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Abstract 
 

We introduce  a unified tracker (FMCMC-MM) which adapts to changes in target 
appearance by combining two popular generative models: templates and histograms, 
maintaining multiple instances of each in an appearance pool, and enhances prediction 
by utilising multiple linear searches.  These search directions  are sparse estimates of 
motion direction derived from local features stored in a feature pool. Given only an initial 
template representation of the target, the proposed tracker can learn appearance changes 
in a supervised manner and generate appropriate  target motions  without knowing the 
target movement in advance. During tracking, it automatically switches between models 
in response to variations in target appearance, exploiting the strengths of each model 
component. New models are added, automatically,  as necessary. The effectiveness  of the 
approach is demonstrated using a variety of challenging video sequences. Results show 
that this framework outperforms existing appearance based tracking  frameworks. 

 
 
1   Introduction 

 
Visual tracking is a time dependent problem.  Its aim is to model target appearance and use 
it to estimate the state of a moving  target, retrieve its trajectory, and maintain its identity 
through a video sequence. Two important components for a tracker  are the search method 
and the appearance model matching  approach.  The tracking  problem  can be formulated  as 
searching for the region with the highest probability of being generated from the appearance 
model.  The search method could be a sliding window  or sampling approach or use target mo- 
tion to hypothesise where the target might  be. The target appearance is typically constructed 
from the first frame by extracting  features.  These are then compared to measurements re- 
covered from incoming frames at candidate target positions to estimate the most likely target 
state. 

In real world scenarios, targets’ appearance can, however, vary over time as a result  of 
illumination changes, pose variations,  target movement  and/or camera movement,  full or 
partial occlusions by other targets or by objects in the background, target deformation and 
complex background clutter. Also, their appearance might have the same appearance  as 
their local background, which may attract the tracker. Adapting to these changes, however, 
exposes the tracker to model drift: localisation  errors cause background information to be 
included in the appearance model, which gradually leads the tracker to lose its target. The 
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risk and degree of drift increases quickly if the tracked target is not well-located.  The key 
to the model drift problem is to locate the target position precisely and recognise abnormal 
appearance changes before trying to update the target appearance. 

We propose an online tracker capable of adapting to appearance changes without  being 
too prone to drifting, and able to recover from drifting and partial or full occlusion. A 
number of questions should be considered during tracking: What appearances should be 
used for tracking? When should additional appearances be learnt? How can complex target 
movement be recovered precisely? In visual tracking, the best match at time t to appearance 
observed at time t − 1 may not be the target, because of changes in visual properties. Thus, 
to reduce the risk of adaptation drift, additional constraints or supervision of the appearance 
model are needed.  Figure  1 gives an overview of the proposed framework. The tracker 
contains two crucial components: the first learns target appearance changes during  tracking 
and the second utilises features to enhance target prediction  via multiple linear searches. 

 
 
 
 
 
 
 
 
 
 

Figure 1: Overview proposed framework. 
 

Our simple yet effective  method builds appearance models which are a combination  of 
two popular generative models: templates and histograms. When a suitable model is avail- 
able, templates can provide stable matching and good localisation, due to the detailed spatial 
information  they carry, and play a role as landmarks  to reduce drift.  Templates provide  a 
solid anchor for target location  when appearance is known. Templates are, however, very 
vulnerable to appearance changes. Histograms,  in contrast, do not maintain spatial informa- 
tion and so are more robust to rotation and partial occlusion.  Histograms can be thought of as 
a more abstract model; as many templates can produce a given histogram.  The relative lack 
of precision of histogram  based representations allows them to capture target appearance 
during changes in the spatial distribution of target features. 

During tracking, especially in unconstrained environments,  appearance changes are un- 
predictable.  A fixed set of templates cannot be relied upon to capture the variations that 
might arise. Similarly, if only histograms are considered, there is no clear cue as to which 
histogram should be used, or when to construct  a new histogram.  However, with careful 
use, templates and histograms can complement  each other. Templates allow the tracker to 
produce suitable histograms, which allow the tracker to estimate target location during ap- 
pearance changes, which  in turn allows new templates to be sought. 

In the proposed method,  each new appearance is learnt and maintained  in a pool of 
appearance models. Storing multiple template-histogram pairs allows the tracker to handle 
variations by automatically switching  among models, using template-matching to select a 
histogram which captures target appearance in the current frame. This reduces the risk of 
drifting, since it can check the similarity between the new and previous  appearances before 
updating appearance model or adding a new appearance model to the pool. In the case of 
drifting or occlusion, the tracker can re-initialise  the tracking  process by selecting  a new 
model from the pool. 
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To complete the tracker, by providing  precise motion estimates during unexpected and 
abrupt target movement,  we propose  a mechanism  utilising target features detected and 
matched between consecutive frames. Our method can predict target location without using 
a complex motion model or models, and select an appropriate model with which to search. 

To robustly represent target motion and predict location, both bottom-up and top-down 
techniques are used. The top down component uses (simple)  motion models to generate 
hypotheses (particles). The bottom up component extracts local motion estimates which 
inform the motion models, supporting top-down search. Local features of the target are 
identified,  matched between adjacent frames and stored in a feature  pool. While individ- 
ual feature matches may be incorrect,  the distribution  of likely motion directions supplied 
by feature matching provides valuable information  that can be used to guide search. Each 
feature match constitutes a hypothesis as to the direction of motion of the target. The distri- 
bution of motion directions provides an implicit representation of complex target movements 
which are difficult to model explicitly. In the proposed tracking algorithm,  the search space 
is modelled as multiple  potential directions and one-dimensional searches are performed  in 
those directions to find the target, reducing and carefully targeting the search. 

The proposed appearance and search mechanism are built into the Markov Chain Monte 
Carlo (MCMC) based particle filter [12]. We extend the proposal distribution of the standard 
MCMC to propose both the new location via motion direction sampling, and the appearance 
model that should be used. On completion of each Markov  chain, each histogram is assigned 
a weight reflecting how frequently it was accepted during that chain. The new target location 
is estimated by identifying  particles which have the highest weight and use the most common 
histogram.  This strategy is adopted because, if the chain runs for long enough, the most 
suitable histogram will be used most. 

 
 
2   Previous Work 

 
Visual tracking is a longstanding  problem in computer vision and a number of reviews exist 
[17, 29]. Many methods proposed aim to develop a richer appearance model,  to help dis- 
tinguish targets and make the tracker more robust. A fixed appearance model, as in [3, 11], 
cannot handle target appearance changes sufficiently. To achieve long term tracking, many 
researchers have tried to learn appearance models (e.g. [2, 4, 5, 8, 20, 24]). Regardless of 
approach, adaptive appearance-based trackers face a key problem:  model drift. 

Several methods have been proposed to deal with the drift problem (e.g. [18]). A fixed 
adaptation  speed used in a simple linear update of the reference model [19] is suitable in 
some situations.  [4] proposed to anchor the developing model on the original one, but the 
method could not react quickly  enough to large variations. Multiple instance learning [2] has 
been proposed to handle location ambiguity in positive samples by using a positive bag and 
negative bag. This method may, however, select less informative  features. Grabner et al. [9] 
proposed semi-supervised boosting to break the self learning loop in their Online Boosting 
method [8].  Despite its success in alleviating drift, this framework  does not handle target 
changes well if the appearance becomes different  from the prior. 

Other frameworks  have focussed on target motion, seeking to enhance prediction  and re- 
duce search space. For example, [22] used a random walk model, [21] described a proposal 
distribution mixing hypotheses generated by an AdaBoost  detector and a standard autore- 
gressive motion model, [10] combined two models, [23] used Kernel Mean Shift to control 
hypotheses generated by an annealed particle filter, [14] used a two stage dynamic  model. 
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These methods all assumed target appearance to be (approximately)  constant. 
Fusion trackers (e.g. [15, 16]) have been proposed to combine multiple appearance and 

multiple motion models. Each tracker  comprises  a single  appearance model  and motion 
model to deal with a specific  appearance change and different  target motion. All trackers 
can operate in parallel and interact with each other. The challenge, however, raised by these 
works is how to ensure agreement among these trackers. 

 
3   A Tracking Framework 

 
Figure 2 shows the main steps in the proposed method, FMCMC-MM. This approach main- 
tains an appearance pool containing  appearance models learnt during  tracking  and a feature 
pool storing features detected in the previous and current frames. These features are used to 
support target motion modelling. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The proposed framework. 
 
3.1   Appearance model 

 

Targets are selected by manual annotation of the first image in the sequence. Once target 
location is specified, its template is extracted and added to the appearance pool. For each 
template, a simple generative model is constructed - an Epanechnikov  kernel weighted colour 
histogram [5]. Colour is chosen here as a simple,  but powerful and reliable feature widely 
used to model appearance when tracking  objects against complex  backgrounds.  To compare 
the reference histogram  p of the target with the candidate histogram qt at state vector Xt , 
we use the Bhattacharyya  distance.  When comparing  template and image data or pairs of 
templates, we use the Normalised Correlation Coefficient (NCC) to reduce the effect of 
illumination changes. 

 

 
3.2   Motion Model 

 

Target features are extracted by applying the method of Shi and Tomasi [26] within the 
target’s bounding  box. Shi and Tomasi proposed an affine model which  proved adequate for 
region matching and provides the repeatable interest points needed to support robust tracking 
[25]. Features are defined  as f i = (xi , yi , dxi , dyi ) where f i is the it h feature, (xi , yi ) is the 
location of the feature, and (dxi , dyi ) gives its displacement relative to horizontal and vertical 
axes.   The target maintains  a feature pool Ft  = {F p , F c } at each time t which contains 
features detected in the previous tracked frame F p − 

i 
t −1 }i=1..m  and features matched 

F c i 
t   = { ft }i=1..m  in the current frame, where as m is the number of features considered. 
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Each feature point extracted from the target is matched with features identified  in the 
subsequent frame using a pyramidal implementation of the Kanade - Lucas – Tomasi tracker 
([30]) forming  a set of vectors Vt = {vi }i=1..m  linking matched features. This approach was 
selected for its ability to handle large movements.  The Gaussian kernel density (KDE) is 
also used to estimate the motion direction distribution  based on the local feature matches. 

Rather than search the image in two dimensions, the proposed approach divides  the 
search space into multiple linear segments corresponding to directions in which the target 
might move. To estimate target location, a motion direction  is randomly selected from the 
distribution obtained by feature matching.  Search in a given direction  starts from the best 
state found in the previously  selected (and searched) direction.  Xt is the most likely state at 
time t of the target, Xt

I is the most likely state at time t of the target within a selected linear 
segment. Figure 3 shows an example of feature matching and its KDE. 

 

 
(a) Features matched (b) KDE (c) Accumulated Prob. 

Figure 3: Motion directions and their KDE at Frame #22 of the Football  sequence. 
 
 
3.3   Sampling Appearance & Motion Models 

 
The motion  and appearance model presented here are embedded into the MCMC method of 
[12]. MCMC methods define a Markov Chain over the state space X. A candidate particle Xt

I, 
sampled from the current sample Xt using a proposal Q(Xt

I; Xt ), is accepted if the acceptance 
ratio (in [12]) exceeds 1. A maximum  a posterior  (MAP) has typically been used to find 
a particle  most likely the target over N samples at each time t.  At each time step t, an 
appearance pool containing templates Tt = {T j } j=0..k and equivalent generative models Gt = 
{G j } j=0..k  is given, where k is the current size of the pool. 

Information from previous frames can be used to improve the accuracy of the prediction 
and reduce the search space; the target’s previous location  has been used in many trackers. In 
our approach, three pieces of information are used when predicting  target location.  First, the 
previous target location is used to decide the centre of the search area. The search area S is 
double the target size. Second, the confidence score matrix C j = NCC(T j , I) is calculated by 
using NCC to compare each template T j from Tt to each location I(x, y) of image sequence 
I belonging to S. Third, features matched from the previous image are used to improve the 
initial location of an MCMC chain. Define m f  = ∑m ( f i ⊂ P) as the number of features in 
the current frame belonging to an image patch P defined by the target’s bounding box. 

Tracking begins with the initialisation  of an MCMC chain. Starting position is deter- 
mined where the confidence score at that location C j (x, y) ≥ θd and contains the maximum 
number of m f . If no location  satisfies these conditions  because no templates learnt before 
produce a confidence score which is greater than θd , the starting position is determined using 
a second order auto regressive motion model. The initial appearance model is the histogram 
associated with the template that best matches the last recorded target location. 

 As the MCMC chain progresses, new states are proposed according to the proposal den- 
sity Q(X I , Xt ). The proposal comprises changes in position according to the motion model, 
from which a motion direction is randomly  selected (Section 3.2), and an appearance model 



6 T. NGUYEN, T. PRIDMORE: Adaptive tracking via multiple appearance models …  

(histogram) randomly selected from the appearance pool. Each appearance model  has an 
associated weight,  which records the number of times it was selected and accepted within 
the chain. Intuitively, the model that most improves  the state hypothesis, and so can be as- 
sumed to best describe the target, will have the highest weight. Model selection takes this 
weight into account, better models are more likely to be selected as the chain develops.  Each 
generated particle records its hypothesised target position, the weight associated with its ap- 
pearance model, and the Bhatacharya distance between that model and the local image data. 
At the end of the MCMC process, the most highly weighted  appearance model is identified. 
The particle generated using the model that has the best fit to the local image data provides 
the new estimate of target location. The motion direction sampling is then reapplied and 
templates matched to the estimated location to initialise processing into the next time frame. 
The tracking process is as described  in Algorithm 1. 

 
 
3.4   Updating Appearance Models 

 
Updating an existing model: After the locating the target in a given frame, a new template 
is constructed from the local image data, compared to the current template and the NCC 
computed. If the correlation score is greater than a (high) threshold, the histogram model is 
updated; i.e. the histogram associated with the current template is replaced by the histogram 
of the new estimated target location. The effect is to update a generative model (the new his- 
togram) while anchoring it with a related, earlier template. Use of the template to select the 
initial histogram in the MCMC chain allows the combined model to adapt without  excessive 
risk of drift. The approach is conservative in two ways: the histogram is only updated if new 
data is a close match to the current best model, and the template remains fixed. 

Adding a new model:  When the new template differs from both the current selected 
model and the members of the current appearance pool a new model is created and added to 
the pool. Effective tracking with a single, fixed histogram is possible when target appearance 
is also (approximately) fixed. Adding more appearance models, however, allows  the tracker 
to respond to future changes in target appearance. 

Together,  these mechanism extend the third strategy, Template Update with Drift Cor- 
rection, of [18]. Existing  models are kept unchanged, as they may support effective  tracking 
in later frames, and the overall appearance model  is updated implicitly by modifying its 
components. If a poor model is added, the tracker still has a chance to recover by selecting 
other, more correct appearance models. The proposed update method is different from those 
mentioned in Section 2, which contain and explicitly update a single appearance model. 

 
3.5   Handling Occlusion & Re-detecting the Target 

 
Occlusion is detected when both the NCC of the current template and location estimate, and 
the Bhattacharya distance between the current model histogram and the histogram computed 
around the location estimate, fall below  a threshold. When this occurs  a sliding window 
technique, commonly applied in tracking by detection  and trackers no prediction mecha- 
nism, together with all pooled appearances is used to re-detect the target. The location with 
the best match is taken as the position of the re-appeared target. Note that an advanced occlu- 
sion detection, e.g. employing Semi Boosting [9], could be embedded into this framework. 
An occlusion detection step is necessary because the motion  model is computed from local 
features; explicit detection of occlusion reduces the likelihood  that features of the occluding 
object will over-rule features belonging to the true target. 
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3.6   Updating Motion Models 
 
The target motion model depends on feature detection and matching. Features help the 
tracker handle motion variation and abrupt motion naturally by allowing the tracker develop 
a good sense of where the target might  be. The features used should be updated as tracking 
progresses, as some will become invisible and others appear over time. Features are only 
updated if there is no occlusion. 

A bounding box does not always provide  a good fit to the target boundary,  and some 
detected features may be outliers i.e. belong to the local background. The motion direction 
sampling method can deal with this problem, assuming that most of the features considered 
lie within the true target boundary. 

 
3.7   Algorithm 

 
Define M as the thinning  interval  before accepting one particle, a burn in period B, Nl  is the 
number of particles used to search one line, L is the total number of lines considered. The 
tracking process is then as described in Algorithm 1. 

 
Algorithm 1 Multiple appearance models and motion  direction  sampling  (FMCMC-MM) 

1.  Detect and match features and compute the motion direction distribution  as described  in Section 3.2 
2.  Initialise  the start state Xt for the target using features detected and templates in the pool as described in Section 3.3. 
3.  Initialise equal weight for each histogram model. 
4.  Repeat L times 

(a)  Randomly select one direction from KDE of the target. 
(b)  Calculate the slope s of the selected direction. 
(c)  Propose a new state Q(X I ; Xt ). 
(d)  Calculate the intercept b for the line using the slope s and new X I . 
(e)  Repeat M ∗ Nl times 

i.  Generate X ”t  from X I according to the s and b. 
ii.  Propose a candidate appearance model for X ”t  according to the appearance weight. 
iii.   Compute the acceptance ratio a. 
iv.  If a ≥ 1, then accept X ”t : Set the target in X I  to X ”t , increase the weight for the selected histogram and 

update the cached likelihood. Otherwise, accept with probability a. If rejected, leave X I unchanged. 
(f)  If the state X I is better than Xt then move Xt to X I . t t 

5.  The set of particles is obtained by storing Nl best particles at each direction. 
6.  The current posterior P(Xt |Z1:t ) is approximated by using MAP. 
7.  Check if the target is in occlusion  as in Section 3.5. 
8.  Update the target model as in Section 3.4. 
9.  Re-detect features for the target (i.e. update motion model). 

 
 
4   Experiments and Results 
4.1   Data 

 
Table 1 lists the video  sequences used in experimental evaluation of the proposed method. 
Ground truth data was manually created, capturing the visible part of the target by a rectangle 
bounding box. It also takes into account scale changes. 

 
 
4.2   Experimental  Settings 

 
We compared our new proposed method FMCMC-MM to other existing methods: conven- 
tional MCMC (our implementation), Online AdaBoost (OAB) [8], Semi Boosting (SB) [9], 
FragTrack (Frag) ([1]), IVT [24] and Visual Tracking Decomposition (VTD) [15]. 
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Sequence Challenge Frames 
Bouncing1(our collection) Fast & unexpected movement, Deformation 654 
Bouncing2(our collection) Fast motion, Rotation 90 
Bird2([28]) Deformation, Rotation, Occlusion 98 
Table tennis(our collection) Unexpected movement, Clutter 138 
Emilio(synthesised by [27]) Fast & unexpected Motion,  Scale changed, Occlusion 280 
Animal(synthesised by [27]) Fast Motion,  Clutter 71 
Football(our collection) Fast Motion,  Clutter, Distractor 124 
David2(synthesised by [27]) Illumination and Pose Variation, Distractor 537 
Tiger1(synthesised by [27]) Fast motion,  target rotates, occlusion,  appearance deformed 354 
Jogging(synthesised by [27]) Pose variation,  Full occlusion, Deformation 307 
Rolling Ball([13]) In-Plane rotation, Scale changed, Partial occlusion 601 
Girl(synthesised by [27]) Scale changed, Face expression changed, rotation 500 

Table 1: Testing video sequences and their challenges 
 

OAB, SB, FragTrack and IVT rely heavily on rich appearance models to find the tar- 
get. VTD was selected because it used sampling methods to sample appearance and motion 
models to construct trackers. Although  their approach is different from ours, their sampling 
strategy is similar. We used 300 particles and an 8 bin histogram for each colour channel in 
FMCMC-MM and MCMC. The search areas of OAB and SB were set to twice the target size 
and of FragTrack and IVT were set 40x40 pixels (the maximum displacement of the centre 
of the target from one frame to the next). In OAB and SB, we used 100 feature selectors. 
Each selector maintained 10 features. 

 

4.3   Result & Discussion 
 

Table 2 summarises the results obtained.  The numbers in the Table 2 give the centre loca- 
tion error (in pixels) averaged over all frames of each sequence, i.e the average distance 
of the predicted bounding box from the centre of the ground truth bounding box.  The 
lower number is, the better the result, and the numbers in {} indicate the number (%) of 
successfully tracked frames (score>0.5), where the score is defined by the overlap ratio be- 
tween the predicted bounding box Bp and the ground truth bounding box Bgt and calculated 

area(Bp ∩ Bgt ) score = 
area(Bp ∪ Bgt ) 

([6]). The higher a number is, the better the result.  Each sequence 

was run three times with each tracking framework.  The best result are marked in bold and 
the second best underlined.   Table 2 shows that FMCMC-MM performed more accurately 
on 9 out of 12 sequences. Supplementary materials for this paper have been provided.   In 

 
Sequence FMCMC-MM MCMC SB Frag IVT VTD OAB 
Bouncing1 3.00 {100} 8.78 {94} 28.61 {86} 4.30 {96} 5.49 {99} 11.87{93} 28.07 {88} 
Bouncing2 2.32 {100} 34.80 {76} 216.21 {21} 56.56 {46} 161.86 {1} 153.59 {1} 152.34 {1} 
Bird2 15.78 {72} 22.54 {49} 174.02 {38} 29.03 {32} 164.07 {4} 111.83 {13} 7.59 {98} 
Table tennis 3.46 {99} 3.59 {100} 153.26 {6} 13.36 {74} 251.10 {14} 380.51 {6} 642.12 {6} 
Emilio 6.67 {87} 8.99 {76} 226.87 {8} 206.40 {11} 68.46 {27} 20.30 {65} 235.37 {8} 
Animal 11.12 {100} 272.66 {7} 48.50 {38} 62.13 {39} 8.67 {100} 208.14 {6} 366.73 {3} 
Football 5.73 {94} 76.24 {18} 60.78 {6} 31.32 {41} 114.10 {7} 34.92 {45} 60.56 {14} 
David2 2.12 {100} 6.17 {73} 14.96 {33} 57.78 {26} 67.67 {19} 3.52 {89} 6.28 {63} 
Tiger1 23.43 {53} 24.52 {48} 122.26 {41} 63.17 {34} 280.84 {1} 109.22 {18} 63.25 {47} 
Jogging 5.08 {96} 29.66 {67} 55.98 {71} 15.55 {75} 90.84 {25} 92.40 {25} 161.31 {25} 
Rolling Ball 5.66 {83} 6.34 {81} 168.81 {17} 8.84 {72} 98.79 {11} 33.24 {50} 159.21 {16} 
Girl 6.76 {78} 36.79 {51} 35.55 {40} 6.84 {75} 609.99 {13} 7.28 {64} 3.48 {96} 

Table 2: Average center location error (in pixel) and (%) Overlap rate in {}. 
 

Bouncing1, Bouncing2, Emilio and Animal sequence, most trackers (e.g. MCMC, VTD, 
FragTrack, OB, SB) suffered when the target moved in unexpected directions. With the 
use of feature based motion  modelling,  FMCMC-MM, however, predicted target locations 
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correctly. Though VTD contains multiple motion  models, these motions can only capture 
smooth motions. VTD, for instant, lost its target at Frame #58 (the Emilio sequence) when 
the target starts to jump at Frame #57. 

MCMC, FragTrack and SB were affected by distractors in the Football and David2 se- 
quences. In the Football  sequence, the football,  socks and shorts of the player have similar 
appearance. SB and MCMC therefore locked onto the player’s ankle (Frame #22). FMCMC- 
MM performed well on the Football  sequence because the motion direction distribution (Fig- 
ure 3(b)) allows most of the selections (around 90% from accumulated probability)  will be 
angles in the range (-1.9;-1.5) radians. These point downwards, towards the ground beneath 
the ball, rather than towards the player’s ankle. VTD could track the target at Frame #22 
because its multiple motion models give it a better chance of locating the target. It, however, 
completely lost the target at Frame #57 because of the target’s quick movement. 

The target is occluded  by a pillar in the Jogging sequence at Frame #69. SB and FMCMC- 
MM can re-detect the target using a sliding window  technique. They, therefore, could start 
to track the target at Frame #79. SB, however, lost its target in several frames (e.g. Frame 
#95) because the target changed her pose. 

 

OAB worked very well in the Girl sequence since it can learn and adapt to appearance 
changes if these changes stay inside  the boundary specifying the target. The fixed target 
model MCMC lost the target at the Frame #84 while the target was turning  around.  With 
an adaptive appearance model, FMCMC-MM and VTD worked well in the Girl sequence, 
though VTD lost its target at Frame #299. 

 
 
 
5   Discussion and Conclusion 

 
 

We have proposed a single tracking algorithm (i.e. without fusing multiple  trackers) applica- 
ble to both rigid and deformable  targets. The appearance model combines two popular gen- 
erative models, utilising their complimentary  advantages to improve tracking performance. 
The tracker uses a pool of template-histogram  pairs to provide the best fit appearance model, 
switching  among them using a sampling  mechanism.  Appearance changes are automati- 
cally detected and new, corresponding templates are extracted. These templates are carefully 
checked for similarity to other templates maintained in the pool before adding them to it. 
The MCMC-based search uses the distribution of motion directions of local image features 
from the feature pool to enhance target prediction. These local motion directions  are ex- 
tracted directly from two consecutive frames. The algorithm  can also handle variation in the 
motion of a target without using any prior knowledge of movement.  Experiments showed 
the FMCMC-MM framework to have performance advantages over other trackers. 

FMCMC-MM detects target appearance changes using the templates maintained  in the 
appearance pool. Should the target change its appearance very often in a long video se- 
quences, many models may be stored, some of which will become irrelevant.  To cope with 
this problem,  some learnt appearances should be removed from the pool. Care must, how- 
ever be taken not to remove appearances which  would  be useful later. This will be the subject 
of future work. Note also that there is no motion learning mechanism in FMCMC-MM. The 
target motion is derived by detecting and matching  sparse features. These matches could be 
used to enhance learning of target motion. 
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