29

Ageing Factor/year 1.69% 1.69% 1.69% 1.69%

Repair time (h) 3 6.67 17.64 116.19

Number of technicians 2 3 3 9

Vessel type CTV CTV CTV Jack-up

TABLE II
OVERALL MULTIPLICATION FACTORS

Turbine Factor Turbine Factor Turbine Factor
A1 1.25 B10 0.97 C19 0.77

A2 1.4 B11 0.88 C20 1.01

A3 1.01 B12 0.8 C21 0.75

A4 1.45 B13 0.6 C22 0.97

A5 1.27 B14 0.95 C23 0.72

A6 1.3 B15 1.02 C24 0.71

A7 1.19 B16 0.92 C25 0.74

A8 1.34 B17 0.99 C26 0.88

A9 1.02 B18 1.12 C27 0.96

above 1.5m of significant wave height and 12m/s of wind

speed.

• The failure rates were modelled using a Weibull distribu-

tion for the different cases, as shown in Eq. 1; where t is

the time when the failure occurs, λ the scale factor and β
the shape factor. In the case where ageing is taken under

consideration β = 1.07 and the component is considered

“as bad as old” after the maintenance has taken place. In



the case where ageing is not taken under consideration

β = 1.0 and the component is considered “as good as

new”. The scale factor was then converted to a daily value

by dividing the failure rate in Table I with the number of

hours in a year; 8760.

R(t) = e−(λ∗t)β (1)

• There is always a CTV available on site.

• Turbine is shut down when an operation takes place.

• Turbine is immediately shut down only when a major

repair is required, assuming that the turbine cannot

operate and is shut down until the technicians arrive and

fix the fault. In the case of minor repairs, the turbine

does not need to be shut down and when a major

replacement is needed, it is assumed that it takes place

before the catastrophic failure of the component and it

has been identified predicted well in advance; thus, a

shut down is not required.

The different scenarios that have been considered in the

paper are the following:

• One turbine (with and without ageing)

• Teesside offshore wind farm with average reliability

values to all the turbines (with and without ageing)

• Teesside offshore wind farm with data-informed reliabil-

ity parameters (with and without ageing)

In order to compare the results, two different metrics are

used; time-based availability (TBA) [20] and production-based

availability (PBA) [21]. TBA is the fraction of the time that the

turbine is available (i.e. it is not shut down for any maintenance

or due to a failure) over the total operational time of the asset,

as shown in Eq. 2. PBA is the fraction of the actual energy

produced by the asset over the potentially energy expected (i.e.

including the energy lost when the turbine was shut down),

shown in Eq. 3. These are calculated in the tool, by providing

the average monthly capacity factors at Teesside offshore wind

farm, which are undisclosed due to confidentiality reasons.

TBA =
T imeAvailable

TotalT imeConsidered
(2)

PBA =
EnergyActuallyProduced

EnergyPotentiallyExpected
(3)

III. RESULTS AND DISCUSSION

The results are presented below for the different scenarios.

A. Single Turbine

Fig. 5 shows the time based and production based avail-

ability values for a single turbine over a 20 year period. The

turbine considered is turbine A1, with regards to its distance

from the port and the generic model inputs are used for the

different failure modes. As expected, PBA values are lower

than the TBA ones. The asset management tool is accurate
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Fig. 5. Time and production based availability for 1 turbine, with and without
ageing for 20 years of lifetime.

enough and able to pick even those small differences in avail-

ability and reliability calculations. The failure rate generation

results are shown in Fig. 6 for the different types of failure

considered with and without taking into account the ageing

factor. The failure rates using the ageing factor, are increasing

on an average of 1.69%, in order to simulate the degradation.

For the cases without ageing, the failure rate values are

fluctuating around the average value. As there are no studies

indicating the failure rate over the lifetime of the assets, this

is considered a sufficient assumption. Spinato et al. [7] have

presented an attempt to model the failures of subassemblies

through time, but with only 5 years of operational data. The

study showed that generator and electrical systems tend to

follow the bathtub curve, whereas gearboxes tend to have a

linear increase of failures over time. This type of modelling is

not used for this study, as it varies between literature finding

and turbine manufacturer and it is not clear yet what the

most representative failure distribution curve is. Instead, an

increased failure rate over time is considered through the

ageing parameter since the only available study shows a power

degradation of the turbine over its lifetime.

B. Wind farm with generic values

Fig. 7 shows the TBA for the simulated case of the Teesside

wind farm, using the generic input values. The simulation with

the ageing parameters is shown at the lower part of the figure

and without the ageing parameters is shown at the top. All

the individual turbines follow the same pattern and the small

differences between are caused due to the different distance

from the port which could result in longer or shorter downtime

periods. By comparing the wind farm results with the ones

from the individual turbine model, turbine A1 has a 0.5%

lower overall availability when it was by itself compared to

when it was simulated on the farm. This is due to the resource

unavailability, as the technicians and/ or the CTV might be on
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Fig. 7. Time based availability for 27 turbines over 20 years for the generic
wind farm case. The top 27 lines correspond to the cases without ageing and
the bottom ones with ageing.

another turbine. The overall availability difference could be

translated to around 22GWh difference for the 20 years of

operation, which could be around £6.5m. of OPEX costs.

C. Wind farm with data-informed parameters

Fig. 8(a) shows the TBA for the simulated case of the

Teesside wind farm, taking under consideration the data-

informed parameters from Table II and the ageing factor. Fig.

8(b) has the same input parameters, but without ageing. In

both cases the turbines perform according to the different input

parameters and the multiplication factor used. There were no

added significant delays from any unexpected events and all

the turbines followed the same trend. There are a few overlaps

in the TBA values for example between turbines A1 and A5

as well as turbines C20, A3, C19 and B15. This is possibly

due to any failure or weather downtime or any vessel delays.

D. Comparison

For the different cases in the previous section, the average

time and production based availability values are shown in

Fig. 9 Moreover, the difference between the highest and lowest

availability values are shown in Table III.

TABLE III
TURBINE AVAILABILITY COMPARISON

Cases Highest Lowest Difference
Availability Availability

Generic failure rates- no
ageing

C27 B11 0.04%

Generic failure rates- with
ageing

C27 B11 0.05%

Turbine specific failure
rates- no ageing

A4 B13 2.48%

Turbine specific failure
rates- with ageing

A4 B13 3.16%

It is interesting to see that in the case where the data-

informed parameters were taken into consideration, the TBA

and PBA values are higher. This could be due to the fact that

as the failures are defined by different failure rate values, they

will no happen close to them in time happening at the same

time, and thus the resources can be managed more effectively.

It shows that in the case where generic values are used for

OPEX modelling, the overall values are more pessimistic and

an average 0.22% increase in production and in revenue can be

simulated with the data-informed parameters. This difference

could also be lower or higher, depending on the weather

parameters that are chosen each time to run the simulation,

as they are stochastic. Similarly the TBA values for the data-

informed case were higher on average by 0.25% compared

to the generic ones. The overall availability difference could

be translated to around 10GWh difference for the 20 years of

operation, which could be around £3m. of OPEX costs.

There is very limited literature in the availability of offshore

wind farm. An early study [22] indicated that Round 1 UK

offshore wind farms experienced a TBA of 80.2%. The study

was performed before Teesside was built. A more recent study

from ORE Catapult [23], including all the offshore wind

farms in the UK indicated that the 50th percentile of the

wind turbines have an average PBA of 96.31%, with the 90th

percentile being at 98.57% and the 10th percentile being at

90.28%. This includes a range of wind turbines and wind farm

sizes and distances from the port. Comparing the results of this

study with the ORE Catapult’s report, Teesside’s PBA values

seem reasonable, as the wind farm is close to the shore and an

intervention can be made easily, as an effect the overall PBA

values are very close to the 50th percentile values form the

report.

This comparison indicates that the currently publicly avail-

able data can be used by offshore wind farm developers as

an estimate, as they represent the average cases and it is a
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Fig. 8. Time based availability for 27 turbines with data-informed parameters for 20 years.
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good starting point. Once the operators have a more detailed

understanding of the asset, they can refine those data with their

own parameters in order to make more realistic predictions.

IV. CONCLUSION

This paper presented a comparison between publicly avail-

able data for lifetime availability estimation, compared to data-

informed ones. The study used an asset management tool in

order to generate the different simulations. The data-informed

parameters have been created by analysing the failure alarms

of an operational wind farm.

Key findings from this paper show that:

• When generic failure rates are used for the all the tur-

bines, the availability values are governed by the turbine

distance from the port.

• There is a small difference when taking the data-informed

data into account in the overall availability of up to 0.4%.

• Generic failure rate data generate more pessimistic results

compared to data-informed ones, as failures do not occur

at the same time.

• The overall PBA values estimated in this study are in

agreement with operational findings.

The results show that the failure rates and reliability estimates

available literature can be a reasonable starting point for wind

farm operators to estimate the expected O&M activities and

farm availability. However, they reliability information should

subsequently be refined for more accurate predictions. Future

work could focus on better understanding and modelling the

failure modes and their ageing in higher detail. At the moment

more detailed inputs are needed in order to understand and

model the physics of failure.
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