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ABSTRACT

Forthcoming galaxy redshift surveys are to a large extent motivated by the desire to obtain
data on galaxy clustering so as to more accurately quantify the accelerating expansion of
the Universe and thereby provide insight into the mechanism responsible for accelera-
tion. Currently suggested mechanisms are: a cosmological constant, a new scalar field that
contributes to the energy budget of the Universe as dark energy, and modification on the
cosmological scale of the law of gravitation. It is also possible that the accelerating expansion
of the Universe may only be properly understood by an as yet undeveloped alternative to
the standard cosmological model.

Because the large-scale distribution of galaxies is expected to follow a gaussian random
field - for which statistical information is fully encoded in 2-point statistics, the key quantities
provided by redshift surveys are the correlation function and its Fourier space analogue,
the power spectrum. The detection of features due to baryonic acoustic oscillations (BAO)
in these data will allow them to be used as standard rulers to reconstruct the expansion
history of the Universe. In addition, the anisotropies (redshift-space distortions) induced
by the velocities of galaxies on these correlators will provide a measurement of the growth
rate of cosmic structures, and hence an independent probe of possible departures from the
standard model. The power and scope of the forthcoming surveys (DESI and Euclid) will
push measurements at least an order of magnitude beyond what is currently available, to
provide unprecedented constraints on cosmological models.

It is important therefore to refine the methods used to analyze the large data-sets being
produced by these surveys. The investigations reported in this thesis contribute to this goal
in several ways. The first part of this thesis describes the development of a faster method to
measure the anisotropic clustering signal so as reduce computational load. In particular the
measurement of line-of-sight-dependent clustering using fast Fourier transform routines
is described, that results in an impressive increase in efficiency compared to standard
pair-counting approaches.

The second part is concerned with how best to combine data from different volumes
within the surveys. Current analyses split the redshift range into separate bins and repeat
the traditional analysis within each bin. However, this method is not only computationally
expensive but also results in loss of information (ignoring galaxy pairs across different bins),
and increased edge effects on large scales. An alternative approach is presented that applies
weighting schemes to account for the redshift evolution of clustering. It is shown that the
weightings act as a smooth window on the data, compressing the signal in the redshift
direction with no theoretical loss of information. Subsequent development derived and
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optimum set of weightings to constrain the growth of structure from the redshift space
distortions signal. The weighting technique was also applied to improve constraints on
primordial non-gaussianity at large scales.

The third part of this work describes the development and testing of an efficient algo-
rithmic pipeline, developed to perform the analyses, including the development of faster
new algorithms (incorporating the new weighting schemes) to measure the anisotropic
signal. This part also discusses how to deal with survey geometry when considering redshift
evolution in clustering.

The final part describes the application of the pipeline to analyze eBOSS data. In particu-
lar the first constraint on growth rate evolution over an unprecedented volume (1 < z < 2),
as covered by the DR14 quasars, is presented.
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THE HOMOGENEOUS UNIVERSE

1.1 Introduction

D
espite major discoveries in high precision observational astronomy over the last

few decades, current theoretical models of the Universe still present a number of

unsolved problems. The standard cosmological model, usually referred to as the

Lambda-CDM model (§CDM), is notable for positing that around 90% of the matter in

the Universe consists of non-baryonic weakly-interacting particles called cold dark matter

(CDM). It also posits a cosmological constant (Lambda) associated with an unknown form

of energy whose density is constant in space and time, which would explain the accelerating

expansion of the Universe [27]. In addition to accounting for the expansion of the Universe,

§CDM satisfactorily explains light element abundances, the large-scale structure of the

Universe, and the cosmic microwave background (CMB). However it includes dark matter

and dark energy about which very little is known but which together make up at least 95% of

the contents of the Universe.

Modern observational cosmology is a powerful data-driven discipline that may be ex-

pected to shed light on the nature of dark matter and dark energy. It is already providing

constraints on attempts to develop a solid theory of gravity, is informing research to detect

dark matter, and is improving understanding of space-time by quantifying factors that have

determined its expansion from the Big Bang to today. Next generation observations are

expected to more accurately constrain energy budgets, allowing better understanding of

their properties and thus providing insights into the mechanism of acceleration. Current
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ideas that may explain the accelerating expansion of the Universe include a new scalar

field (dark energy) or a cosmological constant that contributes to the energy budget of the

Universe; a modification of the law of gravitation on the cosmic scale; or even an as yet

unknown alternative to the current model.

Detailed observation of the CMB has provided a picture of the early Universe that is

remarkably isotropic: the observed black body radiation is characterized by a constant

temperature of T ª 2.7K in every direction, with only small fluctuations (@T /T , of the order

of 1 part in 100,000). By contrast, maps of the Universe produced by large surveys, show

that, although on a large scales (ª 150Mpc) the Universe is isotropic, on smaller scales,

galaxies are not uniformly distributed but are organized into over-dense regions (clusters)

themselves forming filamentary structures. Outside these filaments are under-dense regions

known as voids.

Current models indicate that the tiny fluctuations in early Universe revealed by the

CMB gave rise to these inhomogeneities by the action of gravity, which caused structure to

develop by dragging matter into regions that were slightly over-dense and out of regions that

were slightly under-dense.

In broad terms, the investigations presented is this thesis are concerned with the statis-

tical properties of galaxies derived from observations and their use to measure the recent

expansion history of the universe and estimate how gravity caused the growth of the ob-

served inhomogeneities. As described in chapter 2, a requirement for performing these

investigations is to be able obtain accurate values for key observables, particularly the statis-

tical distribution of galaxies in space – dominated by the so-called correlation functions.

Given the complexity of the Universe, it is appropriate to study it “piecemeal” – at the

different scales on which it is observed. The rest of this chapter reviews the properties of

the Universe as it appears in the large-scale limit (where it appears smooth, isotropic and

homogeneous) and goes on to briefly go over the key observational evidence for the current

view of the Universe at this scale. Chapters 2 and 3 are concerned with modeling cosmic

inhomogeneities and their evolution during expansion to form the large-scale structures

(LSS) observed today. This chapter provides a context for the research reported in chapters 4

- 8. Chapter 4 presents the new estimators developed to measure correlation functions in

Fourier space. Chapters 5 and 6 present a new approach to account for the evolution of the

observed distribution of galaxies. To improve constraints on the growth of the structures

(chapter 5) and understanding of the primordial inhomogeneities observed in the CMB

(chapter 6), a set of optimal weightings is derived to compress the data from different epochs

without loss of information. Chapter 7 presents the tests performed on the simulated (com-
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pressed) data to validate the new weighting technique introduced in chapter 5, and chapter

8 presents results obtained by applying the weightings to the latest data from the extended

Baryon Oscillation Spectroscopic Survey (eBOSS) [28]. Chapter 9 briefly summarizes the

main findings of the thesis and suggests future research directions.

1.2 The Friedmann-Lemaître-Robertson-Walker (FLRW)

metric

One fundamental question following Einstein’s theory of general relativity (GR) [29], is that

of finding solutions to the field equations able to describe the Universe. One approach to

finding solutions is to use inputs derived from observations. However it is not possible

to develop a complete theory based on observations only. Firstly because the short span

of human civilization compared to the cosmological time-scale implies severe knowledge

limitations. More specifically, and as discussed in the next section, we can only access a

limited portion of the past light-cone implying that much of the universe is inaccessible

to observations. A better approach is to develop theoretical models of the universe and its

evolution based on various assumptions driven by observations. Such models can then be

tested for their ability to predict or account for observed phenomena.

One of the most important assumptions is the cosmological principle that at every point

in space any observer will observe the same physics. Observations on a sufficiently large

scale – CMB measurements [30] and the distribution of galaxies [23] – indicate that this is

the case: that the universe is homogeneous (no preferred origin) and isotropic (no preferred

direction). The cosmological principle is the assumption that the universe is isotropic and

homogeneous.

According to GR, the metric defined on space-time is related to the matter/energy con-

tent of the universe through Einstein’s equations. The predicted functional form of the metric

is – applying the cosmological principle – derived from the homogeneous and isotropic

solution to Einstein’s equations. This solution is the Friedmann-Lemaître-Robertson-Walker

(FRLW) metric. In detail, the symmetry due to (spatial) homogeneity requires space-time

to be foliable into space-like surfaces, say ßt , where time t parametrizes each surface and

where a space-like surface is defined as a one in which, given generic points, p and q 2ßt ,

the metric that maps p to q is isometric.

As noted, isotropy implies there cannot be a privileged direction from which to observe

the Universe: in other words, no vector or direction differs from any other. To ensure this,
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isotropic observers are defined as a family of time-like curves perpendicular to the space-like

surfaces.

The metric under this assumption is defined as,

(1.1) d s2 =°c2d t +a2(t )
∑

dr 2

1°kr 2 + r 2 °
dµ2 + sin2µd¡2¢

∏

where c2d t 2 corresponds to the cosmic time, or proper time as measured by a co-moving

observer with constant spatial coordinates, r,µ,¡. It is sometimes useful to work with the

conformal time ø, defined as, dt 2 ¥ a2(ø)dø2 where a(t) is the scale factor describing the

expansion of the Universe, whose evolution is described by Einstein’s equations. Assuming

isotropy the terms in the brackets will depend only on r . The k term defines the curvature

space-time which takes values 0,+1,°1 for flat, closed, and open universes, respectively.

Comoving and physical distances It is clear from Eq.1.1 that the metric is dynamic: the

distance between 2 points in space-time will increase if the Universe is expanding and

decrease if the Universe is contracting. Therefore, to probe cosmological evolution, the

evolution of the scale factor with time must be investigated. To deal with the dynamic of

space-time, it is often useful to work with a system of co-moving coordinates x(t ), related to

the physical coordinates, r(t ):

(1.2) r = a(t )x.

1.2.1 Gravitational redshift

Gravitational redshift is a major consequence of the dynamic of the metric. For light prop-

agation between two points (d s2 = 0), a radial trajectory (d¡,dµ = 0) is selected such that

d t 2 = a2(t)dr 2/(1°kr 2); an observer is supposed to be at r = 0 and a light source at rs ,

in co-moving coordinates. If the source emits a signal at t = te , which is received by the

observer at t = to we have,

(1.3)
Zto

te

d t
a(t )

=
Zrs

0

dr
p

1°kr 2
.

For a second emission at t = te +±te , from Eq. 1.3 we have,

(1.4)
Zto+±to

te+±te

d t
a(t )

=
Zrs

0

dr
p

1°kr 2
!

Zto+±to

te+±te

d t
a(t )

=
Zto

te

d t
a(t )

.
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Subtracting the quantity
Rto

te+±te
d t/a(t ) from both sides, we have,

(1.5)
±te

a(te )
= ±to

a(to)
.

If the two emissions are interpreted as different peaks of a wave-train, the wavelength

at emission ∏e is proportional to the time ±te , whereas, according to the observer, ∏o is

proportional to ±to . This leads to

(1.6)
∏observed

∏emitted
= ±to

±te
= a(to)

a(te )
¥ 1+ z,

where z is the redshift, defined as ¥∏0/∏e °1.

From Eq 1.6 it follows that if the Universe is expanding i.e. a(to) > a(te ) when to > te , the

wavelength of the light is stretched by the expansion of space (redshift) or, if the Universe is

contracting, the wavelength is shortened (blueshift).

1.2.2 Distance measures

Astronomical observations allow us to measure the redshift of each galaxy. However it is

not obvious how to relate the measured redshifts to the distances between us and the

galaxies as, in an expanding universe, there are multiple ways to define a distance; the most

straightforward definition is given by the proper distance, defined as the length of the spatial

geodesic between two points, for a fixed value of a(t). However in an expanding universe

this proper distance is not a measurable property as the scale factor relative to the time

in which a source emits the signal is different from the scale factor relative to the time in

which we make the observations. Measurable distances are instead the luminosity distance,

which depends on the flux of the light emitted by the source and the angular distance which

depends on an objects size and the angle it subtends on the sky.

Luminosity distance Consider a luminous object (source) at r = r1, a1 , with intrinsic

luminosity L. An observer at r = 0, a0 detects the light with a detector of area A. The power,

as seen by an observer, is

(1.7) P = L
µ

a1

a0

∂2 A

4ºa2
0r 2

1

;

where 4ºa2
0r 2

1 corresponds to the physical area over which L is distributed at the time

of detection. The power in equation 1.7, is suppressed by a factor of two through (a1/a0)2

compared to the power emitted at r1, where the first factor is due to the fact that the energy
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of the photons is red-shifted through expansion; the second is due to the stretching of time

between photon arrivals.

Rescaling the flux at the observer:

(1.8) F = P
A
= L

4ºa2
0r 2

1 (1+ z)2
,

the Luminosity distance dL can be defined as,

(1.9) F = L

4ºd 2
L

.

In absence of expansion, this luminosity distance corresponds to the proper distance of the

source, dL = r1. In general, considering the different scalings, the relation between these two

quantities is given by

(1.10) dL = r1a0(1+ z).

where,

r1 =
Zto

te

cd t
a(t )

,(1.11)

according to the definition of the proper distance.

From equations 1.10 and 1.11, it is clear that the distance depends strictly on the assumed

cosmology.

This is relevant as it constitutes one of the main lines of evidence that the Universe is

currently undergoing rapid accelerating expansion [27]. If for a given source the intrinsic

luminosity is known and flux can be measured, by measuring the luminosity distance dL , at

different redshifts, a(t ) and ȧ can be reconstructed. For a flat Universe and from equation

1.10 the luminosity distance can be written as

dL(z) = c(1+ z)
Zz

0

dz 0

H(z 0)
,(1.12)

where,

r1 =
Zz

0

dz 0

H(z 0)
.(1.13)

Note that Eq. 1.12 introduces the Hubble parameter H defined as the derivative of the scale

factor with respect to time over the scale factor,

H(a) = ȧ
a

.(1.14)
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To test the acceleration of the expansion the scale factor at the present time (t0) is

expanded to give

a(t ) ' a0 + ȧ0(t ° t0)+ ä0

2
(t ° t0)2,(1.15)

which can be reformulated as,

a(t )
a0

= 1+H0(t ° t0)° 1
2

q0H 2
0 (t ° t0)2 +·· ·(1.16)

where H0 is the present value of the Hubble factor (assuming H0(t°t0) ø 1 in the expansion)

and q0 is the so-called1 deceleration parameter, defined as,

q0 =° ä

a0H 2
0

.(1.17)

Using Eq. 1.16 dL , can be expressed in terms of q0, e.g. at second order in z,

H0dL(z) = z + 1
2

(1°q0)z2 + . . . .(1.18)

Note that the acceleration gives a quadratic correction to the Hubble law so by measuring

the luminosity distance as a function of redshift, q0 is constrained.

Objects whose intrinsic luminosity is known (or can be standardized) are called standard

candles. Important standardizable candles are type 1a supernovae. Supernova events are

very bright (typically comparable in brightness to the host galaxy) and can therefore be

observed at high redshifts (z ª 1°2). Furthermore the mechanism of supernova formation

(white-dwarf accretion from a companion star) is known, from which the intrinsic luminosity

(ª Mchc2) can be predicted using the Chandrasekhar limit (Mch ª 1.4MØ).

Angular diameter distance The angular diameter distance DA is defined as the ratio of

an object’s true transverse size to its angular size in the sky (in radians). Similarly to the

luminosity distance, the DA can be measured from the observational properties of cosmo-

logical objects. Instead of using standard candles we select standard rulers i.e. objects whose

physical size is known. If the universe is static and Euclidean, DA is equal to the proper

distance; more in general if the universe it is flat but expanding , the relation between the

distances is given by

(1.19) DA(1+ z) = r1 =
dL

1+ z
.

An important cosmological standard ruler is given by the baryon acoustic oscillation (BAO)

peak; we revise this in details in 2.3.4.
1for historical reasons
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1.2.3 Einstein Equations

The metric in Eq. 1.1 comes from the homogeneous solution of Einstein equations

(1.20) Gab ¥ Rab °
1
2

gabR = 8ºTab ,

where Ra,b and R are the Ricci tensor and scalar arising from the second derivatives of

the metric and Tab stress-energy momentum tensor respectively.

On large cosmological scales ( '300 h°1 Mpc ) galaxies can be considered as point-

like objects moving in a fluid, so that the stress-energy momentum tensor for all matter,

describing the dynamic, has the form,

(1.21) Tab = Ωuaub +P (gab +uaub),

with Ω is the mass density and P the pressure. For radiation P = Ω/3 while for matter P ª 0.

Inserting Eq. 1.21 into the Einstein equation, affords two non-trivial equations (out of

the initial 10); one for the time component, the other for the space component,

Gøø = 8ºTøø,(1.22)

Gxx = 8ºTxx .(1.23)

Assuming isotropy and geometry, all off-diagonal terms can be set to zero.2

This leaves two equations,

Gt t = 8ºTt t = 8º[Ωut ut +P (Ωt t )] = 8ºΩ(1.24)

Gi i = 8ºTi i = 8º[Ωui ui +P [Ωi i +ui ui ] = 8ºa2(t )P(1.25)

Briefly, by deriving Rab , (R from R = g abRab) and substituting the diagonal stress-energy

tensor for a perfect fluid, the following is obtained,

3
ȧ2

a2 = 8ºΩ° 3
a2 K ,

3
ä
a
=°4º(Ω+3P ).

(1.26)

From Eq.1.26 it follows that once the components of the geometry of the Universe, and

the equation of state, are known, the geometry of the Universe can be deduced. The first
2From isotropy: suppose we select an isotropic observer such as ub = (1,0,0,0) we would have Gabub =

Ga0u0, where Ga0u is a vector pointing to privileged observing direction, it follows, (for all spatial components)
Gi 0 = 0. From isotropy + homogeneity, considering the projection on a space-like surface of Gabhab ¥Gc

a = A±c
a .

If G1b 6= 0 for b 6= 1, it would be exist a a mixed time-space component vector not rotationally invariance.
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part of Eq. 1.26 known as the Friedmann equation, gives the expansion rate, measured by

the Hubble parameter. This equation implies that the Universe is not static. However only

observations can indicate whether the Universe is expanding (ȧ > 0) or contracting(ȧ < 0),

since both ȧ ? 0 are solutions to the first part of Eq. 1.26. The second part of Eq. 1.26 is

important as it defines how the Universe accelerates; in particular the combination of Ω+3P

determines the sign of ä.

1.2.3.1 Single component solutions

An important set of solutions of Eq. 1.26 considers the evolution of an isotropic universe

filled with a (single) perfect fluid with equation of state,

P (t ) = wΩ(t )(1.27)

where w is a dimensionless number, constant with time.

Inserting Eq 1.27 in Eq. 1.26, affords solution of the kind

Ω(t ) / a°3(1+w).(1.28)

matter only Considering a matter component, where Ω 6= 0, P = 0; from the Friedmann

equation in 1.26, it follows that the density evolves as Ω ª a°3, which, combined with the

second part of Eq. in 1.26, leads to a(t ) ª t 2/3.

radiation only For the radiation component where P = Ω/3 we obtain Ω ª a°4 with a(t ) =
t 1/2. Note that the additional a°1 factor (compared to the matter case) is due to photons

redshift as the universe expands.

cosmological constant When P =°Ω, w =°1, it follows that Ω§ = const, a(t ) / e§t .

As a consequence of the different scalings of Ω(t), if the Universe contains e.g. matter,

radiation and §, its evolution is ruled by a different component in different epochs. The

transition time between the different epochs is defined by the ratio between the energy

densities.

1.2.3.2 Critical density

Dividing for ȧ/a on both sides of the Friedman equation, Eq. 1.26 affords

1 = k
a2H 2 + 8º

3H 2Ω.(1.29)

9
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The critical density of the Universe is defined as the total density of the Universe when

the curvature is zero (k = 0, flat universe),

Ωcrit ¥
3H 2

8º
.(1.30)

It is often convenient to use an alternative formulation of the Friedman equation – the

one obtained by rescaling each energy contribution to the critical energy density: ≠i =
Ωi (t )/Ωcrit(t ). To obtain this, both sides of Eq. 1.26 are divided by the Hubble parameter H0

as measured at a = 1; since H0 = Ωc,08º/3 by definition, we obtain

H 2

H 2
0

=
≠r,0

a4 +
≠m,0

a3 +≠§+
(1°≠0)

a2 .(1.31)

Note that curvature component of Eq. 1.31 is interpreted as an energy density contribution,

1°≠0, where ≠0 =≠r,0 +≠m,0 +≠§,0 and the scalings with a of each energy density frac-

tion are substituted,Ωi = Ωi ,0a°p , where p = 4,3,0,2 for radiation, matter,§ and curvature,

respectively.

Note that in Eq. 1.31 we interpret the curvature component as an energy density con-

tribution, 1°≠0, with≠0 =≠r,0 +≠m,0 +≠§,0 and we substitute the scalings with a of each

energy density fraction: Ωi = Ωi ,0a°p with p = 4,3,0,2 for radiation, matter,§ and curvature

respectively.

1.2.4 Early-time problems with the standard model

The standard cosmological model§CDM satisfactorily accounts for the observed cosmic

abundances of the isotopes of hydrogen, helium and lithium, and the existence and struc-

ture of the CMB. Nevertheless there are open questions related to the late-time acceleration

phase; while solution of the FRLW metric indicates that also the early Universe has un-

explained properties that seem to require a framework larger than that provided by the

standard§CDM model. The main problems with the standard model are

. The flatness problem;≠k , the term that accounts for the curvature in Eq. 1.26, scales

with

(1.32) ≠k ¥ 8ºGΩ
3H 2 °1 = k

a2H 2 .

For standard cosmology (not including the dark component§ that pertains only to

the more recent past), the scale factor a goes as t p (where p = 1/2 for radiation and

10
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p = 2/3 for non relativistic matter). From equation 1.32, ot follows that |≠k | increases

with time. Today the curvature term is considered to be < 0.2, so rescaling it to the

Planck time affords ≠k . 10°60. This is a highly contrived and unsatisfactory initial

condition. A more satisfactory approach would be to find a physical mechanism that

flattened space in the early Universe.

. Horizon problem; In special relativity, space is flat and static so that every event at the

infinite is connected to the origin by a light-trajectory. In GR, since the Universe is

expanding and is finite in time, not all regions are in “casual” contact with each other.

This becomes clear when computing the particle horizon (or the co-moving horizon)

which is the maximum distance covered by photons. In standard cosmology, where

a(t ) ª t p with p < 1, for a light-like radial trajectory dr = a(t )d t , the horizon at time t

with initial time ti = 0, is given by

(1.33) dH (t ) = p
1°p

H°1;

thus for standard components (matter and radiation) the horizon is of finite size.

However the CMB shows that the temperature of the Universe is markedly uniform

(on the large scale), implying the need for a horizon of infinite size that would enable

the entire Universe to have initially been in thermal equilibrium.

A possible solution to complete the puzzle is obtained by inverting the behavior of the

co-moving Hubble radius (aH)°1 - which represents the fraction of the universe in causal

contact. This requires inserting an additional component in the Hubble-Friedman equation

such that the early universe undergoes positive acceleration (inflation),

(1.34) ä > 0

Thus we have the hypothesis that the early universe underwent an inflationary phase.

One cause of this inflation could be a cosmological constant§i as discussed for the late-time

acceleration. However, as shown in section 1.2.3.1 this would imply exponential inflation

which would dominate all power expansions, so that there would be no subsequent radiation

or matter epochs – predictions not borne out by observations, e.g. [30]. A better idea would

be to introduce a gravity-coupled scalar field that decays after a finite time. Section 1.2.5

reviews one of the main theories of such a field.

11
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1.2.5 Inflation

The inflationary model was first introduced ad hoc to deal with problems related to the

solution of an FRLW Universe. However it later became apparent that inflation could also

overcome difficulties in accounting for the birth of the primordial fluctuations supposed

to give rise to the observed fluctuations in the CMB and the distribution of galaxies. This

section reviews a basic inflationary model and its implications. Ref [31] provides a more

complete treatment.

Inflation scalar field dynamics are given by the action,

(1.35) S =
Z

d 4x
p°g [°1

2
@a'@

a'°V (')]

where V (') is a generic potential for a scalar field '. By variation of the action the energy-

momentum components are derived,

(1.36) Tab = °2
p°g

±S

±g ab
= @a'b@b'° gab

µ
1
2
@c'@

c'+V (')
∂

,

where only the diagonal components are 6= 0, as required for isotropy and homogeneity are

Ω = 1
2
'̇2 +V (')

a2P = a2
µ

1
2
'̇2 °V (')

∂
.

(1.37)

Combining Ω and P from Eq. 1.37 affords,

(1.38) (Ω+3P ) = 2'̇2 °2V.

The equation of motion for ' is derived by requiring the minimum action variation (±S = 0),

(1.39) ra@
a'=V 0,

where V 0 = @V
@' and ra is the covariant derivative. Thus,

(1.40) @a@
a'+°a

ab@
b'=V 0.

Next, ' is set so that it depends only on time (homogeneity),

(1.41) ° '̈°3H'̇°V 0 = 0

and combined with Eq. 1.26 to affords,

(1.42) H 2 = 8
3
º

µ
1
2
'̇2 +V

∂
.

12
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Combining Eq. 1.26 and 1.31 with the expression of Ω and P in Eq. 1.37, we arrive at

(1.43) Ḣ =°4º'̇2.

By considering (1.42) and (1.43) it is possible to explore the dynamic of the inflaton field.

From equation (1.38) we can obtain

(1.44) Ω+3P = 2('̇2 °V ).

We can then ensure that Ω+3P < 0 (i.e. ä to be positive), by requiring that the kinetic energy

of the particle is negligible respect to this potential (slow-roll regime),

(1.45)
1
2
'̇2 øV.

Note that from equation 1.45 it is possible to determine different conditions on the potential

required for the inflation in the slow roll regime without introducing an explicit form for it.

Inflation implies that the particle horizon undergoes explosive growth in the early Uni-

verse, to therefore resolve the problem arising in standard FLRW cosmology. Furthermore

inflation provides a natural mechanism (quantum fluctuations) for generating primordial

perturbations,

'='0 +±'.

In fact, as reviewed in Chapter 2, the current model for the evolution of the matter density

field assumes that field to be random. For the simplest inflation model, and using the

operators of annihilation and construction, the quantum fluctuations (QF) of the inflation

field can be decomposed in Fourier space as,

(1.46) ±'=
Z

d 3k[ak√k (t )exp(i k x)+a+
k√

§
k (t )exp(°i k x)].

The mode functions √k in Eq. 1.46 come from the Klein Gordon Equation applied to an

expanding Universe: if≠m = 1 and taking a and H from the Friedmann Equations, we obtain,

(1.47) √k (t ) = H
(2k)1/2k

µ
i + k

aH

∂
exp

∑
i k
aH

∏
.

Note that as k/(aH) ø 1, the dominant mode in Eq. 1.47 reads

'k ª i H
p

2 k3/2
(ak +a+

°k ),(1.48)

±'=
Z

d 3k'k ei k x;(1.49)
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so that now, any combination of ' commutes with the others and ' is transformed in a

classic stochastic field.

Thus the idea is that, at the end of the inflationary phase, within the Hubble radius the

gravitational potential maintains the imprint of the energy fluctuations due to the QFs. The

QFs are stretched out over cosmological scales by the accelerated expansion and form the

sources of the initial density perturbations. According to this scenario, the stochasticity in

the cosmic field can be described in terms of 'k .

1.2.6 Late-time acceleration of the Universe

As noted (section 1.2.2) type 1A supernovae are useful standard candles and observations

on the relation of supernova-distance luminosity to redshift [27] indicate that the Universe

is undergoing (late) accelerated expansion. However in section 1.2.3.1 it was shown that

the standard components matter (w = 0) and radiation (w = 1/3), are characterized by

decelerated expansion ä ª (°)t°3/2 and ä ª (°)t°4/3 respectively. For this reason a third

component,§, for which ä > 0 has been added to the Friedmann equation to account for

“late” inflation implied by these data.

One of the major challenges of theoretical and observational cosmology is to understand

the nature of §. Is it a cosmological constant? Is it an additional scalar field? Or does it

imply that the law of gravitation requires modification? [32][33] [34] [35]. Various probes [30]

indicate that the acceleration phase started only about 5 billion years ago, which complicates

the interpretation of observational data. In the light of this, current observational astronomy

is aiming to determine cosmological variables with accuracy at 1% level in the hope that

this may allow us to decide which of the possible theories best fits the data. As noted

in section 1.2.2, improved determinations of the distance-redshift relation, together with

quantification of the factors determining the evolution of space-time are required in order to

test different cosmological models. Various methods are available to obtain improved data

including enhanced CMB measurements combined with other data at lower redshifts to

provide constraints on cosmological parameters. Chapters 2 and 3 examine how large-scale

structure analysis can be used to probe§ and gravity. In the rest of this section we present

individually other important probes based on observational data that support the§CDM

Universe.

CMB The CMB has an almost perfect black-body spectrum at the temperature of T =
2.7255±0.00057 [36], however, it presents tiny anisotropies of around 1 part in 100,000, at

14
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different angles in the sky. According to the inflationary paradigm, as described in 1.2.5, those

thermal variations are generated from scalar-field quantum fluctuations during inflation.

As we will review in the next chapter, we are not interested in the particular pattern of

hotter and colder regions observed but rather on the statistical properties of the anisotropies.

Briefly: if the statistical properties of the tempererature fluctuations present at the time

of decoupling, and the energy content of the universe (≠r ,≠m ,≠§H0, etc.), is specified,

this will enable prediction of the full range of CMB anisotropies and hence testing against

observation.

As noted, variations in CMB are small, therefore high sensitivity and good control of

systematic errors (such as those arising from signal contamination) are essential. The

temperature fluctuations of the CMB have been measured by different surveys, includ-

ing measurements by COBE, [37], SPT [38], ACT [39], WMAP [40]. Improved measurements

were obtained by Planck (see [3] and references within) at small angular resolution which

give the tightest constraints on the cosmological parameters: ≠bh2 = 0.02225± 0.00016,

≠c h2 = 0.1198±0.00015. Assuming§CDM, the inferred Hubble parameter and the power

spectrum variance are constrained as H0 = (67.4±0.5), æ8 = 0.811±0.006. Further, con-

straints on the scalar index of the primordial power spectrum ns = 0.9645±0.0049 and on

the amount of non-Gaussianity (details provided in chapters 3 and 6) improve our under-

standing about inflation putting a severe limit on the class of models allowed.

Figure 1.2.6 shows the Planck temperature power spectrum DT T
` (red dots), squared into

spherical harmonics (Y`,m(µ,¡)), from [3]; error bars (at 1æ confidence level) include cosmic

variance and foreground systematic errors. The best-fit power spectrum (light blue) is also

plotted, showing no evidence for deviations from the§CDM model.

Supernovae Type IA In 1.2.2 we discussed how Supernovae Type Ia can be used as standard

candles to measure the distance luminosity without making assumptions on the cosmologi-

cal model.Using the properties of the Type 1A supernovae, the accelerated expansion was

measured for the first time by [27] and [4].

Figure 1.2 shows the first significant detection of cosmic acceleration, obtained using the

Supernovae type Ia sample from the Supernova Cosmology project and the High-z Supernova

Search Team [4] [27]. In particular bottom panel shows the difference between the distance

modulus measured (in magnitude units) using the SNe type Ia and the predictions of models

≠§ = 0.7≠m = 0.3 (continuous line),≠§ = 0.0≠m = 0.3 (dotted line) and≠§ = 0.0≠m = 1.0

(dashed line). The proof of the decelerating Universe is given by supernovae at z ª 0.5 which

are about 0.25 magnitude fainter than they would be in the scenario of≠§ = 0.0≠m = 0.3
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Figure 1.1: The Planck CMB temperature power spectrum (Figure from [3])

(decelerating universe).

Nowadays supernovae Type 1A provide independent constraints of≠m and H0.≠m =
0.295±0.024 [41] is consistent with the Planck measurements presented above, while the

Hubble parameter, H0 = 73.8±2.4kms°1M pc°1 [42] is in contrast with the inferred H(z)

from Planck by ª 2.5æ. Planned future investigations include more extensive supernova sur-

veys which will help to understand whether this discrepancy is caused by systematic errors

not accounted for in the different analyses or it may invoke new physics and extensions for

the standard concordance model.

In particular, the 10-years-program using the Large Synoptic Survey Telescope (LSST)

[43] is expected to discover three to four million of supernovae, of which 50,000 are of type Ia,

pushing photometry to allow observations at redshifts beyond z ' 1. The SNe Ia at z ª 0.45,

up to z ª 0.8. are expected to constrain the dark energy equation of state at 5% accuracy or

better [43].

Weak gravitational lensing Distant galaxies observed in the sky appear distorted as their

emitted light can be deflected by the foreground structures while propagating towards
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7.5. STANDARD CANDLES & ACCELERATION 149

Figure 7.5: Distance modulus versus redshift for type Ia supernovae from the
Supernova Cosmology Project (Perlmutter et al. 1999, ApJ, 517, 565) and
the High-z Supernova Search Team (Riess et al. 1998, AJ, 116, 1009). The
bottom panel shows the difference between the data and the predictions of a
negatively curved Ωm,0 = 0.3 model (from Riess 2000, PASP, 112, 1284).

Figure 1.2: Distance modulus measurements using the Supernovae type Ia sample from the
Supernova Cosmology project and the High-z Supernova Search Team (from [4])
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Figure 1.3: A comparison between WL constraints on≠m and æ8 from [5] [6] and the Planck
experiment results [3]. (Figure taken from [3])

the observer. This phenomenon is referred to as strong gravitational lensing if the light

originated by distant galaxies, is deflected by massive structures (e.g. clusters) and the

distortion can results in multiple images of the same source. However in most cases, where

no massive object is involved, we have a distortion in the size and shape of the galaxies

of order of 1%, depending on the distribution of matter crossed by the emitted light. This

phenomenon is referred to as weak lensing (WL).

A number of applications of weak gravitational lensing have proven its potential to

improve our understanding of the properties of dark energy and dark matter on cosmological

scales [44] [45] [46]. In fact, lensing measurements are sensitive to the geometry similarly

to type Ia supernovae but also to the growth of the large scale structures, providing a direct

measurement of the matter field distribution. Important results have been achieved from

the CFHTLens survey [47], the ongoing Kilo-Degree Survey and Dark Energy Survey (DES)

[48], [49],
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Figure 1.3 shows a comparison between KiDS and DES WL data [5] [6] and Planck

experiment (temperature power spectra and CMB lensing) [3], in constraining the matter-

density ≠m and the fluctuation amplitude æ8. It is out of the scope of this work to review

these experiments, however it is interesting to see e.g. from Figure 1.3 that there is some

discrepancy between KiDS results and those obtained from Planck. Similarly, results from

the CFHTLens experiment [47], æ8(≠m/0.27)Æ = 0.79±0.03, withÆ= 0.61±0.02 seem to also

prefer lower values of≠m or æ8.

Future experiments, e.g. [50], [43] will involve large area imaging surveys to improve

measurements of weak gravitational lensing by reducing systematic errors such as intrinsic

alignment of galaxies. This will allow to investigate whether or not there is an actual tension

in the concordance model.

Combined probes As we have reviewed in this section, different probes such as lensing or

CMB data are able to provide constraints only on combinations of cosmological parameters,

rather than on individual values. On the other hand, if different probes are combined, it

is possible to break part of this degeneracy and obtain a consensus model. The current

concordance cosmological model is given by the combination between CMB, Supernovae

data and BAO measurements and it is consistent with a 6-parameters flat§CDM universe.

Figure 1.4 shows the constraints on the dark energy equation of state, as obtained from

CMB meaurements [3], weak lensing data from DES [8], redshift space distortions and

BAO from BOSS [7] and supernovae from [9]. The dark-energy equation of state parameter

obtained is consistent with a cosmological constant: w =°1.03±0.03.
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Figure 1.4: Constraints on the time-varying dark energy equation of state using a combi-
nation of CMB [3], BAO and RSD [7], WL [8] and Type 1A supernovae data [9]. (Figure from
[3])
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2
THE LARGE SCALE STRUCTURE OF THE UNIVERSE

2.1 A statistical approach

T
he current explanation for the large-scale distribution of matter in the universe is that

this distribution arose from small fluctuations in the primordial universe which were

amplified by gravitational attraction during subsequent evolution. Tests of theories

relating to these primordial fluctuations cannot be deterministic but must be statistical

in nature. This is because, firstly, we cannot directly observe these initial conditions. And

secondly because the time-scale of cosmological evolution (time since Big Bang 14 billion

years) is much longer than the observation period available to humans, so it is impossible to

follow the evolution of individual systems. However cosmologists do observe (through the

past light cone) different systems at different epochs, and from such observations theories

of structure evolution are developed which can be tested statistically. For the large-scale

structures of the Universe, the set of systems corresponds to perturbations in density and

velocity. We cannot predict, for example, whether a particular point in the Universe is over-

dense or under-dense, but we can estimate the probability that a point will be over-dense or

under-dense, and the probability that a point x1 will be over-dense, given that point x2 is

under-dense.
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2.1.1 Random field

The statistical approach usually adopted is to model the observable Universe as a particular

stochastic state arising from a statistical ensemble of possibilities. The inflationary paradigm

predicts that the initial fluctuations will be adiabatic and Gaussian. Therefore a Gaussian

random field is assumed, and its statistical properties investigated. The field can be any field

of interest, for example cosmic density perturbations ±(x), the velocity divergence field, or a

potential.

To define a random field we start with the concept of a random variable, say x, to which

is associated a probability distribution function (PDF), P (x). By definition, the statistical

properties of x, e.g. the average hxi, the second moment hx2i, and the variance æx are

determined by P . If all the moments are known, it is, in principle, possible to reconstruct

the PDF. A random field is the natural generalization of the random variable x: if ¡(x) is

a random field, it follows that there is a random variable x at each point in space. Each

quantity that fluctuates is defined in terms of its mean and its fluctuation about the mean:

(2.1) ¡(x, t ) = h¡(x, t )i+±¡(x, t ) ¥¡(t )±+¡(x, t ),

where it is assumed that the mean depends on time only (for reasons discussed in section

2.1.2). It is convenient to study the statistical properties of the dimensionless fluctuation

amplitude, defined by

(2.2) ±¡ = ¡°¡
¡

,

where the mean is zero as shown,

≠
±¡

Æ
=

*
¡°¡
¡

+

= 1
¡

≥
¡°¡

¥
= 0.

2.1.2 Ergodic hypothesis

Since observations are limited to a single universe, there is no access to different realizations

of the statistical ensemble which can be averaged to obtain expected values. To get round

this cosmic random fields are assumed to be ergodic, i.e. that the averages of the ensemble

are assumed equal to the spatial averages:

(2.3)
Z

d¡¡P (¡) = h¡(x, t )i= 1
V

Z

V
d3x¡(x, t ) ¥¡(t )

Note that by definition, ¡ is a function of time t only.
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2.1.3 Correlation functions

A random field is described by an infinite set of random variables, correlation functions

are defined as the averages of different random variables, or as the product of the field at

different points. For example, a two-point correlation function is given by:

(2.4)
≠
±¡(x1)±¡(x2)

Æ
;

and if x1 ¥ x2, Eq. 2.4 reduces to the first moment.

Correlation functions are expected to vanish if the fluctuations at one point are inde-

pendent from those at another (Poisson fluctuations). For physical reasons, they are also

expected to vanish as some inverse of the distance between points, as there is no influence of

one point on another at infinite distances. These properties are further discussed in section

2.1.6.

2.1.4 Homogeneity, isotropy and cosmic fields

In line with the cosmological theories discussed in chapter 1 and observations, the cosmic

field is assumed to be statistically homogeneous and isotropic. These assumptions are

applied to the field correlation functions which are thus expected to be invariant under

translation (statistical homogeneity) and rotation (statistical isotropy).

Note that although the field varies from one point to another because it is fluctuating,

the correlation functions and all the other averaged quantities are assumed to be invariant.

This condition can be reformulated as: the physics that created the fluctuations and allowed

them to evolve cannot distinguish one point from another (statistical homogeneity) or a

particular direction (statistical isotropy).

2.1.5 Fourier Space

Fourier space is the natural choice for working with fluctuations. In part because at large

scales, when fluctuations are small, the equation of motion describing the cosmological

fields can be linearized, and also because as we show in this section, each Fourier mode

evolves independently of the others. The Fourier transform is defined as

(2.5) A(k) = 1
(2º)3

Z
d3x exp(°i k ·x)A(x).

A generic random field ¡(x) can be decomposed in Fourier space into

¡(x) =
Z

d3kexp(i k ·x)¡(k)
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where ¡(k) are the Fourier coefficients and each exp(i k ·x) corresponds to a different Fourier

mode (wave). The Fourier coefficients ¡(k) are also interpreted as a random field: they

represent a collection of infinite random variables (2 for each k, since ¡ is complex).

Note that if the average h±±i vanishes in configuration space, this is also the case in

Fourier space,

≠
±¡(k)

Æ
=

ø
1

(2º)3

Z
d3x exp(°i k ·x)±¡(x)

¿
= 1

(2º)3

Z
d3 xexp(°i k ·x)

≠
±¡(x)

Æ
= 0

as h±¡(x)i= 0, for construction.

Note that we took
R

d3x exp(°i k ·x) outside of the average over the PDF as the Fourier

modes are not random variables. Consider the 2-point correlation function:

(2.6)
≠
±¡(k1)±¡(k2)

Æ
= 1

(2º)6

Z
d3x1 d3x2 exp(°i k1 ·x1)exp(i k2 ·x2)

≠
±¡(x1)±¡(x2)

Æ
,

introducing x12 = x1 +x2 and r = |x1 +x2|, recalling the expression in Fourier space for delta

Dirac ±D ,

(2º)3±D =
Z

d3kexp(°i kx),

and the real space two-point correlation function ª, Eq. 2.6 can be transformed into

(2.7)
≠
±¡(k1)±¡(k2)

Æ
= ±D (k1 +k2)

1
(2º)3

Z
d3r exp(°i kr)ª¡(r ).

Unlike in real space, the left side of Eq. 2.7 does not vanish only for modes k =°k; therefore

the Fourier modes are uncorrelated.

The same conclusion is reached if translation invariance is assumed directly. For the

translation r ! r+s, it follows that:

(2.8) ±¡(k) ! 1
(2º)3

Z
d3r exp(°i k · r) = exp(i k ·s)±¡(k),

Including the transformation of Eq. 2.8 in the definition of the 2-point correlation function

affords the expression:

(2.9)
≠
±¡(k1)±¡(k2)

Æ
= exp(i s · (k1 +k2)h±¡(k1)±¡(k2)i,

which is invariant under translation only if k1 +k2 = 0, hence the ±D (k1 +k2) term.

Considering the left side of Eq. 2.7, the power spectrum of the field P¡, can be defined as

the Fourier transform of the correlation function:

(2.10) P¡ ¥ 1
(2º)3

Z
d3r exp(°i k · r)ª¡(r ).
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Inserting the definition of Eq. 2.10 into Eq. 2.7, affords

(2.11)
≠
±¡(k1)±¡(k2)

Æ
= ±D (k1 +k2)P¡(k1).

The three-point correlation function in Fourier space, called the Bispectrum can be defined

analogously:

(2.12)
≠
±¡(k1)±¡(k2)±¡(k3)

Æ
= ±D (k1 +k2 +k3)B(k1,k2,k3).

Once again the term ±D is required for translation invariance. Note that B depends only on

3 variables for isotropy.

2.1.6 Connected correlation function

It is useful to work with connected correlation functions when dealing with theories of

the large-scale structure of the Universe. The connected part of the correlation function

expresses the physical correlation between different points in space. To explore this, a field

with non-zero mean, h¡i=¡(t ), is selected and, for example, the two-point statistic of the

field is derived:

(2.13) h¡(x1)¡(x2)i= h¡(x1)ih¡(x2)i+ h¡(x1)¡(x2)ic .

In Eq. 2.13 the term corresponding to the connected part of the correlation function is

denoted with a c subscript. This is non-zero when P (x1, x2) 6= P (x1)P (x2). If the point

x2 is moved to a great distance from ¡(x1), the term h¡(x1)¡(x2)ic typically goes to zero

since points at a great distance are not expected to influence each other. However the full

two-point correlation function does not vanish because h¡(x1)¡(x2)i ª¡
2

(t ), even if there is

no true correlation. To deal with this, it is common, with the two-point correlation function,

to work with ±¡ instead of ¡, since the mean of ±¡ is zero. However even when working

with ±¡, higher order statistics still contain a non-connected contribution to the correlation

function.

2.1.7 Gaussian random field

With regard to the inflationary scenario discussed in section 1.2.5, it is common to assume

that the initial energy fluctuation is that of a Gaussian random field [51]; If the field is

Gaussian, then according to the Wick theorem, any ensemble average of products of variables

can be written in terms of the product of the ensemble average of pairs; so that all the

connected correlation functions of order greater than two vanish. In such a situation a
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Gaussian field is fully characterized by its power spectrum and its mean (typically the

interest is in fields for which the mean is zero). Considering the ±(r ) field at a single point,

the Gaussian PDF is

(2.14) PG (±) = 1
p

2ºæ2
exp

µ
°1

2
±2

æ2

∂

where æ2 = h±2(x)i is the only non-zero moment that characterizes the Gaussian. The

equation analogous to Eq. 2.14 for N-point is a multivariate Gaussian,

(2.15) PG (±1 · · ·±N ) = 1
p

2ºdetC
exp

µ
°1

2
±i C°1

i j ± j

∂
.

where Ci j ¥ h±i± j i.
The equivalent in Fourier space, where the different modes are not correlated, corre-

sponds to the product of independent Gaussian distributions,

(2.16) PG [±(k)] =¶k
1

p
2ºP (k)

exp
µ
° |±(k)|2

2P (k)

∂
.

2.2 Linear evolution of the fluctuations

In section 1.2.5 we discussed how inflation generates a spectrum of curvature perturbations

that is nearly scale invariant. During inflation, modes become larger than the Hubble radius,

and GR is required to describe the evolution. Without entering into detail, calculations

indicate that curvature perturbations are conserved for k
aH < 1, until they re-enter the

Hubble radius, as occurs during the radiation and matter era, as discussed in detail elsewhere

[32]. After perturbations re-enter the Hubble radius (after primordial inflation has finished)

their evolution can be accounted for by a Newtonian analysis. The contents of the Universe

we will consider are

• Baryons ΩB . These are non-relativistic particles, so their equation of state, PB = ΩB TB
mB

ø
ΩB is given by the collisional pressure. Thus, for the background (homogeneous com-

ponent) it can be assumed that PB º 0. To describe their perturbations, sound speed,

defined cs =
°
±PB /±ΩB

¢1/2, is required.

• Dark matter ΩM . Dark matter is assumed to be cold (non-relativistic); it has negligible

pressure PM / ±Pm ª 0.

• Radiation. The equation of state for photons PR = 1/3ΩM .

• Cosmological constant Ω§. In§C DM , Ω§ is introduced as an additional homogeneous

source term, whose equation of state is P§ =°Ω§.
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2.2. LINEAR EVOLUTION OF THE FLUCTUATIONS

2.2.1 Comoving and physical velocities

The cosmological dynamics has to deal with the characteristic feature of the Universe ex-

pansion. Therefore it is convenient to work with comoving units, and to consider primarily

peculiar velocities - i.e. deviations from the Hubble flow. Comoving distances were intro-

duced in section 1.2. Physical velocities,V(t ), are related to comoving (peculiar) velocities as

follows:

(2.17) V(t ) = dr
d t

= ȧx(t )+a
dx(t )

d t
= Hr(t )+v(t )

where Hr(t ) is the contribution to the physical velocity given by the Hubble expansion, and

v is the comoving (peculiar) velocity of every object.

The conformal expansion rate (or comoving Hubble radius) is given by H ¥ aH = ȧ, so

Eq. 2.17 can be expressed as:

V(t ) =H x(t )+v(t ).

By applying the transformation of Eq. 1.2, the relation between the partial derivatives in (r, t )

and the partial derivatives in (x,ø) is derived,

@

@t
= 1

a
@

@ø
° H

a
x ·r,(2.18)

@

@r
= 1

a
r.(2.19)

2.2.2 Newtonian equations of motion

Newtonian dynamics are captured by the equations of continuity, of Euler (that respectively

assume conservation of mass and momentum), and the Poisson equation. In physical

coordinates these are, respectively:

@Ω

@t
+rr · (ΩV) = 0,(2.20)

@V
@t

+ (V ·rr )V =°rP
Ω

°rr©tot,(2.21)

r2©tot = 4ºGΩ,(2.22)

where©tot is the total gravitational potential (background + fluctuation). Equations 2.20,2.21,2.22,

combined together, afford the usual acceleration equations in the absence of pressure (GR

is required in order to include pressure );

To study the evolution of perturbations, these equations of motion are separated into

background and fluctuation components:
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Ω(x, t ) = Ω(t )+±Ω(x, t ) = Ω(t ) [1+±(xt )](2.23)

P (x, t ) = P (t )+±P (x, t )(2.24)

and

H(x, t ) ¥ 1
3
rr V = H(t )+±H(x, t )(2.25)

©tot =¡b +©(x, t )(2.26)

where ±H(x, t ) ¥ 1/3rr ·v. From the solutions for the homogeneous background it follows

that ¡b = 2ºG/3. By inserting Eq. 2.23 into Eq. 2.20, and assuming that Ω ª a°3, as when in

the matter era1, the continuity equation reduces to,

(2.27)
@±

@ø
=r · [(1+±)v] ;

Analogously, the Euler and Poisson equations for perturbations are,

@v
@ø

+H v+ (v ·r)v =°r©° rP
Ω

,(2.28)

r2©= 3
2
H 2≠m±.(2.29)

Note that Eqs. 2.27, 2.28 are also valid in the presence of §. If Ω§ is homogeneous, it only

impacts the background evolution.

Letting divergence of the velocity be µ, the two equations of motion can be re-written as:

@±

@ø
+µ =°r(±v)(2.30)

@µ

@ø
+H µ+ 3

2
H 2≠m±=°r · [(v ·r)v](2.31)

To solve Eqs. 2.27, 2.28 in linear perturbation theory, it is assumed that ±ø 1 and rv/H ø 1.

The linearized continuity and Euler equations are:

@±

@ø
+µ = 0,(2.32)

@v
@ø

+H v =°r©° r2P
Ω

.(2.33)

1We are considering the evolution of the fluctuations in absence of pressure (non-relativistic condition)
and this implies being in the matter era.
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2 Taking the divergence of Eq. 2.33 and combining it with the Poisson equation affords:

(2.34)
@µ

@ø
+H µ =°r2©° r2P

Ω
=°3

2
H 2≠m±°

r2P
Ω

Or, in Fourier space,

@±k

@ø
+µk = 0,(2.35)

@µ

@ø
+H µ =°3

2
H 2≠m±k °k2 P

.
Ω(2.36)

Taking the time derivative of equation 2.36 and combining it with equation 2.37 affords a

second order differential equation describing the evolution of the perturbations:

(2.37)
@2±k

@ø2 =°H
@±k

@ø
+ 3

2
H 2≠m±k °k2 P

Ω
.

where H @±k
@ø is the friction term due to the expansion of the Universe: both this and the

pressure term have a negative sign (ȧ > 0 for expansion) indicating that the growth of

perturbations is slowed by pressure and expansion. The 3
2H 2≠m±k term corresponds to the

source of gravity which determines the growth.

Pressureless case, Pk = 0, Dark matter evolution Consider solving Eq. 2.37 when pressure

is negligible: this amounts to modelling the linear evolution of dark matter fluctuations as a

non-collisional fluid interacting with the other components by gravitation only:

(2.38)
@2±k

@ø2 =°H
@±k

@ø
+ 3

2
H 2≠m±k .

Since there is no explicit dependence on k, Eq. 2.36 is amenable to factorizable solutions of

the type ±k (ø) = D(ø)Ak , where the coefficients Ak depend only on k.

(2.39)
d 2D
dø

+H
dD
dø

= 3
2
≠m(ø)H 2(ø)D(ø).

The resulting Eq. 2.39 is a homogeneous differential equation that describes the evolution

of the growth factor D(ø). The evolution of H(ø) and ≠m(ø) is described by the Friedman

equations:

H 2[1°≠m(ø)] = k(2.40)

H 0 =°H 2

2
≠m(ø)(2.41)

2 rP
Ω(1+±) '

rP
Ω (1°±) which at first order is ' rP

Ω .
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Case where≠m = 1. If we let≠m = 1 and the curvature k = 0, then H 0 =°H 2/2 and

Eq. 2.39 reduces to,

(2.42)
d 2D
dø

+ 2
ø

dD
dø

= 3
2

4
ø2 D(ø).

which has a solution of the kind:

(2.43) ±k (ø) = Ak a +Bk a°3/2.

Note that Ak ,Bk are determined by the initial condition, which in turn determine what

combinations of growing and decaying modes are excited. The evolution of velocity per-

turbations is obtained from Eq. 2.36, by taking the derivative of µk = °@±
@ø , which leads

to:

(2.44) µk (ø) =H (Ak a +°3
2

Bk a°3/2)

Since the evolution of µk (Eq 2.44) is proportional to H , it is convenient to define£k ¥ µk
H .

Note that as the velocity v is a vector field, it can be decomposed into divergence (scalar

mode) and vorticity (vector mode) components. So far only the divergence component

has been considered. The vorticity component can be obtained from Eq. 2.33 as !¥r£v

affording:

(2.45)
@!

@ø
+H!= 0.

In Eq. 2.45 the source terms are all zero. Thus it is a good approximation (on scales large

enough for linear equations to hold) to assume that the velocity is irrotational and so that

the component != 0.

Case where≠m 6= 1 For≠m 6= 1 , a solution to equation 2.39 can be obtained by intro-

ducing a change of variable:

¬= 1
≠m

°1 ∏ 0,(2.46)

and assuming that at early times the Universe is matter-dominated with≠m ! 1 and thus

¬! 0, while at a late stage the Universe is expected to be dark energy-dominated, so that

≠m ! 0 and ¬!1. Solving Eq. 2.39 under these conditions affords:

D+ = 1+ 3
¬
+3

s
1+¬
¬3 log

≥p
1+¬ °p

¬
¥

,(2.47)

D° =
s

1+¬
¬3 .(2.48)
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For small ¬, (≠m º 1), the solutions of Eqs. 2.47 and 2.48 tend towards the solution of Eq. 2.43.

For large ¬¿ 1 (≠m º 0) the solutions to Eqs. 2.47 and Eq. 2.48 reduce to D+ ' 1, D° ' 1
¬ ,

which means that fluctuations stop growing as ≠m tends to zero, as expected because

there is no source of gravity. Similarly, as the Universe transits from the matter era to an

era dominated by dark energy Ω§, fluctuations stop growing because the expansion of the

universe accelerates. The combined solutions of Eqs. 2.47 2.48 afford:

±k = Ak D+(a)+Bk D°(a) º 3 Ak D+(a).(2.49)

Since v = °i k
k2 µk and µk = °@±

@ø = °H @±
@ log a , and introducing the logarithmic growth rate

f ¥ d logD+
d log a , in linear theory the velocities and densities are related through:

µk =°H f ±k ,(2.50)

vk = i k
k2 H f ±k .(2.51)

Using Eq. 2.50 it is possible to rewrite a differential equation equivalent to Eq.2.39 in terms

of f as a function of ≠m for which approximate solutions are f (≠m) ª ≠0.6
m for an open

universe and f (≠m) ª≠5/9
m for a flat universe with a cosmological constant [52].

Solution with pressure, baryon evolution Consider the equation of motion for ±k adding

the pressure term

(2.52)
@2±k

@ø
+H

@±k

@ø
= 3

2
≠BH 2±k °k2 Pk

Ω
.

To solve Eq. 2.52 the equation of state for the pressure perturbation is required. In configura-

tion space and assuming that pressure is a function of density alone:

r2±P
Ω

= c2
s r2±Ω

Ω
=°k2c2

s ±k ,(2.53)

where c2
s = ±P/±Ω is the adiabatic sound speed. For radiation, c2

s = 1/3. For baryons we

consider the equation of state for a monoatomic ideal gas, (hydrogen), where ∞= 5/3, thus,

c2
s =

5
3

kbT
mB

,(2.54)

where T is the temperature and kb Boltzmann constant. Note that cs is a function of time

since the temperature scales with a; The term cs is introduced into the equation of motion

@2±k

@ø2 +H
@±k

@ø
=

µ
3
2
≠BH 2 °k2c2

s

∂
±k ;(2.55)
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Then Eq. 2.55 can be rewritten as

(2.56)
@2±k

@ø2 +H
@±k

@ø
= c2

s (k2
j °k2)±k ,

which contains the comoving Jeans wavenumber k j defined as,

k2
j c2

s =
3
2
≠BH 2 = 4ºGΩB a2.(2.57)

On the large scales, for k ø k j , perturbations evolve as in the pressure-less case, while on the

small scale, k > k j , pressure predominates over gravity preventing growth. For the situation

without expansion (ø= t ), cs becomes independent of time and the solution to Eq. 2.55 takes

the form of a plane wave (as is usual with sound waves, ±k = exp(±i kcs t ).

To obtain a qualitative idea of the implications of Eq. 2.55 at different epochs, it is

convenient to consider the Jeans mass MJ , or the mass contained in a radius equal of ∏ j /2. It

is the minimum mass an object (gas cloud) can have and still undergo gravitational collapse.

During the radiation era, baryons and photons are coupled, the pressure is provided by

photons, c2
s = 1/3 and the resulting Jeans mass is huge:

M B
J = 4º/3ΩB (∏ j /2)3 º 5.4£1018≠B h2(T /1eV )°3/2MØ.

Thus, perturbations are unable to grow at (at least) all sub-Hubble scales. Later the universe

enters the matter-dominated era and the baryon pressure is provided by thermal motion

of the gas particles as shown in Eq. 2.54. The temperature T decreases as the scale factor

a increases since they are related by an inverse square law (T /ª a°2). Thus, as photons

decouple there is a substantial drop in pressure and consequently in the Jean mass, which

reduces to:

MJ º 105≠B h2
≥ z

1100

¥3/2
MØ.

at which point perturbations on scales smaller than the Hubble radius can grow.

2.3 The processed power spectrum

To model how the large-scale structure of the observable Universe evolves, it is necessary

to determine how primordial fluctuations are “processed” during different epochs. Super-

Hubble modes are not discussed here in detail, but from GR calculations recall that, at

super-Hubble scales, curvature perturbations are conserved and proportional to the New-

tonian potential [32]. As regards sub-Hubble evolution (when (k > H°1)) it is important

to distinguish two categories of perturbations: those that become sub-Hubble during the

radiation-era, and those that become sub-Hubble during the matter era.
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2.3.1 Cold dark matter and radiation during the radiation era

Consider a two-fluid system consisting of non-relativistic CDM and photons. For CDM the

variation pressure is assumed negligible c2
s . The Poisson equation at sub-Hubble scales is:

(2.58) °k2¡= 4ºGa2(Ωm±m +Ωr±r ) = 3
2
H (≠m±m +≠r±r )

Therefore the evolution of fluctuations in the matter component, well within the Hubble

radius is given by:

@2±m

@ø2 +H
@±m

@ø
= 3

2
H (≠m±m +≠r±r ) ' 3

2
H≠r±r(2.59)

where≠m has been approximated to 0, and≠r has been approximated to 1. From GR, [32]

the evolution of ±r during the radiation era can be shown to be governed by:

@2±r

@ø2 + k2

3
±r .(2.60)

As ±r undergoes acoustic oscillation (see 2.3.4), then h±r i ' 0 (Eq. 2.59) and:

@2±m

@ø2 +H
@±m

@ø
' 0;(2.61)

which affords solutions of the kind,

±m = c1 + c2

Z
dø
a

(2.62)

where c1 and c2 are constants. By substituting a ª t 1/2 into Eq. 2.62 it emerges that matter

perturbations have logarithmic growth during the radiation era,

±mc1 + c2 log a.(2.63)

2.3.2 Cold dark matter and baryonic matter during matter era

The development of perturbations in CDM, ±c , and baryons, ±b , in the matter era, is now

examined. In this era baryons have decoupled from photons and fall into potential wells due

to CDM. The linear perturbation equations for the evolution of both components, assuming

that the potential is due to CDM only, since≠c±c ¿≠b±b , are as follows

@2±c

@ø2 +H
@±c

@ø
= 3

2
H 2(≠c±c +≠b±b) ' 3

2
H 2≠c±c ;(2.64)

@2±b

@ø2 +H
@±b

@ø
= 3

2
H 2(≠c±c +≠b±b) ' 3

2
H 2≠c±c .(2.65)
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To solve Eq. 2.64, ±c is assumed to be proportional to the growing mode solution for the

≠m = 1 case (see Eq. 2.43), which is a reasonable approximation after decoupling. The

expression for the baryon pressure is obtained from Eq. 2.53,

r2±P
Ω

! c2
s (°k2)±b .

As noted previously, after decoupling sound speed drops significantly because it is no longer

driven by radiation pressure. Specifically sound speed squared goes from c2
s = 1/3(1+R) to

c2
s = 5/3kbT /mb / 1/a, consistent with the assumption of a monoatomic ideal gas. Since

≠m = 1, we have it that a / ø2 andH = 2
ø , which substituted into Eq. 2.65 afford:

ø2@
2±b

@ø2 +ø2H
@±b

@ø
ø2k2c2

s ±b =H 2≠c±c .(2.66)

Considering the time dependence of the coefficients, ø2H ª 2ø, ø2k2c2
s ª ø21/ø2 and

ø2H 2 ª 4ø2/ø2 in Eq. 2.66, it is easy to see that the homogeneous part is amenable to

power-law solutions of the type øn , with n determined from

(2.67) n(n °1)+2n + 5
3

kbT§
mb

(kø§)2 = 0.

Note that the term ø2k2c2
s is rescaled to the recombination values T§ and ø§, as it is time-

independent. Introducing the Jeans wave-number, the solution for n can be rewritten as

n =
°1±

q
1°24(k/k j )

2
;(2.68)

Therefore the homogeneous solution is (approximately) constant in the absence of the

forcing term due to CDM. This is as expected since gravity due to baryons is pretty small

(Ωb ø Ωc ). The interesting part comes from the solution obtained by introducing the ansatz,

±b = A±§c (ø/ø§).2

which substituted in Eq. 2.66 affords
√

2+4+6
k2

k2
j

!

A = 6.

Therefore the general solution for ±b is,

±b(k) =
±§c (ø/ø§)2

1+k2/k2
j

+±hom
b '

±§c (ø/ø§)2

1+k2/k2
j

.(2.69)

The implication of Eq.2.69 is that at large scales (k ø k j ) the baryon fluctuations follow dark

matter fluctuations.
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2.3.3 The late time power spectrum

Following the evolution of matter perturbations in the radiation and matter-dominated

eras, presented in section 2.2, it is now possible to describe how the matter power spectrum

evolves during these epochs. As shown, during the radiation era, baryonic matter perturba-

tions cannot grow because gravitational collapse is contrasted by radiation pressure; while

CDM perturbations can only grow logarithmically. To understand how CDM amplitude is

processed at different scales, it is important to distinguish between modes that are larger

or smaller than the Hubble radius at the equivalence epoch (keq ) (i.e. the epoch of matter-

radiation equality:≠m(aeq ) =≠r (aeq )). Modes in which k ¿ keq become sub-Hubble during

the radiation era are suppressed by a factor

log
µ

aeq

ae

∂
·
µ

ae (k)
aeq

∂2

< 1,

where ae is the value of the scale factor at the time that the mode k crosses the Hubble radius

during the radiation era.

In fact super-Hubble modes grow like a2, while sub-Hubble modes grow logarithmically

during the radiation era.

Since ae (k)/aeq = keq /k, for k ¿ keq at late times, when all modes are inside the Hubble

radius during the matter era, we have

P (k)late
¡ / P¡(k) log

µ
k

keq

∂µ
keq

k

∂2

.(2.70)

or, for matter fluctuations, considering the primordial power spectrum to be a power law

and k2¡ª ±,

P±(k)late =
Akns k ø kEQ

Bkns°4 log2 °
k/keq

¢
k ¿ kEQ.

(2.71)

2.3.4 Baryon acoustic oscillation

Another important process in the early pre-recombination universe was acoustic oscillations

of baryons. A detailed description of the physics is available in [53]. Briefly, photon and

baryon coupling gives rise to acoustic oscillations because the in-falling of baryons into dark

matter potential wells is balanced by the radiation pressure. At decoupling, photons diffuse

away and, shortly after recombination, the baryons are left distributed in shells of various

sizes whose characteristic scale is defined by the physical size of the sound horizon rd , at

the era of decoupling (zd ):
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rd =
Z1

zd

cs(z)
H(z)

dz,(2.72)

which correspond to the largest wave-length allowed for the acoustic oscillation.

Observation of the large scale structure reveals the imprint caused by pressure waves,

even in late-time clustering. The imprint is evident as a localized peak in the correlation

function at the characteristic scale rd and as a damped series of oscillations in the power

spectrum. Assuming standard radiation and matter contributions to the energy density it

is possible to determine the sound horizon to within 0.2% [54]. Therefore by measuring

the BAO feature in correlation functions it can be used as a standard ruler. In fact the

BAO feature is measured in both the transverse and line of sight (LOS) direction, which

are sensitive separately to the comoving angular distance and the Hubble parameter [55].

Key improvements in BAO analyses were introduced recently including the reconstruction

method which removes non-linear effects on the BAO in order to sharpen the peak and

boost the precision of the constraints. These aspects are not directly relevant to the present

work, but the reconstruction technique is described in detail elsewhere [56]. The present

author co-authored the first BAO detection at high redshift with eBOSS DR14 quasars [23].

For this data-set reconstruction was not applied due to the low density of the quasars.

2.4 standard perturbation theory (SPT)

In the previous section the linear solutions of Eq. 2.30 were obtained and examined. Here

non-linear solutions incorporating perturbation theory are examined. In particular the

evolution of perturbations on non-linear scales in the low redshift Universe is examined.

The background evolution will be modelled assuming that the total energy density consists

of matter and a cosmological constant (§CDM).

The starting point for studying low-z perturbations and structure formation is to set,

as the initial power spectrum, the actual primordial power spectrum, Eq. 2.70, processed

during the matter and radiation epochs. Under these conditions GR formalism is not needed

and Newtonian physics remains valid for characterising the main dynamics. An additional

assumption is that velocity is potential (i.e. fully characterized by its divergence). This

condition does not hold at small scales where the Euler equation does not exactly describe

the dynamics and multi-streaming can generate vorticity. For these reasons above a certain

scale a breakdown of perturbation theory is expected. The main idea behind perturbation

theory is that density and velocity field can be expanded about their linear solutions. This
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means (provided there is no vorticity in the velocity field) a small parameter can be chosen

as variance of the linear fluctuation, æ2 = h±2i which controls the transition from a linear to

a non-linear regime, æ2 ø¿ 1.

2.4.1 Non linear equation of motion

Consider the equation of motion, (Eq. 2.30) in Fourier space [51],

(2.73)
@±(k,ø)
@ø

+µ(k,ø) =°
Z

d 3k1d 3k2±D (k°k12)Æ(k1,k2)µ(k1,ø)±(k2,ø)

@µ(k,ø)
@ø

+H µ(k,ø)+ 3
2
H 2≠m±(k,ø) =°

Z
d 3k1d 3k2±D (k°k12)

£Ø(k1,k2)µ(k1,ø)µ(k2,ø)
(2.74)

where the mode coupling between the evolution of ± and µ is described through the kernels

Æ and Ø,

Æ(k1,k2) ¥ k12 ·k1

k2
1

,

Ø(k1,k2) ¥
k2

12(k1 ·k2)

2k2
1k2

2

.

(2.75)

and k ¥ k1 +k2.

2.4.2 ≠m = 1 case

Consider the perturbed solution for a cosmology in which≠m = 1. In this scenario≠m does

not depend on time, therefore we can find separable solutions for Eqs. 2.73, 2.74 (for the

fastest growing mode) that satisfy:

±(k, a) =
1X

n=1
an±n(k),(2.76)

µ(k, a) =°H
1X

n=1
anµ(k),(2.77)

where if n = 1 we reduce to the linear solution, ±1(k) = µ1(k).
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Note that, in principle, a linear combination of both modes (growing and decaying),

should be considered; however for standard cosmologies the decaying mode makes a negli-

gible contribution in the linear evolution of ±. Taking the derivatives of Eq. 2.76 affords:

@±

@ø
=H

X
nan±n(2.78)

@µ

@ø
=°H 2

X

n

µ
n ° 1

2

∂
anµn(2.79)

and substituting these relations into the equations of motion allows derivation of ±n , µn in

terms of the linear fluctuations:

±n(k) =
Z

d 3q1..
Z

d 3qn±D (k°q1..n)Fn(q1, ..qn)±1(q1)..±1(qn),(2.80)

µn(k) =
Z

d 3q1..
Z

d 3qn±D (k°q1..n)Gn(q1, ..qn)±1(q1)..±1(qn).(2.81)

(2.82)

Note the dependence on time of the coefficients in Eq. 2.82, a / ø2 and 3≠mH 2/2 /
6/ø2 from the Friedman equation.

The kernels Fn and Gn can be found: these are homogeneous functions in q1..qn that

describe the coupling through Æ(k1,k2), Ø(k1,k2);

Fn(q1, . . . ,qn) =
n°1X

m=1

Gm(q1, . . . ,qm)
(2n +3)(n °1)

h
(2n +1)Æ(k1,k2)Fn°m(qm+1, . . . ,qn)

+2Ø(k1,k2)Gn°m(qm+1, . . . ,qn)
i

,(2.83)

Gn(q1, . . . ,qn) =
n°1X

m=1

Gm(q1, . . . ,qm)
(2n +3)(n °1)

h
3Æ(k1,k2)Fn°m(qm+1, . . . ,qn)

+2nØ(k1,k2)Gn°m(qm+1, . . . ,qn)
i

,(2.84)

(where k1 ¥ q1 + . . .+qm , k2 ¥ qm+1 + . . .+qn , k ¥ k1 +k2 and F1 =G1 ¥ 1 by definition).

2.4.3 Case≠m 6= 1

In general if ≠m 6= 1, it is no longer possible to find separable forms of the solutions for ±

and µ. Further details are not pertinent here but a general discussion of perturbation theory

for§CDM can be found in [51] for example. Note, that when building a model to be tested

against observations, in order to reduce the computational effort, the kernels are usually

pre-computed, assuming a fiducial cosmology. This choice is discussed in [51] where its

validity is shown for close-to§CDM scenarios, since kernel dependence on cosmology is

very small. However a recent work [57] further explored this to test departures from standard

§CDM models.
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3
OBSERVING THE LARGE SCALE STRUCTURE

3.1 Linear redshift space distortions

Galaxy surveys provide a three-dimensional map of the large scale structure by observing the

angular position of multiple galaxies in the sky and measuring their respective spectroscopic

redshifts.

In a completely smooth universe where recession velocities are due solely to the ex-

pansion of the universe, V = Hr, redshifts make ideal indicators of the radial distances of

the galaxies. In fact due to inhomogeneities, galaxy redshifts are contaminated by peculiar

velocities, V ! V+v, so that the comoving redshift position s is defined as

s = x+ v · n̂
H

n̂,(3.1)

where x is the true comoving position while the second term corresponds to the contami-

nation along the line of sight. While the apparent distortion of the galaxy distribution in

redshift space, known as redshift space distortion (RSD), appears at first glance to be nothing

more than a systematic effect, it does in fact represent a unique way to measure the growth

rate of structure formation, thus allowing tests of gravity on cosmological scales [58] [59],

[52]. More recent publications have modeled, tested and provided further support for this

concept [60], [7].

In this section we provide a description of the RSD on large scales, where linear theory

holds, while in section 3.2 we discuss models accounting for non linearities. We start with a
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convenient change of variables, rescaling the peculiar velocity u and density£ as

u ¥ °v
H f

,(3.2)

£¥r ·u,(3.3)

(all the other variables remain as defined in chapter 2). Whereas according to Eq. 2.50,

(3.4) v =°H f u.

3.1.1 Mapping from real to redshift space

All models reviewed in this section follow the plane parallel approximation whereby if an

observer is very distant from the region observed (i.e. survey region), one can work with a

fixed line of sight n̂ for all observed objects, e.g. n̂ ' ẑ, with ẑ constant versor.

Using this approximation the mapping from redshift space to real space (Eq. 3.1) is given

by

(3.5) s = x° f uz ẑ.

From Eq. 3.5 it possible to ascertain the relation between fluctuation in redshift space ±s and

real space. Assuming the number of objects observed is conserved going from one space to

the other:

[1+±s(s)]d 3s = [1+±(x)]d 3x,(3.6)

In Fourier space, Eq. 3.6 becomes,
Z

d 3s
e°i ks

(2º)3 (1+±s) = ±D (k)+±s(k) =
Z

d 3x
(2º)3 exp[°i k(x° f uz ẑ)] (1+±) ,(3.7)

which leads to,

±s(k)+±D (k) =
Z

d 3x
(2º)3 exp(°i k ·x) (1+±)exp

£
i f kzuz(x)

§
.(3.8)

From Eq. 3.8 it is evident that the fluctuations in redshift space distortions are given by a

non-linear mapping from ± and the velocity component along the line of sight, uz .

3.1.2 Linear regime modeling

A simple linear model describing how the fluctuations are distorted in redshift space has

been developed by Kaiser [52]. The linear model, Eq. 3.8 assumes that velocities are small

enough (on linear scales), to expand the exponential factor as

±D (k)+±s(k) =
Z

d 3x
(2º)3 exp(°i kx)(1+±)

£
1+ i f kzuz(x)

§
,(3.9)
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which translates to

±s(k) = ±(k)+ i f kzuz(x).(3.10)

For linear perturbation theory we have, ru = ± and equivalently in Fourier space, u(k) =
°i k
k2 £(k) = °i k

k2 ±(k); substituting these relation in Eq. 3.9 affords the relation between ±s and

±:

(3.11) ±s(k) = ±(k)+ f i kz
°i kz

k2 ±(k) ¥ (1+ f µ2)±(k),

where µ¥ kz
k is the cosine of the angle between the line of sight ẑ and the wave-vector.

When modes perpendicular to the LOS are considered, as in Eq. 3.11, the fluctuations

are unaltered from real to redshift space, since ±s = ± (µ= 0). By contrast when observing

modes parallel to the LOS (µ= 1) the density fluctuations in redshift space appear enhanced

by a factor 1+ f .

Consider for example a spherical over-density contour where on average the galaxies are

infalling. In redshift space the sphere appears squashed since in the perpendicular direction

the size is unaltered, while in the parallel direction the size is reduced. The opposite effect

happens in underdense regions, where the average outflow elongates the structure from real

to redshift space. More formally we could say that the redshift space distortion generates

a quadrupole moment as the spherical (isotropy) symmetry is broken along the LOS. As

observed earlier, the Kaiser model provides a good description of redshift space distortions

assuming that velocities are small enough for the exponential expansion to be accurate.

While this assumption holds at large scales, when moving to smaller scales, towards virialized

structure sizes (halos of a few Mpc), the velocities are larger than the typical size of the

objects. The scenario is therefore that modes perpendicular to the LOS remain unaltered,

while along the LOS the high velocities from random thermal motion generate an elongation

of structures in redshift space (i.e. the quadrupole is of opposite sign than when at large

scales). This is commonly referred to as the Fingers of God effect (FoG) .

3.1.3 The redshift space power spectrum

Considering the correlation of the matter overdensity in redshift space (Eq. 3.11),

h±s(k)±s(k0)i=
°
1+ f µ2¢°1+ f µ2¢h±(k)±(k0)i,(3.12)

and the definition of P , we find the relation between the redshift space power spectrum Ps

and the real space one:

Ps(k) = P (k)
°
1+ f µ2¢2

.(3.13)

41



CHAPTER 3. OBSERVING THE LARGE SCALE STRUCTURE

It is often convenient to decompose the angular dependence of Ps(k) in the Legendre

polynomials L`(µ), into

P`
s (k) = (2`+1)

2

Z1

°1
Ps(k)L`(µ) dµ,(3.14)

where the expansion coefficients Ps(k) are given by

Ps(k) =
X

`

L`(µ)P`(k).(3.15)

For simplicity k will often be used instead of (k,µ) to denote the angular dependence

in redshift space. On linear scales, Ps is expected to be fully described by the first three

multipoles: monopole, quadrupole and hexadecapole [61]. Moving towards smaller scales

the linear description becomes increasingly inaccurate and a different theory is required,

as we discuss in Sec. 3.2. Note that on smaller scales, higher order multipoles are no longer

zero even though most of the information is still accounted for the first three multipoles

[7]. Another important factor to be taken into account is the bias relation between the

observable galaxy power spectrum and the dark matter matter density field, since galaxies

and not dark matter are observed.

A simple phenomenological model often used to account for these effects is the disper-

sion (or streaming) model:

(3.16) P g
s (k) = P g (k)

°
1+Øµ2¢2

exp(° f 2k2µ2æ2
p ),

where g refers to galaxy power spectra;
°
1+Øµ2¢2 corresponds to the squashing term, in

which Ø= f /b and b is the linear bias; exp(° f 2k2µ2æ2
p ) is a suppression factor, in which æv

corresponds to the pairwise velocity dispersion of galaxies within halos.

Note that the equation 3.16 is oversimplified as it considers the effects happening at the

large and small scales to be independent; due to the Gaussian initial condition hypothesis

at large scales as well, we expect a velocity dispersion (as the velocity field fluctuates from

one point to another). Further the æv parameter represents an effective velocity dispersion

inconsistent with the actual observable dispersion as it depends on many other factors, such

as scale or bias relation.

To appreciate how this model is derived consider again the mapping between the density

from real to redshift space:

[1+±s(s)]d3s = [1+±(x)]d3x,(3.17)
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where considering s = x° f uz ẑ, the Jacobian is defined as

J ¥ d3s
d3x

= |1° f rzuz |.(3.18)

This leads to

(3.19) 1+±s(s) = 1+±(x)
J

which combined together with Eq. 3.18 gives

±s(s) = 1+±(x)° J
J

= ±(x)+ f rzuz

J
.(3.20)

The analogous relation in Fourier space becomes,

±s(k) =
Z

d3s
(2º)3±s(s)exp(°i k ·s) =

Z
(±+ f rzuz) f

d3s
(2º)3 J

exp[°i k · (x° f uz ẑ)],

(3.21)

and recalling that d3s
J = d3x, we obtain

±s(k) =
Z

d 3x
(2º)3 exp(°i k ·x)

£
±(x)+ f rzuz(x)

§
exp(i f kzuz)(3.22)

and

Ps(k) =
Z

d3r
(2º)3 exp(°i k · r)

≠
exp(i f kz¢uz)

£
±(x)+ f rzuz(x)

§£
±(x0)+ f rzuz(x0)

§Æ
.

(3.23)

Where we required the translation invariance to be satisfied and defined¢uz ¥ uz (x)°uz (x0)

and r ¥ x°x0.

By making a crude approximation assuming ¢uz is independent of r and factorizing out

of the integral the exponential term, exp(i f kz¢uz), Eq. 3.23 becomes,

(3.24) Ps(k) =
Z

d3r
(2º)3 exp(°i kr)hexp(i f kz¢uz)i

≠£
±(x)+ f rzuz(x)

§£
±(x0)+ f rzuz(x0)

§Æ
.

If velocities are assumed to be Gaussian field, the hexp(i f kz¢uz)i term transforms to:

(3.25) hexp( f 2k2µ2¢uz)i= exp
µ

f 2k2µ2

2
h¢u2

zi
∂
= exp(° f 2k2µ2h¢u2

zi/2),

which corresponds (qualitatively) to the expected suppression on small scales. Note that

modelling the small-scale velocities as a Gaussian field is also a very simplistic assumption

and therefore we expect the model to "scale breakdown" on non-linear scales. In the next

section (3.2) we discuss the limitations of the model presented in Eq. 3.16 and the various

attempts to extend its validity.
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3.2 Non Linear redshift space distortions

Here we discuss improved models for describing non-linear distortions in the redshift

space correlation function and power spectrum. We review the competing approaches and

compare some of the representative models for both ª and P and their ability to accurately

describe N-body simulation.

3.2.1 Eulerian and Lagrangian perturbations

One possible approach to modelling the power spectrum in redshift space is based on

Eulerian standard perturbation theory, where perturbations are performed of density and

velocity fields; the key assumption, as we reviewed in Sec. 2.4, is that at linear level the

amplitude of these fields represents the small parameters of the theory.

Another perturbation based approach is the Lagrangian perturbation theory (LPT),

where instead we consider small deviations around the displacement vector [62]. As shown

in [63], the two approach give identical results in predicting the real space matter power

spectrum, when the same orders of the expansion are considered, however there are advan-

tages and disadvantages of both approaches. One advantage of the Lagrangian prescription

is that the redshift space mapping can be performed by simply adding a derivative of the

original displacement in the line of sight direction. Another key point, discussed in recent

works (e.g. [64]) is that the Lagrangian approach provides a more consistent description

of the halo bias as opposed to that provided by the Eulerian approach. In particular [64]

highlights the emergence of non local lagrangian bias terms when dealing with higher order

statistics, such as the Bispectrum.

In the analysis presented in chapters 7 and 8 we do not consider higher order statistics

and, given the signal to noise ratio provided by the eBOSS DR14 data, we include only the

local bias terms as free parameters in our models, therefore the two perturbative schemes

can be considered equivalent for the purposes of this thesis.

The following is a general description of the models for the two point correlation function,

based on the Lagrangian approach. In 3.2.3 we focus instead on the power spectrum by

considering the models based on the Eulerian perturbative schemes.

3.2.2 Modelling the correlation function on non-linear scales

One of the first non linear model based on the LPT scheme is presented in [63] and [65]. [63]

and introduces a resummation of the LPT scheme (rLPT) [62], to describe the non linear
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evolution of the large scale structures, both in real and redshift space. Improvements in the

model involve a more accurate description of non-linearities on the BAO feature with respect

to [62], achieved by applying resummation schemes in redshift space. Similar results have

been achieved for standard perturbative schemes [66], even though the method developed

in [65] and [63] has the advantage of simplicity in the formalism over the one derived in

[66] as well as having a faster numerical numerical resolution. On the other hand the rLPT

description becomes less accurate at scales smaller than 70h°1M pc where its predictive

ability for the matter power spectrum deviates dramatically from N-body measurements

[63].

In [11] a new formulation of LPT is introduced, known as convolution Lagrangian per-

turbation theory (CLPT). CLPT provides a description in real and redshift space of the dark

matter and halo correlation functions; the model presented in [11], can be seen as a partial

resummation of [65]. Improvements include a more accurate description of the matter

correlation function in real space and of the low-multipoles in redshift space, while the

deviation becomes greater for the quadrupole on quasi-linear scales. Another key advantage

is that the order zero of the CLPT naturally recover the Zeldovich-approximation ([67]) for

the matter correlation function [68].

Figure 3.1, from [11], presents a comparison between the CLPT based redshift space

monopole matter correlation function [11] (dashed lines) and the rLPT one [65] (dotted

lines) against N-body simulation (squares) described in [10], at z = 0.55. Linear theory (solid

line) corresponds to the model formulated by [52] in configuration space. At large scales

the CLPT and rLPT models overlap, while tending towards smaller scales, the model from

[11] shows a better agreement with the dark matter clustering than the one in [65]. Figure

3.2, from [11], shows an analogous comparison for the redshift space quadrupole, (same

notation as 3.1). In this case the CLPT model as well fails to provide an accurate description

of the higher order multipoles.

The method presented in [10] studies the halo clustering in real and redshift space, using

a set of 67.5h°3Gpc3 N-body simulations. They compute corrections on the halo correlation

function in redshift space proposing a non perturbative real-to-redshift space mapping on

quasi-linear scales (ª 30°80h°1M pc), which recovers the Gaussian streaming model to

linear order. In a recent work [69] a further extension of the CLPT model is proposed, which

combines the CLPT-real power spectrum with the scale-dependent Gaussian streaming

model derived in [10], obtaining a 2% and a 4% agreement below < 25h°1M pc for monopole

and quadrupole.
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Figure 3.1: The redshift space monopole matter correlation function from CLPT (dashed
lines), rLPT (dotted lines) and linear theory (solid line) compared to N-body simulation
(squares) described in [10], at z = 0.55. (Figure taken from [11] )
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Figure 3.2: The redshift space quadrupole matter correlation function from CLPT (dashed
lines), rLPT (dotted lines) and linear theory (solid line) compared to N-body simulation
(squares) described in [10], at z = 0.55. (Figure taken from [11] )
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3.2.3 Modelling the power spectrum on non-linear scales

The work presented in chapters 7 and 8 has been carried out mainly considering statistics in

Fourier space. As discussed in 3.2.2, all the models describing the correlation function both in

real and redshift space are accurate only above a certain scale, below which any perturbation

theory breaks down as we approach a non-linear regime. Moreover the signal related to a

particular scale in configuration space (e.g. the BAO scale) is decomposed into different

wave-numbers when going to Fourier space, for these reasons, even the best approximated

model describing the correlation function at a certain range of scales would not necessarily

accurately describe the power spectrum at the equivalent range of frequencies.

The following sections review the key models in Fourier space, used in this work, [70]

[13] and their derivations.

3.2.3.1 Perturbation theory approach

As discussed in Sec. 2.4, the SPT approach is based on expanding the fluid equations of

density and velocity around their linear solutions, while LPT consider perturbations around

the displacement vector. The resultant expressions for the redshift space power spectrum

are

Ps,SPT (k,µ) = (1+ f µ2)2 Pli n(k)+Ps,1-loop (k,µ),(3.26)

for SPT, and

Ps,LPT (k,µ) = e°k2{1+ f ( f +2)µ2}æ2
v £

£
Ps,SPT (k,µ)+ (1+ f µ2)2 ©

1+ f ( f +2)µ2™k2æ2
v
§

,

(3.27)

for LPT. See [65], [71] for the derivation of the two models.

First term in 3.26 corresponds to the Kaiser factor multiplying the linear power spectrum,

while the second term encodes the mode-coupling corrections between the density and

velocity fields, at one-loop order in perturbation theory. Note that those corrections arise

from both gravitational clustering and redshift space distortion, which is why a naive model

multiplying the Kaiser factor and the power spectrum at one-loop is not the correct approach

as discussed in [70]. The second equation 3.27 is derived from LPT and includes the quantity

æ2
v which in this case, represents the linear order estimate of the effective velocity dispersion.

Figures 3.3, 3.4 from [13] show a comparison of the results from SPT ( blue dashed lines)

and LPT ( red dot dashed lines) with respect to the linear theory ( black dashed lines) (Kaiser)
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Figure 3.3: Description of the BAO feature in the monopole matter power spectrum from
SPT and LPT at 1-loop (Eq. 3.26 and Eq. 3.27) with respect to the linear theory (Kaiser) and
N-body simulation (crosses) [12] at z = 0.5,1,3. (Figure taken from [13])
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Figure 3.4: Description of the BAO feature in the quadrupole matter power spectrum from
SPT and LPT at 1-loop (Eq. 3.26 and Eq. 3.27) with respect to the linear theory (Kaiser) and
N-body simulation (crosses) [12] at z = 0.5,1,3. (Figure taken from [13])
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and N-body simulation from [12] around the BAO feature at z = 0.5,1,3. The y-axis indicates

the ratio between the predicted multipoles (monopole, Fig. 3.3 and quadrupole Fig. 3.4) and

their respective no-wiggle moments. It is clear from the plots shown that both perturbative

solutions do not accurately describe the baryon acoustic oscillation especially at redshifts 1

and 0.5 (middle-bottom panels), where non-linearities become more important. The LPT

approach shows a slightly better agreement than does the SPT approach, but, from k ª 0.05

an evident discrepancy in the amplitude with respect to the N-Body results is detected.

3.2.3.2 Phenomenological models

From the discussion above we can conclude that perturbation theory, even if it is a mathe-

matically more rigorous approach, at 1°loop order, cannot provide a good approximation

of the redshift space multipoles. A more successful and efficient strategy is achieved by

phenomenological models. The main phenomenological prescription, known as non-linear

Kaiser model, was first introduced to extend the validity of the model [52] to non linear

scales. The model, derived in [70] rigorously accounts for non linearities in mapping and in

the matter power spectrum. Heading in the same direction – the so-called TNS model [13]. –

extends the model presented in [70] to account for linear squashing/stretching as well as

small-scale suppression.

The following sections review the derivation of the two models, given their importance

to the work in the current thesis.

3.2.3.3 Non Linear Kaiser Model

Starting from equation 3.24 and going beyond linear order affords:

Ps(k) =
Z

d3r
(2º)3 exp(°i kr)hexp(i f kz¢uz)i

£
h±(x)±(x0)i+2 f h±(x)rzuz(x0)i

+ f 2hrzuz(x)rzuz(x0)i
§(3.28)

assuming a Gaussian field for the exponential term and inserting the definition of the power

spectrum, the relation between the redshift and real space power spectra is,

(3.29) Ps(k) =
°
P±±+2 f P±µ+ f 2Pµµ

¢
·exp(° f 2k2µ2h¢u2

zi/2),

where the subscripts ± and µ denote the correlation for density and velocity divergences,

respectively.

Some considerations of equation 3.29: the first term on the right side corresponds to the

squashing (Kaiser) factor describing coherent motion of galaxies at large scales and reduces
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to 3.13 at linear level, where ±¥ru and P±± = Pµµ = Pµ±. The second factor on the right, as

in Eq. 3.13, represents the suppression of the correlation, due to random velocities at small

scales, where galaxies belong to collapsed structures.

3.2.3.4 Non linear regime model (TNS)

[13] investigate the impact of varying the functional form of the FoG term and confirms that

the discrepancies from N-body results do not vary significantly; the reason is that the higher

order of the coupling between the density and velocity fields is missing when performing

a first order expansion of the exponential term in Eq. 3.28, [13]. In order to account for

the non linear corrections [13] consider higher-order contributions in the expansion. They

present an improved version of 3.29, with a particular focus on the BAO feature. Their model,

adds corrections generated from higher order coupling between density and velocities

and provides a better description of both monopole and quadrupole when compared with

N-body simulations. Following on from their derivation it is convenient to introduce the

following notation (consistent with [13])

j1 =°i k f ,(3.30)

A1 =¢uz , A2 = ±(x)+ f rzuz(x), A3 = ±(x0)+ f rzuz(x0),(3.31)

into Eq. 3.21, which becomes,

P s(k) =
Z

d3rexp(i kr)
≠

exp( j1 A1)A2 A3
Æ

.(3.32)

We interpret the term hexp( j1 A1)i as a generic characteristic function (or moment generating

function) and relate it to its cumulant generation function. Being A a generic stochastic

field with variables A1, A2, A3 and j1, j2, j3 some generic constant vector components, the

moment generating function hexp( j A)i is related to the cumulant generation function

through the relationship

≠
exp(j ·A)

Æ
= exp

©
hexp(j ·Aic

™
(3.33)

where the subscript c denotes the cumulant generating function.

Applying the partial derivative with respect to j2 and j3 on both sides of Eq. 3.33 and

setting both j2, j3 components equal to zero affords

≠
exp( j1 A1)A2 A3

Æ
= exp

©≠
exp( j1 A1)

Æ
c

™

£
£≠

exp( j1 A1)A2 A3
Æ

c +
≠

exp( j1 A1)A2
Æ

c

≠
exp( j1 A1)A3

Æ
c

§
.

(3.34)
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Substituting Eq.3.34 in Eq. 3.32 we get,

P s(k,µ) =
Z

d3xexp(i kx)exp(
©≠

exp( j1 A1)
Æ

c

™
)

£
£≠

exp( j1 A1)A2 A3
Æ

c +
≠

exp( j1 A1)A2
Æ

c

≠
exp( j1 A1)A3

Æ
c

§
.

(3.35)

If we reintroduce the Ai terms as they were defined in Eq. 3.30, the coupling between the

FoG term and the density and velocity fields becomes evident at linear scales. Note also that

so far no approximations have been made, a part for the plane parallel assumption, yet the

full mapping was considered. In order to find first order corrections to the model in Eq. 3.29

we perturb the term within the brackets of exp(
©≠

exp( j1 A1)
Æ

c

™
. In particular we consider the

perturbation up to the second order in j1 as:

≠
exp( j1 A1)A2 A3

Æ
c +

≠
exp( j1 A1)A2

Æ
c

≠
exp( j1 A1)A3

Æ
c '

hA2 A3i+ j1 hA1 A2 A3ic + j 2
1

Ω
1
2

≠
A2

1 A2 A3
Æ

c + hA1 A2ic hA1 A3ic

æ
+O ( j1)3.

(3.36)

If we consider the Ai terms in perturbation theory (also dropping the
≠

A2
1 A2 A3

Æ
c term as it

is of a higher order), we get,

P s(kµ) = exp
©≠

exp( j1 A1)
Æ™

£
£
P±±(k)+2 f µ2P±µ+ f 2µ4Pµµ+ A(k,µ)+B(k,µ)

§(3.37)

where the exponential pre-factor can be interpreted as the suppression factor (FoG) term. A

and B are the new corrections to Eq. 3.29 and correspond to,

A(k,µ) = j1

Z
d3xexp(i kx)hA1 A2 A3ic(3.38)

B(k,µ) = j 2
1

Z
d3xexp(i kx)hA1 A2ic hA1 A3ic(3.39)

Figure 3.5 from [13], shows the behaviour of the two additional corrections to Eq. 3.38 in

describing the BAO feature. Y-axes correspond to the matter redshift space monopole and

quadrupole (left and right panels) including the A and B corrections derived in [13], divided

by their respective no-wiggles spectrum [72]; the FoG term has been included assuming a

Gaussian distribution for the velocity dispersion.

From both panels in 3.5 we observe that the A term for both monopole and quadrupole

tends to oscillate and has a larger amplitude than the term B , which is smooth with a small

amplitude. However it is evident that these corrections brings a non-negligible variation to

the non-linear Kaiser model (3.29), especially for the quadrupole. Description of the BAO
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Figure 3.5: The A and B contributions to the monopole (left) and quadrupole (right) matter
power spectrum. (Figure taken from [13])

feature in the monopole matter power spectrum derived with SPT and LPT with respect to

the linear theory and N-body simulation at z = 0.5,1,3.

Note that when doing the approximation in Eq. 3.36, the exponential term becomes a

phenomenological parameter. However, since the finger of God effect is fully non-linear

and arises from the thermal motion of galaxies within halos, it is very difficult to predict the

exact velocity dispersion. In fact in this and other work (e.g. [60]) it is treated as simply a

nuisance parameter.
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3.3 Alcock-Paczynki effect

The RSD discussed in the previous section, is not the only apparent distortion of the clus-

tering pattern: given that the comoving distance of each galaxy is computed assuming a

cosmological model, an incorrect choice of the underlying cosmology introduces artificial

anisotropies in the resulting comoving clustering. In particular, assuming deviations from

the true cosmology to be small when compared with the signal detected, this effect is sensi-

tive to H (z) along the line of sight and scales as the angular distance D A(z) in the transverse

direction.

This apparent mismatch of the underlying cosmology, known as the Alcock-Paczynsky

distortion was modelled by [73] and since then it has been used as a cosmological test in

different analyses, e.g. [74] [75]. We here review how to account for this effect in our model

by relating the true and the observed radial positions. We start by introducing the scaling

factors,

Æ“ = H fi d (z)r fi d
s (zd )

H(z)rs (zd ) ,(3.40)

Æ? = D A(z)r fi d
s (zd )

D fi d
A (z)rs (zd )

,(3.41)

where r fi d
s (zd ) is the fiducial sound horizon at the dragging epoch redshift (zd ) introduced

in 2.3.4. The true wave-numbers kt
“,kt

? are then related to the observed k“,k? by

kt
“ = k“/Æ“,

kt
? = k?/Æ?.

(3.42)

In this work we will deal mainly with the absolute wave-number k =
q

k2
“ +k2

? and the

cosine of the angle to the line-of-sight µ coordinates, whose transformations, obtained from

Eq.3.42, are

kt = k
Æ?

"

1+µ2

√
Æ2
?
Æ2
“
°1

!#1/2

,

µt =µÆ?
Æ“

"

1+µ2

√
Æ2
?
Æ2
“
°1

!#°1/2

.

(3.43)

3.4 Primordial Non-Gaussianity

In Sec. 1.2.5, we discussed how a standard inflationary paradigm predicts a primordial

gravitational field, described by a Gaussian random field implying that the amplitude of the
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initial fluctuations is also expected to follow a Gaussian distribution. On the other hand an

alternative model positing a more complicated action (e.g. with a different potential term) for

the Inflaton field would generate an additional non Gaussian component in the distribution

of the fluctuations. This degree of non-Gaussianity can be quantified by introducing the fNL

parameter, defined in terms of the primordial (connected) Bispectrum which is expected to

be equal to zero for a perfect Gaussian random field, divided by its tree-level component.

In chapter 6, we will focus on the local for fNL [76], [77] and how it is accounted in the

matter power spectrum prediction (see e.g. [78]). The following is a short review of existing

non-Gaussianity constraints.

fNL constraints from WMAP7 [40] combine 7 years of observational data on the tem-

perature and polarization anisotropies, obtained from the WMAP satellite [79]; from the

measured temperature bipectrum, local primordial non Gaussianity is constrained at 95% of

accuracy to be °10 < f LOC
NL < 74 and °274 < f LOC ,eq

NL < 266, °410 < f LOC ,or t
NL < 6, using

equilateral and orthogonal triangles only.

fNL constraints from the LSS [14] present a measurement of f LOC
NL from LSS observation

competitive with the one from [40]. [14] combine three different SDSS samples: spectro-

scopic LRGs [17] and photometric LRGs and quasars [80] [81]. They consider the spec-

troscopic LRGs power spectrum on scales k ∑ 0.2hMpc°1, computed on a 4000deg 2 area

for 0.16 ∑ z ∑ 0.47; the LRGs-angular power spectrum is computed on photometric LRGs

distributed across a 3500deg 2 area between 0.2 < z < 0.6 for k < 0.1hMpc°1; finally they

consider photometric quasars used in [81], in two different photo-z ranges, 0.65°1.45 and

1.45°2. As we will review in detail in chapter 6, a non negligible f LOC
NL signal generates a

scale-dependent bias contribution at large-scales. Quasars, as highly biased tracers of the

LSS potentially provide a strong constraint on f LOC
NL , on the other hand they are also highly

affected by systematic errors such as stellar contamination, galaxy extinction and calibration

errors. More details on this can be found in [82]. Figure 3.4 shows the constraints on non

Gaussianity obtained from the different samples described above; while details about the

techniques used are not discussed here, it is worth noting is that no-evidence of f LOC
NL 6= 0

has been detected. The errors obtained (at 1æ) are comparable with those obtained in [40],

(within the rande 95°99.7%).

Further constraints of f LOC
NL using LSS have been presented in [83] [84]. In particular [84]

find °45 < f LOC
NL < 190 (95% CL) on the largest effective volume using the DR9 BOSS DATA

[85], (3000deg2 footprint), within 0.43 < z < 0.7. They also include a robust treatment of the
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FIG. 4: This figure shows the median value (red points) and 1,2 and 3-sigma limits on fNL obtained from di�erent probes
(vertical lines). The data set used are, from top to bottom: Photometric LRGs, Photometric LRGs with only slices 0–4 used,
Spectroscopic LRGs, Integrated Sach Wolfe e�ect, photometric QSO, photometric QSOs using b(z) � 1/D(z) biasing scheme
(see Section IIIC), photometric QSOs using alternative �2 calculation scheme (see Section III C), using a scale dependent bias
formula appropriate for recently merged halos (Section II C), Combined sample, Combined sample using a scale dependent bias
formula appropriate for recently merged halos (for QSO), the last two resoluts to which a statistically independent WMAP 5
bispectrum fNL constraint was added. See text for discussion.

has been smeared out. The QSO plot again shows simi-
lar behaviour, with two caveats. First, the changes in the
predicted power spectrum on small scales are a result of
the fact that bdn/dz is perturbed with changing fNL, al-
though this is a minor e�ect. Second, the increase in the
power at smallest � for negative fNL is due to the fact that
for su�ciently negative fNL (or su�ciently large scales),
�b < �2b and hence power spectrum rises again above
what is expected in the Gaussian case. The more unex-
pected is the NVSS-CMB cross-correlation. Naively, one
would expect that the first point of that plot will produce
a very strong fNL “detection”. However, the CMB cross-
correlation signal is only linearly dependent on fNL, while
cross-correlations of NVSS with other tracers of struc-
ture are quadratically dependent on fNL. Large values

of fNL produce anomalously large power in the angular
power spectrum if bdn/dz has significant contributution
at high-z tail, which probes large scales. Therefore, the
bdn/dz fitting procedure skews the distribution towards
lower redshifts, leading to a lower bias overall. At very
large values, e.g. fNL = 800, this e�ect is so severe that
the b � 1/D(z) scaling forces b < 1 at the low-redshift
end. This implies �b < 0, and the large-scale ISW sig-
nal actually goes negative (see top-left panel of Fig. 3).
Therefore, the ISW is surprisingly bad at discriminating
fNL and we were unable to fit the first NVSS ISW data
point with a positive fNL. This behavior is however only
of academic interest because the other data sets strongly
rule out these extreme values of fNL.

We ran a series of MCMC chains with base cosmolog-

Figure 3.6: fNL constraints (at 1,2 and 4 æ) from photometric LRGs and quasars, Integrated
Sach Wolfe effect and spectroscopic LRGS. Figure taken from [14]

systematic errors such as Galactic foregrounds and their impact on the f LOC
NL measured. A

full discussion on how to deal with the systematic bias due to stellar contamination is also

included .

fNL constraints from Planck In chapter 1 we have discussed the ability of the Planck

experiment of studying the cosmological model by placing unprecedented constraints on

the cosmological parameters. In particular with regard to local primordial non-Gaussianity,

[3] obtain f LOC
N L = 2.5± 5.7, from the observed temperature bispectrum. This result, (at

68% CL) is consistent with a§CDM Universe where primordial seed perturbations have a

Gaussian distribution. Planck CMB observational data represent, so far, the most powerful

probe to constrain non-Gaussianity. On the other hand, the LSS measurements with future

experiments will be statistically compelling thanks to the larger effective volumes being

considered (Sec. 3.5.4); a comparison between future results and Planck will be then very

interesting as the two probes (CMB and LSS) are almost completely independent.

In chapter 6 we propose a new technique that increases the signal to noise ratio at large

scales where the non-Gaussian features would appear, on DESI-like surveys.

3.5 Measuring the power spectrum

Here we review the estimator of the power spectrum used in this thesis. The method, derived

in [86], hereto FKP method, has been used in different works (see section 3.5.4 for review of
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important applications) in order to measure the galaxy power spectrum from 3-dimensional

redshift surveys. The FKP estimator aims to account for the target selection effects, the

discreteness of the galaxy field observed and proposes an optimal weighting scheme to

maximize the signal.

3.5.1 Power spectrum estimator

Three main assumptions have been made to derive the estimator;

i the galaxies observed are a Poisson sample selected from the density field ±.

ii There is no phase correlation between the true density field and the mask (fair-sample

hypothesis).

iii The galaxy fluctuations ±g are Gaussian distributed. In agreement with the inflationary

paradigm discussed in section 1.2.5 and consistent with observations.

Given these premises, we consider the galaxy density field defined as,

±g =
£
ng (r)°Æns(r)

§
w(r),(3.44)

where ng (r) is the selection function defined by the galaxy catalogue and mask, while ns(r)

is a synthetic catalogue characterized by the same angular and radial selection function as

ng (r) containing (Æ£ number of galaxies) objects, located at random positions, (i.e. ns(r)

does not contain any clustering signal). The strategy includes also weight functions to

optimize the signal which we discuss separately in 3.5.3.

Considering (i) and (ii) and taking the Fourier transform of the galaxy density field we

obtain

(3.45) h|±g (k)|2i=
Z

d 3k 0

(2º)3 P (k0)|G(k°k0)|2 + (1+Æ)
Z

d 3xn̄(x) .

The first term in Eq. 3.45 consists in the true galaxy power spectrum convolved with the

window function of the survey defined by

(3.46) G(k) ¥
Z

n̄(x)ei k.r d 3x.

The second term is the shotnoise contribution, modelled according to (i), which arises from

the correlation of a discrete field in Fourier space.
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3.5.2 Variance of the power spectrum

A further assumption, (iv), is made to compute the variance of the FKP estimator: given

G(k) ª 1/D where D defines the depth of the survey, we are restrict our analysis to scale

k ¿ 1/D so that equation 3.45 can be approximated to

(3.47) h±g (k)±g (±k)i ' P (k)Q(±k)+S(±k),

where S denotes the shotnoise term in equation 3.45 and

(3.48) Q(k) ¥
Z

n̄2(x)ei k·rd 3x.

Combining together (iv) and (iii) gives that the variance of the galaxy power spectrum as

æP ' 1
Vk

Z
d 3k 0|P (k)Q(±k0)+S(±k0)|(3.49)

Where Vk is the volume of the shell considered. Note that in assuming (iii), consistent with

the Wick theorem, we neglected the connected galaxy four-point correlation function.

3.5.3 FKP weights

In this section we review the optimum weighting scheme proposed [86] to be applied on the

galaxy density fluctuations, which depends on the average distribution in redshift n(r) of the

galaxies observed. In summary the FKP approach assumes that galaxies are a Poisson sample

of the matter density field and that, by computing the Fourier transform of the distribution of

the galaxies, deconvolving it from the window function and subtracting a Poisson shotnoise

term, we get an unbiased estimator of the galaxy power spectrum. The FKP estimator, has

been applied to many surveys, as we review in 3.5.4; however, as discussed in more recent

works (see e.g.[87] [88]) such an estimator does not account for the many other factors

involved in the relationship between the distribution of the galaxies and the matter field,

such as luminosity, color and stellar mass [89] [90] [87]. Recent efforts in this direction [88]

underline how the FKP estimator is in fact far from being unbiased and, instead, suggest

improved approaches based on a deeper understanding of galaxy formation.

The work presented in this thesis develops and tests a new weighting scheme that

accounts for the evolution in redshift of clustering by optimally combining different parts

of the survey volume. However we start by briefly reviewing the standard FKP weights

derivation.

Under the assumptions (i-iv), we select the weight function w(r) that maximises the ratio

between the variance and the power spectrum (Eq. 3.45 and Eq. 3.49, finding,

w(r) = 1
1+ n̄(r)P (k)

.(3.50)
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Some considerations on Eq. 3.50; as we mentioned above this derivation has different

limitations; first it describes the relationship between the galaxy and the underlying matter

field in an over-simplistic way such that significant errors appear if the sampling is not

Poissonian. Second in order to apply this weighting to galaxies, the scale dependence is

neglected and thus the optimization is limited to a particular scale. Other work on the

subject (see [88] and references within) as well as this thesis, investigate possible directions

to achieve a more realistic unbiased estimator,one able to optimally extract the cosmological

information from future observation.

3.5.4 Galaxy Surveys

Galaxy surveys are conducted in order to collect the angular position and redshift of a

large number of galaxies in a section of the sky, so as to measure the clustering signal in

3-dimensions. When we are able to obtain the spectrum for the observed galaxies, then the

spectroscopic redshifts measured through their emission and absorption lines have errors in

the order 0,001 ª 0.0001, thus allowing for accurate measurements of the anisotropies along

the line of sight (e.g. RSD signal).

Thanks to technical advancements, such as multi-object spectrograph (MOS), survey

teams, were able to create accurate maps containing up to 106 galaxies, providing robust

measurements of the galaxy power spectrum based on determining the statistical distribu-

tion of matter with high precision.

Significant measurements of the galaxy power spectrum using the estimator discussed

in 3.5 have been presented over the last few decades and we will shortly review some of the

key facilities used and the cosmological constraints achieved thanks to them. We will then

focus on the ongoing eBOSS survey, whose clustering data analysis is presented in chapter

8. In the last part of this section we provide details about future surveys, discussing their

respective strengths in testing cosmology with LSS measurements.

3.5.4.1 Completed and ongoing programs

2-degree Field Galaxy Redshift Survey (2dFGRS) The 2dFGRS, completed in 2002 [19],

ran for five years, with the 3.9m Anglo-Australian Telescope (AAT), covering 1500deg2, mea-

suring spectroscopic redshifts for a total of 232,155 galaxies. In [15] is presented the measure-

ment of the galaxy power spectrum, applying the FKP estimator to 221,414 galaxies, consid-

ering scales between 0.02 < k < 0.15hMpc°1. The data constrain the total matter multiplied
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Figure 3.7: The 2dFGRS redshift space power spectrum from [15], compared with previous
measurements [16][17] [18]. (Figure taken from [15])

by the Hubble parameter, at ª 10% accuracy:≠mh = 0.168±0.016 assuming scale invariant

primordial fluctuations and the baryon fraction at ª 25% accuracy:≠b/≠m = 0.185±0.046.

Figure 3.7 shows the redshift space power spectrum computed in [15], compared with

previous measurements [16][17] [18]. Shaded regions correspond to 1°æ confidence levels.

The solid line shows the best fit obtained for the linear power spectrum normalized to match

the 2dFGRS power spectrum and convoluted with the window function according to Eq.

3.45, with≠mh = 0.168,≠b/≠m = 0.17 and h = 0.72.
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Figure 3.8: Constraints on f æ8 obtained fitting WiggleZ data in three different redshift ranges
compared to previous measurements from 2dFGRS [19], SDSS LRG [20] and VIRMOS-VLT
Deep Survey [21]. (Figure taken from [22])

WiggleZ surveys The WiggleZ Dark Energy Survey [22], completed in 2011 collected the

redshifts of 240,000 galaxies in the southern sky. As for the 2dF program, the observations

were carried out on the AAT using the AAOmega spectrograph, able to measure 392 spectra

simultaneously. [22] present a measurement of the power spectrum, at effective redshift

z º 0.6, computed on a sample of 56,159 bright emission-line galaxies observed during the

WiggleZ program. The measured power spectrum is compared with a model accounting for

non linear corrections and bias, at scales k < 0.4hMpc°1, obtaining constraints on matter

and baryon densities consistent with CMB observations. The growth rate is also measured

within ª 20% accuracy. Figure 3.8 compares the constraints on the growth rate multiplied by

the amplitude term æ8 obtained fitting WiggleZ data in three different redshift ranges, with

previous measurements from 2dFGRS [19], SDSS LRG [20] and VIRMOS-VLT Deep Survey

[21]. All the measurements are consistent with the§C DM prediction (continous line) with

≠m = 0.3, æ8 = 0.8.

BOSS The WiggleZ project was followed by the Baryon Oscillation Spectroscopic Survey

(BOSS) [91], using the 2.5 metre telescope at Apache Point Observatory in New Mexico,
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as part of the Sloan Digital Sky Survey (SDSS) collaboration. The SDSS survey in various

different guises (SDSSI, SDSSI SDSSIII, see e.g. [92] [93] [91]) created the most accurate 3D

map of the Universe, collecting spectra of more than three million galaxies, distributed in

one third of the visible sky.

The Baryon Oscillation spectroscopic survey BOSS program from SDSSIII, 2009-2014,

provided the best cosmological constraints from LSS data, by detecting the BAO using more

than one million galaxies, within 0.2 < z < 0.75. Obtaining ª 1.6% constraint on D A(z)

and at 2.3% on the Hubble parameter, [94]. From RSD analysis, [95] the growth rate is also

constrained to be 0.459±0.060 [95], using the first three multipoles (see Fig. 3.8 and 3.9

previous and next paragraphs).

eBOSS The 6-year extended Baryon Oscillation Spectroscopy Survey (eBOSS) is a new

redshift survey part of SDSS-IV, [96], started in July 2014, to gather the largest volume to

date of any other cosmological redshift survey. The observations target multiple tracers,

including more than 250,000 new luminous red galaxies (LRGs), 195, 000 emission line

galaxies (ELGs) at effective redshifts of z = 0.72,0.87 and over 500,000 Quasars between

0.9 < z < 2.2, (see 3.10). The survey goals involve distance measurement at 12% accuracy

with the baryon acoustic oscillations (BAO) on the LRG sample and the first measurement at

high, currently unconstrained, redshifts using the Quasars [23]. The quasars released in [97]

are characterized by a lower density compared to e.g. BOSS (86 object per deg 2) but they

cover an unprecedented volume 0.9 < z < 2.2 which has allowed the first detection of the

BAO at effective redshift z = 1.52 constraining the spherically averaged BAO distance at 3.8

per cent precision. In [98] the selection technique is presented in detail, however, in brief

the quasars have been selected on imaging from SDSSI, SDSSI SDSSIII and using the Wide

Field Infrared survey experiment [99], a satellite observing the entire sky in four infra-red

bands. The DR14 quasar spectra were collected using the BOSS spectrograph [100] during 2

years of observations.

Systemic redshifts Due to physical processes relative to the quasar objects, a careful

treatment is required in order to infer the systemic redshift from the measured spectroscopic

redshift [101]. The least biased estimate of the quasar redshift is provided by the M gI I

emission. However the signal to noise ratio of the M gI I emission line varies significantly

across the sample. For this reason the best z-estimate is based on the principal component

analysis (PCA) which combines the full information from the spectra. Figure 3.9 from [23]

shows the spherically averaged BAO distance measurements obtained from the DR14 quasar
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Figure 3.9: Angular distance measurements from BAO analyses (from [23]). Results from
DR14 quasars [23], 6dF Galaxy Survey [24], BOSS DR12 [7], BOSS LyÆ [25] and WiggleZ [26].

sample compared to the§C DM prediction and the previous surveys. Figure 3.9 includes

results from the 6dF Galaxy Survey [24], BOSS DR12 [7] BOSS LyÆ [25], WiggleZ results from

[26].

3.5.4.2 Future programs

DESI The Dark-Energy Spectroscopic Instrument (DESI) is a ground based survey starting

in 2019, that run for 5 years using the 4-meters Mayall telescope at the Kitt-Peak national

observatory in Arizona. The Mayall telescope has been selected for its unique combination

of adaptable optical and mechanical design [102]. The DESI focal plane is composed of

a new 5000-fibre spectrograph covering a 3.2 deg diameter field, equipped with robotic

positioners holding fiber-optic cables and sensors ensuring the alignment of the positioners.

Observations during the program will observe over 30 milions galaxies producing an un-

precedented map of the large scale structure covering 1/3 of the night sky (14000deg2 ). The

measurement of the BAO using the DESI galaxy survey will consider objects at 0.5 < z < 3.5.
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Figure 3.10: The SDSS planned coverage of the Universe (sdss.org)

The predicted number of targets to lie between 20-30 million, with a spectroscopic redshift

error less than 0.001(1+ z), will reach the required tracer density, 1500/deg2, in order to

optimize the BAO performance. The measurements of the distance scale are predicted to

reach 1% accuracy in each redshift bin. DESI will collect spectra of bright emission galaxies

(BGs) at redshifts 0 < z0.5; luminous red galaxies (LRGs) up to z ª 1 which are high massive

objects, populated by old stars and therefore easily identified thanks to their red color. The

survey will also select quasars from z ª 2.1 up to z ª 3.5 thanks to their high luminosity.

Finally the main sample will be composed of ª 30 million of emission line galaxies (ELGS)

with a wide range of redshift: 0.6 < z < 1.6

EUCLID The European Space Agency (ESA) mission Euclid [50], expected to be launched

in 2020 is a major wide-field and spectroscopy space mission that is part of the Cosmic

Vision 2015-2025 program. Observations will be carried out by using a 1.2 m telescope de-

signed to provide a large field of view, working in the visible and near-infrared and mounted

on the satellite to capture the shapes of galaxies with a resolution better than 0.2 arcsec.

The survey will cover 15000deg2, observing billions of galaxies and collecting ª 100 million

galaxy redshifts. The two main probes of the survey are redshift clustering and weak lens-

ing; for weak lensing, Euclid will measure photometric redshifts of 30 objects per arcmin2
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pushing the error on photo-z to be æz /(1+ z) < 0.05, thanks to complementary photometry-

ground-based data from surveys [103]. To accomplish high precision detection of the BAO,

the spectroscopic survey will reach a precision on the spectroscopic redshift lower than

æz /(1+z) ∑ 0.001. Other complementary probes will be considered such as cross correlation

with the CMB, strong lensing and luminosity distance through supernoave Ia in order to

achieve a better understanding of the expansion history of the Universe and of the structure

formation.
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4
MEASURING THE LARGE SCALE STRUCTURES

Observed galaxy clustering exhibits local transverse statistical isotropy around the line-of-

sight (LOS). The variation of the LOS across a galaxy survey complicates the measurement of

the observed clustering as a function of the angle to the LOS, as fast Fourier transforms (FFTs)

based on Cartesian grids, cannot individually allow for this. Recent advances in methodology

for calculating LOS-dependent clustering in Fourier space include the realization that power

spectrum LOS-dependent moments can be constructed from sums over galaxies, based on

approximating the LOS to each pair of galaxies by the LOS to one of them. In this chapter

we show that we can implement this method using multiple FFTs, each measuring the

LOS-weighted clustering along different axes. The N log N nature of FFTs means that the

computational speed-up is a factor of > 1000 compared with summing over galaxies. This

development should be beneficial for future projects such as DESI and Euclid which will

provide an order of magnitude more galaxies than current surveys.

The content of the work presented here refers to the collaborative research published

in [104]. My contribution to this project: I decomposed the angular dependence of the

clustering into a Cartesian basis; I coded the estimator and performed tests (i) and (iii) in

4.4.

4.1 Context

Although the Universe is predicted to be statistically homogeneous and isotropic as we

discussed, observational effects including the Alcock-Paczynsky effect [73] and redshift-
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space distortions [52] mean that the observed clustering, when translated into comoving

coordinates using a fiducial distance-redshift relation exhibits local transverse statistical

isotropy around the line-of-sight (LOS). The key measurement to be made from a galaxy

survey is consequently the clustering as a function of the angle to the LOS. If we consider the

clustering in configuration-space, then the base ‘unit’ is a pair of galaxies, and it is common

to treat a pair as having a single LOS, usually defined as the direction to the pair centre. Any

effects because the galaxies within the pair have different LOSs are called ‘wide-angle effect’

[105][106] and are small of the scales of interest [107][108] [109]. Thus in configuration space,

measuring clustering with respect to the LOS can be easily incorporated into pair-counting

algorithms [110] with a different LOS for each pair.

In Fourier-space, dealing with the varying LOS is more difficult, as fast Fourier methods

do not, in general, allow for the variation of LOS. One option is to use a basis built up from

spherical harmonics and Bessel functions, which naturally separates clustering with respect

to the varying LOS [111] [112]. In recent works, [113] and [107] considered the Fourier

decomposition as a sum over pairs of galaxies, and showed that this can be simplified

(and speeded up) by assuming that the LOS to the pair is equivalent to the LOS to a single

galaxy (the method is described in section 4.2). This approximately doubles the ‘wide-angle

effect’ [114], but that is small anyway. In this chapter we consider how to implement the

transform with this approximation, showing that we can use multiple fast Fourier transforms

(FFTs) to perform this sum for power-law moments in µ¥ k̂ · r̂LOS , the cosine of the angle

to the LOS (this is described in § 4.3). In section 4.4 we present the results of tests of three

implementations of the method, summing over galaxies, grid cells or using FFTs. We show

that they provide consistent results, and compare the computational burden of each. By

decomposing any moment into a sum over Legendre polynomials, we can construct any

power spectrum moment using this method (§ 4.5). Such developments are necessary as

one often wants to measure the power spectrum moments, not only in the data, but also in

a large numbers of mock catalogues used to estimate and test for errors: for example, [115]

analysed the Baryon Oscillation Spectroscopic Survey (BOSS; [116]) data and 1000 mock

catalogues. Thus the computational burden of measuring LOS-dependent clustering is high.

4.2 Method

We start by defining the function [86],

(4.1) F (r) = w(r)
I 1/2

[n(r)°Æns(r)],
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where n and ns are, respectively, the observed number density of galaxies and the number

density of a synthetic catalog of randoms, Poisson sampled with the same mask and selection

function as the survey with no other cosmological correlations, and w is the weight. Æ

normalizes the weighted random catalogue to match the weighted galaxy catalogue. The

factor I normalizes the amplitude of the observed power in accordance with its definition

in a universe with no survey selection, I ¥
R

dr w 2n̄2(r). From Eq. (4.1) we can define the

multipole power spectrum estimator as [86][113],

P̂`(k) = (2`+1)
I

Z
d≠k

4º

∑Z
dr1

Z
dr2 F (r1)F (r2)

£ ei k·(r1°r2)L`(k̂ · r̂h)°P noi se
` (k)

i
,(4.2)

where rh ¥ (r1 +r2)/2 denotes the LOS of the pair of galaxies r1 and r2, d≠k is the solid angle

element in k-space, L` is the `°th order Legendre polynomial and P noi se
`

is the shot noise

term given by

(4.3) P noi se
` (k) = (1+Æ)

Z
dr n̄(r)w 2(r)L`(k̂ · r̂) .

For multipoles of order `> 0, P noi se
`

ø P̂`, and consequently the shot noise correction is

negligible.

Denoting the number of k-modes that we want to evaluate by Nk and the number of

elements that we use to perform the integral over r1 or r2 by N , we see that the computation

of Eq. (4.2) will be of order Nk £N 2, as the integrals in r1 and r2 are not separable. In effect

this approach performs a pair-wise clustering analysis and translates into Fourier-space. As

N increases the total time needed to evaluate Eq. (4.2) grows dramatically.

The FKP-estimator [86] uses the fact that the monopole is independent of the LOS, so the

ri integrals are separable and FFTs are trivial to apply. Consequently, the Nk £N 2 process

becomes a Nk log(N ) one, which it is easier to handle: here N is the number of grid cells at

which we sample F , so for a FFT N = Nk . This estimator has been successfully applied in

many galaxy surveys to estimate the power spectrum and bispectrum monopoles (see e.g.

[117]).

The Yamamoto estimator [113] keeps the relevant LOS information by approximating

the LOS of each pair of galaxies with the LOS of one of the two galaxies, L`(k̂ · r̂h) 'L`(k̂ · r̂2),

which yields

P̂ Yama
` (k) = (2`+1)

I

Z
d≠k

4º

∑Z
dr1 F (r1)ei k·r1

£
Z

dr2 F (r2)e°i k·r2L`(k̂ · r̂2)°P noi se
` (k)

∏
.

(4.4)
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This is a reliable approximation on the scale of interest, which clearly improves on assuming

a single fixed LOS for the whole survey for l > 0, but will eventually break down at very

large scales [109]. The integrals over r1 and r2 in Eq. (4.4) are separable, so P̂ Yama
`

becomes

a Nk £N process if the integrals are solved using sums. In this chapter, we show that the

efficiency of this estimator can be further improved by making use of FFT algorithms, such

as FFTW1.

4.3 FFT implementation

Here we show how to write the Yamamoto algorithm in terms of Nk log(N ) processes for

any multipoles. For simplicity and with no loss of generality, we focus on the monopole

(which, as discussed in §4.2, reduces to the standard FKP description), the quadrupole and

the hexadecapole. We proceed by defining the convenient function,

(4.5) An(k) =
Z

dr (k̂ · r̂)
n

F (r)ei k·r.

With this, Eq. (4.4) reads,

P̂ Yama
0 (k) = 1

I

Z
d≠k

4º

£
A0(k)A§

0 (k)
§
°P noi se

0(4.6)

P̂ Yama
2 (k) = 5

2I

Z
d≠k

4º
A0(k)

£
3A§

2 (k)° A§
0 (k)

§
,(4.7)

P̂ Yama
4 (k) = 9

8I

Z
d≠k

4º
A0(k)

£
35A§

4 (k)°30A§
2 (k)

+ 3A§
0 (k)

§
.(4.8)

Note that the expressions for A2 and A4 include a k-dependent term (k̂ · r̂)n in the integrand,

which means that in this form Fourier transforms cannot directly be applied. This is the

standard problem of dealing with a varying LOS across a survey. However, by means of the

trivial decomposition

(4.9) k̂ · r̂ =
kxrx +ky ry +kzrz

kr
,

A2 can be easily re-written into a combination of smaller building blocks,

A2(k) = 1
k2

n
k2

xBxx(k)+k2
y By y (k)+k2

z Bzz(k)

+ 2
£
kxky Bx y (k)+kxkzBxz(k)+ky kzBy z(k)

§™
,(4.10)

1Fastest Fourier Transform in the West: http://fftw.org
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where

(4.11) Bi j (k) ¥
Z

dr
ri r j

r 2 F (r)ei k·r .

Similarly, for A4 we obtain,

A4(k) = 1
k4

©
k4

xCxxx +k4
yCy y y +k4

zCzzz

+4
h

k3
xkyCxx y +k3

xkzCxxz +k3
y kxCy y x

+ k3
y kzCy y z +k3

z kxCzzx +k3
z kyCzz y

i

+6
h

k2
xk2

yCx y y +k2
xk2

zCxzz +k2
y k2

zCy zz

i

+12kxky kz
£
kxCx y z +kyCy xz +kzCzx y

§™
,(4.12)

where

(4.13) Ci j l (k) ¥
Z

dr
r 2

i r j rl

r 4 F (r)ei k·r .

A0, Bi j and Ci j l are all Nk log(N ) processes by the use of any FFT algorithm. This provides the

value of monopole, quadrupole and hexadecapole with only 1, 7(= 1+6) and 22(= 1+6+15)

FFTs, respectively. Similar decompositions are possible for higher order multipoles.

It is important to remark that, from an analytical point of view, the above decomposition

is completely equivalent to Eq. (4.4), i.e. it does not involve any further approximation. In

essence, the symmetry encoded in the Yamamoto estimator of Eq. (4.4) is exactly captured

by including the variation of the LOS in the relative weighting of different galaxies to FFTs,

each covering a different axis direction, Eqs. (4.10) and (4.12).

4.4 Performance tests

In this section we test the following three implementations of the Yamamoto estimator,

solving Eq. (4.4) using the following.

1. A sum over galaxies and randoms (the total number of points is N ) and the Nk k-modes

of interest. We will refer to this as sum-gal.

2. A sum over a gridded representation of F with N grid cells, and the Nk k-modes. We

will only consider N = Nk although this is not fixed as for an FFT, and refer to this as

sum-grid.
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3. An FFT-based implementation using a gridded representation of F with N grid cells

and the Nk = N k-modes. We will refer to this as FFT-based.

For the methods using sums we have optimised our code, minimizing the computations

performed within the inner most loops, and using the Hermitian symmetry in k-space

to reduce the number of k-modes summed over. We also only compute power spectrum

moments for k ∑ 0.3hMpc°1 for these methods. Additionally, for the sum-grid method we

only include filled grid cells in the sum. We therefore consider that time taken by these

algorithms is indicative of that achieved by most algorithms performing the transform using

a sum.

We will test these three options using the public mock galaxy catalogues matched to the

CMASS galaxy sample of the Sloan Digital Sky Survey (SDSS-III; [118]), BOSS Data Release 11

North Galactic Cap [119]. These catalogues each contain approximately 525,000 galaxies. We

use the random catalogue provided with the galaxy mocks and we take the number density

of the randoms to be 10 times higher than the number density of the galaxies, i.e., Æ°1 ' 10.

For the implementations that use a grid, we place the galaxies and randoms in a cubic box

of size Lb = 3500Mpch°1 using the Cloud-in-Cell (CiC) prescription, to obtain the quantity

F (r) of Eq. (4.1). In order to correct for the effects of the grid left by the CiC scheme we have

corrected appropriately by the deconvolution window proposed in [120].

Fig. 4.1 displays the average power spectrum multipoles: monopole (red), quadrupole

(blue) and hexadecapole (green) calculated from 50 mocks. The solid lines represent the

FFT-based method, the dashed lines the sum-grid, and the dotted lines the sum-gal. The

plot shows an almost exact agreement between the three implementations of Eq. (4.4). The

results of the sum-grid algorithm show a few percent deviation at small scales. The origin

of this is aliasing, which we have not corrected for. The aliasing effect for a 10243 grid is

negligible for scales k ∑ 0.4hMpc°1, and consequently does not appear for the FFT-based

scheme. For comparison, adopting a 20483 grid we expect the aliasing to be negligible for

wave numbers up to ª 0.6hMpc°1. Due to its small amplitude, at small k the hexadecapole

is affected by numerical noise, which results in a general instability of the ratio between

different methods.

In Table 4.1 we show a comparison between the computation times of the different

algorithms of Fig. 4.1 for the monopole, quadrupole and hexadecapole of one realization

of the DR11 CMASS NGC mocks. For the FFT-based implementation, we also show the

computation times for different number of cells used. If we relax our assumption of 10 times

randoms, and use Xran times as many randoms as galaxies (for example, [115] used Xran =
50), then the computational time taken for sum-gal scales by approximately (Xran +1)/11.
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Figure 4.1: Top panel: power spectrum multipoles: monopole (blue lines), quadrupole (red
lines) and hexadecapole (green lines), obtained from the average of 50 realization of PTHALOS

mocks corresponding to the BOSS DR11 CMASS NGC survey geometry. The solid lines
display the computation of Eq. (4.4) using the FFT-based method using 10243 grid cells. The
dashed and dotted lines display the computation of the Yamamoto estimator using the sum-
grid (with 5123 cells) and sum-gal methods, respectively. In both these cases an orthonormal
base of 5123 k-vectors has been used. The bottom panels show the corresponding sum-gal
and sum-grid multipoles divided by the FFT-based multipoles to highlight differences among
these implementations.

FFT-based FFT-based FFT-based sum-gal (5123) sum-grid
(5123) (10243) (20483) (5123) (5123)

Time (min) 1.2 7.5 72.5 ª 1800 ª 2400

Table 4.1: Computation times (in minutes, using 16 processors) for the power spectrum
monopole, quadrupole and hexadecapole for the three different implementations of the
Yamamoto algorithm. For the FFT-based implementation we show the number of grid cells
used: 5123, 10243 and 20483. For the sum-gal algorithm the computation times are assuming
Æ°1 ª 10 and for both sum-gal and sum-grid algorithms only computing for k ∑ 0.3hMpc°1.
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For multiple measurements for different catalogues that use the same randoms, then the

time in the table reduces by a factor 1/11 for each catalogue where the randoms do not have

to be reused. However, note that in the post-reconstruction analyses of [115], the randoms

are uniquely matched to each galaxy catalogue and so have to be calculated for each mock.

The sum-grid method does not scale with the number of randoms, and is therefore faster

than sum-gal when the number of randoms to be analysed is larger. Finally, when comparing

run times, note that for sum-gal there is no aliasing as the galaxies and randoms are not

placed on a grid, so we can use the same Nk to push to smaller k than the grid-based routines.

Even allowing for these scalings, it is clear that the FFT-based method is significantly faster

(approximately 1000 times) than either sum-gal or sum-grid for reasonable assumptions of

grid size and number of randoms.

4.5 General moments of the Power Spectrum

The trick of splitting µn into Cartesian components employed in Eq. (4.9) will not work

directly on moments of more general functions of µ. However we can still use a FFT-based

method by decomposing the functions into Legendre polynomials and summing over the

multipole-moments. For example, one proposed alternative to using multipoles is to use

“Wedges” [121], where we replace L`(µ) in Eq. (4.4) by top hat functions in µ covering

0 ∑µ∑ 0.5, whose moment we denote P? and 0.5 <µ∑ 1 whose moment we denote P“:

P?(k) = 2
I

Z2º

0

d'
2º

Z0.5

0
dµ

£
A0(k)A§

0 (k)
§
°P noi se

0 ,(4.14)

P“(k) = 2
I

Z2º

0

d'
2º

Z1

0.5
dµ

£
A0(k)A§

0 (k)
§
°P noi se

0 ,(4.15)

where ' is the azimuthal angle. Then, as discussed in [121], we can approximate these

functions using the first three even Legendre polynomials as,

P?(k) ' P0(k)° 3
8

P2(k)+ 15
128

P4(k),(4.16)

P“(k) ' P0(k)+ 3
8

P2(k)° 15
128

P4(k).(4.17)

In Fig. 4.2 we show the comparison between the P? (blue lines) and P“ (red lines) computed

using the sum-gal algorithm (dashed lines), i.e. the definition of Eq. (4.14-4.15), and the

combination of Eq. (4.16-4.17) computed using the FFT-based algorithm (solid lines). The

agreement between the definition of P? and P“ and the approximation of Eq. (4.16-4.17) is

very good for the range of scales studied. This suggest that the Yamamoto implementation
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Figure 4.2: Top panel: power spectrum ‘Wedges’: perpendicular-to-the-LOS power spectrum
monopole, P? (blue lines) and parallel-to-the-LOS power spectrum monopole (red lines)
obtained from the average of 50 realization of PTHALOS mocks corresponding to the BOSS
DR11 CMASS NGC survey geometry. The solid lines display the approximation presented
by Eq. (4.16-4.17) using the monopole, quadrupole and hexadecapole computed by using
the FFT-based method described in §4.3 placing the particles in 10243 grid cells. The dashed
lines display the computation of the “Wedges" using sum-gal and Eq. (4.14-4.15), so the
sum is exact. In this case an orthonormal base of 5123 k-vector have been used. The bottom
panels show the fractional differences between the sum-gal and the FFT-based method, for
P? and P“ as labeled.

based on FFTs presented here is also suitable to be used to compute the wedges power

spectral moments.

4.6 Summary

The main focus of this chapter has been introducing new estimators for the LOS-dependent

galaxy power spectrum moments calculation. Previous method such as [113], are based on a

sum over each galaxy pair assumed to be at a single LOS in order to keep the relevant angu-

lar information. However estimators implemented as in [113] are highly computationally

expensive as the evaluation time required scales as N 2 with N number of galaxies (or grid-

cells). In this chapter we derived and tested a new fast FFT-based estimator for the galaxy
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power spectrum which decomposes the LOS dependence into a Cartesian grid allowing to

massively reduce the computational time required for the evaluation of the power spectra

multipoles (ª N log(N )). The FFT-estimator proposed can be applied to any data and it is

significantly faster than pair-counting algorithms in configuration space, for this reason it

will be particularly relevant in view of the next generation of redshift surveys, which will

collect redshifts for more than ª 107 of objects [122] [50].
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5
OPTIMAL REDSHIFT WEIGHTING FOR REDSHIFT SPACE

DISTORTIONS

T
he low statistical errors on cosmological parameters promised by future galaxy sur-

veys will only be realised with the development of new, fast, analysis methods that

reduce potential systematic problems to low levels. We present an efficient method

for measuring the evolution of the growth of structure using Redshift Space Distortions

(RSD), that removes the need to make measurements in redshift shells. We provide sets of

galaxy-weights that cover a wide range in redshift, but are optimised to provide differential

information about cosmological evolution. These are derived to optimally measure the

coefficients of a parameterisation of the redshift-dependent matter density, which provides

a framework to measure deviations from the concordance§CDM cosmology, allowing for

deviations in both geometric and/or growth. In this chapter we test the robustness of the

weights by comparing with alternative schemes and investigate the impact of galaxy bias. We

extend the results to measure the combined anisotropic Baryon Acoustic Oscillation (BAO)

and RSD signals. The content of the work presented here refers to the research published in

[123];

5.1 Wide redshift survey analysis

As we discussed in chapter 2 the large-scale galaxy distribution is expected to follow a

Gaussian random field, for which the statistical information is fully encoded in 2-point
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statistics, therefore the central quantities in the analysis of galaxy surveys are the Correlation

Function and its Fourier-space analogue, the Power Spectrum. The observed projections of

these quantities encode significant cosmological information, including the positions of the

Baryonic Acoustic Oscillations (BAO), which can be used as standard rulers to reconstruct

the expansion history of the Universe, [124]. The statistics also encode Redshift Space

Distortions (RSD), which provide information about the large-scale growth of cosmological

structure, [61].

As we discussed, to be able to reach the statistical precision promised by forthcoming

surveys including DESI, [122] and Euclid, [50], at least an order of magnitude beyond current

measurements, an effort to improve the methods to analyse the data is a main requirement.

This includes recent key developments such as “reconstruction” to remove non-linear BAO

damping, [125] or the development of fast methods to measure the anisotropic clustering

signal, [104][126], as we discussed in chapter 4.

In this chapter we address one additional question: how best to combine future data

from different volumes within the surveys, without losing information from galaxy pairs that

span different bins, if using a binned approach and to optimally recover the desired signal.

To deal with the first concern, we can make the transition from splitting into redshift-bins,

to instead adopting weights that act to provide smoother windows on the data.

To optimise the weights, we must consider two factors: the first concerns changes in

the observational efficiency as a function of position on the sky and redshift, and leads to

weights that vary as a function of observed galaxy density, [86], and bias , [87]. The second

concerns the cosmological models that we wish to distinguish between: [86], [87] wished

to optimally measure a power spectrum, which was assumed to be fixed within a survey

volume. If instead, we wish to measure cosmological parameters that vary across a sample,

for example a quantity that evolves with redshift, then the weights must additionally be

optimised to measure this evolution.

In general, RSD measurements are made for a particular volume, presented as a sin-

gle measurement at an effective redshift; if e.g. the growth factor varies in a non-linear

way across the sample, the effective redshift is not a good approximation, by contrast by

weighting the sample we allow for variation in redshift of all the measured quantities.

[127] presented weights optimised for measuring the distance-redshift relationship us-

ing the BAO signal. They considered a second-order expansion of the distance-redshift

relationship around a fiducial cosmological model, and provided sets of weights for the

monopole and quadrupole moments of the correlation function (or power spectrum) de-

signed to optimally measure these parameters. In this work we extend this derivation to
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the measurement of Redshift-Space Distortions, considering the weights required for these

measurements, and how they compare to the BAO-optimised weights.

The outline of the chapter is as follows. In Sec. 5.2 we briefly go through the method of

linear data compression and we underline the advantages related. In Sec. 5.3 we present the

cosmological model.

In Sec. 5.4 we build to a derivation of the optimal weighting scheme for redshift space

distortion measurements parametrized with respect to the matter energy density evolution

in redshift,≠m(z). The choice of≠m parametrization allows to easily extend the results for

more general clustering models which include both redshift space distortion and Alcock &

Paczyński effects (1979), AP. In the second part of the section we compare them with other

possible weights optimized for RSD measurements and we discuss our assumption for linear

bias model. In Sec. 5.5 we derive the generalisation of optimal weights for RSD and AP test

combined measurements.

5.2 Optimal Weights

The derivation of optimal weights is equivalent to the problem of optimal data compression:

we use the weights to reduce the number of data points that need to be analysed to recover

the cosmological parameters. We will now review how to optimally linearly compress our

data, in the case of a covariance matrix known a priori, as described in [128]. Further details

on the Karhunen-Loève methods in e.g. [129] and [130].

Given the n-dimensional data-set x, assumed to be Gaussian distributed with mean µ

and covariance C , it can be linearly compressed into a new data-set y ,

(5.1) y = wT x,

where w is a n-dimensional vector of weights. The measurement y has mean wTµ and

variance wT C w.

The Fisher information matrix F is defined as the second derivative of the logarithmic

likelihood function L ¥° lnL,

(5.2) Fi j ¥
ø

@2L

@µi@µ j

¿
,

for a set of parameters to be measured µi . For a single parameter µi ,

(5.3) Fi i =
1
2

µ
wT C,i w
wT C w

∂2

+
°
wTµ,i

¢2

wT C w
,
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where the index , i denotes @/@µi . Note that the normalisation of the weights is arbitrary The

search for optimal weights is equivalent to maximising Fi i with respect to w.

For a measurement of 2-point statistics from a galaxy survey, we should consider that x is

the arrays formed by the measurements of the over-density squared, ±2 in configuration or

Fourier space. Working in Fourier space, the covariance matrix C of the power spectrum of

the modes in the absence of a survey window is diagonal; for each redshift slice with volume

dV and expected galaxy density n(r ),

(5.4) C ª
°
Pfid +1/n(r )

¢2 1
dV

,

where we have made the assumption that around the likelihood maxima, the power spectra

Pfid are drawn from a Gaussian distribution with fixed covariance matrix, e.g. [131]. In this

case, the first term in Eq. (5.3) vanishes. Maximising Fi i with respect to w, we find the only

non-trivial eigenvector to be

(5.5) wT =C°1µ,i ,

and the new compressed data set reduces to

(5.6) y =µT
,i C°1x.

Note that, to linear order, y contains the same information as x, which can be checked by

substituting w =C°1µ,i in Eq. (5.3), and seeing that F remains unchanged. Eq. (5.5) forms

the basis for our derivation of optimal weights.

Eq. (5.3) shows why it does not make sense to optimise for the set of ± (as opposed to

±2). This is because, although now the second term in Eq. (5.3) now vanishes as h±i= 0, the

resulting eigenvector equation derived from the first term shows that there is no single set of

optimal weights, even under the simplifying assumption of a diagonal covariance matrix.

We can still apply the weights derived for ±2 to individual galaxies if we assume that the

scales upon which clustering is being measured are small with respect to the cosmological

changes that affect the relative weights. We would then simply weight each galaxy (and the

expected density used to estimate ±) by wgal =
p

w±2 .

Note that the optimal set of weights given in Eq. (5.5) depends upon the derivatives of

µi = P,i . Consequently in the rest of the work presented here, we concentrate our analysis

on the form of P,i , which directly gives the form for the weights. If P,i matches for different

measurements, then the optimal weights will also match.

The weights can be seen as a generalisation of the FKP weights presented in [86]. The

FKP weights are obtained by minimising the fractional variance in the power under the
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assumption that fluctuations are Gaussian and have the form

(5.7) wFK P (r ) = 1
1+n(r )P (k)

;

The weights defined by Eq. (5.5) depend on the inverse of the covariance matrix: assuming

the redshift slices to be independent we can invert the Covariance matrix for a chosen scale

and recover the FKP weights.

The cosmological model-dependent weights depend on the covariance matrix assumed

and on the derivative of the mean value of the model with respect to the parameter that we

want to estimate. Thus, once these quantities are fixed, it is not trivial to adapt a particular

set of weights for different models. However, it would be very useful to set up weights that

can be applied to make different measurements: both for computational reasons and in

order to perform joint fits to the data. In this work we will start by deriving weights to be

applied to RSD measurements and then we will broaden this to consider jointly measuring

the RSD and the AP effect. Comparing the set of weights in these different situations shows

whether it is likely that a single set of weights can be used to make optimal measurements in

both situations.

5.3 Cosmological Model

5.3.1 Fiducial Cosmology

The §CDM scenario predicts the nature of dark energy as a cosmological constant with

equation of state parameter w = °1 where the dynamical expansion of the Universe is

specified by Friedmann equation

(5.8)
H 2

fid(z)

H 2
0,fid

=≠m,0,fid(1+ z)3 +≠k,fid(1+ z)2 +≠§,fid(z),

where the subscript the “0” stands for quantities evaluated at z = 0 while “fid” denotes

fiducial quantities. With≠§,fid dark energy density,≠k,fid = 1°≠m,fid °≠§,fid curvature, and

H0 the present-day Hubble parameter. We have

(5.9) ≠m,fid(z) =
≠m,0,fid(1+ z)3

H 2
fid(z)/H 2

0,fid

,

where≠m,0 refers to energy density evaluated at z = 0. In a Friedmann-Roberston-Walker

universe the solution for the linear growth factor Dfid(z) and the dimensionless linear growth
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rate f are given by

gfid(≠m,fid(z)) ¥ Dfid(z)
a

=
5≠m,fid(z)H 3

fid(z)

2(1+ z)2

Z1

z
dz 0 (1+ z 0)

H 3
fid(z 0)

(5.10)

with scale factor a;

ffid(≠m,fid(z)) =°1°
≠m,fid(z)

2
+≠§,fid(z)

+
5≠m,fid(z)

2gfid(z)
.

(5.11)

Under the assumption of a flat universe i.e.≠k,fid = 0, we have≠§,fid(z) = 1°≠m,fid(z).

For the fiducial galaxy bias model we choose a simple ad hoc functional form as used

in [132], which is approximately correct for the HÆ galaxies to be observed by the Euclid

survey,

(5.12) bfid =
p

1+ z .

5.3.2 Parametrising deviations

The derivation presented in Sec. 2 required us to define the parameters that we wish to

optimise measurement of. We wish to choose parameters that allow us to measure deviations

from the§CDM model. In the absence of compelling alternative cosmological models, we

choose parameters that define an expansion in redshift of the cosmological behaviour we

wish to understand - in our case the structure growth rate, and the expansion rate. Both of

these can be modelled by deviations in≠m(z) away from the fiducial model, and we adopt

this quantity as the redshift-evolving quantity that we wish to understand, rather than the

distance-redshift relation considered by [127], which does not easily extend to structure

growth differences. We expand≠m(z) around the fiducial model as,

(5.13)
≠m(z)
≠m,fid(z)

= q0(1+q1 y(z)+ 1
2

q2 y(z)2),

we fix a pivot redshift zp within the survey redshift range and y is defined as y(z)+ 1 ¥
≠m,fid(z)

≠m,fid(zp )
; the expansion parameters q0, q1, q2 are obtained from Eq. 7.4 and its first and
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second derivatives evaluated at zp ;

q0 =
≠m(zp )

≠m,fid(zp )
,

q1 =
≠m,fid(zp )

≠m(zp )

d≠m/d z|zp

d≠m,fid/d z|zp

°1,

q2 =
h≠m,fid(zp )

≠m(zp )
d 2≠m

d z2 |zp °
d 2≠m,fid

d z2 |zp

°
√
≠m, f i d (zp )

≠m(zp )

d≠m/d z|zp

d≠m,fid/d z|zp

°1

!µ
2

≠m,fid(zp )
µ

d≠m,fid

d z

∂2

|zp +
d 2≠m,fid

d z2 |zp

∂i ≠m,fid(zp )
≥
d≠m,fid/d z|zp

¥2 .

(5.14)

The Hubble parameter with respect to≠m(z) is

(5.15)
H 2(z)

H 2
0

=
≠m,0(1+ z)3

≠m(z)
,

where we have assumed that the dark matter equation of state is fixed,

(5.16) P = wΩ; w = 0

with pressure P and matter density Ω.

A broader range of models could be derived by perturbing the homogeneous solution of

the Einstein equations, but in this work we restrict ourselves to deviations close to§CDM

in the dark energy and curvature components. The ≠m parametrisation allows for many

deviations from§CDM : all the standard cosmological parameters can be written in terms

of the qi parameters e.g. if we want to allow for modified gravity models we can parametrize

the growth factor as a function of≠m(z). Alternatively, if we are studying the deviations from

a fiducial geometry we can parametrize the AP parameters. We assume that Eqns. (7.10)

& (7.7) hold for the perturbed≠m(z), which fix how the parameters qi lead to deviations in

the growth rate away from the fiducial model.

5.4 Redshift weighting assuming known distance-redshift

relation

In this section we derive a set of optimal weights to measure≠m(z) and the bias when the

distance-redshift relation is assumed known, i.e we derive the weights for an observed power

spectrum that contains only the distortion due to RSD and not due to AP effect.
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We will discuss three different cases with different assumptions about parameters as-

sumed known: the first two aim to estimate≠m(z) and the third the bias, parametrised by

bæ8(z). In 5.4.2 we consider the case in which the bias is known and fixed to a fiducial model;

in this case we are considering that the information about≠m is coming from all the terms

of the Power Spectrum multipoles. We discuss this set of weight with respect to different

fiducial models for the bias in order to test how knowing the bias would affect the results.

However this first set of weights does not match the actual RSD measurements condition

in which the bias is unknown. We then consider in 5.4.3 a case for RSD measurements

where we assume the growth information is not coming from tangential power and the only

information to be considered comes from f æ8. Bias evolution plays an important role for

clustering measurements even if, in the redshift range of interest for future and current

surveys, ≠m is significantly more sensitive to redshift than bias, (see Sec. 5.3). As our last

case, in 5.4.4, we consider for completeness a set of weight to measure the bias relation as a

function of redshift.

5.4.1 Modelling the observed power spectrum

For simplicity we adopt a linear model for the redshift-space distortions, assume that we are

working in the plane parallel approximation, and assume a linear deterministic bias model

so that the power spectrum in redshift space, P s is related to the real power spectrum P by

(5.17) P s(k) = (b + f µ2
k)2P (k)

where P (k) is the linear real space power spectrum and where µk ¥ ẑ · k̂ is the cosine of the

angle between the wavevector k and the line of sight ẑ, [52].

It is common to decompose P s into an orthonormal basis of Legendre polynomials such

that, in linear regime, the redshift power spectrum is well described by its first three non-null

moments: monopole P0, quadrupole P2 and hexadecapole P4.

(5.18) P s(k) =P0(µk)P0(k)+P2(µk)P2(k)+P4(µk)P4(k),

related with P (k) through ,

(5.19) P0(k) =
µ
b2 + 2

3
b f + 1

5
f 2

∂
P (k)

,

(5.20) P2(k) =
µ

4
3

b f + 4
7

f 2
∂

P (k),
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(5.21) P4(k) =
µ

8
35

f 2
∂

P (k).

We normalise the power spectrum using the standard variance of the galaxy distribution

smoothed on scale R = 8h°1Mpc, æ8(z), where

(5.22) æ8(z) =æ8,0D(z) =æ8,0
g (z)
1+ z

.

This normalisation enters into Eq. (5.17) in a way that is perfectly degenerate with b and f ,

which could be replaced by new parameters (bæ8) and ( f æ8).

5.4.2 Optimal weights to measure≠m(z) assuming known bias

We build optimal weights by taking the derivative of the power spectrum model with respect

to the parameters qi , As discussed in section 5.2, hereafter we only consider the component

of these weights that varies with P,i , which we denote for the monopole, quadrupole and

hexadecapole, respectively w0, w2, w4. For simplicity we refer to these as the “weights”, but

it is worth remembering that there is a missing inverse variance component.

(5.23) w`,qi =
@P`

@qi

We explicitly write the redshift dependence of P on the qi parameters, so that the right side

of Eq. (5.23) becomes

(5.24)
@P`

@qi
= @P`

@ f
@ f
@qi

+ @P`

@æ8

@æ8

@qi

This second term assumes that we are recovering information from both radial and trans-

verse modes. This is true for the transverse component if the bias is known perfectly. We

build our set of weights as a function of redshift, for the monopole we have

(5.25) w0,i =
µ

2
3

b + 2
5

f
∂
æ2

8
@ f
@qi

+
µ
b2 + 2

3
b f + 1

5
f 2

∂
2æ8

@æ8

@qi

with

(5.26)
@ f (z)

qi
= @≠m(z)

@qi

≥ 5
2g (z)

° 1
2

¥
° @≠m(z)

@qi
° 5

2
≠m(z)
g 2(z)

@g (z)
@qi

,

(5.27)
@æ8(z)
@qi

=
æ8,0

1+ z
@g (z)
@qi

;
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where

@g (z)
@qi

= 5
2(1+ z)2

≥@≠m(z)
@qi

H 3(z)+3H 2(z)
@H(z)
@qi

≠m(z)
¥
·

Z1

z
dz 0 (1+ z 0)

H 3(z 0)
° 15≠m(z)H 3(z)

2(1+ z)2

Z1

z
dz 0 (1+ z 0)

H 4(z 0)
@H(z 0)
@qi

(5.28)

@H(z)
@qi

= H0
1
2

µ
≠m,0(1+ z)3

≠m(z)

∂°1/2 (1+ z)3

≠m(z)

·
µ
@≠m,0

@qi
°
≠m,0

≠m

@≠m(z)
@qi

∂
,

(5.29)

with

@≠m

@q0
=≠m, f i d (z),

@≠m

@q1
=≠m,fid(z)y(z),

@≠m

@q2
=≠m,fid(z)

y2(z)
2

.

(5.30)

Note that in the equations above the P (k) term has been factored out; all the terms are

evaluated at q0 = 1 since we are ignoring the weights dependence on cosmology.

Similarly for the quadrupole and for the hexadecapole

w2,qi =
µ

4
3

b + 8
7

f
∂
æ2

8
@ f
@qi

+
µ

4
3

b f + 4
7

f 2
∂

2æ8
@æ8

@qi
,

w4,i =
16
35

f æ2
8
@ f
@qi

+ 8
35

f 22æ8
@æ8

@qi
.

(5.31)

Figure 5.1 shows the set of weights for the monopole, quadrupole and hexadecapole,

with a convenient normalization. All the plot are generated considering a§CDM model with

≠m,0 = 0.31 as the fiducial cosmology. We explore a wide redshift range to see general trends,

as if we are analysing data from a range of surveys. We fix a pivot redshift in zp = 0.4. All three

weights with respect to parameters q0 (blue lines) show a peak at redshift z ª 0.1°0.2; this is

due to @≠m/@qi term which rapidly grows until about z ª 2 and then tends to a constant.

The peak corresponds to the≠m ª≠§ epoch: the weights aim to highlight the deviations

from the fiducial cosmology§CDM , and therefore peak approximately in the range of the

equivalence between matter and §. At higher redshifts the weights decrease due to the

decreasing dependence of≠m(z) on f and æ8.
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The weights about the slope parameters, q1 (orange line), rapidly grow at low redshift

driven by @≠m/@q1 and @P`/@æ8, and then start decreasing as @ f /@≠m and @P`/≠m domi-

nate. We see that they pickup small differences about the peak due to the different depen-

dencies on P`.

The green lines displays the weights with respect to the second order parameter q2: they

are similar, with a minimum about z ª 0.5: this difference with respect to q0 and q1 is due

to the @≠m/@q2 term, which starts decreasing with z until about z ª 0.4 and then slowly

increases. Comparing the monopole, quadrupole and hexadecapole weights we see that

the weights behave in a similar way for all three statistics; the hexadecapole weights show a

faster decrease for all three parameters, due to the absence of the bias dependence. However

the differences with monopole and quadrupole are small, confirming our assumption that

the bias choice does not drastically change the weights in the region of interest.

5.4.2.1 Application of the method

We have derived a set of weights that compress the information available in the power

spectrum across a range of redshifts. In practice, to apply the method, we weight galaxies,

assuming wgal =
p

w±2 , to obtain a set of monopole, quadrupole and hexadecapole for each

set of weights.

If we were only interested in a single parameter, (e.g. q0) and we thought all the informa-

tion came from the monopole, we would measure the weighted Pw,0 by applying the w0,q0

to each galaxy; we would then fit q0 by comparing the data with the theoretical prediction

for the monopole, weighted at different redshifts as

P0,w0,q0 model (k) =
Z

d z P0(k, z) ·w0,q0 (z).(5.32)

Where the P0(k, z, q0) corresponds to the monopole prediction, e.g Eq.5.19 and we have

ignored the window effects. If we further assume the simple linear model for RSD, [52],

(5.33) P0(k, z) =
µ
b2 + 2

3
b f (≠m(q0, z))+ 1

5
f (≠m(q0, z))2

∂
P (k);

we can express f in terms of≠m(q0, z) according to Eq. 7.7.

In order to simultaneously measure all three qi parameters, we measure each multipole

weighted to be optimal for each qi parameters, i.e. we weight galaxies with the different

wi ,q j functions and we build a data vector¶ as,

(5.34) ¶T = (P0,w0,q0 ,P0,w0,q1 ,P0,w0,q2 ... P4,w4,q2 )T.
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Figure 5.1: The weights for the monopole (w0) , quadrupole (w2) and hexadecapole (w4)
with respect to the qi parameters: blue lines indicate the weight with respect to q0, orange
lines indicate the weight with respect to q1 and the green lines the weight with respect to
q2. These weights assume a fiducial bias evolving as b =

p
1+ z and were calculated for RSD

measurements assuming that the bias is known, as described in Sec. 5.4.2.
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Note that each weighted multipole Pi ,wi ,q j
provides a particular piece of information

about≠m(z) that optimizes the measurement of each qi . We constrain the three qi by jointly

fitting from the data-vector¶ compared with a¶model . In practice we assume a Gaussian

likelihood and minimize

(5.35) ¬2 / (¶°¶model )TC°1(¶°¶model );

where each Pi ,wi ,q j
inside¶model is modeled as in Eq. 5.32. The C°1 term corresponds to the

joint covariance matrix.

5.4.2.2 The dependence on the fiducial bias model

We now test the robustness of the set of weights for ≠m , presented in 5.4.2, with respect

to the bias model. To do this we compute sets of weights from different choices of b(z).

We first derive the set of weights presented in Sec. 5.4, parametrized with respect to ≠m ,

fixing a constant bias, b = 1.024, which is our fiducial value at z = 0.45, then we repeat for

b = 1/Dfid(z).

Figures 5.2, 5.3 show that the behaviour of the weights with redshift is similar to previous

results and there are no significant differences in the shapes. As expected the differences are

more visible in the monopole (top panel) than in the quadrupole (bottom panel) since the

former is more sensitive to galaxy bias. We exclude the weights for the hexadecapole since it

does not depend on galaxy bias.

5.4.3 Optimal weights to measure≠m(z) with unknown bias

RSD measurements constrain the product of the two key parameters f and æ8 and it is

common to consider a single measurement of [ f æ8], marginalising over an unknown bias.

Therefore we present a set of weights that matches the philosophy of current RSD measure-

ments: we consider the term [bæ8] to be independent from [ f æ8] since we marginalize over

the bias. Considering e.g. the monopole

(5.36) P0 =
≥
[bæ8]2 + 2

3
[bæ8][ f æ8](z)+ 1

5
[ f æ8]2(z)

¥
P (k)/(æ2

8)

for unknown bias the dependence on the qi parameters is only through [ f æ8]. We derive the

set of weight by taking the derivative of P0, P2, P4 with respect to q1, q2, q3,

(5.37) w0,qi ¥
µ

2
3

[bæ8]+ 2
5

[ f æ8](z)
∂
@[ f æ8]
@qi

(z),
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Figure 5.2: Solid lines as Fig. 5.4.2, but assuming a constant bias b = 1.024. We compare this
set of weights with the results presented in Fig 5.4.2, (dashed lines), obtained assuming a
bias evolving as b =

p
1+ z .

(5.38) w2,qi ¥
µ

4
3

[bæ8]+ 8
7

[ f æ8](z)
∂
@[ f æ8]
@qi

(z),

(5.39) w4,qi ¥
µ

16
35

[ f æ8](z)
∂
@[ f æ8]
@qi

(z),

where the derivatives @[ f æ8]/@qi (z) are obtained using Eq. 5.26 and 5.27.

Figure 5.4, shows the set of weights for the monopole, quadrupole and hexadecapole

parametrized with respect to q0, q1, q2, when ignoring the information contained in [bæ8],

conveniently normalised. We compare them with the weights derived in 5.4.2, presented

in Fig 5.4.2, (dashed lines). The main difference between the two set of weights lies on the

assumptions we make for galaxy bias: if we are setting it as completely unknown, considering

only the information contained in [ f æ8] or if we are including [bæ8] term, constraining b(z)

to a fiducial model; however the plots show a very similar behaviour between the two cases,
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Figure 5.3: Solid lines as Fig. 5.4.2, but assuming a fiducial bias evolving with redshift as
b = 1/D f (z). We compare this set of weights with the results presented in Fig 5.4.2, (dashed
lines), obtained assuming a bias evolving as b =

p
1+ z .

it is clear then that the tangential modes do not play a large role in determining optimal

weights.

5.4.4 Optimal weights to measure bias

For completeness we will show how to derive weights that optimally measure the evolution

of the bias parameter around the fiducial model.

In an analogous manner to Eq. 7.4 we model [bæ8](z) as an expansion about a fiducial

model [bæ8]fid:

(5.40)
[bæ8](z)

[bæ8]fid(z)
= ¥0

µ
1+¥1x + 1

2
¥2x2

∂

about a pivot redshift zp , where 1+x ¥ [bæ8]fid(z)
[bæ8]fid(zp ) .
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Figure 5.4: Solid lines show weights for the monopole (w0) quadrupole (w2) and hexade-
capole (w4) , with respect to the qi parameters ignoring the information in bæ8 term, as
described in Sec. 7.2.2. These are compared with the weights presented in Fig. 5.4.2 (dashed
lines), which assume the bias is known.

The ¥ parameters correspond to the derivative 0,1,2 of [bæ8](z) relation evaluated at zp .

In analogy with measuring qi , we can derive a set of weights that optimally estimate the

bias-redshift through the ¥ j parameters,

(5.41) w`,¥ j =
@P`

@[bæ8]
@[bæ8]
¥ j

This set of weights can be applied instead of the set of weights with respect to≠m in case

we want to measure deviations from the fiducial model chosen for the bias. We do not plot

these weights for simplicity but include the derivation to show how they could be calculated.
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5.5 Redshift weighting assuming unknown

distance-redshift relation

Our previous results provide an optimal scheme specific for RSD measurements; as pointed

out in the introduction it would be very useful to optimize at the same time geometric

measurements and thus enable measurements that include all the parameters both for

computational costs either for accuracy of the results. An optimal weighted scheme for BAO

measurements has been recently presented in [127] where the authors describe a weighting

scheme parametrized with respect to the distance-redshift relation, including the AP effect

modelled as

k? !Æ°1(1+≤)k?,

k“ !Æ°1(1+≤)°2k“,
(5.42)

with parameters Æ, for isotropic deformation and ≤, for anisotropic. The method optimises

only BAO measurements, constraining the covariance matrix at BAO scales and ignoring the

growth parameters.

In this section we will account for both distortions due to peculiar velocities and distor-

tions due to incorrect choice of geometry described by Alcock-Paczyński effect. We still use

a parametrization of≠m(z) to define deviations from our fiducial model as described in Eq.

7.4.

5.5.1 Modelling AP and RSD in the observed P (k)

We denote kt and k the true and observed coordinates respectively, then assuming an

incorrect geometry transforms the coordinates

kt = k
Æ?

"

1+µ2

√
Æ2
?
Æ2
“
°1

!#1/2

,

µt =µÆ?
Æ“

"

1+µ2

√
Æ2
?
Æ2
“
°1

!#°1/2

,

(5.43)

withÆ“ defined as the ratio between the observed and the true Hubble parameter, H (z)/Ht (z)

andÆ? defined as ratio between the true and the observed angular diameter distance D A,t (z)

/ D A(z); the multipoles at the observed k are related to the Power Spectrum at kt , through

(5.44) P`(k) = 2`+1
2

Z1

°1
dµP (kt ,µt )L`(µ)
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For linear redshift space distortion, [52], inserting the transformation of the coordinates

given by Eq. 5.43, the galaxy power spectrum at the true wavenumber is

P s(kt ,µt ) = 1

Æ2
?Æ“

P

"
k
Æ?

"

1+µ2

√
Æ2
?
Æ2
“
°1

!#1/2#

"

1+µ2

√
Æ2
?
Æ2
“
°1

!#°2 (

1+µ2

"

(Ø+1)
Æ2
?
Æ2
“
°1

#)2

.

(5.45)

We use the notation Ø¥ f /b for simplicity with equations. We expand at first order P in the

right side of Eq. 5.45, in order to get analytical derivatives with respect to the expansion

parameters. We have tested numerically that this approximation does not influence our

conclusions. Introducing '¥ Æ2
?
Æ2
“
°1, we can expand the right side of Eq. 5.45 to first order

about (Æ?,') = (1,0), using

P
∑

k
Æ?

°
1+µ2'

¢1/2
∏
º P (k)+

(Æ?°1)
@P
@k

@k
@kt

@kt

@Æ?

ØØØØÆ?=1
'=0

+' @P
@k

@k
@kt

@kt

@'

ØØØØÆ?=1
'=0

(5.46)

Substituting in Eq. 5.45 and then in Eq. 5.44, we obtain models of the multipoles accounting

for both RSD and AP effects to be

P`(k) = 2`+1
2

Z1

°1
dµL`(µ)

n
P (k)

°
1+µ2Ø

¢2+

'

∑
1
2

@P
@ lnk

µ2 °
1+µ2Ø

¢2 +P (k)(°2µ2)(1+Øµ2)2+

2µ2(1+Øµ2)(1+Ø)P (k)° 1
2

P (k)(1+µ2Ø)2
∏
+

(1°Æ?)(1+µ2Ø)2
µ
@P
@ lnk

+3P (k)
∂æ

(5.47)
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In particular it holds that P s(k) at linear order is described by the first three multipoles, as

discussed in 3. The monopole, quadrupole and hexadecapole are

P0(k) = 1
2
æ2

8

nµ
2+ 4

3
Ø+ 2

5
Ø2

∂
P (k)+'

h≥1
3
+ 2

5
Ø+ 1

7
Ø2

¥

@P
@ lnk

°
µ
1+ 2

15
Ø° 1

35
Ø2

∂
P (k)

i
+ (1°Æ?)

≥
2

+ 4
3
Ø+ 2

5
Ø2

¥µ
@P
@ lnk

+3P (k)
∂o

,

P2(k) = 5
2
æ2

8

n≥ 8
15
Ø+ 8

35
Ø2

¥
P (k)+'

h≥ 2
15

+ 8
35
Ø

+ 2
21
Ø2

¥ @P
@ lnk

°
µ

4
21
Ø+ 4

105
Ø2

∂
P (k)

∏
+ (1°

Æ?)
µ

8
15
Ø+ 8

35
Ø2

∂ µ
@P
@ lnk

+3P (k)
∂æ

,

P4(k) = 9
2
æ2

8

n 16
315

Ø2P (k)+'
∑µ

16
315

Ø+ 8
231

Ø2
∂
@P
@ lnk

°
µ

32
315

Ø+ 24
385

Ø2
∂

P (k)
∏
+ (1°Æ?)

16
315

Ø2
≥ @P
@ lnk

+

3P (k)
¥o

.

(5.48)

5.5.2 AP and RSD weights derivation, assuming known bias

As before, the weights for the power spectrum multipoles, assuming information from both

RSD and AP effects, are obtained by taking the derivative of the Pi with respect to the qi

parameters defined in 5.3.2,

w`,qi =
@P`

@qi
= @P`

@'

@'

@qi
+ @P`

@Æ?

@Æ?
@qi

+ @P`

@Ø

@Ø

@ f
@ f
@qi

+ @P`

@æ8

@æ8

@qi
.

(5.49)

all the derivatives are evaluated at the fiducial model. In case of flat universe we have

(5.50) Æ?(z) =
Rz

0 dz 01/H(qi , z 0)
Rz

0 dz 001/Hfid(z 00)

Inserting the definition of Ø and ',

@Ø

@ f
= 1

b
,

@'

@qi
=°

2Æ3
?

Æ3
“

≥ 1
Æ?

@Æ“
@qi

+
°Æ“
Æ2
?

@Æ?
@qi

¥
,

(5.51)
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where

@Æ“
@qi

=° 1
Hfid(z)

@H
@qi

,

@Æ?
@qi

==

Rz
0 dz 0 ° 1

H 2
fid(z 0)

@H
@qi

Rz
0 dz 001/Hfid(z 00)

.
(5.52)

The weights have arbitrary normalization but we cannot factor out the scale dependence

as we did for the RSD weights since we now have two different k-dependent terms P and

dP/d lnk. However we tested this and found that this dependence is very weak.

Figure 5.5 shows the weights optimal for RSD and AP measurements evaluated at k = 0.1

h MPc°1, for the monopole, quadrupole and hexadecapole respectively. Blue lines indicate

the weights with respect to q0, orange lines with respect to q1 and green lines with respect

to q2. Comparing with the previous result that assumed a known distance-redshift relation

(dashed lines), it is possible to see that the behaviour of the three weights does not change

drastically. In general the redshift dependence is stronger including also the AP effect and the

new weights show a more enhanced maximum. Since the contribution from ' and Æ? van-

ish for q0, the weights wi ,q0 are equivalent to the previous weights without AP effect. (Fig 7.1).

5.5.3 AP-RSD weights assuming unknown bias

If we now neglect the information given by [bæ8], as we did for one set of RSD weights, we

substitute Ø= f /b, then we change the Eq. 5.52 to

w`,qi =
@P`

@qi
= @P`

@'

@'

@i
+ @P`

@Æ?

@Æ?
@qi

+ @P`

@ f æ8

@ f æ8

@qi
,

(5.53)

where we have assumed that @[bæ8]/@qi = 0.

In Sec 5.4 we showed that there are no significant differences between the cases in which

bæ8 is known and unknown, however, for the reasons discussed in Sec. 4, they are more

consistent with the RSD measurements. We do not plot any new results since the differences

are very small.

96



5.5. REDSHIFT WEIGHTING ASSUMING UNKNOWN DISTANCE-REDSHIFT RELATION

q0

q1

q2
-3

-2

-1

0

1

2

3

w
0

Monopole

-1

0

1

2

w
2

Quadrupole

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1

0

1

2

z

w
4

Hexadecapole

Figure 5.5: The RSD + AP optimal weights for the monopole w0, quadrupole w2, hexade-
capole w4. Blue lines indicate the weights with respect to the q0 parameter. Orange lines
indicate the weights with respect to the q1 parameter and green lines indicates the weights
with respect to the q2 parameter. We compare them with previous results, where the distance-
redshift relation was fixed (dashed lines); the weights w`,q0 (blue lines) are equivalent to the
previous weights without AP effect since the contribute from ' and Æ? vanish because of
@H (qi )/@q0 = 0. The RSD+AP weights show enhanced features due to AP parameters, whose
importance increases with redshift.
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5.6 Summary

In this chapter, we have proposed a new technique to optimize the anisotropic clustering

measurements in deep redshift surveys. The optimization applies weights to galaxies and

compresses the information into the redshift direction. In this way, we avoid splitting the

sample in bins while preserving our ability to maintain sensitivity to the evolution of the

underlying cosmology. We derived and tested the weights for a§CDM scenario and inves-

tigated the impact of different bias models on the weighting scheme. The next steps will

be including the weights in the estimator presented in 4, testing the pipeline on N-body

simulations (chapter 7) and then applying it to the eBOSS DR14 quasars (chapter 8).
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6
OPTIMISING PRIMORDIAL NON-GAUSSIANITY MEASUREMENTS

FROM GALAXY SURVEYS

G
alaxy clustering data from current and upcoming large scale structure surveys

can provide strong constraints on primordial non-Gaussianity through the scale-

dependent halo bias. To fully exploit the information from galaxy surveys, optimal

analysis methods need to be developed and applied to the data. Since the halo bias is

sensitive to local non-Gaussianity predominately at large scales, the volume of a given

survey is crucial. Consequently, for such analyses we do not want to split into redshift

bins, which would lead to information loss due to edge effects, but instead analyse the full

sample. We apply an optimal technique, with the approach presented in chapter 5, to directly

constrain local non-Gaussianity parametrised by f loc
NL , from galaxy clustering. Similarly to the

work presented in 5 focused on RSD, we here derive a set of weights to optimally measure the

amplitude of local non-Gaussianity, f loc
NL . We discuss the redshift weighted power spectrum

estimators, outline the implementation procedure and test our weighting scheme against

Lognormal catalogs for two different surveys: the quasar sample of the Extended Baryon

Oscillation Spectroscopic Survey (eBOSS) and the emission line galaxy sample of the Dark

Energy Spectroscopic Instrument (DESI) survey. We find an improvement of 30 percent for

eBOSS and 6 percent for DESI compared to the standard Feldman, Kaiser & Peacock weights,

although these predictions are sensitive to the bias model assumed.

This chapter describes a collaborative research project published in [133]. My major

contribution to this project is the derivation of the redshift weights (equations 6.18-6.23).
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GALAXY SURVEYS

6.1 Introduction

Primordial non-Gaussianity (PNG) is one of the most promising probes to distinguish be-

tween different models of inflation, a theory to describe an era of exponential expansion

of the very early universe that was first introduced to solve problems within the Big Bang

model. Inflation can solve the horizon problem as well as the flatness problem, and can also

explain the origin of structure formation through the creation of initial fluctuations. Cur-

rently, the best constraints on PNG are provided by measurements of the cosmic microwave

background (CMB) with the Planck satellite [30].

Even though current constraints from large scale structure (LSS) data (i.g. [84]) are weaker

than the CMB results, future galaxy surveys have the potential to significantly improve upon

these limits (see e.g. [134–136, 136–142]) by constraining the scale dependent halo bias

induced by PNG [14, 76, 143, 144]. Upcoming spectroscopic surveys such as the extended

Baryon acoustic Oscillation Spectroscopic Survey (eBOSS) [1], the Euclid mission [145],

as well as the Dark Energy Spectroscopic Instrument (DESI) [146] survey are expected to

constrain the amplitude of local non-Gaussianity, f loc
NL , around a few (from here on we will

drop the subscript ’loc’ for simplicity); however, to achieve that level of accuracy, analysing

techniques need to be optimised to fully exploit the LSS information. Indeed, most galaxy

redshift survey analyses fall short of their expected results predicted using Fisher Matrix

techniques.

It was recently realised [127] that that some of the missing signal is lost because analyses

are generally performed after splitting a galaxy sample into redshift shells. Instead, they

proposed adopting an analysis strategy that relies on assigning weights to the galaxies over a

broad redshift range, showing that this retains more information provided that the weights

take the redshift evolution of the underlying physical theory into account. This has the

potential to notably improve cosmological constraints from LSS surveys.

[127] focussed on optimising LSS surveys for BAO measurements, and their method was

shown to work using mock catalogs in [147]. In subsequent work, redshift weights were

derived to constrain modified gravity through Redshift Space Distortions (RSD) in [123].

These weights can be interpreted as a natural extension of the Feldman, Kaiser & Peacock

(FKP) weights [86], that balance galaxies according to their number densities, for the case

that the cosmological observables of interest evolve with time. If the underlying physical

theory is independent of redshift then the weights reduce to the standard FKP weights. In the

future, multiple galaxy surveys will cover a large redshift range, 0 < z < 3, making the redshift

weighting technique particularly efficient as well as necessary to avoid information loss
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due to edge effects and disjoint bins. Furthermore, the computational time can be reduced

significantly since the redshift weighting technique only requires a single analysis instead of

measuring each redshift bin separately. Redshift weighting also removes the need to define

an effective redshift of a survey by providing measurements with known variation over the

redshift range.

In this work, we derive and assess the redshift weights for optimising LSS surveys for local

fNL measurements. Avoiding redshift binning is particularly relevant for non-Gaussianity

measurements since the effect of the scale dependent bias dominants on very large scales.

Breaking the survey into redshift bins (for example, considering the clustering in bins of

width ¢z = 0.1), removes large-scale clustering signal. For the correlation function it is clear

that such binning removes pairs of galaxies, where galaxies lie in different bins. For the

power spectrum, the binning introduces a window function, correlating large-scale modes,

and decreasing the effective number of modes.

The chapter is organised as follows: In Section 6.2 we summarise modelling of the power

spectrum as well as the observable effects of non-Gaussianity on the power spectrum. We

introduce the concept of redshift weighting in Section 6.3.1 and derive the optimal weights

for fNL measurements in Section 6.3.2. We outline the procedure of how to apply the weights

to the data in Section 6.3.3. In Section 6.3.4 we discuss the modelling of the redshift weighted

power spectrum and in Section 6.4 we estimate the improvement of using fNL weights

compared to FKP weights by simulating the redshift weighted power spectrum estimators

using Lognormal catalogs. Finally, Section 6.5 contains a discussion of this project key

results.

6.2 Physical Model

In this Section we provide a brief summary of the scale dependent halo bias induced by

non-Gaussianity. In the framework of local non-Gaussianity, i.e. a type of non-Gaussianity

that only depends on the local value of the potential, the primordial potential can be

parametrised as [148, 149]

©=¡+ fNL(¡2 °h¡2i)(6.1)

where ¡ is a Gaussian random field and fNL describes the amplitude of the quadratic correc-

tion to the potential. The potential can then be related to the density field via±(k) =Æ(k)©(k),

with

Æ(k) = 2k2T (k)D(z)
3≠m

c2

H 2
0

g (0)
g (1)

(6.2)
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with the transfer function T (k), the linear growth factor D(z) normalised to be unity at

z = 0, the matter density today≠m , the speed of light c and the Hubble parameter today H0.

The factor g (1)/g (0), with g (z) = (1+ z)D(z), arises due to our normalisation of D(z) and

can be omitted if D(z) is normalised to equal the scale factor during the matter dominated

era. Here we are using the CMB convention for fNL assuming© is the primordial potential.

Note that some authors have previously adopted a "LSS convention" that assumes © is

extrapolated to z = 0, with f LSS
NL = g (1)/g (0) f CMB

NL º 1.3 f CMB
NL . We do not do this as we

consider it unnecessary and potentially confusing.

The scale dependent halo bias ¢b(k) in the local Ansatz is then given by [14, 76]

¢b(k) = 2(b °p) fNL
±crit

Æ(k)
(6.3)

where ±crit = 1.686 and 1 < p < 1.6 depending on the type of tracer. Here we follow [14]

assuming p = 1 for luminous red galaxies (LRGs) and emission line galaxies (ELGs) and

p = 1.6 for quasars.

The total bias, including local non-Gaussianity is then btot = b +¢b(k).

In the limit of the plane parallel approximation, the linear matter power spectrum P in

redshift space is [52]

P (k,µ) =
°
btot + f µ2¢2

PM (k)(6.4)

where f is the linear growth rate, µ is the cosine of the angle between the wavevector k and

the line of sight and PM (k) is the linear matter power spectrum. The effect of fNL is included

in the definition of the total bias. From an observational point of view it is more convenient

to consider the power spectrum multipoles defined as

Pl (k) = 2l +1
2

Z1

°1
dµP (k,µ)Ll (µ)(6.5)

where Ll (µ) are the Legendre polynomials, instead of the linear power spectrum given by

equation (6.4). Even though the power spectrum is fully defined by its first three moments at

linear order, only the monopole

P0(k) =
µ
b2

tot +
2
3

f btot +
1
5

f 2
∂

PM (k)(6.6)

as well as the quadrupole

P2(k) =
µ

4
3

btot f + 4
7

f 2
∂

PM (k)(6.7)

depend on the bias. Therefore we focus our analysis to these multipoles.
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Figure 6.1: Optimal redshift weights for local non-Gaussianity, fNL, measurements as a func-
tion of redshift for the power spectrum monopole [left panel] and quadrupole [right panel].
Blue dashed lines assume a bias model b(z) = 0.53+0.29(1+ z)2 and p = 1.6 referring to
quasars as tracer of the underlying matter density, while green lines are for b(z) = 0.84/D(z)
and p = 1.0, referring to ELGs. The assumptions on the fiducial value of fNL have an negligi-
ble effect on the weights. For these plots we assume a fiducial of fNL = 0

6.3 Optimal weights

6.3.1 Redshift weights

Following the procedure outlined in [123] and [147] we can derive the optimal redshift

weights by maximising the Fisher information matrix F defined as

Fi j ¥
ø

@2L

@µi@µ j

¿
,(6.8)

(6.9)

with the likelihood function L and the parameters µi . Assuming a Gaussian likelihood, the

fisher matrix for a single parameter of the weighted data set can be calculated as

Fi i =
1
2

µ
wT C,i w
wT C w

∂2

+
(wTµ,i )2

wT C w
(6.10)

with the covariance matrix C , the meanµ, the weights w and the index , i denoting the partial

derivative @/@µi [see e.g. 128, 129].

The first term in equation (6.10) vanishes assuming the covariance matrix is known and

independent of the cosmological parameters. The second term is maximised for

wT =C°1µ,i .(6.11)
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Defining wi =µT
,i as well as dW ¥C°1 the weights for parameter µi can be written as

w = wi dW .(6.12)

The factor dW takes the statistical uncertainty of the observable into consideration whereas

wi factors in the redshift evolution of the theoretical model. The normalisation of the weights

is arbitrary and does not affect the cosmological constraints. We choose the normalisation,

Ni =
Z

wi dW(6.13)

leading to normalised weights ŵ defined as

ŵ ¥ 1
Ni

wi dW .(6.14)

Note first, that the index i refers to the same cosmological parameter but does not imply

Einstein summation and second, that our normalisation differs from the one in [147] by a

factor of wi .

6.3.2 Redshift weights for local non-Gaussianity

For the power spectrum P(k), the inverse covariance matrix in each redshift slice can be

approximated by

dW ¥C°1 =
µ

n̄
n̄P +1

∂2

dV(6.15)

depending on the galaxy density n̄ as well as the survey volume dV . Since in this analysis

we are interested in using measurements of the power spectrum monopole and quadrupole

to constrain the non-Gaussianity parameter fNL, the part of weights referring to the redshift

evolution of fNL are given by

wl , fNL =
@Pl

@ fNL
.(6.16)

The total weights

w = wl , fNL dW(6.17)

are then a combination of the volume factor dW and the fNL weights. In the following we will

use the term "redshift weights" to refer to wl , fNL but one should keep in mind that the total

weights also include the volume factor dW . For wi = 1 the weights reduce to the commonly

used FKP weights. However, if one is interested in a theory that is more sensitive at high
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redshifts, for instance, more total weight will be given to galaxies at higher redshifts than in

the case of FKP weights.

Using equation (7.22) and equation (6.3) together with equation (6.6), the weight of the

monopole reads as

w0, fNL =
µ
2btot +

2
3

f
∂
@btot

@ fNL
PM (k, z)(6.18)

and furthermore assuming a fiducial value for fNL,fid = 0 simplifies to

w0, fNL =
µ
2b + 2

3
f
∂

2(b °p)
±crit

Æ(k, z)
PM (k, z).(6.19)

Factoring out the explicit redshift dependency as Æ(k, z) =Æ(k, z0)D(z) and PM (k, z) =
PM (k, z0)D(z)2 as well as normalising the weights according to equation (6.13), the nor-

malised weights can be written independent of the wavevector k. Without the loss of gener-

ality, the weights can be redefined as

ŵ0, fNL =
1

N0, fNL

w0, fNL(6.20)

where

w0, fNL =
µ
b + 1

3
f
∂

(b °p)D(z)(6.21)

N0, fNL =
Z

w0, fNL dW .(6.22)

Similarly the quadrupole weight can be defined as

w2, fNL = 4
3

f (b °p)D(z).(6.23)

It should be emphasised the scale independence of these weights significantly simplifies

their application (see Section 6.3.3).

Fig. 6.1 shows the weight for the monopole w0, fNL [left panel] and the quadrupole w2, fNL

[right panel] as a function of redshift z assuming a bias of b(z) = 0.53+0.29(1+ z)2 (blue

dashed lines) and p = 1.6 as well as b(z) = 0.84/D(z) and p = 1 (green lines), bias models

previously proposed for eBOSS quasars [1] and DESI ELGs [2] respectively. The weights at

low redshifts, z < 0.75, are similar for both, but deviate for higher redshifts due to increasing

differences in the bias models, with a strong high-redshift bias leading to larger weights at

high redshifts. In general, the fNL weights are also larger for higher redshifts since the fNL

model is also sensitive to the redshift evolution of the the growth rate.
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6.3.3 Implementation procedure

The implementation procedure was outlined in [127] analysing the real space correlation

function as well as in [123] for the power spectrum in Fourier space. For completeness, we

summarise some of the key-points here. The redshifts weights can be applied to the data

and randoms as an extension of the usual FKP weighting scheme following the prescription

of [86],

wFKP = 1
1+ n̄(z)P (k0)

(6.24)

where n̄(z) is the mean number density at the galaxies’s redshift z, and k0 is commonly

assumed to be approximately the BAO scale. The redshift dependent weights are applied in

the following way: In real space, each galaxy pair (or pair of randoms) is weighted by wl , fNL

as well as wFKP

gX Y =
X

z
wl , fNL w 2

FKPX Y(6.25)

where gX Y = {DD,DR,RR} refer to the data-data, data-random and random-random pairs

of the sample. The standard [110] estimator

ªl , fNL =
gDD °2gDR + fRR

RR
(6.26)

can then be used to calculate the weighted correlation function, where RR are the un-

weighted random-random pairs.

In Fourier space the procedure is similar. Each galaxy is weighted by a product of FKP

weight and the fNL specific weights as derived in Section 6.3.1

w =p
wFKP £wl , fNL .(6.27)

Note, that even though we derived the weights within the framework of the power spectrum,

following the assumption that the clustering evolves over larger scales than those being

measured, we can approximate the weights applied to the galaxies as the root of the power

spectrum weights wg =p
wP .

6.3.4 Modelling the weighted power spectrum

The model to be fitted to the measured, weighted power, also depends on the weights. i.e. we

need both the data and model to be sensitive to the same redshifts. We model the theoretical

weighted power spectrum multipoles by compressing them into the redshift direction as

Pl ,w (k) ¥ 1
Ni

Z
dW (z)wl ,i (z)Pl (k, z)(6.28)
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Figure 6.2: Redshift weighted power spectrum monopole for eBOSS [left panel] and DESI
[right panel]. Blue dashed lines correspond to the ’unweighted’ (or FKP)-weighted monopole
(assuming w0 = 1) and green lines represent the fNL-weighted monopole. Details on the
survey assumptions are summarised in Tab. 6.1.

with

wunweighted = 1(6.29)

w0, fNL =
µ
b + 1

3
f
∂

(b °p)D(z)(6.30)

w2, fNL = 4
3

f (b °p)D(z)(6.31)

with the normalisation Ni given by the equation (6.13).

In general, the theoretical power spectrum includes a convolution with the survey win-

dow function. However, considering the galaxy power spectrum as an evolving quantity

requires a redefinition of the survey window function (for details see Ruggeri et al., in prep.).

6.4 Testing the redshift weights

In order to test the weights, we generate an ensemble of mock catalogues, based on over-

densities drawn from a Lognormal distribution [150]. Lognormal-random fields were used

for convenience because they approximate the present-day non-linear fluctuation field,

and they obey the physical limit ±>°1, which means that they can be Poisson sampled to

provide a galaxy distribution with shot-noise and sample variance matching those expected.

Although both the assumptions of a Lognormal overdensity field and Poisson-sampled

galaxies are crude approximations, they are fit for our purpose of testing the weights.
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Table 6.1: We are modelling the eBOSS quasar sample and the DESI ELG sample with
the number of galaxies given in Tabel 2 of [1] and Table 2.3 in [2] respectively. We are not
considering the complete surveys but rather select specific samples to highlight the range of
results that can be expected for different survey specification.

survey tracer redshift range sky coverage bias model
eBOSS Quasars 0.6 < z < 2.2 7,500 deg2 b(z) = 0.53+0.29(1+ z)2

DESI ELGs 0.6 < z < 1.8 14,000 deg2 b(z) = 0.84/D(z)

We generate 10,000 mock catalogues in redshift shells of ±z = 0.025 with the number

densities, redshift range, sky coverage and bias model as expected for the eBOSS quasar

sample and DESI ELGs. A summary of the survey specifications can be found in Table 6.1.

We assume a box size of L = V 1/3 with the volume referring to the shell of a given survey

calculated as

V (z) = 4º
3

fsky
°
¬(zmax)3 °¬(zmin)3¢(6.32)

with the sky coverage fraction fsky and the comoving distance ¬. Within each redshift shell

we assume no density gradient, simplifying our analysis to avoid a detailed modelling of

survey window function. The simulations assume a flat§CDM cosmology with≠m = 0.3,

≠b = 0.045, h = 0.7, ns = 1.0, æ8 = 0.8 and fNL = 0 as our fiducial cosmology. We compute the

spherically averaged power-spectrum monopole in 23 bins of width ¢k = 0.005 h/Mpc from

0.005 h/Mpc < k < 0.12 h/Mpc using

P0(k, z) = 3
2

X
|±̃(k)|2L0(µ(k))(6.33)

where L0(µ) is the 0th order Legendre polynomial and |±̃(k)|2 is the squared modulus of the

Fourier transform of the overdensity ±(r ) at position r and the sum is over all wavevectors

in the range |k|±¢k/2 [see e.g., 151]. For each mock we then calculate the weighted and

unweighted power spectra via equation (6.28).

In the following analysis we only consider constraints from the monopole as a proof of

concept and do not consider constraints from the quadrupole since most of the information

on fNL is contained in the monopole [84]. For each mock the weighted power spectrum is

then calculated using equation (6.28). We calculate the covariance matrix as

Ci j =
1

Nm °1

NmX

n=1

£
dn(ki )° d̄(ki )

§£
dn(k j )° d̄(k j )

§
(6.34)

where Nm is the total number of mocks, dn(k) is the power spectrum monopole from the

nth mock.
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Figure 6.3: Noise-to-signal of the weighted power spectrum monopole [left panel] and the
difference of the weighted power spectrum assuming fNL = 10 and fNL = 0 over the noise,
¢P0,w /æ(P0,w ) =

°
P0,w ( fNL = 10)°P0,w ( fNL = 0)

¢
/æ(P0,X ), [right panel]. Blue dashed lines

refer to the ’unweighted’ power spectrum monopole and green lines to the fNL-weighted
monopole. The lower panel shows the ratio between the ’unweighted’ and fNL-weighted
case. Even though the unweighted monopole has a higher level of noise, the sensitivity to
fNL is higher for the fNL-weighted monopole and with that the capacity to constrain to fNL.

Fig. 6.2 shows the fNL-weighted and ’unweighted’ power spectrum monopole for eBOSS

[left panel] and DESI [right panel]. The effect of the fNL-weights is greater for eBOSS due to

the adaption of a bias model that evolves more strongly with redshift as well as due to the

larger redshift range of the survey. Note, that the normalisation factor for both surveys is

different.

The redshift weighting scheme takes the redshift evolution of the underlying theory into

account, potentially shifting the weights towards regions with higher noise in the clustering

signal. Therefore, applying redshift weights does not automatically lead to higher signal

to noise in the power spectrum itself. Instead, redshift weighting leads to the observable

that can constrain the underlying theory the most. In the case of local non-Gaussianity,

more weight is given to galaxies at higher redshifts despite the larger statistical uncertainty

at these redshifts, because the effect of fNL on the powers spectrum is greater at higher

redshifts. Fig. 6.3 depicts the noise-to-signal as a function of scale for the fNL-weighted and

’unweighted’ power spectrum monopole for DESI [left panel], as well as the difference of the

redshift weighted power spectrum for fNL = 10 and fNL = 0 over the noise [right panel]. Even

though the N/S is larger for the fNL-weighted power spectrum, it has a greater capability to

constrain fNL than the FKP-weighted power spectrum because it is more sensitive to the

fNL.
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To get an estimate on the error achievable on a measurement of fNL from both surveys,

we calculate the ¬2 surface

¬2 = (~m ° ~d)T C°1(~m ° ~d)(6.35)

where ~d is the data vector calculated from the mocks and ~m is the model vector. For both

surveys we can then calculate the expected likelihood. For eBOSS we find an uncertainty

on fNL of æ( fNL) = 21.63 at 68% C.L. for the FKP-weighted case and æ( fNL) = 16.66 for the

fNL-weighting scheme, an improvement of 30%. The improvement for DESI is slightly lower

at around 6%. Our analysis currently uses a scale-dependent FKP weight (i.e. P is allowed

to vary with k in the weights). If the FKP weight were fixed, as is often assumed when

analysing data for simplicity, then we would expect less good constraints on fNL because

of increased cosmic variance and/or shot noise. We would also have a different fractional

improvement from the redshift weights, with the improvement increasing if the FKP weights

are fixed for P (k) with k on larger scales: those where the fNL signal is stronger and the

redshift-weights more effective. For example if the FKP weight is fixed at k0 = 0.0475 the

improvement increases to 42% for eBOSS.

The Fisher matrix forecasts for eBOSS quasars are æ( fNL) = 15.74 [1] with fixing the bias.

The redshift weighting technique yields results closer to the predicted uncertainty compared

to the unweighted analysis. We do not quite reach the Fisher forecast accuracy because we

only consider the monopole and assume a slightly smaller k-range. The Fisher forecasts for

DESI are æ( fNL) = 3.8 [146], yet these constraints are for the full DESI survey and not just the

ELG sample.

The difference between the improvement for eBOSS and DESI from adding the new

weights is driven by the range of bias assumed across the sample under consideration, and

so will not be fully known for DESI until the survey starts. Even so, this analysis is a proof

of principle that the fNL-redshift weighting can lead to stronger constraints on fNL than a

simple FKP-weighted power spectrum.

6.5 Discussion

The optimal weights we have derived to measure fNL balance sample variance, shot noise

and the redshift evolution of the scale dependent halo bias induced by non-Gaussianity.

The weights depend on the properties of the galaxy sample through the evolving bias of the

sample. As the bias is generally increasing with redshift, we end up weighting galaxies at

110



6.5. DISCUSSION

�60 �40 �20 0 20 40 60
fNL

0.0

0.2

0.4

0.6

0.8

1.0

L
ik

el
ih

oo
d

eBOSS

unweighted
fNL weighted

�30 �20 �10 0 10 20 30
fNL

0.0

0.2

0.4

0.6

0.8

1.0

L
ik

el
ih

oo
d

DESI

unweighted
fNL weighted

Figure 6.4: Projected likelihood for fNL measurements from eBOSS quasars [left panel] and
DESI ELGs [right panel] for an ’unweighted’ (green lines) and fNL-weighted (blue dashed
lines) power spectrum monopole. The redshift weighting technique can improve the con-
straints on fNL by 30% for eBOSS quasars and 6% for DESI ELGs. The improvement is larger
for eBOSS due to the strong redshift evolution of the assumed bias model as well as a larger
redshift range.

high redshift more strongly than at low redshifts, even if the signal-to-noise of the clustering

signal is weaker.

We assessed the potential of the fNL weights using mock catalogs generated with a Log-

normal code simulating the upcoming eBOSS and DESI surveys. We find that the uncertainty

on fNL is minimised when applying the fNL redshift weights, yielding an improvement of 6%

up to 30% for DESI and eBOSS respectively compared to analysing an FKP-weighted power

spectrum.

There are a few caveats to our analysis: First, the redshift weights to optimally measure

local non-Gaussianity depend strongly on the assumed galaxy bias. If the fiducial bias model

is inaccurate, then the weights will not be optimal and lead to looser constraints on fNL then

expected. However, the redshift weighted power spectrum will still be unbiased. Second,

for tracers with no strongly evolving bias the underlying theory is only mildly redshift

dependent limiting the overall improvement of the redshift weighting technique. In general,

the improvement from the fNL-weighting increases with the redshift range of the survey but

also depends on the tracer of the sample, with the improvement being stronger where the

range of bias across a sample is larger.
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6.6 Summary

Following the same procedure presented in chapter 5, in this chapter we have derived a set

of weights to optimize the measurement of fNL; we assessed the potential of these weights

using mock catalogs generated though a Lognormal code simulating the upcoming eBOSS

and DESI surveys. We found that the uncertainty on fNL is minimised when applying the fNL

redshift weights, yielding an improvement of 6% up to 30% for DESI and eBOSS respectively

compared to analysing an FKP-weighted power spectrum.

We have discussed the potential of redshift weighting to constrain fNL for eBOSS and

DESI, but there are also other future surveys for which this technique is highly relevant, for

instance the Euclid mission [145] and SPHEREx [152]. Euclid is a space based, spectroscopic

survey of HÆ-selected emission line galaxies with galaxies in redshift range range 0.7 < z <
2.0, expected to constrain local non-Gaussianity in addition to BAO and RSD measurements.

SPHEREx is a all-sky spectroscopic satellite survey covering a very wide redshift range that

was particularly designed to measure non-Gaussianity. It has an evolving redshift accuracy

up to æz /(1+ z) < 0.2 with low redshifts being more accurately measured than high redshifts.

However, we expect the lower redshift accuracy not to be problematic when applying the

redshift weights as long as the uncertainty in redshift is taken into account as an additional

contribution to the covariance when calculating the weights.

112



C
H

A
P

T
E

R

7
TESTING A NEW APPROACH TO MEASURE THE EVOLUTION OF

THE STRUCTURE GROWTH

T
he extended Baryon Oscillation Spectroscopic Survey (eBOSS) is one of the first of a

new generation of galaxy redshift surveys that will cover a large range in redshift with

sufficient resolution to measure the baryon acoustic oscillations (BAO) signal. As we

discussed in chapters 5 and 6, for surveys covering a large redshift range we can no longer

ignore cosmological evolution, meaning that either the redshift shells analysed have to be

significantly narrower than the survey, or we have to allow for the averaging over evolving

quantities. Both of these have the potential to remove signal: analyzing small volumes

increases the size of the Fourier window function, reducing the large-scale information,

while averaging over evolving quantities can, if not performed carefully, remove differential

information. It will be important to measure cosmological evolution from these surveys

to explore and discriminate between models. We apply the method described in chapter

5, to optimally extract this differential information to mock catalogues designed to mimic

the eBOSS quasar sample. By applying a set of weights to extract redshift space distortion

measurements as a function of redshift, we demonstrate an analysis that does not invoke

the problems discussed above. We show that our estimator gives unbiased constraints.

The content of the work presented here refers to the research published in [153].
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7.1 Clustering analysis strategies for eBOSS

The eBOSS survey [96], [1] [28], which commenced in July 2014, will cover the largest volume

to date of any cosmological redshift survey with a density sufficient to extract useful cosmo-

logical information. eBOSS observations will target multiple density-field tracers, including

more than 250,000 luminous red galaxies (LRGs), 195,000 emission line galaxies (ELGs) at

effective redshifts z = 0.72,0.87 and over 500,000 quasars between 0.8 < z < 2.2. The survey’s

goals include the distance measurement at 1 °2% accuracy with the BAO peak on the LRG

sample and the first BAO measurements using quasars as density tracers over the redshift

range 1 < z < 2 (the first clustering measurements were recently presented in [23]). The

wide redshift range covered, compared with that in previous redshift surveys represents an

unique opportunity to test and discriminate between different cosmological scenarios on

the basis of their evolution in redshift. Full survey details can be found in [96].

The clustering analysis strategy adopted for most recent galaxy survey analyses was

based on computing the correlation function or the power spectrum for individual samples

or subsamples, overwhich the parameters being measured were assumed to be unvarying

with redshift. The measurements were then considered to have been made at an effective

redshift: see e.g. [7], [154]. In particular [7], divided the full The Baryon Oscillation Spectro-

scopic Survey (BOSS) survey volume in three overlapping redshift bins and repeated the

measurement in each sub-volume. This technique has many disadvantages: the choice of

bins is a balance between having enough data for a significant detection in each bin leading

to Gaussian errors and having bins small enough that there is no cosmological evolution

across them, leading to a degrading compromise. The technique also ignores information

from the cross-correlation between galaxies in different redshift bins, potentially ignoring

signal. Sharp cuts in redshift will also introduce ringing artefacts in the Fourier-space, po-

tentially causing complications in the analysis. To complicate analyses further, many mock

catalogues currently used to compare to the data intrinsically lack evolution, or “lightcone”

effects, being drawn from simulation snapshots. Although this is a separate problem, these

differences limit the tests of the effects of evolution that can be performed, and have the

potential to hide biases caused by evolution.

In chapters 5 and 6, we introduced an alternative approach to the redshift binning. The

idea is to consider the whole volume of the survey and optimally compress the information

in the redshift direction by applying a set of redshift weights to all galaxies, and only then

computing the weighted correlation function. Comparing measurements made using differ-

ent sets of redshift weights maintains the sensitivity to the underlying evolving theory. The
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sets of weights are derived in order to minimize the error on the parameters of interest. In

addition, by applying the redshift weighting technique instead of splitting the survey, is it

possible to compute the correlation function to larger scales whilst accounting for the evolu-

tion in redshift; this was particularly clear in what derived in chapter 6, which considered

this method to optimize the measurement of local primordial non Gaussianity, which relies

on large scales. Further, [147] showed that the application of a weighting scheme rather than

splitting into bins also improves BAO measurements.

As already mentioned, the need to correctly deal with evolution will increase for the DESI

and Euclid experiments, which will cover a broad redshift range and have significantly re-

duced statistical measurement errors compared to current surveys in any particular redshift

range. The Dark Energy Spectroscopic Instrument (DESI)1 is a new MOS currently under

construction for the 4-meter Mayall telescope on Kitt Peak. DESI will be able to obtain 5000

simultaneous spectra, which coupled with the increased collecting area of the telescope

compared with the 2.5-meter Sloan telescope, means that it can create a spectroscopic

survey of galaxies ª 20 times more quickly than eBOSS. In 2020 the European Space Agency

will launch the Euclid2 satellite mission. Euclid is an ESA medium class astronomy and

astrophysics space mission, and will undertake a galaxy redshift survey over the redshift

range 0.9 < z < 1.8, while simultaneously performing an imaging survey in both visible and

near-infrared bands. The complete survey will provide hundreds of thousands images and

several tens of Petabytes of data. About 10 billion sources will be observed by Euclid out

of which several tens of million galaxy redshifts will be measured and used to make galaxy

clustering measurements.

In the current work we test the redshift weighting approach by analysing a set of 1000

mocks catalogues [155] designed to match the eBOSS quasar sample. This quasar sample

has a low density (82.6 objects/deg2) compared to that of recent galaxy samples, and covers

a total area over 7500 deg2. The quasars are highly biased targets and we expect their bias

to evolve with redshift, b(z) / c1 + c2(1+ z)2, with constant values c1 = 0.607±0.257, c2 =
0.274±0.035, as measured in [156].

Although the mocks are not drawn from N-body simulations, they have been calibrated

to match one of the BigMultiDark (BigMD) [157], a high resolution N-body simulation,

with 38403 particles covering a volume of (2500h°1M pc)3. The BigMD simulations were

performed using GADGET-2 [158], with§CDM Planck cosmological constraints as a fiducial

cosmology. ≠m = 0.307, ≠b = 0.048206, æ8 = 0.8288, ns = 0.96, H0 = 100hkms°1Mpc°1

1http://desi.lbl.gov/
2http://sci.esa.int/euclid
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and h = 0.6777. In [155] the authors showed that EZ-mocks are nearly indistinguishable

from the full N-body solutions: they reproduce the power spectrum within 1%, up to k =
0.65hMpc°1. The mocks are created using a new efficient methodology based on the effective

Zel’dovich approximation approach including stochastic scale-dependent, non-local and

nonlinear biasing contribution. In particular, the halo bias and the non linearities are

accounted for by introducing a number of effective free parameters, directly calibrated from

the clustering observation or from a N-body mock; the current analysis uses light-cone

catalogues calibrated directly from the DR14Q clustering. The light-cone is implemented

coating 7 different snapshots at z = 0.9,1.1,1.3,1.5,1.6,1.7,2.0. Given the noise of the DR14

sample, we are not interested in extending the analysis presented here to explore non-linear

bias parameters, which in fact, are kept in chapter 8 as well, as nuisance parameters. For

this reason, the resolution given by the EZ mocks light-cone is sufficient for validating

the analysis on eBOSS data. However, the step-wise implementation of the light-cone, as

we discuss in 7.6.2, limits our ability to constrain the slope of the growth rate parameter

and to investigate the impact of the evolution in redshift of the velocity dispersion. A key

requirement for future work will be to reproduce the tests discussed here on a more realistic

set of mocks with an higher resolution and a proper light-cone implementation.

In the next chapter (8), we will apply the weighting scheme to measure redshift-space

distortions from the eBOSS DR 14 quasar data. In this paper, we validate the procedure and

test for optimality. By fitting to the evolution with a model for bias and cosmology, we are

able to fit simultaneously the evolution of the growth rate f (z), the amplitude of the dark

matter density fluctuations æ8(z) and the galaxy bias b(z); breaking part of the degeneracy

inherent in standard measurements of f æ8 and bæ8 when only one effective redshift is

considered. We show that the redshift weighting scheme gives unbiased measurements.

The weights can be applied in both configuration or Fourier space. In this paper, we focus

Fourier space, as there is some evidence that this provides stronger redshift space distortions

(RSD) constrains, given the current scale limits within which the clustering can be modelled

to a reasonable accuracy [7]. In addition, the calculation of the power spectrum moments

is significantly faster than the correlation function as discussed in chapter 4. Working in

Fourier-space requires a reformulation of the window selection to account for an evolving

power spectrum.

The chapter is organized as follows; Section 7.2 reviews the derivation of optimal weights,

presenting two schemes that differ in the cosmological model to be tested. In Section 7.3

we review the redshift space power spectrum model at a single redshift. In Section 7.4 we

model the power spectrum and the window function to obtain the redshift evolving power
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spectrum. In Section 7.5 we present the result of our analysis.

7.2 Optimal Weights

We make use of two different sets of weights; the first explores deviations from the§CDM

model by altering the evolution of ≠m in redshift. This model ties together growth and

geometry, but can also be used after fixing the expansion rate to match the prediction of

the§CDM model. The second parametrizes the f æ8 parameter combination measured by

RSD, allowing for a more standard test of deviations from §CDM. Here, the growth and

geometry are artificially kept separate as f æ8 only affects cosmological growth. In both

cases the weights are computed selecting a flat§CDM scenario as fiducial model. Note that,

as discussed in Chap. 5 and [127], the choice of an inaccurate fiducial model for the weights

would only affect the variance of the quantities constrained and not the best-fit values.

The weight functions act as a smooth window on the data and allow us to combine

the information coming from the whole volume sampled. These weights are derived by

minimising the error on the redshift space distortion measurements, as predicted by a simple

Fisher matrix analysis, as shown in chapter 5. Their derivation allows for the evolution with

redshift of the cosmological parameters we want to estimate from the data. Optimizing the

measurements of the generic parameter µ from the power spectrum moments P j , j = 0,2,4..

we obtain the following weights,

(7.1) w(z) =C°1@P j (z)/@µi .

We assume the covariance matrix of P , C to be parameter independent and, in absence of a

survey window, to be described as

(7.2) C ª (Pfid +1/n)21/dV ,

for each volume element, dV within the survey. The weights can be seen as an extension of

the FKP weights presented in [86], which have the form,

(7.3) wFK P (r ) = 1
1+n(r )P (k)

,

by including the redshift component @P j (z)/@µi .

Note that the weights as they are reported in Eq. (7.1), aim to compress different measure-

ments of the power spectrum across a range of different redshifts. In fact, we apply weights

to each galaxy in order to avoid binning, by assuming the relation wg al =
p

wP , with wP

denoting the weights defined in Eq. 7.1, which relies on the scale-dependence of the weights

being smooth on the scale of interests for clustering.
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7.2.1 Optimal Weights for≠m

As described in chapter 5, it is empirically convenient to test for deviations from the§CDM

model by considering the evolution of the matter density with redshift. To do this, we

consider a Taylor expansion up to second order about the fiducial model,

(7.4)
≠m(z)
≠m,fid(z)

= q0

∑
1+q1 y(z)+ 1

2
q2 y(z)2

∏
,

where zp is the pivot redshift i.e. a selected redshift within the redshift range of the survey

and y(z)+ 1 ¥ ≠m,fi d (z)/≠m,fi d (zp ). Note that as shown in [147] the analysis does not

depend on the choice of a particular zp . The qi parameters correspond to the first and

second derivatives of≠m(z)|zp , evaluated at zp , and incorporate potential deviations about

the fiducial model≠m,fid.

The choice of parameterising≠m (and hence the Hubble parameter, the angular diam-

eter distance and the growth rate) in terms of q0, q1 and q2 allows us to simultaneously

investigate small deviations using a common framework; e.g. departures from a fiducial

cosmology and geometry are accounted through the fiducial Hubble constant and angular

diameter distance H(≠m), D A(≠m); further, modified gravity models can be accounted

through the growth rate, f (≠m).

By matching to the standard Friedman equation, we parametrize the redshift evolution

of the Hubble parameter in term of≠m(z) as,

(7.5) H 2(z) = H 2
0
≠m,0(1+ z)3

≠m(z)
.

Assuming a flat Universe (≠k = 0) in agreement with CMB measurements [54], we have

≠§(z) = 1°≠m(z). The subscript “0” denotes quantities evaluated at z = 0. For simplicity of

notation we omit the qi dependence from all the parameters: we refer to≠m(z, qi ) as≠m(z),

and we denote with≠m,fid the fiducial§CDM matter density.

For the scenarios considered, we assume the solution for the linear growth factor D(z)

and the dimensionless linear growth rate f have the same dependence on≠m(z) as in the

§CDM model,

(7.6) g (z) ¥ (1+ z)D(z) = 5≠m(z)H 3(z)
2(1+ z)2

Z1

z
dz 0 (1+ z 0)

H 3(z 0)

(7.7) f (z) =°1°≠m(z)
2

+≠§(z)+ 5≠m(z)
2g (z)

.

Fig. 7.1 shows an example of the weights as derived in chapter 5, that optimize the

measurements of the qi parameters in a §CDM fiducial background for a redshift-space
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Figure 7.1: The weights for the monopole and quadrupole with respect to the qi parame-
ters.

power spectrum. Since each multipole contains information about≠m(z), our set of weights

is derived to be optimal for the first two non-null moments of the power spectrum on the

Legendre polynomial basis for each qi parameter. Continuous lines indicate the weights for

the monopole with respect to q0 (red line) and q1 (orange line); dashed lines indicate the

weights for the quadrupole with respect q0, q1 (red and orange lines). All the weights are

normalized to be equal 1 at the pivot redshift;

7.2.2 Optimal Weights for f æ8

RSD measurements constrain the amplitude of the velocity power spectrum, and its cos-

mological dependence in the linear regime is commonly parameterized by the product

of the two parameters f and æ8, which provides a good discriminator of modified gravity

models [159]. We compare results obtained from the≠m parametrisation with those derived

using a set of weights parametrised with respect to [ f æ8](z). In an analogous way to the

consideration in Section 7.2.1, we can expand [ f æ8](z) about a fiducial model, so Eq. (7.4)
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becomes

(7.8) [ f æ8](z) = [ f æ8]fi d (z)p0

≥
1+p1x +p2

x2

2

¥
,

where x ¥ [ f æ8]fi d (z)/[ f æ8]fi d (zp )°1. The pi parameters correspond to the first and second

derivatives of [ f æ8](z)|zp , evaluated at zp , and incorporate potential deviations about the

fiducial model [ f æ8]fi d .

As a fiducial model for [ f æ8]fi d to compute the weights, we select the solution of linear

perturbation theory in a flat§CDM scenario, where the growth rate evolves with redshift as

[ f æ8]fid(z) =
h
°1°

≠m,fi d (z)

2
+≠§,fid(z)+

5≠m,fid(z)

2gfid(z)

i

£æ8,0
gfid(z)

(1+ z)2 ,
(7.9)

with gfid, fiducial growth factor,

gfid(z) =
5≠m,fid(z)H 3

fid(z)

2(1+ z)2

Z1

z
dz 0 (1+ z 0)

H 3
fid(z 0)

(7.10)

The galaxy bias parameter is assumed to be independent of f and æ8. For simplicity, we

consider [bæ8] to be independent from [ f æ8] as well. Considering e.g. the galaxy monopole

with respect to the linear matter power spectrum P ,

(7.11) P0 =
≥
[bæ8]2 + 2

3
[bæ8][ f æ8](z)+ 1

5
[ f æ8]2(z)

¥
P (k),

the dependence on the pi parameters is given only through [ f æ8]. We derive the set of

weights by taking the derivative of P0, P2, P4 with respect to p1, p2, p3. For completeness we

include the weights here as they were not included in chapter 5.

wi ,q0 = Ni , wi ,q1 = Ni y, wi ,q2 = Ni
1
2

y2,(7.12)

where

(7.13) N0 ¥
µ

2
3

[bæ8]+ 2
5

[ f æ8](z)
∂

[ f æ8](z),

(7.14) N2 ¥
µ

4
3

[bæ8]+ 8
7

[ f æ8](z)
∂

[ f æ8](z),

(7.15) N2 ¥
µ

16
35

[ f æ8](z)
∂

[ f æ8](z).
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A strong effect on the set of weights is caused by the assumptions we make for galaxy

bias. If we set the bias as an unknown parameter, and we marginalize over it, then we cannot

deduce any information about structure growth from the amplitude of the density power

spectrum. This is the case for the expansion around [ f æ8], where we considered [bæ8] and

[ f æ8] as independent parameters. However, if we constrain b(z) to match a fiducial model,

we will derive weights that make use of the information coming from the amplitude of the

power spectrum. For the expansion around≠m , we can choose whether or not to include

this information.

7.3 Modelling the anisotropic galaxy power spectrum at a

single redshift

We model the power spectrum using perturbation theory (PT) up to 1-loop order. We include

the non linear redshift space distortions effects as in [70] and [13] (TSN model),

Pg(k,µ) = exp
©
°( f kµæv )2™£

Pg,±±(k)

+2 f µ2Pg,±µ(k)+ f 2µ4Pµµ(k)

+b3 A(k,µ,Ø)+b4B(k,µ,Ø)
§
,

(7.16)

where µ is the cosine of the angle between the wave-vector k and the line of sight. Pµµ and

P±µ are the velocity-velocity and matter-velocity power spectra terms that correspond to

the extended linear model of [52] as derived in [70]. µ denotes the Fourier transform of the

comoving velocity field divergence, µ(k) ¥ °i k ·u(k) where ru = °rv/
£
a f (a)H(a)

§
with

velocity field v and dimensionless linear growth rate f . The exponential term represents the

damping due to the “Fingers of God” effect, where æv denotes the velocity dispersion term,

here treated as free parameter. The A, B terms come from the TNS model which take into

account further corrections due to the non linear coupling between the density and velocity

fields [13]. Note that at linear level Pµµ = P±µ = P±±.

We model Pg,±± and Pg,±µ as

Pg,±±(k) = b2P±±(k)+2b2bPb2,±(k)+2bs2bPbs2,±(k)

+2b3nl bæ2
3(k)P (k)+b2

2Pb22(k)

+2b2bs2Pb2s2(k)+b2
s2Pbs22(k)+S,

(7.17)

(7.18)
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Pg,±µ(k) = bP±µ(k)+b2Pb2,µ(k)+bs2Pbs2,µ(k)

+b3nlæ
2
3(k)P (k),

(7.19)

The bias is modelled following recent studies [64][160] that showed the importance of non-

local contributions. We account for those effects introducing as galaxy bias parameters:

the linear b, second order local b2, non local bs2, and the third order non-local b3nl bias

parameters, and the constant stochasticity shotnoise term S. We numerically evaluate the

non-linear matter power spectra, P±±, P±µ, Pµµ, at 1-loop order in standard perturbation

theory (SPT) using the linear power spectrum input from CAMB [161].

In the current analysis we make use of the first three non-zero moments of the power

spectrum, projected into an orthonormal basis of Legendre polynomials L`(µ) such that,

(7.20) P`(k) = 2`+1
2

Z1

°1
dµP (k,µ)L`(µ),

with the monopole ` = 0, quadrupole ` = 2 and hexadecapole ` = 4, respectively. In this

paper we do not consider geometrical deviations and we are only concerned with growth

measurements in a fixed background. However, we note that such deviations can be included

as follows. The geometrical deviations from the fiducial cosmology can be included through

the Alcock-Paczynski effect, [73]. Here, revised mode numbers k 0, µ0 for the cosmological

model being tested, are related to those observed k, µ assuming the fiducial cosmology by

the transformations

k 0 = k
Æ?

£
1+µ2

≥Æ2
?
Æ2
“
°1

¥i1/2

µ0 = µÆ?
Æ“

h
1+µ2

≥Æ2
?
Æ2
“
°1

¥i°1/2
(7.21)

where the scaling factors Æ“ and Æ? are defined as

Æ“ =
H fid(z)

H(z)
,

Æ? = D A(z)

Dfid
A (z)

.
(7.22)

By applying the transformations of Eq. (7.22) to Eq. (7.20), the multipoles at the observed

k and µ, relate to the power spectrum at the true variables k 0 and µ0 through

(7.23) P`(k) = (2`+1)

2Æ2
?Æ“

Z1

°1
dµPg (k 0,µ0)L`(µ).
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7.4 Modelling the evolving galaxy power spectrum

7.4.1 Redshift weighted multipoles without window function

We model the redshift dependence of f , æ8, Æ“, and Æ? as described above, and the bias

evolution (see Sec. 7.4.3). In principle we can compute the weighted multipoles by integrat-

ing the power spectrum moments as given in Eq. (7.23) over redshift, including the redshift

weighting,

(7.24) P`w`,q j
=

Z
d z P`(k, z)w`,q j .

In general when estimating the power spectrum of a three-dimensional redshift sur-

vey, that measured is the underlying power spectrum convolved with the window function.

Therefore to compare the model with the data we first convolve it with the window deter-

mined by the survey geometry. In the next section we derive a general relation between the

measured P and the window function to extend the treatment of [86], (Eq. 2.1.4) to the case

where the power spectrum is evolving with redshift.

7.4.2 Redshift weighted multipoles including the survey window effect

We study the window function for the evolving power spectrum using a generalized Hankel

transformation between power spectrum and correlation function moments, where the

window applied is also decomposed into a set of multipoles. This is an extension of the

work by [162] and [95], which presented a method to convolve model power spectra with

the window function for a non-evolving power spectrum. We consider the case where

the underlying correlation function ª is dependent on both the separation r = |ri ° r j |
(with ri and r j position of galaxies of each pair) and the mean redshift of each galaxy pair

ª[ri (zi ), |ri ° r j |]. Here we have assumed that cosmological evolution is negligible over the

range of redshifts covered by every pair, so we can quantify the clustering of each using the

correlation function at the mean redshift.

The multipole moments of the power spectrum in the local plane-parallel approximation
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can be written as,

P̂`(k) =2`+1
2

Z
dµk

Z
d¡
2º

Z
dx1

Z
dx2ei k·x1 e°i k·x2

h±(x1)±(x2)W (x1)W (x2)iL`(k̂ · x̂h)

=2`+1
2

Z
dµk

Z
d¡
2º

Z
dx1

Z
ds £

√
X

L
ªL[s, z(x1)]LL(x̂h · ŝ)

!

£

W (x1)W (x1 +s)e°i k·sL`(k̂ · x̂h),

(7.25)

where
R

dµk is the integral over all the possible cosine angles between k̂ and x̂h and W

defines the mask. ªL denotes the correlation function moments in the Legendre basis. Note

that Eq. (7.25) differs from equation A.16 in [95], only in the ªL[s, z(x1)] term; for a single

redshift slice we would only have ªL(s). We make use of the relations,

e°i k·s =
X

p
(i )p (2p +1) jp (ks)Lp (k̂ · ŝ),(7.26)

Z
dµk

Z
d¡
2º

L`(k̂ · x̂h)Lp (k̂ · ŝ) = 2
2`+1

L`(ŝ · x̂h)±`p ,(7.27)

which, when combined with Eq. (7.25), give

P̂`(k) = i`(2`+1)
Z

dx1

Z
ds

X

L
ªL[s, z(x1)] j`(ks) £

W (x1)W (x1 +s)L`(x̂h · ŝ)LL(x̂h · ŝ).
(7.28)

Substituting the Bailey relation, L`Lp =P
t a`pt Lt , Eq. (7.28) becomes,

P̂`(k) =i`(2`+1)
Z

dx1

Z
ds

X

L
ªL[s, z(x1)] j`(ks) £

W (x1)W (x1 +s)L`(x̂h · ŝ)
X

t
a`LtLt (x̂h · ŝ).

=i`(2`+1)
Z

2ºs2d s j`(ks)
X

L

X

t
a`Lt

Z
dµs

Z
d¡
2º

£
Z

dx1 ªL[s, z(x1)]W (x1)W (x1 +s)Lt (x̂h · ŝ)

(7.29)

At this stage, in contrast to Eq. A.19 in [95], we cannot bring ªL out of the integral over x1.

Since we are not able to decouple the mask from ª, in principle, we would have to compute

the integral over x1 for every model ª fitted to the data. However we can reduce drastically the
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computational time required by assuming that ª is well behaved such that we can split the

integral over x1 into a sum over a small number of xi ranges. This is different from measuring

the clustering in shells - we are still calculating and modelling the power spectrum as a

continuously weighted function calculated using every galaxy pair; we are simply making an

assumption about the smooth behaviour in redshift of the expected clustering.

P̂`(k) =i`(2`+1)
Z

2ºs2d s j`(ks)
X

L

X

t
a`Lt

Z
dµs

Z
d¡
2º

£
X

i

Z

xi

dx1 ªL(s, z(xi ))W (xi )W (xi +s)Lt (x̂h · ŝ).
(7.30)

Assuming that ªL(s, z(xi )) is constant over each sub-integral range xi we can take it out of

the integrals,

P̂`(k) = i`(2`+1)
Z

2ºs2d s j`(ks)
X

L

X

t
a`Lt£

X

i
ªL(s, z(xi ))

Z
dµs

Z
d¡
2º

Z

xi

dxi W (xi )W (xi +s)Lt (x̂h · ŝ),
(7.31)

and redefine the sub-window function multipoles W 2
p,zi

(s) for p = 0,2,4.. as

W 2
p,zi

(s) =2p +1
2

Z
dµs

Z
d¡
2º

Z

zi

dxi

£W (xi )W (xi +s)Lp (µs).
(7.32)

Using the definition of the sub-window function multipoles of Eq. 7.32, we can write

Eq. (7.31) to be

P̂`(k) = i`(2`+1)
Z

2ºs2d s j`(ks) £
X

L

X

t

2
2t +1

a`Lt

X

i
ªL(s, zi )W 2

t ,zi
(s).

(7.33)

which generalizes Eq. A.23 in [95] to the case of a redshift-evolving power spectrum.

Note that when computing the mask W (x) using the random catalog we include the

redshift weights, in the same way the standard FKP weights have been included in traditional

analyses e.g. [95].

7.4.3 Bias evolution

evolution in redshift of the galaxy bias, b(z) strongly depends on the targets considered. In

Chap. 5 we compared the weights for different b(z) relations and showed that the weights

are not significantly sensitive to the different b(z) considered;
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The fitting formula for the linear bias parameter of the quasar sample suggests that the

linear bias redshift evolves as, [156],

(7.34) b(z) = 0.53+0.29(1+ z)2.

We model the evolution of b about the pivot redshift times æ8 as,

(7.35) bæ8(z) = bæ8(zp)+@bæ8/@z|zp (z ° zp)+ ....

We neglect the redshift dependence for the non linear bias parameter b2, so we assume

this is constant with redshift, b2æ8(zp). We fix the 2nd-order non-local bias, bs2 and 3rd-

order non-local bias, b3nl terms to their predicted values according to non-local Lagrangian

models,[64], [160],

bs2 =°4
7

(b °1),

b3nl =
32

315
(b °1).

(7.36)

7.5 Fitting to the mock data

7.5.1 Power spectrum measurement

To compute the power spectrum moments with respect to the line of sight (LOS), we make

use of the estimator introduced in chapter 4. This fourier transform (FT) - based algorithm

uses multiple FTs to track the multipole moments, in the local plane-parallel approximation

where we have a single LOS for each pair of galaxies. This estimator has been already used

in recent analysis [95], that confirmed the advantages of using such decomposition: it

reduces the computational time from N 2 associated to naive pair counting analysis [113] to

ª N log N .

Redshift weights are included in the estimator, by defining the weighted galaxy number

density as ng (r)w . As discussed in Section 7.2 we have derived the galaxy weights from the

square-root of the power spectrum weights, under the assumption that the scale dependence

in the weights is smooth compared to the scale of interest for our clustering measurements.

The result is a set of weighted multipoles, P0,2,w0,1,2 , where each Pi ,w j corresponds to a

particular set of weights that optimizes each of the qi or pi measurement, i.e. for the set of

weights wi ,q j (or wi ,p j for the f æ8 weights) functions and we build a data vector¶ as,

(7.37) ¶T = (P0,w0,q0 ,P0,w0,q1 ,P0,w0,q2 ... P2,w2,q2 )T.
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7.5.2 Covariance matrix estimation

We evaluate the covariance matrix for the data vector¶T using 1000 EZ mock described in

Section 7.1. For each mock, we compute the weighted monopole and quadrupole mo-

ments for each set of optimal redshift weights, for nb = 10 k-bins in the range of k =
0.01°0.2hMpc°1. From these, we derive the covariance matrix as

C = 1
NT °1

NTX

n=1

£
Pn,`,w`,qt

(ki )° P̂`,w`,qt
(ki )

§

£
£
Pn,`,w`,qt

(k j )° P̂`,w`,qt
(k j )

§
,

(7.38)

where NT = 1000 is the number of mock catalogues, w`,qt denotes each set of weights for

each parameter qt (or pt ) and P̂`,w`,qt
(ki ) = 1

NT

PNT
n=1 Pn,`,w`,qt

(ki ).

Note that when inverting the covariance matrix we include the Hartlap factor [163]

to account for the fact that C is inferred from mock catalogues. choice of nb = 10 given

NT = 1000 mocks available, ensures that the covariance matrix is positive definite.

7.5.3 Maximising the Likelihood

Since each weighted multipole Pi ,wi ,q j
is optimized with respect to a particular piece of

information (e.g. ≠m[z]),we jointly fit all three qi (or pi ) parameters simultaneously. We

compare the measured¶T to modelled weighted power spectra multipoles, convolved with

the window function as explained in Section 7.4.2. We assume a Gaussian likelihood and

minimize

(7.39) ¬2 / (¶°¶model )TC°1(¶°¶model );

Where¶model refers to the window convolved Pi ,wi ,q j
. The C°1 term corresponds to the joint

covariance derived in Eq. (8.4). We repeat the fit for both the≠m and f æ8 optimized sets of

weights.

In the current analysis we limit ourselves to linear order deviations about our fiducial

§CDM model, for both f æ8(z) and ≠m(z) described in Sections 7.2.1 and 7.2.2, since the

data cannot capture second-order deviations.

7.6 Measuring RSD with the evolving galaxy power

specturm

The fits presented in this section are performed using a Monte Carlo Markov Chain (MCMC)

code, implemented to efficiently account for the degeneracies between the parameters; in
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all the fit performed we select a range between k = 0.01°0.2hMpc°1. For each scenario

explored we run 10 independent chains, satisfying the Gelman-Rubin convergence criteria

[164] with the requirement of R °1 < 104; where R corresponds to the ratio between the

variance of chain mean and the mean of chain variances. All the results presented are

obtained after marginalizing on the full set of parameters, including the nuisance parameters

(shotnoise and velocity dispersion). All the contour plots are produced using the public

getdist libraries3.

We fit the weighted monopole and quadrupole computed on a subset of 20 EZ mocks, for

both the≠m and the f æ8-optimized weights, while keeping the distance-redshift relation

fixed to the fiducial cosmology, i.e. Æ“ =Æ? = 1.

We do not consider the full set of 1000 EZ mocks for the following reasons; first we are

limited by the EZ-mock accuracy in describing non linearities in galaxy bias and velocities;

further by the accuracy in the light-cone describing the redshift evolution for f æ8 which is

included as a step function. Thus we do not believe that the mocks supports us looking at

deviations from the model at better accuracy than this. However, the error on our constraints

is still 1/
p

20 smaller than what we expect on the eBOSS quasars constraints. The analysis

has been performed on different subset of 20 mocks out of the 1000 available to verify that

the outcomes do not depend on a particular sub-sample choice.

Our analysis is presented as follow; in 7.6.1 we present the result obtained with the

≠mweights fitting for q0, q1, bæ8(zp), @bæ8/@z|zp , b2, æv , and shotnoise S. In parallel we

present the fit for p0, p1, bæ8(zp), @bæ8/@z|zp , b2, æv when applying the f æ8 weights.

In 7.6.2 we investigate the impact of the bias assumption on the constraints, showing a

comparison between bias evolving and constant with redshift.

In 7.6.3 we compare the results obtained with the redshift weights approach with the

analysis performed considering one constant redshift slice i.e. considering all the parameters

( f æ8,bæ8,æv ,b2,S) in the power spectra at their value at the pivot redshift zp = 1.55 and

applying FKP weights only (for simplicity of the notation from now on we refer to this as

traditional analysis).

Differently from [147], we compare the redshift weights analysis with the standard anal-

ysis used for previous RSD measurements (see e.g. [95]) rather than testing the weights

wq,i , wp,i = 1. The main focus of this work is to test that our analysis is not biased by intro-

ducing evolution in the power spectrum and in the window function. We rely on the Fisher

matrix theory correctly selecting the set of weights optimal with respect to the qi , pi errors.

3http://getdist.readthedocs.io/
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Figure 7.2: Likelihood distributions for the analysis of the average of 20 EZ mock. We
show the results for q0, q1, bæ8(zp ), @bæ8/@z, marginalized over the full set parameters
(including b2æ8(zp ), æv , S not displayed here). We multi-fit two weighted monopoles and
two weighted quadrupoles (one for each weight function (w0,pi , w2,pi ) The fitting range is
k = 0.01°0.2hMpc°1 for both the monopole and quadrupole.

7.6.1 Redshift weights fit

Fig. 7.2 shows the posterior likelihood distributions from the analysis performed with the set

of redshift weights optimized to constrain≠m(z) (blue contour plots), using the monopole

and the quadrupole; we fit for q0, q1 which describe up to linear order deviations in the

evolution of ≠m(z) according to §CDM model; we also vary the galaxy bias parameters

modelled as in section 7.4.3, while we fix the 2nd-order non-local bias, bs2 and 3rd-order

non-local bias, b3nl terms as shown in Eq. 7.36. To summarize we fit for 7 parameters: q0, q1,

bæ8(zp), @bæ8/@z|zp , b2æ8(zp ), æv , and shotnoise S.

Fig 7.3 presents the results of the analysis while using the set of redshift weights optimized

to constrain f æ8(z), as introduced in Sec. 7.2.2; the structure is the same as in Fig. 7.2. We fit
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Figure 7.3: Likelihood distributions for the analysis of the average of 20 EZ mock. We show
the results for p0, p1, bæ8(zp ), @bæ8/@z, marginalized on the full set parameters (including
b2æ8(zp ), æv , S not displayed here). We multi-fit two weigthed monopoles and two weighted
quadrupoles (one for each weight function (w0,pi , w2,pi ) The fitting range is k = 0.01°
0.2hMpc°1 for both the monopole and quadrupole.

for p0, p1 to constrain f æ8(z) deviations about the fiducial f æ8(z) according to§CDM ; we

also fit for bæ8(zp), @bæ8(z)/@z, b2æ8(zp ), æv , S, 7 parameters in total as for the other set of

weights.

We obtained the covariance and correlation matrix for the full set of parameters of the

MCMC chains using getdist libraries.

The resulting posteriors in both Figures 7.2 and 7.3 show a correlation between the zero

order parameters, q0 (p0) and bæ8(zp), of magnitude of ª 0.5. We also detect a relevant

anti-correlation ª°0.4 between the slope parameter q1 (p1) and the gradient @bæ8(z)/@z.

These non-zero correlations lead to a mild dependency between the assumed bias

model (linear and non linear in k and in z) and the slope parameter q1 (p1) without however
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Figure 7.4: The reconstructed evolution of f æ8 and 68% confidence level regions using
the average of 20 mocks; blue shaded region shows the constraint on the evolution of f æ8

obtained by the fit of≠m(z, qi ) using the w≠m optimal weights and deriving at each redshift
f
£
≠m(z, qi )

§
times æ8

£
≠m(z, qi )

§
; green shaded region shows the resulting evolution when

fitting for f æ8(z, pi ) at each redshift. The red point indicates the results obtained when
performing the traditional analysis, with zp = 1.55.

affecting (within ª 1æ) the constraints on f æ8. In 7.6.2 we illustrate the impact of the bias

evolution on the growth rate in more details.

Due to the stepwise implementation of the growth rate and bias model in the mocks,

the fiducial values of q0, q1 (p0, p1) are not well defined. Therefore, we do not display an

expected value for pi and qi as those cannot be inferred from the f æ8 evolution included

as a non-smooth step function in the mocks. However, within 1 to 2sigma we recover the

smooth§CDM expectation values of q0 = 1 and q1 = 0.

Fig. 7.4 shows the redshift evolution reconstructed from p0, p1, (green shaded regions),

compared with the evolution reconstructed from the q0, q1 (blue shaded regions). The red

point indicates the constraints at one single redshift (traditional analysis, with z = 1.55) for

f æ8. We overplot the evolution of f æ8(z) as accounted in the mock light-cone (black dashed

line). The plot shows that the f æ8 evolution obtained for both the≠m and f æ8 weighting

schemes is fully consistent with the cosmology contained in the mock and in full agreement

with the constraints coming from the traditional analysis. For both parametrizations the

errors obtained at the pivot redshift is comparable with the error we get from the traditional
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analysis. Note that the error from redshift weighting analysis comes from the marginaliza-

tion over a set of 7 parameters in contrast to the traditional analysis limited to only 5 free

parameters.

Away from from the pivot redshift, the errors becomes larger for both parametrizations.

At these redshifts, the major contribution to the error comes from the slope constraints

(q1, p1) and the S/N is lowered due to the low number density n(z), [23]. The number of

quasars observed as a function of redshift also helps to explain the differences in the error

as a function of redshift, with a larger error found where there are fewer quasars. For both

parametrizations, the slope parameters are degenerate with the non linear bias parameters.

In 7.6.1 we modelled the bias evolution with a Taylor expansion up to linear order about

the pivot redshift (see Eq. 7.4.3). Fig. 7.5 shows the bæ8(z) evolution measured using the

≠m and f æ8 weighting schemes (blue and green shaded regions). We reconstruct bæ8(z) at

the different redshifts from the fit of bæ8(zp ) and @bæ8(z)/@z. We overplot the evolution of

bæ8(z) as included in the mocks (black dashed line). The red point indicates the constraints

obtained by using the traditional analysis; we find full agreement at the pivot redshift

between the three different analysis and within 1æ of the value included in the mocks. The

bias depends significantly on redshift and in the mocks is modelled as a step function, which

leads to small discrepancies with respect to both the constant and linear evolution in bæ8.

We redid the fit extending the analysis to second order in bias and found consistent results

but with error too large to see any improvements (high degeneracy). For the purpose of

fitting eBOSS quasar sample this is more than enough and we leave for future work a more

careful study of the bias effects/evolution to be performed on more accurate N-body mocks.

7.6.2 Constant bias vs evolving bias

We now investigate how a particular choice for the bias evolution in redshift can affect and

impact the constraints on f æ8(z). To do this, we repeat the analysis as presented in 7.6.1

using the≠m and f æ8 weights, we model≠m(z) and f æ8(z) in the same way as in 7.6.1, but

now assuming that the bias is constant with redshift i.e we set @bæ8(z)/@z = 0.

In Figures 7.6, 7.7 we show the comparison between the results obtained with the con-

stant bias. We display the posterior likelihood for all the quantities evaluated at the pivot

redshift, f æ8(zp ) bæ8(zp ),æv , b2, S. In Figure 7.6, blue contours show the likelihood distribu-

tions obtained when using the≠m weights and considering bæ8 evolving as in Eq. 7.4.3. Dark

blue contours indicate the constraints obtained when considering @bæ8(z)/@z = 0. In Figure

7.7 we present the analogous results when using the f æ8 parametrization; green contours

show the likelihood distributions obtained when using the f æ8 weights considering the
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Figure 7.5: The reconstructed evolution for bæ8(z) and 68% confidence level regions using
the average of 20 mocks; we fit the evolution for bæ8, modelled as a Taylor expansion about
the pivot redshift, up to linear order. Blue shaded regions show the evolution of bæ8 through
the fit of bæ8(zp ), @bæ8(z)/@z, obtained for the≠m(qi ) analysis; green shaded regions show
the analogous resulting bæ8(z) when fitting for f æ8(z, pi ) at each redshift. The red point
indicates the results obtained for f æ8(zp ) when performing the traditional analysis.

bias evolving as in Eq. 7.4.3. Dark green contours correspond to the constraints obtained

when we set @bæ8(z)/@z equal to zero. The results obtained from the different models are

consistent, but, whereas the constraints for bæ8(zp ) remain unchanged there is an evident

impact on the f æ8 constraints at the pivot redshift. Forcing the bias to be constant with

redshift lead to an higher value for f æ8.

This should be more important for future surveys, for which higher precision is expected:

for these surveys, a careful study/treatment of the bias will be required. One approach would

be to have free functions to describe the bias (e.g Taylor expanding cosmological quantities

as in the present case), and making sure there is enough freedom in the other parameters so

that the measurements are applicable to a wide range of cosmological models and targets,

with few assumptions. For higher S/N and more realistic mocks it would be interesting

to investigate the evolution in redshift of the non linear bias parameters and the possible

impact on f æ8. In this work all of the non linear quantities are considered at a single redshift

and our tests are limited to verify that the bias does not affect the measurement of the

growth, which is adequate for the current signal-to-noise level.
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Figure 7.6: Comparison between evolving and constant bias for the≠m - weights analysis.
Blue likelihood contours indicate the constraints obtained when fitting for bæ8(zp ) and
@bæ8(z)/@z; dark blue contours indicate the constraints obtained when setting @bæ8(z)/@z =
0 and fitting only for bæ8(zp ).

7.6.3 Weights vs no Weights

We compare the analysis performed using the redshift weights approach, as presented in

7.6.1 with the traditional analysis at one constant redshift.

The traditional analysis makes use of the power spectrum moments, modelled as in Sec.

7.3, to constrain f æ8 and bæ8 at one single epoch which corresponds to the effective redshift

of the survey (z = 1.55). We do the comparison for both the≠m f æ8 weighting schemes;

Figure 7.8 shows the comparison between the redshift weights analysis for ≠m (blue

contours), f æ8 (green contours) and the constant redshift analysis (brown contours). In

order to make the comparison between the three different analysis we infer from the MCMC

chains of qi and pi , the f æ8[z,≠m(qi )] and f æ8(z, pi ) valued at the pivot redshifts. We then

compare those values with the f æ8(zp ), bæ8(zp ) as obtained from the traditional analysis.

The last two panels in Fig. 7.8 show that we recover the same value for b2, and S where the
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Figure 7.7: Comparison between evolving and constant bias for the f æ8-weights analy-
sis. Green likelihood contours indicate the constraints obtained when fitting for bæ8(zp )
and @bæ8(z)/@z; dark green contours indicate the constraints obtained when setting
@bæ8(z)/@z = 0 and fitting only for bæ8(zp ).

evolution in redshift is not considered in all the three different analysis; the other constraints

on f æ8, bæ8 and æv are fully consistent within ª 1æ.

7.7 Summary

In this chapter we introduced the pipeline to be used in chapter 8 on eBOSS data and

discussed relative tests performed using the EZ mocks. We have focused on two different

parametrizations to model the evolution in redshift of f æ8; the first account for the evo-

lution in redshift through≠m(z) allowing simultaneously for deviations in both geometry

and growth with respect to the§CDM scenario. The second, investigates deviations in the

evolution of f æ8(z) about the fiducial cosmology; in this case the growth and the geome-

try deviations are artificially kept separated. To compare the constraints on f æ8 with the
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Figure 7.8: The comparison between the redshift weights analysis and the traditional analysis.
Likelihood contours for f æ8, bæ8, æv b2, S quantities, at their pivot redshift values. Blue
likelihood contours show the results obtained with the ≠m(qi ) analysis; green contours
show the results from the f æ8(pi ) analysis. Brown contours indicate the results obtained
with the traditional analysis.

traditional method, performed at a single epoch, we computed f æ8(zp ) from the evolving

constraints, finding full agreement between the three different methods.

We perform the same analysis first by fixing the geometrical projection, given by H , D A:

in this case as expected both redshift weight methods give exactly the same constraints

of f æ8. We then considered an anisotropic fit, including the AP parameters in our models.

In this case the constraints from ≠m(z) differ with the other analyses since Æ“,? are not

included as free independent parameters but their evolution is described through≠m(z).

Also in this scenario we find good agreement (within 1æ) between the parameters of interest.

The tests presented in this chapter validate the pipeline to be used for eBOSS data;

however as we discussed in chapter 6, the method can be used for different probes.
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MEASURING THE EVOLUTION OF THE GROWTH RATE USING

REDSHIFT SPACE DISTORTIONS BETWEEN REDSHIFT 0.8 AND

2.2

We measure the growth rate and its evolution using the anisotropic clustering of the ex-

tended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 14 (DR14) quasar

sample, which includes 148659 quasars covering the wide redshift range of 0.8 < z < 2.2

and a sky area of 2112.90 deg2. To optimise measurements we deploy a redshift-dependent

weighting scheme following the procedure discussed in 7, which allows us to avoid bin-

ning, and perform the data analysis consistently including the redshift evolution across

the sample. We perform the analysis in Fourier space and use the redshift evolving power

spectrum multipoles to measure the redshift space distortion parameter f æ8 and parame-

ters controlling the anisotropic projection of the cosmological perturbations. We measure

f æ8(z = 1.52) = 0.43±0.05 and d f æ8/d z(z = 1.52) =°0.16±0.08, consistent with the expec-

tation for a§CDM cosmology as constrained by the Planck experiment.

The content of the work presented here refers to the research published in [165].

8.1 Context of the analysis

The positions of galaxies signpost peaks in the density field, and consequently measuring

their clustering provides a wealth of cosmological information. Two components of the

clustering are particularly important: Baryon Acoustic Oscillations (BAO) act as a robust

137



CHAPTER 8. MEASURING THE EVOLUTION OF THE GROWTH RATE USING REDSHIFT
SPACE DISTORTIONS BETWEEN REDSHIFT 0.8 AND 2.2

standard ruler, allowing geometrical measurements from measurements of their projected

sizes, while Redshift-Space Distortions (RSD) change the clustering amplitude in a way

that is anisotropic around the line-of-sight. The strength of the RSD signal depends on

the rate of structure growth at the redshifts of the galaxies, and therefore allows tests of

General Relativity on extremely large scales. The combination of these measurements is

able to distinguish between competing models of Dark Energy, the phenomenon driving the

accelerated expansion of the Universe.

Dark Energy starts to dominate the Universe at a redshift z ª 0.7 and, in order to under-

stand the physics behind this in detail, we desire BAO and RSD measurements covering a

wide range of redshifts. In particular, measurements at redshifts significantly greater than

0.7 allow us to measure the amplitude of fluctuations before Dark Energy dominates, nor-

malising measurements of acceleration at lower redshifts. The extended Baryon Oscillation

Spectroscopic Survey (eBOSS; [96]), part of the SDSS-IV experiment [28] was designed with

this specific goal in mind [1], with the dominant target for observations being quasars

between the redshifts of 0.8 < z < 2.2, at a relatively low density of 82.6/deg2.

We expect significant evolution in such a sample with redshift: for example, the bias of

these quasars is expected to evolve as b(z) ' 0.28[(1+ z)2°6.6]+2.4 [166][156], thus ranging

from 1.6 to 3.4 across the survey. Consequently, when analysing data we need to be careful

to allow for this evolution, both when optimising any kind of analysis as well as to make sure

measurements are unbiased. The method of “redshift-weights” does this by constructing

sets of weights applied to all of the data, before calculating clustering statistics (such as the

power spectrum multipoles). The weights are designed to allow the optimal measurement

of evolving cosmological parameters. The cosmological parameters could be, for example,

the coefficients of a Taylor expansion of the growth rate with redshift.

[127] calculated and analysed weights optimised to measure the distance-redshift rela-

tion from BAO. Recently, these ideas were applied to mock catalogues for BAO [147] and RSD

as we discuss in chapters 5, 7, demonstrating their potential. The technique is now ready

to be applied to data, and the characteristics of the eBOSS quasar sample make it the ideal

choice for such analysis. In [167] and [168], a different methodology is used to measure the

evolving RSD and BAO signals: standard measurements are made as if for a narrow redshift

interval, but instead for weighted distributions of the quasars. A cosmological model can be

tested by using the supplied sets of weights to determine the effective RSD and BAO in the

model given that kernel, and comparing to the corresponding measurements.

In our work, we apply the method presented in chapter 7, and consider two sets of

weights designed to test for deviations from the§CDM model, by altering≠m(z), or f æ8(z).
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The first choice can change both growth and geometry, unless we explicitly fix one of these,

while the second only tests the cosmological growth rate. We also consider a traditional

analysis, where we only apply weights matching those of [86]. This corresponds to a limit of

the redshift-weighting approach as the redshift-weights tend towards the FKP form in the

limit where the error associated with a cosmological parameter does not vary with redshift.

The chapter is laid out as follows: In Section 8.2 we briefly review the eBOSS data. Section 8.3

provides an overview of the method, focusing on the eBOSS specific aspects. The results are

presented Section 8.5.

8.2 The eBOSS DR14 dataset

The eBOSS survey [96], [1] will provide a redshift survey covering the largest volume to date

at a density where it can provide useful cosmological measurements. Full survey details

can be found in [96]: observations will ultimately include 250,000 luminous red galaxies

(LRGs), 195,000 emission line galaxies (ELGs) and over 500,000 quasars. The main goal

is to make BAO distance measurements at 1–2% accuracy [1]. Using the same samples

the goal for the RSD analysis is to constrain f æ8 at 2.5%, 3.3% and 2.8% accuracy for

LRGs, ELGs and Clustering Quasars respectively. For the current analysis we make use of

the quasar catalogues from the eBOSS DR14 dataset described in chapter 3. The target

selection algorithm is presented in [98]: quasars were selected from the combination of

SDSS imaging data [169], and that from the WISE satellite [170]. The SDSS imaging data were

taken using the Sloan telescope [171] and spectra were taken using the BOSS spectrographs

[100]. Redshifts were measured using the standard BOSS pipeline [172], coupled with various

updates and visual inspection of a subset as outlined in [97], which describes the DR14Q

quasar catalogue.

The quasar sample, covers a wide redshift range, 0.8 < z < 2.2 with a low density,

82.6/deg2, compared with other targets, and is designed to ultimately cover a total area

of 7500 deg2. In this work we use the intermediate data sample referred to as DR14 [97].

This sample contains 98577 quasars covering the wide redshift range of 0.8 < z < 2.2 and

a sky area of 1001.25 deg2. Early measurements of the bias of this sample are presented in

[156], showing excellent agreement with those measured from earlier catalogues [166]. In

this work we make use of the fiducial redshift estimates, obtained as a combination of the

three different estimates (zM g I I , zPC A, zPL), presented in [97] and we show the constraints

obtained when measuring the full NGC + SGC samples. The comparison between the results

from different redshift estimates and the discussion for the analysis on NGC (SGC) only is
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presented in [173], [174]

We apply a number of weights in order to correct for various features of the data. First,

we apply a set of systematic weights designed to correct for trends observed in the target

catalogue, where the density of targets varies with observational parameters. These weights

are presented in [173] and our treatment is consistent with this. We upweight the nearest

neighbour to correct for close-pairs. Redshift failures are corrected by down-weighting the

random catalogue used to define the survey mask, as a function of the plate position: which

alters the expected signal-to-noise [173]. In addition, we apply redshift-dependent weights

optimised to measure the value and derivative of a cosmological parameter (chosen to be

≠m(z) or f æ8(z)) beyond a fiducial §CDM model, around a pivot redshift. The design of

these weights considers the information available and the dependence on the cosmological

parameter of interest. For the eBOSS quasar data, it is not useful to probe beyond the first

derivative of the parameters around a pivot redshift because of the limited constraining

power of the data set. The derivation of the weights was presented in chapter 5

In the following sections we briefly review the key points of the analysis.

8.3 Modelling the data

We contrast three methods:

1. A traditional analysis, fitting with one set of weights, matching those introduced by

[86], commonly known as FKP weights,

2. Redshift-weighted, with two sets of weights optimised to measure≠m(z); we refer to

this method also as w≠m .

3. Redshift-weighted, with two sets of weights optimised to measure f æ8(z). we refer to

this method also as w f æ8

We perform fits either allowing the anisotropic geometrical projection parameters (also

know as the AP parameters [73], Æ“ and Æ? to be simultaneously fitted, or keeping them

fixed at their fiducial value.

We derive and fit models for all three of these methods using the same procedure,

as described in chapter 7. Briefly, we calculate the TNS model [13] for each model to be

tested at a discrete series of redshifts and apply the redshift weights to give models of the

redshift-space moments. In order to account for the coupling between redshift evolution in

the cosmological parameters and the survey geometry on the power spectra moments we
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discretize the window convolution, creating sub-windows at redshifts 0.87, 1.01, 1.15, 1.29,

1.43, 1.57, 1.71, 1.85, 1.99, 2.13, following the procedure described in [123].

The TNS model includes corrections from the non-linear coupling between the density

and velocity fields, it requires us to calculate the non-linear matter power spectra, P±±, P±µ,

Pµµ, which we do at 1-loop order in standard perturbation theory (SPT) using the linear

power spectrum output from CAMB [161].

Quasar bias is modelled including non-local contributions as in chapter 7, with para-

meters corresponding to the linear b, second order local b2, non local bs2, and the third

order non-local b3nl bias parameters. We make the approximations bs2 =°4/7(b °1) and

b3nl = 32/315(b °1) following [160] and [175] respectively; we fit only a local bias model

as the quasar data do not contain enough small-scale information to fit for non local bias

parameters.

We assume b linearly evolves with redshift, and that b2 does not vary with redshift. In

fact we know that the bias evolves strongly with redshift [176][156] but, given that we wish

to constrain cosmological evolution across the sample, this should be simultaneously fitted

with the cosmological measurements to avoid double-counting information. We perform a

linear fit to match the linear cosmological measurements as a Taylor expansion with respect

to the value of bæ8 at the pivot redshift,

(8.1) bæ8(z) = bæ8(zp )+@bæ8/@z|zp (z ° zp ).

With bæ8(zp ) and @bæ8/@z|zp free parameters. We also fit for a constant shotnoise term S.

The traditional analysis, method 1, makes measurements at a single effective epoch

(zp = 1.52), using only FKP weights, so we have a single weighted monopole moment, and

a single weighted quadrupole moment to be fitted with five free parameters in total: f æ8,

bæ8, æv, b2æ8, S. Where S accounts for deviations from the Poisson shot-noise and æv is a

phenomenological parameters from the TNS model.

When allowing the background geometry to vary, this parameter set is extended to seven,

f æ8, bæ8,æv, b2æ8, S,Æ“,Æ?, including the projection parameters. To validate this model we

fitted to a single snapshot drawn from the Outerim simulation [177], with results presented

in [173]. Good agreement was recovered. We compare our traditional measurement with

other results obtained from similar analyses in [167, 173, 174, 178]

Method 2 explores deviations from§CDM through the evolution of≠m in redshift. To

do so we model≠m(z) as a Taylor expansion about the fiducial model≠m,fid,

(8.2) ≠m(z) =≠m,fidq0[1+q1 y(z)]
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with y(z) =≠m,fid(z)/≠m,fid(zp); q0 and q1 are free parameters giving the overall normalisa-

tion and first derivative of≠m(z) at the pivot redshift. In this work, we use a pivot redshift

zp = 1.52, matching the effective redshift of the quasar sample. To test the robustness of the

analysis we perform the same analysis selecting zp = 1.1; zp = 1.7 confirming that there is

no dependence on the pivot redshift selected; For this method we have two sets of weights

for the monopole and two sets of the quadrupole, so we simultaneously fit to four moments

in total.

As we discussed in details in chapter 7, this parametrisation provides a common frame-

work to test for deviations from the fiducial cosmology both in terms of geometry (distance-

redshift relation) and growth rate ( f æ8), by considering these quantities as a function of

≠m(q0, q1). The strategy is to assume that, for expected small deviations, the standard equa-

tions, linking the Hubble parameter and the Angular Diameter distance to≠m(z), are the

same as in the§CDM model.

Once we have measured q0, and q1, we can project them back to Æ“, Æ? and f æ8 at

any epoch. The physical limit that ≠m cannot be negative at any epoch places a physical

motivated prior onÆ“,Æ? and f æ8; the impact of such priors is discussed in detail in Section

8.5

The third parametrisation, method 3 explores the evolution of f æ8; it represents a more

direct way to measure deviations in structure growth, where the latter are artificially kept

separate from the geometrical evolution. Here we directly Taylor expand f æ8(z):

(8.3) [ f æ8](z) = [ f æ8]fid(z)p0[1+p1x(z)],

where x = [ f æ8]fid(z)/[ f æ8]fid(zp), and p0 and p1 are free parameters giving the overall

normalisation and first derivative of f æ8(z) at the pivot redshift. This model allows a wider

range of deviations from the§CDM scenario, as it does not assume any particular form or

relation for f and æ8. For this method we have two sets of weights for the monopole and

two sets of the quadrupole, so we simultaneously fit to four moments in total.

In chapter 7, we compare the traditional analysis to the measurement from the redshift

weights techniques projected at the pivot redshift using mock catalogues, confirming that the

redshift weights analysis give unbiased constraints. Weights optimised to look for deviations

from §CDM using changes in either ≠m or f æ8, provide complementary measurements

given the different deviations, and dependencies on observations. Both can be used to

measure f æ8 at any particular redshift, and be compared to the more traditional way of

looking for deviations.
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8.4 Fitting models to the data

We now fit to the quasar data with each of the three models, traditional,≠m , f æ8, described

in Section 8.3. We fit to the NGC and SGC data independently, assuming they are uncor-

related, a reasonable assumption given their physical separation, and then combine the

likelihoods to give our result from the full NGC + SGC sample. The results presented in the

following sections have been obtained by simultaneously fitting the full set of parameters us-

ing a MCMC approach, and then marginalising over the parameters not plotted or measured,

including the nuisance parameters S and æv, common to all methods.

We measure the weighted moments of the power spectrum, using the method described

in chapter 4, with different sets of weights. We select 30 k-bins, 0.001 < k < 0.3 hMpc°1. To

test the robustness of the results we repeated the same analysis reducing the maximum

k fitted kmax to 0.2h/M pc°1 obtaining fully consistent fits, albeit with increased errors.

In method 1 we fit simultaneously monopole and quadrupole (for SGC and NGC with 2

different windows) adopting a 120x120 covariance. In methods 2 and 3 we perform a joint fit

of the weighted monopole and quadrupole, Pi ,w j , each calculated using the appropriate set

of weights for q0 and q1 (and p0, p1); for a 240x240 total covariance including NGC and SGC

samples.

We compute the covariance matrix from the 1000 EZ mocks, including all weights as,

(8.4) C = 1
999

1000X

n=1
[dn(ki )° d̂(ki )][dn(k j )° d̂(k j )]T ,

where dn is the vector formed of the multiple weighted moments being fitted, and d̂ is the

mean value. Note that when inverting the covariance matrix we include the small Hartlap

factor [163] and the Dodelson & Schneider error [179] to account for the fact that C is

inferred from mock catalogues. An alternative approach would have been to adjust the

Gaussian assumption [180].

Parameter constraints are derived from a MCMC routine, optimised for this problem.

Multiple chains are run for each fit, and convergence is checked both using the [164] con-

vergence criteria and by testing consistency of results from independent chains, starting at

different positions.

8.5 Results

In this section we present the results obtained from the traditional 1, ≠m 2 and f æ8 3

analyses; we first present the results obtained assuming a fixed fiducial distance-redshift
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Figure 8.1: The weighted monopole (top) and quadrupole (bottom) for ≠m weights; we
display the measurement of the weighted moments computed using the NGC (light blue
points) and SGC (blue points) samples. Black dashed lines correspond to the best fit models
obtained from the joint fit of the 2 samples; the 2 best fit dashed lines differ at large scales
since convoluted with two different window functions accounting for the different survey
geometries and systematics between the 2 samples.

relation, i.e. setting Æ“ and Æ? both equal to unity in our pipeline (Section 8.5.2); while in

Section 8.5.4 we allow them to vary, fitting simultaneously the growth and the geometry. In

Section 8.5.6 we compare the key results of this work with parallel work performed at a single

redshift (as in our traditional analysis) in configuration space [173] and Fourier space [174],

where the analysis has been extended to include the hexadecapole moment of the power

spectrum. We also compare our results with the redshift weights based-analysis of [167]

in Section 8.5.6, which makes a number of different assumptions and explores alternative

cosmological models.

Fiducial cosmology: we analyse the data in a flat §CDM cosmological model with

total and baryonic components ≠m(z = 0)= 0.31, ≠b(z = 0) = 0.0325; neutrino masses
P

m∫ = 0.06eV , ampltude of the clustering æ8(z = 0) = 0.8, spectral index ns = 0.97 and

dimensionless hubble parameter h = 0.676;

8.5.1 The weighted multipole measurements

In Fig. 8.1, we present the moments calculated for the≠m set of weights. They all look very

similar for all the weights, showing consistency with the fiducial§CDM model. It is only if
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Figure 8.2: A comparison between the values of f æ8, bæ8, æv , S obtained by the three
different methods when the background geometry is fixed. Blue and green contours indicates
the projected values from the≠m and f æ8 analysis (7 free parameters) respectively; brown
contours correspond to the constraints obtained from the single-epoch traditional analysis
(5 free parameters).

we were to find an inconsistency with this model, that we would see an anomaly here for

a particular set of weights. i.e. the constraining power lies in the fact that if the cosmology

was very different from the fiducial§CDM value, these would look very different from each

other.

8.5.2 Fitting growth in a fixed background geometry

As described in Section 8.3, the traditional analysis constrains the clustering at a single

effective epoch allowing for 5 free parameters f æ8(zp ), bæ8(zp ) + nuisance parameters.

In contrast, the weighted analyses fits the evolution of ≠m and f æ8 with redshift, and

requires a fit with 7 parameters: q0, q1 (p0, p1) to model the normalisation and evolution in
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the growth, bæ8(zp ) @bæ8/@z to account for the evolution in the linear bias b(z), together

with nuisance parameters b2æ8, æv and S. As we are interested in measuring cosmological

evolution, we need to carefully consider if the nuisance parameters also need to allow for

evolution. Regarding the æv parameter, it would theoretically be possible to allow this to

vary with redshift, but we have checked using N-body simulations, that for k < 0.3 hMpc°1,

the evolution does not impact f æ8; if we were instead interested in the measurements of

non-local bias, for example, allowing for this evolution would have been a key requirement.

We do allow the bias to be simultaneously fitted as described in Section 8.3.

In order to compare the redshift-weight measurements with the traditional one, we

projected the 7 parameter MCMC chains (q0, q1,bæ8,@bæ8/@z + nuisance parameters) into

the 5-dimensions parameter space by computing f [≠m(q0, q1, zp )], f (p0, p1, zp )] and b(zp ) .

The results are displayed in Fig. 8.2 where we show likelihood contours for f æ8(zp ), bæ8(zp ),

etc as derived obtained from the three different analysis, traditional (brown contours), w≠m

(blue contours) and w f æ8 (green contours) when imposing Æ“ =Æ? = 1. It is worth noting

that all three methods fully agree at the pivot redshift confirming the previous tests made on

the mocks. Moreover the redshift weighted analysis give constraints of the same order as

those obtained in the traditional analysis even though the latter marginalizes over one less

free parameter. This suggests that the information in the data about the evolution of f æ8 is

available in addition to the information obtained at the effective redshift.

8.5.3 The evolution of f æ8(z),≠m(z), b(z)

As described and discussed in chapter 5 in general the redshift-weights allows us to account

for the evolution in the clustering measurements. In this work, through Eq. (8.2), and Eq. (8.3)

we are able to reconstruct the evolution for f æ8 from both q0, q1 and p0, p1 parameters. We

also modelled a linear evolution of the linear bias as described by Eq. (8.1). We show the

resulting constraints on the evolution of f æ8, b(z),≠m(z), in Fig. 8.3.

The lower panel of Fig. 8.3 shows the evolution in redshift of f æ8 obtained applying

w≠m (blue shaded regions) and w f æ8 (green shaded regions). We overplot the constraints

coming from the single epoch (traditional) analysis at redshift 1.52. We find good agreement

between the different techniques over the full redshift range. The dashed line indicates the

fiducial cosmology used. We detect a similar slope in the evolution to that in the fiducial

cosmology, and all of our measurement methods provide results that agree within one

sigma with the fiducial cosmology. The error on f æ8 increases while moving from the pivot

redshift in both directions as uncertainties in q1 and p1 become relevant. As we are fixing

the projection, varying≠m(z) only affects the growth rate, explaining the good agreement
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Figure 8.3: Top Panel: the evolution of ≠m(z) measured via the parameters q0, q1. Middle
Panel: the evolution of the linear bias timesæ8 fitted using≠m parametrization (blue shaded
regions), f æ8 parametrizations (green shaded regions); red point indicates the single-epoch
constraints of bæ8(zp ) from the traditional analysis. Bottom Panel: the evolution of f æ8 from
the three different analysis; notation and colors as above; all the errors correspond to 68%
confidence level.

between measurements made using both sets of weights: they are both testing for the same

sort of departures from the§CDM model.

The middle panel of Fig. 8.3 shows our constraints on the linear redshift evolving bias

parameter. Also in this case, we find full agreement between the different techniques. As

mentioned in Section 8.3 we do not go beyond linear evolution in the bias, matching our

allowed evolution in the cosmological parameters of interest. As we are not interested in the

recovered bias parameters, we just want to make sure that the assumptions cannot affect

the constraints we get on the growth rate. In chapter 7 we validated that in this case, the

linear assumption is valid.

8.5.4 Simultaneously fitting growth and geometry

We repeat our analysis, using all three methods, but now including the projection (AP)

parameters in our models. Given the weak detection of the anisotropic BAO signal in the
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quasar sample (see [23]), a full fit of the monopole and quadrupole is not enough to give

independent strong constraints on the full set of parameters covering both geometrical

and growth-rate deviations. i.e. with only wide uniform physical priors on the parameters,

the degeneracies between the parameters, particularly the shotnoise term together with

f æ8, bæ8 Æ“ and Æ?, does not allow our chains to converge (after 105 °106 steps). However,

as pointed out in [181], beyond certain values of Æ“ and Æ?, the full background used to

analyse the data loses any meaning. Measurements from independent cosmological probes

in almost all cosmological models that we would want to test already put tight constraints

on these quantities [54]. We therefore include a broad prior on both Æ“ and Æ?, setting

0.75 < Æ“ < 1.25, 0.85 < Æ? < 1.25. We keep the uniform priors on the other parameters:

±10000 for S and ±100 for f æ8 and bæ8. To test the robustness of our analysis with respect

the choice of the priors we performed prior-free analysis exploring the likelihood surfaces

outside of those regions.

In the traditional and w f æ8 analyses we includeÆ“ andÆ? as two additional free parame-

ters. For the w≠m analysis, however, we do not add any further free parameters: we account

for the departures from the fiducial geometry by including Æ“[≠m(q0, q1)], Æ?[≠m(q0, q1)]

in our models (as discussed in Section 8.3). This procedure requires us to impose a prior

on the value of≠m(z) which has to be positive definite at any redshift to avoid numerical

problem; we illustrate the effect of these prior on the constraints in Fig. 8.5.

Fig. 8.4 shows the likelihood contours obtained from the three different analysis when

allowing for unknown projection parameters (the AP parameters). Dark brown contours

refer to 1; The constraints for the w≠m , w f æ8 analysis (dark blu w≠m ,AP and dark green,

w f æ8,AP ) are obtained projecting q0, q1 and p0, p1 into f æ8(qi ) (pi ); also in this scenario

we confirm a good agreement between the three analyses; as explained, Æ“ and Æ? are

not free in the w≠m analysis but we derive them from the constraints of q0, q1. This is the

reason why the two parameters are highly correlated, as shown in the Figure. Note that the

w≠m method has two less free parameters with respect w f æ8 and one less with respect the

traditional analysis. In Figure 8.5 we compare the evolution parameters q0,1,bæ8,@bæ8/@z|zp

obtained (dark blue contours, w≠m ,AP ), with previous results when the geometry has been

fixed (blue contours, w≠m ,NO AP ). We find a good agreement between the two; the shapes

of q1 likelihoods show the effect of the physical priors we are including: ≠m(zp ) > 0 for

w≠m NOAP and ≠m(z) > 0, 0.0 < z < 2.2 for w≠m AP. Fig. 8.6 is structured in the same way as

Fig. 8.5; we compare the results from w f æ8,AP with previous results of w f æ8,NO AP method.

We find a good agreement with the best fit values obtained; note that here we do not assume

physical priors on the sign of≠m . Finally in Fig. 8.7 we compare the constraints at the pivot
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Figure 8.4: A comparison between the values of f æ8, bæ8, æv , S obtained from the three
different methods (1,2, 3) when the background geometry is allowed to vary thought the
AP parameters. Green contours correspond to the projected values from the f æ8 analysis
( f æ8(p0, p1), bæ8(zp ),æv , S,Æ“,Æ? ). Blue contours represent the projected constraints from
≠m analysis ( f æ8(q0, q1), bæ8(zp ), æv , S,Æ“(q0, q1),Æ?(q0, q1) ) Brown contours indicate the
constraints from the single-epoch traditional analysis at the pivot redshift zp = 1.52

redshift for f æ8 and bæ8 with and without AP, for method 1, 2 and 3 (brown, blue, green

contours); we confirm the good agreement on the constraints for f æ8 with and without

fixing the geometry. When performing the anisotropic fit we get a larger error as expected;

note that for the w≠m analysis we get the constraints to be of the same order: as explained,

in this scenario, we tie together geometry and growth, thus Æ“ and Æ? are not independent

parameters.

Finally in Figures 8.8, we present the results of the three different analysis, as in Fig. 8.3.

Note that, since in the w≠m analysis Æ“ and Æ? are not independent but are included as

functions of≠(q0, q1, z), we obtain a marginalized error smaller than the one obtained in

the case of the w f æ8 analysis.
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Figure 8.5: A comparison between the constraints on the evolution parameters obtained
from the≠m analysis with and without fixing the anisotropic projection parameters (Blue
and light blue contours respectively).

8.5.5 Bestfit measurements

In Table 8.5.5 we summarize the results from the different analysis (1, 2, 3) with and without

free AP parameters (bottom and top panel). We display the best fit values (first column)

the mean values ±1æ (second column); The first section of the table shows the fit to the

monopole and quadrupole fixing the AP parameters. While the second section of the table

shows the fit results allowing the AP parameters to be simultaneously fitted. The fitting range

is k = 0.01 - 0.3hMpc for both the monopole and quadrupole. We consider the results from

combining both North Galactic Cap (NGC) and South Galactic Cap (SGC) using standard

redshifts estimates. The error-bars are obtained by marginalising over all other parameters.

8.5.6 Consensus with other projects

The current analysis has been compared with similar analysis performed on the same

data set [173] [178] [167] [174]; we refer to [173] for a longer discussion on the different

methodologies and we here focus on the comparison only between analyses measuring the

redshift evolution of the growth rate. In particular we compare our results with analyses
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Table 8.1: The best fitting measurements for the DR14 quasar data over the redshift range
(0.8 < z < 2.2). Top panel for results with fixed anisotropic projection parameters (NOAP).
Bottom panel for results with free anisotropic projection parameters (AP). These are the
marginalised constraints made from the chains presented in Figs 8.3, 8.6 and 8.8.

NOAP

Tr adi t i onal
max. like. mean ±1æ

f (z)æ8(z) 0.435 0.44 ± 0.04
bæ8 0.86 0.86 ± 0.02
æv 3.30 3.30 ± 0.19
b2æ8 -0.18 -0.17 ± 0.13
S -340 -270 ± 697
¬2 113/(120 - 5)
≠m weights
q0 1.31 1.34 ± 0.23
q1 -1.07 -1.09 ± 1.50
bæ8(zp ) 0.10 0.10 ± 0.025
@bæ8/@z|zp 0.87 0.86 ± 0.02
æv 3.39 3.34 ± 0.19
b2æ8 -0.15 -0.15 ± 0.13
S -208 -174 ± 660
¬2 221/(240 - 7)
f æ8 weights
p0 1.11 1.12 ± 0.11
p1 0.35 0.28 ± 0.69
bæ8(zp ) 0.865 0.86 ± 0.02
@bæ8/@z|zp 0.10 0.10 ± 0.03
æv 3.33 3.37 ± 0.19
b2æ8 -0.15 -0.16 ± 0.13
S -218 -106 ± 676
¬2 223/(240 - 7)
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AP

Tr adi t i onal
max. like. mean ±1æ

f (z)æ8(z) 0.40 0.43 ± 0.05
bæ8 0.79 0.84 ± 0.06
æv 3.0 3.2 ± 0.29
b2æ8 -0.16 -0.17 ± 0.13
S 28 -37 ± 685
Æ“ 0.95 0.99 ± 0.065
Æ? 0.94 0.99 ± 0.06
¬2 112/(120 - 7)
≠m weights
q0 1.42 1.46 ± 0.22
q1 0.07 0.07 ± 0.20
bæ8(zp ) 0.86 0.09 ± 0.02
@bæ8/@z|zp 0.09 0.09 ± 0.02
æv 3.44 3.48 ± 0.28
b2æ8 -0.16 -0.15 ± 0.13
S -145 -124 ± 653
¬2 222/(240 - 7)
f æ8 weights
p0 1.11 1.11 ± 0.13
p1 0.16 0.29 ± 0.69
bæ8(zp ) 0.79 0.85 ± 0.06
@bæ8/@z|zp 0.09 0.10 ± 0.03
æv 3.19 3.33 ± 0.29
b2æ8 -0.13 -0.16 ± 0.13
S -205 -95 ± 664
Æ“ 0.94 0.99 ± 0.06
Æ? 0.94 0.98 ± 0.06
¬2 222/(240 - 9)
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Figure 8.6: A comparison between the constraints on the evolution parameters obtained
from the f æ8 analysis with and without fixing the anisotropic projection parameters (Green
and light green contours respectively).

presented in [174] and [167]. In [174] the evolution of f æ8 have been studied performing an

analysis in three different overlapping redshift bins: 0.8 < z < 1.5, 1.2 < z < 1.8, 1.5 < z < 2.2,

corresponding to effective redshifts 1.19;1.5;1.83; This standard analysis considers the first

three moments of the power spectrum, P0,2,4, up to k = 0.3hMpc°1; the measurements

are fitted with the TNS model computed up to 2-loop in standard perturbation theory; the

window survey effect is accounted following [162]. In [167] they perform a joint BAO and RSD

analysis using the monopole and quadrupole (in the k-range of 0.02 ∑ k [hMpc°1] ∑ 0.30)

and comparing with a TNS redshift space power spectrum template at 2-loop level in

perturbation theory; They derive redshift weights following the lines of [127][123] to optimize

the constraints on Æ?,Æk and f æ8 at four effective redshifts, namely, zeff = 0.98,1.23,1.53

and 1.94. In contrast to the analysis presented in this work where the whole redshift range

is considered and the weighted multipoles are combined in a joint fit, in [167] the redshift

weights act to divide the sample into smooth z-bins. In each bin they perform the same

analysis to constrain f æ8(zeff),Æ“,?(zeff) at the four effective redshifts. Thus this approach is

a hybrid between redshift-weighting and standard analyses. [167] use an optimisation to

find the best redshift kernels and then perform a standard analysis for each, assuming the
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Figure 8.7: A comparison between the different analysis with AP (darker colors) and
without AP (lighter colors). Bottom panel shows the constraints from the traditional
analysis of f æ8(zp ) and bæ8(zp ). Middle and top panel for the projected constraints of
f æ8(q0, q1),bæ8(q0, q1) (blue and light blue contours) and f æ8(p0, p1),bæ8(p0, p1) (green
and dark green contours) in the w f æ8 w≠m analysis.
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Figure 8.8: The evolution of f æ8(z) and bæ8(z) when including the AP effect; notation and
colors same as in 8.3; all the errors correspond to 68% confidence level.
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Figure 8.9: comparison of f æ8 evolution as obtained by different analysis. All the errors
correspond to 68% confidence level.

measurements being at one effective redshift. In contrast we directly measure parameters

controlling the redshift evolution. In Figure 8.9 we show the constraints from the different

analysis.The red point and blue and green band correspond to the traditional and redshift

weight analysis results 1, 2, 3 presented in this work. Grey points correspond to the redshift

bin analysis presented in [174], while dark red points correspond to the analysis of [167]. We

confirm the good agreement between the different techniques in measuring f æ8(z). Note

that the marginalized error bars for the red, grey, dark red points refer to analyses with 7 free

parameters ( f æ8(zeff),bæ8(zeff),Æ“,Æ?+nuisance) while redshift weights methods (blue and

green band) include 7 and 9 free parameters respectively (q0, q1,bæ8,@bæ8/@z +nui sance),

(p0, p1,bæ8,@bæ8/@zÆ“,Æ?,+nui sance).

8.6 Summary

In this chapter we presented the first anisotropic analysis on the latest eBOSS quasar sam-

ple, DR14. The DR14 quasar sample is particularly interesting as it is characterized by a a

wide redshift range 0.8°2.2 opening up new possibilities such as directly investigating the

evolution of the growth of the structure, but, on the other hand it is also characterized by a

low density compared to previous samples, such as the BOSS LRG sample; for this reason,

cutting the sample into different redshift bins may significantly impact the S/N. In order to
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optimize the measurements we adopted instead the weighting technique strategy presented

in chapters 5, 7, which considers the entire sample together and weights galaxies with respect

to their redshift to account for the evolution of the matter density field across the survey

volume. In this work, we choose to constrain the growth rate and its first derivative obtaining

consistent results with the standard analyses. We also explored different parametrizations to

model the redshift evolution in the power spectra finding good agreement between them.

We expect the analysis presented here to be particularly interesting in view of future surveys

for example the DESI ELGs sample discussed Sec. 3.5.4 that will cover a wide redshift range

but will also benefit from an higher density with respect to the quasar sample.
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CONCLUSIONS

T
his thesis has presented new algorithms to reduce computational load when processing

large data-sets; explored new methodologies to analyse data using N-body simulations; and

shown how these can be applied to process the latest available astronomic data.

In chapter 4 new estimators for calculating LOS-dependent moments of the galaxy power

spectrum were presented. Following on from developments presented elsewhere [113] [182],

it was shown that use of multiple FFTs to measure LOS-dependent clustering is both fast and

efficient. The method is faster than previous sums-over-galaxies methods, and is also faster

than pair-counting algorithms [110] themselves derived to calculate configuration-space

monopole, quadrupole and hexadecapole moments of the correlation function. These devel-

opments will be important for the coming generation of galaxy redshift surveys, including

DESI [122] and Euclid [50], that will provide an order of magnitude more galaxies to evaluate

than currently available surveys, rendering data evaluation and processing considerably

more challenging. The developments presented here should also find applications for mea-

suring the galaxy bispectrum, and hence enhance our ability to extract the cosmological

information provided by galaxy surveys.

Chapter 5 was concerned with how to more efficiently process data from a wide range

of redshifts. It was shown that data from different volumes of space could be combined

without loosing information; and a set of optimal redshift-dependent weightings for RSD

measurements was developed and presented. These allow optimal compression of original

datasets while minimising the a priori error provided by the Fisher matrix. In contrast to

current RSD measurements, which compare the data with the model at a single effective
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redshift, the weightings presented account for the redshift evolution of the underlying

cosmology. The method is based on the particular choice of a (fiducial) model describing

the evolution in redshift, in the redshift range being measured/investigated.

The set of weightings optimally estimates deviations from a§CDM background, mod-

elled using variations of≠m(z).≠m(z) was modelled as a polynomial expansion in terms of

parameters qi about a fixed fiducial model; the compression method [128] was then applied

and the set of weighting that optimally estimates the expansion parameters derived. As

discussed in the chapter, the weights derived generalise the FKP weightings, taking account

of the galaxy density distribution through the covariance matrix, and allowing sensitivity to

the redshift dependence of the statistics being measured.

Initially a fixed distance-redshift relation was included, and two separate cases consid-

ered: one in which the bias was known and constrained to a fiducial model, and one in which

the bias was unknown. These were compared and it was shown that they were consistent –

implying that bias did not play a major role in determining the weightings. The assumptions

of the fiducial bias model were tested by deriving the results for the two bias models. It was

again shown that the weighting were not significantly sensitive to b(z). For completeness a

further set of weightings that optimizes the measurement of bias has been derived. In order

to improve future measurements the previous weightings were then extended to the more

general case that the distance-redshift relation was unknown: the observed power spectrum

including the AP effect was modelled, with two new distortion parameters Æ“, Æ? in P (k)

describing the AP effect.

The set of weightings obtained for RSD and AP measurements is scale dependent through

the ratio of P (k) to its logarithmic derivative. This is not a major issue for future applications

since the dependence is predicted to be very weak. Furthermore, considering e.g. CAMB,

computing the P(k) model or its derivative in real space will not require massive compu-

tational resources, provided the weightings are applied after calculating the power. [127]

did not have face this problem since they constrained every quantity on the BAO scale

(k º 0.1hMpc°1). Subsequently the new results were compared with those produced with

weightings accounting for RSD only at the BAO scale and it was found that the redshift

dependence was increased by the inclusion of the AP parameters.

In order to be able to correctly apply the weighting scheme, it will be necessary to

understand how the weightings designed to correct for systematic density field distortions

should be combined. The derivations presented made a number of assumptions (e.g. that

the shaper of the power spectrum is the same equal for each redshift slice and that P has a

Gaussian distribution). It would be interesting to see if the weightings change when these

160



assumptions are relaxed – a topic for future investigations.

Chapter 6 explored an alternative weighting scheme to constrain primordial non Gaus-

sianity. Although in the present work the focus was on measuring the redshift space dis-

tortions signal, non Gaussianity is an interesting topic and provides a good test for the

redshift weighting improvements, since fewer evolving parameters are involved. The scale

dependent bias is a strong probe of non-Gaussianity and the upcoming LSS surveys will put

tight constraints on the amplitude of the primordial fluctuations, fN L . Since these surveys

cover a wide range of redshifts, z-weighting is a promising way of more fully exploiting LSS

information. Redshift weighting is of particular importance for investigating the primor-

dial universe since non-Gausssianity alters large scales more strongly than small scales.

Not splitting the data into small redshift slices therefore increases the effective number of

scale modes that are included in any analysis. In fact, applying redshift weighting will be

crucial for obtaining the accuracy predicted by Fisher forecasts, which implicitly assume

that all of the information is extracted – in effect assuming that optimised weighting are

used. In the present thesis, only weightings optimised to measure non-Gaussianity within

the local framework were considered. Future investigations will doubtless be concerned

with weightings for more complex models, such as equilateral or orthogonal shapes, or

shapes with specific angle dependency, or models with non-zero running of fNL A natural

extension would be to apply the redshift weighting technique to multiple tracer samples,

thereby combining optimal redshift weightings with weightings designed to better exploit

the additional information coming from multi-tracer methods.

Chapter 7 presented a new pipeline to measure the redshift space distortions inherent in

surveys covering a wide range of redshifts. The redshift weighting technique was applied to

investigate small deviations from§CDM. Two parametrizations were selected that allowed

for deviations in matter-energy density, and evolution of the growth rate. Multiple sets

of weightings were derived to optimize each order of deviations. The window function

derivation was extended so as to account for the redshift evolution of the power spectrum.

The results obtained were compared with those obtained using the “traditional” analysis,

i.e. analysis performed considering the clustering as constant across the whole volume. It

was found that the redshift weighting technique gave unbiased constraints over the whole

redshift range, in full agreement with the traditional analysis performed at the effective

redshift.

The constraints obtained fully validate the analysis, presented in chapter 8 to measure

RSD on the eBOSS quasar sample, where the expected error f æ8 was about 5%. To apply

the same pipeline to future surveys designed to achieve greater accuracy, further work will
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be required: first it will be necessary to consider quadratic deviations in the evolution of

both qi and galaxy bias parameters. In the present thesis only deviations aimed to test the

robustness of fit were considered, whereas the signal expected from the quasar sample will

not be able to constrain quadratic evolution.

Another interesting project would be to account for the AP parameters and their evo-

lution in redshift. To perform such analysis, a set of N-body simulations that accurately

describe non-linearities/light-cone evolution will also be required, so as to reduce degen-

eracies and reduce statistical error. Here growth alone was considered: with better data it

will be possible to include AP and growth together. As illustrated in chapter 8 for the eBOSS

sample, the constraints are too weak to do this without introducing priors.

In chapter 8 the new technique was applied to DR14 the latest eBOSS quasar sample.

The DR14 quasar sample allows testing of the cosmological model at previously unexplored

epochs. It also covers a wide range of redshifts and opens up the possibility of directly inves-

tigating the evolution of the cosmological parameters. Standard analyses investigated the

evolution of the growth rate at different epochs by cutting volumes into slices characterized

by different redshifts. The DR14 quasar sample is characterized by a lower density than

previous samples (e.g. BOSS LRG) so slicing can have a significant impact on the S/N ratio.

Two parametrizations were explored to model the evolution in redshift of f æ8. The first

modelled the evolution in redshift through≠m making it possible to account simultaneously

for deviations in both geometry and growth. The second investigated deviations in the evo-

lution of f æ8 about the fiducial cosmology: in this case the growth and geometry deviations

were kept artificially separated. To compare the constraints on f æ8 using the “traditional”

method at a single epoch, with the methods described above, f æ8 was estimated from the

evolving constraints: full agreement between the three different methods was found.

Chapters 5, 7, 8 constituted a step-by-step demonstration of how to include the redshift

weightings in the analyses. They also demonstrated that evolution in the models could easily

be accounted for re-deriving the window function; and confirmed that the redshift weighting

method afforded unbiased constraints. Future surveys are expected to reduce the statistical

error by an order of magnitude over a wide redshift range. Thus, it will be increasingly

important to account for evolution in the models. The larger range of dynamic redshift

covered will open up the possibility of distinguishing different cosmological scenarios.

This will be accomplished using the evolution of the key parameters to remove part of the

degeneracy between them.

In particular Euclid mission and DESI, approved and currently being planned will map

the large scale structure over unprecedented areas (14,000 to 18,000 deg 2) and large redshift

162



ranges, (0.9 < z < 2.1, 0.5 < z < 3.5) that will allow us to accurately reconstruct the geometry

of the universe and the cosmic structure formation using cosmological probes. Preliminary

evaluations of their ability to constrain cosmological parameters have been based, so far,

on reasonable but rather crude approximations, e.g. with respect to survey geometry and

volume; in particular the power spectrum estimates typically assume the survey footprint

to be a relatively compact region of the sky and the underlying galaxy distribution to be

approximately homogeneous, without significant redshift evolution. The actual analysis, on

the other hand, will necessarily have to consider the redshift evolution in order to reach the

promised improvements.

The measurement of the BAO using the DESI galaxy survey will consider objects at

0.5 < z < 3.5. The predicted number of targets between 20-30 million, with a spectroscopic

redshift error less than 0.001(1+z), will reach the required tracer density, 1500/deg 2, in order

to optimize the BAO performance. The measurements of the distance scale are predicted

to reach 1% accuracy in each redshift bin. However the binning method would require

the repeated analysis 35 times on ª 2 ·107/35 targets and will not consider the correlation

between the different portions of the sky covered. For these surveys, the optimal weights

technique will be a more efficient and accurate alternative; considering the whole sample

and applying to each galaxy the redshift weights, we will be able to compute the correlation

from all the galaxy pairs. We expect this to enhance the S/N on the detection of the BAO

feature: recent studies [127] showed a 30% improvements on the errorbars for the eBOSS

survey at 0.9 < z < 2.1, using a set of redshift weights. For the DESI redshift range, which is

almost three times eBOSS, the improvement will be significantly larger.
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Simulating sky surveys on state-of-the-art supercomputing architectures,” , vol. 42,

pp. 49–65, Jan. 2016.

[178] J. Hou, A. G. Sánchez, R. Scoccimarro, S. Salazar-Albornoz, E. Burtin, H. Gil-Marín, W. J.

Percival, R. Ruggeri, P. Zarrouk, G.-B. Zhao, J. Bautista, J. Brinkmann, J. R. Brown-

stein, K. S. Dawson, N. C. Devi, A. D. Myers, S. Habib, K. Heitmann, R. Tojeiro,

G. Rossi, D. P. Schneider, H.-J. Seo, and Y. Wang, “The clustering of the SDSS-IV ex-

tended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: anisotropic

clustering analysis in configuration space,” MNRAS, vol. 480, pp. 2521–2534, Oct.

2018.

[179] S. Dodelson and M. D. Schneider, “The effect of covariance estimator error on cosmo-

logical parameter constraints,” Phys. Rev. D, vol. 88, p. 063537, Sept. 2013.

[180] E. Sellentin and A. F. Heavens, “Parameter inference with estimated covariance matri-

ces,” MNRAS, vol. 456, pp. L132–L136, Feb. 2016.

[181] N. Padmanabhan and M. White, “Constraining anisotropic baryon oscillations,”

Phys. Rev. D, vol. 77, p. 123540, June 2008.

193



BIBLIOGRAPHY

[182] C. Blake, T. Davis, G. B. Poole, D. Parkinson, S. Brough, M. Colless, C. Contreras,

W. Couch, S. Croom, M. J. Drinkwater, K. Forster, D. Gilbank, M. Gladders, K. Glaze-

brook, B. Jelliffe, R. J. Jurek, I.-H. Li, B. Madore, D. C. Martin, K. Pimbblet, M. Pracy,

R. Sharp, E. Wisnioski, D. Woods, T. K. Wyder, and H. K. C. Yee, “The WiggleZ Dark

Energy Survey: testing the cosmological model with baryon acoustic oscillations

at z= 0.6,” MNRAS, vol. 415, pp. 2892–2909, Aug. 2011.

194



UPR16 – April 2018                                                                      

 
FORM UPR16 
Research Ethics Review Checklist 
 

Please include this completed form as an appendix to your thesis (see the 
Research Degrees Operational Handbook for more information 
 

 

 

Postgraduate Research Student (PGRS) Information 
 

 

Student ID: 
 

754180 
 

PGRS Name: 
 

 

Rossana Ruggeri  
 

Department: 
 

 

ICG 
 

First Supervisor: 
 

Will Percival 
 

Start Date:  
(or progression date for Prof Doc students) 
 

 

10/14 
 

Study Mode and Route: 
 

Part-time 
 

Full-time 
  

 

 
 

 

 

MPhil  
 

PhD 
 

 

 
 

 
 

 

MD 
 

Professional Doctorate 

 

 
 

 
 

 
 

Title of Thesis: 
 

 

Using galaxy surveys to understand the cosmological evolution  
 
 

 

Thesis Word Count:  
(excluding ancillary data) 
 

 

60000 
 

 
 

If you are unsure about any of the following, please contact the local representative on your Faculty Ethics Committee 

for advice.  Please note that it is your responsibility to follow the University’s Ethics Policy and any relevant University, 

academic or professional guidelines in the conduct of your study 

Although the Ethics Committee may have given your study a favourable opinion, the final responsibility for the ethical 

conduct of this work lies with the researcher(s). 
 

 
 

UKRIO Finished Research Checklist: 
(If you would like to know more about the checklist, please see your Faculty or Departmental Ethics Committee rep or see the online 

version of the full checklist at: http://www.ukrio.org/what-we-do/code-of-practice-for-research/) 
 
 

a) Have all of your research and findings been reported accurately, honestly and 

within a reasonable time frame? 
 

 

YES 

NO    

 

 

 
 

 

b) Have all contributions to knowledge been acknowledged? 
 

 

YES 

NO    

 

 

 
 

 

c) Have you complied with all agreements relating to intellectual property, publication 

and authorship? 

 

YES 

NO    

 

 

 
 

 

d) Has your research data been retained in a secure and accessible form and will it 

remain so for the required duration?  

 

YES 

NO    

 

 

 
 

 

e) Does your research comply with all legal, ethical, and contractual requirements? 

 

 

YES 

NO    

 

 

 
 

      
 

Candidate Statement: 
 

 

I have considered the ethical dimensions of the above named research project, and have successfully 

obtained the necessary ethical approval(s) 
 
 

Ethical review number(s) from Faculty Ethics Committee (or from 
NRES/SCREC): 
 

 

Certificate Code: 97B2-

F642-B172-6D7B-5E55-

B52B-C06E-56E0 
 

If you have not submitted your work for ethical review, and/or you have answered ‘No’ to one or more of 

questions a) to e), please explain below why this is so: 
 

 

      
 
 

Signed (PGRS): 
 

 

 
 

 

Date: 20/11/18 

Rossana Ruggeri


	List of Tables
	List of Figures
	The homogeneous Universe
	Introduction
	The Friedmann-Lemaître-Robertson-Walker (FLRW) metric
	Gravitational redshift 
	Distance measures
	Einstein Equations
	Early-time problems with the standard model
	Inflation
	Late-time acceleration of the Universe


	The Large Scale Structure of the Universe
	A statistical approach
	Random field
	Ergodic hypothesis
	Correlation functions
	Homogeneity, isotropy and cosmic fields
	Fourier Space
	Connected correlation function
	Gaussian random field

	Linear evolution of the fluctuations
	Comoving and physical velocities
	Newtonian equations of motion

	The processed power spectrum
	 Cold dark matter and radiation during the radiation era
	 Cold dark matter and baryonic matter during matter era
	The late time power spectrum 
	Baryon acoustic oscillation

	standard perturbation theory (SPT)
	Non linear equation of motion
	m =1 case
	Case m =1


	Observing the Large Scale Structure
	Linear redshift space distortions
	Mapping from real to redshift space 
	 Linear regime modeling 
	The redshift space power spectrum

	Non Linear redshift space distortions
	Eulerian and Lagrangian perturbations
	 Modelling the correlation function on non-linear scales 
	Modelling the power spectrum on non-linear scales

	 Alcock-Paczynki effect
	Primordial Non-Gaussianity
	Measuring the power spectrum 
	Power spectrum estimator
	Variance of the power spectrum
	FKP weights
	Galaxy Surveys


	Measuring the large scale structures
	Context
	Method
	FFT implementation
	Performance tests
	General moments of the Power Spectrum
	Summary

	Optimal redshift weighting For redshift space distortions
	Wide redshift survey analysis 
	Optimal Weights
	Cosmological Model
	Fiducial Cosmology
	Parametrising deviations

	Redshift weighting assuming known distance-redshift relation
	Modelling the observed power spectrum
	Optimal weights to measure m(z) assuming known bias
	Optimal weights to measure m(z) with unknown bias
	Optimal weights to measure bias

	Redshift weighting assuming unknown distance-redshift relation
	Modelling AP and RSD in the observed P(k) 
	AP and RSD weights derivation, assuming known bias 
	AP-RSD weights assuming unknown bias

	Summary

	Optimising primordial non-Gaussianity measurements from galaxy surveys
	Introduction
	Physical Model
	Optimal weights
	Redshift weights
	Redshift weights for local non-Gaussianity
	Implementation procedure
	Modelling the weighted power spectrum

	Testing the redshift weights
	Discussion
	Summary

	Testing a new approach to measure the evolution of the structure growth
	Clustering analysis strategies for eBOSS 
	Optimal Weights
	Optimal Weights for m
	Optimal Weights for f 8

	Modelling the anisotropic galaxy power spectrum at a single redshift
	Modelling the evolving galaxy power spectrum
	Redshift weighted multipoles without window function
	Redshift weighted multipoles including the survey window effect
	Bias evolution 

	Fitting to the mock data
	Power spectrum measurement
	Covariance matrix estimation
	Maximising the Likelihood

	Measuring RSD with the evolving galaxy power specturm
	Redshift weights fit
	Constant bias vs evolving bias
	Weights vs no Weights 

	Summary

	Measuring the evolution of the growth rate using redshift space distortions between redshift 0.8 and 2.2
	Context of the analysis
	The eBOSS DR14 dataset
	Modelling the data
	Fitting models to the data
	Results
	The weighted multipole measurements
	Fitting growth in a fixed background geometry
	The evolution of f8(z), m(z), b(z) 
	Simultaneously fitting growth and geometry
	Bestfit measurements
	Consensus with other projects

	Summary

	Conclusions
	Bibliography

