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Massive gravity theory introduced by de Rham, Gabadadze, and Tolley (dRGT) is restricted by several
uniqueness theorems that protect the form of the potential and kinetic terms, as well as the matter coupling.
These restrictions arise from the requirement that the degrees of freedom match the expectation from
Poincaré representations of a spin-2 field. Any modification beyond the dRGT form is known to invalidate
a constraint that the theory enjoys and revive a dangerous sixth mode. One loophole is to exploit the
effective nature of the theory by pushing the sixth mode beyond the strong coupling scale without
completely removing it. In this paper, we search for modifications to dRGT action by coupling the matter
sector to an arbitrary metric constructed out of the already existing degrees of freedom in the dRGT action.
We formulate the conditions that such an extension should satisfy in order to prevent the sixth mode from
contaminating the effective theory. Our approach provides a new perspective for the “composite coupling”
which emerges as the unique extension up to four-point interactions.
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I. INTRODUCTION

Modified gravity theories typically give rise to new
degrees of freedom (d.o.f.) that contribute to gravitational
interactions. These either are nonminimally coupled extra
fields added by hand (e.g., scalar-tensor theory) or arise due
to partial or complete breaking of the diffeomorphism
symmetry (e.g., massive gravity). In the presence of these
new forces, there is no longer a unique spacetime measure.
With the help of the new fields and their derivatives, one
can define a new geometry by rescaling clocks and rulers at
each spacetime point.
On the other hand, the process of theory building itself

can be sensitive to the choice of the field variables. When
constructing any theory, one relies on a set of assumptions
and formulates criteria to represent these. If the criteria are
more restrictive than the assumptions, the resulting theory
will still be compatible with the assumptions but may not be
a complete representation. One way to compensate this
mismatch is to generalize the matter coupling to

ffiffiffiffiffiffi
−g

p
Lvacuum½g; fχag� þ

ffiffiffiffiffiffi
−g̃

p
Lmatter½g̃; fψbg�; ð1Þ

where fχag represent the additional d.o.f. that participate in
the gravitational interactions, while fψbg are the matter
d.o.f.1 Here matter follows the geodesics of the Jordan
frame metric g̃, which can depend on all gravitational
fields, i.e., metric g, fields fχag, and their derivatives. This
generalization goes back to Bekenstein’s “two geometries”
perspective.2 Although this approach was proposed as a
“method for constructing novel gravitational theories” [1],
its full strength started being acknowledged only recently,
following the developments in scalar-tensor theories. In the
presence of a single gravitational scalar d.o.f. ϕ, the most
general metric that depends on the original metric variable
gμν, the scalar field, and its first derivatives is given via a
general disformal relation [1]

g̃μν ¼ Cðϕ; ∂αϕ∂αϕÞgμν þDðϕ; ∂αϕ∂αϕÞ∂μϕ∂νϕ; ð2Þ

where the first term provides a conformal rescaling of the
metric, while the second one, the disformal term, provides
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1In our formulation, we assume a universal matter coupling. In
the case where the weak equivalence principle is broken, different
matter sectors can flow on different geometries. Justification for a
restricted version of this scenario is presented in Sec. VI.

2In Bekenstein’s nomenclature, g is the gravitational metric
while g̃ is the physical metric [1]. Since matter follows the
geodesics of g̃, the physical metric is uniquely defined. However,
the interpretation of the gravitational metric is more ambiguous in
modern modified gravity theories, where it is not always possible
to define a field variable to reduce the vacuum action to general
relativity and minimally coupled extra fields.
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an anisotropic deformation that aligns with the field flow.
Provided that the transformation is invertible, different
representations of a scalar-tensor theory are dynamically
equivalent.3 Therefore, once the general form of the
vacuum theory is obtained, it should not be sensitive to
the field variable used for the matter coupling. However, as
we discussed above, this is true only if the set of
assumptions are represented accurately.
This point becomes evident in the context of Horndeski’s

scalar-tensor theory [7,8], which relies on the assumption
that the number of initial conditions necessary to evolve the
system of dynamical equations of motion is simply 6 for the
gravitational sector; i.e., only the scalar field and metric
perturbations are dynamical. In the original construction,
the theoretical formulation of this assumption includes the
requirement that the equations of motion are at most of
second order. This is based on Ostrogradski’s result that for
nondegenerate systems, more than two derivatives in the
equations of motion introduce new d.o.f. which lead to an
instability [9]. However, this representation, although it
does not contradict with the assumption regarding the
necessary initial data, is not exhaustive enough to cover
all allowed interactions. One way to see this is to apply the
general disformal transformation (2) to Horndeski action.
Horndeski action is closed under special disformal

transformations with C ¼ CðϕÞ; D ¼ DðϕÞ [10] but gen-
eralizing the coefficients to those that depend on field
derivatives leads to new terms, which are not present in the
original formulation [11]. With respect to the original
variables, the general coupling manifestly keeps the equa-
tions of motion second order. However, in the Jordan frame,
these interactions generate higher order equations of
motion, seemingly hinting at an additional d.o.f. This
apparent inconsistency is resolved by the degeneracies,
which reveal that Horndeski’s selection criterion for initial
data is stronger than necessary. Despite the existence of
high derivatives in the equations of motion, the instability is
absent thanks to a degenerate kinetic matrix in the
Lagrangian, which produces a hidden constraint and
removes the unwanted d.o.f. Terms that extend
Horndeski theory in this way were identified in the beyond
Horndeski theory [12,13] and later, Degenerate Higher-
Order Scalar-Tensor theories [14,15]. These scalar-tensor
actions are now closed under transformation (2), and thus
the choice of Jordan frame does not affect the generality of
the theory (see a review [16] and references therein).
For modified gravity theories with multiple extra d.o.f.,

similar degenerate terms are more difficult to identify. In
principle, constraint analysis techniques can be adopted to
determine the fate of some given interaction terms, but they

are not feasible to uncover all possible interactions exhaus-
tively. Moreover, other extensions can be devised by
coupling matter to a metric that cannot be transformed
into a Jordan frame via a simple field redefinition.
In this paper, we propose the use of a generalized matter

coupling as a systematic, tractable, and exhaustive theory
building tool that preserves the compatibility between
assumptions and their theoretical representations. As a first
application, we consider the case of Lorentz invariant
massive gravity theory with de Rham, Gabadadze,
Tolley (dRGT) potential [17,18]. In this theory, construc-
tion of exact cosmological solutions have proved to be
challenging, since either the expansion decouples from the
matter sector [19–21] or a nonlinear ghost instability
appears [22,23]. This cosmological no-go result can be
evaded by adding new d.o.f. and/or relaxing the sym-
metries.4 Instead, in this paper we will explore extensions
of the theory without changing its building blocks, by
generalizing the matter coupling. As opposed to the simple
scalar-tensor theories, the stability of the construction is not
guaranteed: the dRGT action is protected by several
uniqueness theorems while also relying on a delicate
constraint to reduce the number of propagating d.o.f. down
to five. In particular, a modified matter coupling is expected
to remove the constraint. Our aim in this paper is to find
new interaction terms that approximately preserve the
dRGT constraint within the strong coupling scale. Such
an example of an effective theory with a cutoff above the
strong coupling scale was introduced in Ref. [25] by
requiring that the quantum corrections do not detune the
potential. Our approach provides a new perspective that can
identify generalizations of this example.
The paper is organized as follows. In the next section, we

give a brief review of dRGT massive gravity focusing on
the interaction scales and summarizing the various unique-
ness theorems. In Sec. III, we develop a generalization of
disformal transformations to the case of massive gravity. In
Sec. IV, we use the decoupling limit to identify and
eliminate low energy interactions. We consider a simple
example with constant coefficients in Sec. V. We conclude
with Sec. VI where we discuss our results. The paper is
supplemented by four Appendixes where we summarize
the technical steps.

II. DRGT POTENTIALS: SCALES,
INTERACTIONS, AND UNIQUENESS THEOREMS

We start with a brief summary of massive gravity,
focusing on the relevant scales that correspond to the
interaction terms. For a complete and detailed review,
see Ref. [24].
The mass term for a spin-2 field is written as an

interaction between the metric tensor and a fixed reference
3Although representations related by a change of variable are

classically equivalent (see e.g., [2–4]), subtle differences arise in
their interpretations [5], while quantum anomalies may invalidate
the physical equivalence [6]. 4See [24] and references therein.
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metric, typically chosen as the Minkowski metric. Using
the gravitational analogue of the Stückelberg trick, one can
introduce four scalar fields ϕa to restore the diffeomor-
phism invariance. This promotes the reference metric to a
spacetime tensor given by

fμν ≡ ηab∂μϕ
a∂νϕ

b: ð3Þ

In this formulation, ηab becomes the field space metric
associated with a Poincaré symmetry. Mass terms can then
be written in terms of scalar functions of the tensor g−1f.
A generic massive gravity theory has the following form:

S ¼ M2
p

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½R½g� þm2F ðf−1gÞ�; ð4Þ

where we only consider nonderivative interactions between
the two metrics. The graviton mass provides the kinetic
term for the Stückelberg fields, and there are thus four new
dynamical d.o.f. in addition to the two in general relativity.
This is one more than the number of d.o.f. of a spin-2 field
required by Poincaré representations. The sixth d.o.f., the
Boulware-Deser mode, allows arbitrarily large negative
energy [26,27]. This extra mode can be isolated as the
longitudinal perturbation of the scalar fields

ϕa ¼ xa þ ∂aπ

Mpm2
; ð5Þ

where the background ϕa ¼ xa corresponds to the gauge
where the f-metric coincides with Minkowski spacetime,
and we introduced the canonically normalized longitudinal
perturbation. The additional derivative that accompanies π
in this decomposition allows its interpretation as the
Boulware-Deser ghost, which manifests itself through an
Ostrogradski instability of the helicity-0 mode. Around the
Minkowski background g ¼ η, the two-metric coupling is

g−1f ¼
�
1þ ∂∂π

Mpm2

�
2

; ð6Þ

where ∂∂π denotes the Hessian matrix of π. In general, an
arbitrary function F in (4) would lead to interaction terms
of the form

1

ðMpm
2ðn−1Þ
n−2 Þn−2

ð∂2πÞn; ð7Þ

which involve more than two derivatives of π. These
dangerous interactions in the generic theory appear at
the relatively low scale Λ5 ≡ ðMpm4Þ1=5, which corre-
sponds to a distance of 1011 km for a present-day Hubble
scale mass.
Using the square root of the tensor g−1f as a building

block provides a more natural way to determine the

conditions for the mass function, since this combination
allows one to keep track of the dangerous terms themselves
rather than their matrix square. The sixth mode can be
removed by a new constraint [28], a result of the dRGT
potential [17,18,29]

S ¼ M2
p

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R½g� þm2

X4
i¼0

βieið
ffiffiffiffiffiffiffiffiffiffi
g−1f

q
Þ
�
; ð8Þ

where the mass terms consist of the elementary symmetric
polynomials of

ffiffiffiffiffiffiffiffiffiffi
g−1f

p
defined as

e0ðxÞ¼ 1;

e1ðxÞ¼ ½x�;

e2ðxÞ¼
1

2!
ð½x�2− ½x2�Þ;

e3ðxÞ¼
1

3!
ð½x�3−3½x�½x2�þ2½x3�Þ;

e4ðxÞ¼
1

4!
ð½x�4−6½x�2½x2�þ8½x�½x3�þ3½x2�2−6½x4�Þ; ð9Þ

where square brackets denote the trace operation. Although
the action (8) has six parameters, β0 is the cosmological
constant for the g metric, β4 simply generates a cosmo-
logical constant for the f-metric which does not affect the
equations of motion [29], one combination corresponds to a
tadpole term which is removed to allow Minkowski metric
as a solution, and finally one parameter can be absorbed
into m2. As a result, the potential introduces three inde-
pendent parameters, including m. Removing the ghost
mode raises the strong coupling scale of the theory to Λ3 ≡
ðMpm2Þ1=3 which is about 8 orders of magnitude improve-
ment compared to the generic massive theory.
The dRGT potential is the unique nonlinear completion

of the Pauli-Fierz mass term [30]. For the kinetic part, a
ghost-free kinetic term beyond the Einstein-Hilbert action
has been discovered perturbatively [31], although nonlinear
completion reintroduces the Boulware-Deser (BD) mode
and leaves the Einstein-Hilbert term as the unique nonlinear
derivative term [32] (see e.g., Refs. [33,34] for other
attempts and Ref. [35] for an argument based on tree level
scattering amplitudes). Finally, a matter field can minimally
couple only to a single metric, whereas a more complicated
coupling inevitably reintroduces the BD mode [25,36,37].
These uniqueness theorems for Lorentz invariant non-

linear massive gravity crucially rely on the requirement that
the constraint removes the BD mode at all scales. One
loophole exists: dRGT massive gravity is already an
effective field theory valid up to a cutoff scale above
Λ3. By relaxing the condition to avoid this mode such that
its mass is above Λ3, one can obtain an extension of dRGT
where the ghost is irrelevant in the decoupling limit. A
specific example along this line was introduced in Ref. [25]
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by requiring that matter loops do not detune the dRGT
potential at one loop order. This special coupling, which we
will call “composite coupling,” generates the BD mode, but
the mass is larger than Λ3 in general and infinite around
cosmological backgrounds.5 In the following, we will
systematically make use of this loophole and look for
generalizations of the composite coupling.

III. FORMULATION OF MASSIVE GRAVITY
WITH GENERALIZED MATTER COUPLING

Our approach to obtain new interactions in a modified
gravity theory is to first consider the vacuum theory with
a given metric variable and then to minimally couple
matter to a new geometry that is disformally related to the
first one. This new geometry needs to be constructed
using the nonmetric d.o.f. specific to the modified gravity
theory in question. Provided that the coupling itself does
not include higher derivatives of these fields, the matter
coupling should preserve the number of d.o.f. of the
original theory.
In this section, we present the application of this

approach to dRGT massive gravity theory by generalizing
the matter coupling to include direct couplings to the
additional d.o.f. These d.o.f. can be isolated in the
Stückelberg picture as four scalar fields ϕa with an internal
Poincaré symmetry. Thus to implement our approach, we
first need to extend the disformal relation (2) to four scalar
fields. We now reformulate the theory to include an
arbitrary matter coupling and derive the conditions for
invertibility of the disformal relation.

A. Formalism

We start by extending the disformal relations to four
scalar fields in a straightforward way, while making use of
the Poincaré symmetry in the field space. The latter simply
means that the relation should not expose any free field
indices. With this in mind, we propose the following
generalization:

g̃μν ¼ C̄ð½γn�Þgμν þ D̄abð½γn�Þ∇μϕ
a∇νϕ

b; ð10Þ

where the functions C̄ and D̄ab depend on the traces of
powers of spacetime tensor γμν ≡ ηab∇μϕa∇νϕ

b. Since
we have four scalar fields in four spacetime dimensions,
only the first four of these traces are independent, so
the arguments of these functions are explicitly γμμ, γ

μ
νγνμ,

γμνγνργ
ρ
μ, and γμνγνργ

ρ
σγσμ. Similarly, there are three

independent ways of writing the function D̄ab: ηab,

ηacηbd∇αϕ
c∇αϕd, ηacηbfηde∇αϕ

c∇αϕd∇βϕ
e∇βϕf so the

disformal part can be equivalently written as6

D̄abð½γn�Þ∇μϕ
a∇νϕ

b ¼ D̄ð½γn�ÞðgγÞμν þ Ēð½γn�Þðgγ2Þμν
þ F̄ð½γn�Þðgγ3Þμν: ð12Þ

Thus the most generic transformation is7

g̃μν ¼ C̄ð½γn�Þgμν þ D̄ð½γn�Þfμν þ Ēð½γn�Þðgγ2Þμν
þ F̄ð½γn�Þðgγ3Þμν; ð13Þ

where fμν ≡ ηab∂μϕ
a∂νϕ

b and γ ≡ g−1f. Although the
above relation is the most general four-field extension of
(2) that involves first derivatives and an internal Poincaré
symmetry, it is not unique. In the context of dRGT massive
gravity, it is more convenient to adopt an alternative
formulation that replaces all occurrences of γ with

ffiffiffi
γ

p
as

follows8:

g̃μν ¼ Cð½ ffiffiffi
γ

p n�Þgμν þDð½ ffiffiffi
γ

p n�Þðg ffiffiffi
γ

p Þμν þ Eð½ ffiffiffi
γ

p n�Þfμν
þ Fð½ ffiffiffi

γ
p n�Þðf ffiffiffi

γ
p Þμν: ð14Þ

This formulation will be adopted in the rest of the text, on
the basis that it trivially contains the composite matter
coupling introduced in Ref. [25].

5The mass of the ghost depends on the background configu-
ration and can become light around strong gravitational back-
grounds. However, incorporating the nonlinear effects keep their
mass above Mp [25]. Moreover, for the bimetric extension of the
composite coupling, a trimetric theory can provide a ghost-free
completion [38].

6Other contractions with higher powers of ∇ϕ do not produce
any more independent terms. For instance, including the term
ηacηbhηdeηfg∇αϕ

c∇αϕd∇βϕ
e∇βϕf∇γϕ

g∇γϕh in D̄ab gives rise to
ðgγ4Þμν in (10). However, according to the Cayley-Hamilton
theorem, in four dimensions powers of γ higher than 3 can be
written as a power series with coefficients that depend on the
characteristic polynomials (9) enðγÞ (or equivalently, on ½γn�), i.e.,

γ4 ¼ e1ðγÞγ3 − e2ðγÞγ2 þ e3ðγÞγ − e4ðγÞ1: ð11Þ
This relation can be used to show that any other disformal
construction will be one of the ones given in (12).

7In order to preserve the symmetries of the dRGT potential,
we imposed invariance under translations ϕa → ϕa þ ca. If one
relaxes this assumption in the fashion of Ref. [39], the func-
tions C − F would also depend on combinations that include
the fields themselves, e.g., ηabϕaϕb, or mixed traces such as
ηadϕ

aϕbηbc∇μϕ
c∇μϕd. Moreover, the independent disformal

terms in Dab would acquire new contributions, e.g., ηacηbdϕcϕd.
8The relation (14) can also be obtained by starting with a

Finslerian geometry and requiring it to reduce to a Riemannian
one à la Bekenstein (see Appendix A). The equivalence between
(13) and (14) is shown in Appendix B.
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The action for this construction is

S ¼ Mp

2

Z
d4x

ffiffiffiffiffiffi
−g̃

p �
R½g̃� þm2

X3
i¼0

βieið
ffiffiffĩ
γ

p
Þ
�

þ
Z ffiffiffiffiffiffi

−g
p

Lmatter; ð15Þ

where γ̃ ¼ g̃−1f.
The uniqueness theorems imply that a generic coupling

to g ¼ gðg̃; fÞ would reintroduce the Boulware-Deser
instability. In the Jordan frame this corresponds to new
interactions, such as derivative interactions that depend on
the difference of connections for g and f metrics, ΓðgÞ −
ΓðfÞ (see Appendix C).

B. Invertibility

The invertibility of the disformal relation (14) is crucial
in determining whether this is really a field redefinition.
A transformation that is not invertible simply means that
the new variable does not contain sufficient information to
reconstruct the old one, and it corresponds to an implicit
choice of a preferred frame.
If the Jacobian of the transformation

Jαβμν ≡ ∂g̃μν
∂gαβ ð16Þ

has no zero eigenvalues, the transformation is conjectured
to be invertible [11]. For the case at hand, determining the
Jacobian involves taking derivatives of the square-root
tensor Xμ

ν. Starting from the definition of X,

g−1f ¼ X2; ð17Þ

and then differentiating both sides, we have

XδX þ δXX ¼ −g−1δgX2; ð18Þ

which is a matrix equation for δX of the Sylvester type, the
analytic solutions of which are known [40]. Using the form
of the solutions given in Ref. [41], we find

δX ¼ −
1

2
ðe1X2 þ e31Þ−1

×
X4
k¼1

Xk−1
m¼0

ð−1Þme4−kXk−m−2g−1δgXmþ2; ð19Þ

where en are the characteristic polynomials corresponding
to X. Note that the solution is unique provided that the
matrix ðe1X2 þ e31Þ is invertible [41]. Using this solution,
we can write down the Jacobian as

Jαβμν ¼ Cαβgμν þDαβðgXÞμν þ Eαβfμν þFαβðfXÞμν
þ Cδðαμ δ

βÞ
ν þDδðαμ XβÞ

ν þ ðDQμρ þ FQ̄μρÞΔραβ
ν;

ð20Þ

where brackets around indices denote normalized symmet-
rization, and we defined

Qμν ≡ 1

e21e4 þ e23 − e1e2e3

× gμα½ðe3 − e1e2Þδαν þ e21X
α
ν − e1ðX2Þαν�;

Q̄μν ≡ 1

e21e4 þ e23 − e1e2e3

× fμα½ðe3 − e1e2Þδαν þ e21X
α
ν − e1ðX2Þαν�;

Δραβ
ν ≡ −

1

2

X4
k¼1

Xk−1
m¼0

ð−1Þme4−kðXk−m−2ÞστgτðαðXmþ2ÞβÞν:

ð21Þ

In Eq. (24) the Fraktur letters denote derivatives of the
coefficients with respect to the metric gμν. For instance, for
the derivative of C, one has

Cαβ ≡ ∂Cð½X�; ½X2�; ½X3�; ½X4�Þ
∂gαβ

¼ −
1

2

X4
m¼1

mCmgρðαðXmÞβÞρ; ð22Þ

where Cm is the derivative of C with respect to its mth
argument

Cm ≡ ∂Cð½X�; ½X2�; ½X3�; ½X4�Þ
∂½Xm� : ð23Þ

Similar definitions apply to the remaining coefficients
in (14).
Given the exact expression for the Jacobian (20), one can

obtain the invertibility conditions by solving the following
eigenvalue problem [11]:

ðJαβμν − λδðαμ δ
βÞ
ν Þξαβ ¼ 0: ð24Þ

Considering the symmetries of the Jacobian, there are 10
eigenvalues λn which should satisfy

Y10
n¼1

λn ≠ 0; ð25Þ

for the transformation to be invertible.
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IV. STABILITY CONDITIONS IN THE
DECOUPLING LIMIT

In the previous section, we formulated the dRGT theory
with a generic matter coupling. Based on the arguments in
Sec. II, this coupling reintroduces the Boulware-Deser
mode. Our goal in this section is to push this mode beyond
the strong coupling scale Λ3. To accomplish this, we will
tune the unknown functions in order to remove all danger-
ous interactions in the decoupling limit. This requires a
perturbative treatment.
Moreover, our aim is to obtain conditions that are

independent of the details of the matter sector. Therefore
our analysis will be carried out in the Jordan frame, where
we do not need to specify individual matter fields.

A. Decomposing the fields

We now consider scalar perturbations around flat space-
time. We define the Minkowski vacuum in the dRGT
frame, i.e.,

g̃μν ¼ ημν þ h̃μν: ð26Þ

For the Stückelberg fields, we will only concentrate in the
longitudinal perturbation, i.e., ϕa ¼ xa þ ∂aπ, which can
be used to identify the Boulware-Deser ghost through an
Ostrogradski instability. With this decomposition, the fμν
tensor becomes

fμν ¼ ημν þ Πμν þ Πνμ þ Πα
μΠνα; ð27Þ

where Πμν ≡ ∂μ∂νπ. Once the vacuum is selected, the
background for the Jordan frame metric can only be con-
formally Minkowski in general, which we decompose as

gμν ¼ Ω0ðημν þ hμνÞ: ð28Þ

At quartic order in perturbations, only a finite number of
combinations of functions C, D, E, F, and their derivatives
are relevant. The explicit form of these combinations are
given in Appendix D.

B. Invertibility revisited: Perturbative case

The discussion in Sec. III B reveals that the Jacobian of
transformation (14) has ten eigenvalues, given by the roots
of Eq. (24). Solving this equation generically is not
straightforward. However, the invertibility condition does
not have to be satisfied for arbitrary configurations, but
rather should be determined depending on the context. For
the present perturbative discussion, showing invertibility
for the background is sufficient. The Minkowski back-
ground provides a dramatic simplification since gμν ∝ fμν.
As a result, the Jacobian has only two independent
eigenvalues. For the background discussed in Sec. IVA,
we have gμν ¼ Ω0ημν and fμν ¼ ημν, which lead to

Xμ
νjf¼g=Ω0¼η ¼ Ω−1=2

0 δμν ;

Qμνjf¼g=Ω0¼η ¼
Ω5=2

0

8
ημν;

Q̄μνjf¼g=Ω0¼η ¼
Ω3=2

0

8
ημν;

Δραβ
νjf¼g=Ω0¼η ¼ −

4

Ω3
0

ηρðαδβÞν : ð29Þ

Using these, we can rewrite the Jacobian (20) as

Jαβμνjf¼g=Ω0¼η ¼
B1 − 4B2

3Ω0

ημν −
A1

Ω0

δðαμ δ
βÞ
ν ; ð30Þ

where A1, B1, and B2 depend on the values of the
coefficients and their first derivatives, and they are defined
in Appendix D. For this background, the eigenvalue
problem (24) can be solved by

λjf¼g=Ω0¼η¼
8<
:

−3A1þ4B1−16B2

3Ω0
; ξμν ∝ ημν ð1 eigenvalueÞ

−A1

Ω0
; ξμνη

μν ¼ 0 ð9 eigenvaluesÞ
:

ð31Þ
Thus the invertibility condition (25) for the Minkowski
background simply becomes

A9
1ð3A1 − 4B1 þ 16B2Þ

3Ω10
0

≠ 0: ð32Þ

C. Background consistency and the free field action

The consistency of the relation (14) imposes two con-
ditions at the background level. The first is the consistency
of the solutions which can be summarized as

A2 ¼ 1; ð33Þ
which is an equation that determines the value of Ω0. The
second condition is the invertibility of the transformation
which imposes the inequality (32),

A1ð3A1 − 4B1 þ 16B2Þ ≠ 0: ð34Þ
We now move on to the action. At linear order, we have

δð1ÞL ¼ −
m2M2

ph

12
ðβ0 þ 3β1 þ 3β2 þ β3Þ

× ð3A1 − 4B1 þ 16B2Þ: ð35Þ
For a consistent Minkowksi background, the variation of
the action with respect to the metric perturbations hμν
should vanish. The last factor in the linear term (35)
coincides with part of the invertibility condition (34) so
it cannot be zero. Therefore, the existence of the back-
ground solution requires the parameters to satisfy
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ðβ0 þ 3β1 þ 3β2 þ β3Þ ¼ 0; ð36Þ

which simply removes the tadpole term.9

The free field action, which is quadratic in perturbations, is obtained as

δð2ÞL¼A2
1M

2
p

8

�
∂μh∂μh−∂μhαβ∂μhαβ−2∂μh∂νhμνþ2∂μhνρ∂ρhμνþ

m2ðβ0þ2β1þβ2Þ
2

½ðh2−hμνhμνÞþ4ðhμν∂μ∂νπ−h□πÞ�
�

þðB1−4B2ÞM2
p

12

�
ðB1−4B2Þ∂μðh−2□πÞ∂μðh−2□πÞ−2A1ð∂μh−∂νhμνÞ∂μðh−2□πÞ

þm2ðβ0þ2β1þβ2Þð−3A1þ2B1−8B2Þ
2

ðh−2□πÞ2
�
: ð37Þ

We note that the last two lines contain four and six
derivative terms of π. These can be removed by a field
redefinition

hμν → hμν −
2ðB1 − 4B2Þ

3A1 − 4B1 þ 16B2

ημν□π: ð38Þ

However, in the presence of matter, this shift replaces the
high derivative to the matter coupling in the form of □πT
[42]. To avoid instabilities due to this coupling, we choose

B2 ¼
B1

4
; ð39Þ

which effectively picks out the Fierz-Pauli action as the free
theory. We will impose this condition from here on.
We also note that the mass in the free field action (37)

always enters with the combination m2ðβ0 þ 2β1 þ β2Þ.
Therefore, without loss of generality, we can set

β0 þ 2β1 þ β2 ¼ 1; ð40Þ
which is equivalent to absorbing this term into the
definition of m.10 Notice that (39) also reduces the
invertibility condition (32) simply toA1 ≠ 0. We normalize
the two fields and perform a conformal transformation in
the h perturbations, via

h ¼ −
1

A1Mp
ðhc þ ηπcÞ; π ¼ 2

A1Mpm2
πc: ð41Þ

This transformation decouples the kinetic terms of the
metric perturbations from the Stückelberg scalar at the level
of the quadratic action

δð2ÞL ¼ 1

8

�
∂μh∂μh − ∂μhαβ∂μhαβ − 2∂μh∂νhμν

þ 2∂μhνρ∂ρhμν − 6∂μπ∂μπ

−
m2

2
½hμνhμν − h2 þ 6πðhþ 2πÞ�

�
; ð42Þ

where we suppressed the subscript “c” for the sake of
clarity.

D. Decoupling limit and interaction terms

We can now extract the information about nonlinear
interactions by going to the decoupling limit

m → 0; Mp → ∞; Λ3 → finite; ð43Þ

where the quadratic action (42) simply becomes

δð2ÞLD:L: ¼
1

8
½∂μh∂μh − ∂μhαβ∂μhαβ − 2∂μh∂νhμν

þ 6∂μhνρ∂ρhμν − 4∂μhμν∂ρhρν − 6∂μπ∂μπ�:
ð44Þ

We now determine at which order the dangerous high
derivative terms will appear. After the transformation (14),
the Einstein-Hilbert term contains generically terms with
high derivatives schematically of the form ∂2ðn−aþ1Þhaπn−a,
which are suppressed by Λ3n−2ðaþ1Þ

K , where

ΛK ≡ ðMpmK−1Þ1=K; with K ≡ 3þ 2ð2 − aÞ
n − 2

: ð45Þ

In order to avoid generating the ghost mode, we need to
make sure that there are no high derivative interactions
for K > 3. Thus, any vertex which contains more than two
hμν is beyond the reach of the effective theory. To be
precise, at cubic order we expect interactions suppressed
by ðΛ7−2aÞ7−2a, while at quartic order, interactions are
suppressed by ðΛ5−aÞ2ð5−aÞ and so on.

9In the notation of Ref. [18], this condition is simply
α1 ¼ 0. Note that the correspondence between the mass terms
βnenð ffiffiffi

γ
p Þ and αnenð ffiffiffi

γ
p − 1Þ is β0 ¼ −4α1 þ 6 − 4α3 þ α4,

β1 ¼ α1 − 3þ 3α3 − α4, β2 ¼ 1–2α3 þ α4, and β3 ¼ α3 − α4.
10In the equivalent enð ffiffiffi

γ
p − 1Þ formulation, this corresponds

to fixing the coefficient of the e2ð ffiffiffi
γ

p − 1Þ term to unity.
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As for the mass term, the interactions are schematically
of the form ∂2ðn−aÞhaπn−a and are suppressed by Λ3n−2a−4

P ,
where

ΛP ≡ ðMpmP−1Þ1=P; with P≡ 3þ 2ð1 − aÞ
n − 2

: ð46Þ

To avoid potential instabilities within the regime of validity
of the effective field theory, we need to tune away all
interactions below Λ3 with a < 1. In other words, we need
to make sure that the vertices that contain at most one copy
of hμν do not contribute to the dynamics.
Unfortunately, the dangerous interactions that arise from

the kinetic and potential terms appear at all orders in

perturbation theory, and thus the tuning needs to be done
indefinitely. Below we demonstrate the procedure up to
quartic interactions which, it turns out, is sufficient to reach
a nontrivial conclusion regarding the form of the functions
C, D, E, and F in (14).
We start by discussing the cubic terms. The action cubic

in perturbations is formally

δð3ÞL ¼ 1

Λ5
5

Lð3Þ
Λ5 þ

1

Λ3
3

Lð3Þ
Λ3 þO

�
m2=3

M2=3
p

�
: ð47Þ

We see that the leading order in the decoupling limit is Λ5,
given by

Lð3Þ
Λ5 ¼ −ðQ1 þQ3Þh∂μΠμν∂νΠþ ðQ1 −Q4Þh∂μΠνα∂μΠνα þ 2Q1hμν∂νΠμα∂αΠ

þ ð−2Q1 þQ4Þhμν∂μΠαβ∂νΠαβ þQ3hμν∂μΠ∂νΠþ ðQ2 −Q3ÞhΠ□Π − ðQ2 þQ4ÞhΠμν∂μ∂νΠ

−Q2hμνΠμν□Πþ 2Q2hμνΠμα∂ν∂αΠ − ðQ2 −Q3ÞhμνΠ∂μ∂νΠþQ4hμνΠαβ∂μ∂νΠαβ; ð48Þ

where Πμν ≡ ∂μ∂νπ and we defined

Q1≡A2
1−3A1−4A3

A2
1

; Q2≡4B3

A2
1

;

Q3≡8C1
A2

1

; Q4≡4B1

A2
1

: ð49Þ

The terms suppressed by the Λ5 scale cannot be removed by
adding boundary terms, and they all contain six derivatives.
The four linearly independent coefficients Qn vanish if

A3 ¼
A1ðA1 − 3Þ

4
; B1 ¼ B3 ¼ C1 ¼ 0: ð50Þ

With this choice, Eq. (39) now impliesB2 ¼ 0. Fromhere on,
we adopt the conditions (50).
Finally, we calculate the Λ3 terms. After adding

appropriate boundary conditions, the Λ3 terms in the cubic
action can be reduced to six types of terms: π∂∂π∂∂π,
h∂∂π∂∂π, π∂∂h∂∂π, h∂∂h∂∂π, ∂∂h∂π∂π, and ∂∂π∂h∂h,
given by

Lð3Þ
Λ3 ¼ P1

�
π þ h

2

�
½ð□πÞ2 − ∂μ∂νπ∂μ∂νπ� þ ðP1 − 2P2Þhμν½∂μ∂ρπ∂ν∂ρπ − ∂μ∂νπ□π�

− P2π½□hμν∂μ∂νπ − ∂μ∂νhμν□π� þ 2P2½□h∂μπ∂μπ − ∂μ∂νhνρ∂μπ∂ρπ�
þ 2P2½□π∂μ∂νhμρhνρ − ∂μ∂νπ□hμρhρν þ ∂μ∂νπ∂ρ∂σhμρhσν − ∂μ∂νπ∂ρ∂σhρσhμν�
þ P2½−2□π∂μhμν∂νhþ□π∂μh∂μhþ 4□π∂μhμν∂ρhρν −□π∂μhνρ∂μhνρ þ 2∂μ∂νπ∂μhνρ∂ρh

− 6∂μ∂νπ∂μhνσ∂ρhρσ − 2∂μ∂νπ∂μh∂νhþ 2∂μ∂νπ∂μhρσ∂νhρσ þ 4∂μ∂νπ∂μh∂ρhνρ−2∂μ∂νπ∂ρhμν∂ρh�; ð51Þ

where the two linearly independent coefficients are defined as

P1 ≡ 1 −A1ðβ1 þ β2Þ
A1

; P2 ≡A1 þ 1

4A1

: ð52Þ

In the dRGT limit, i.e., A1 ¼ −1, one has P1 ¼ 1 − α3 and
P2 ¼ 0. At first sight, the interaction terms with coefficients
∝P2 seem to give rise to high derivative equations of
motion. In particular, the hhπ interactions that stem from
the Einstein-Hilbert term contain four derivatives. However,
these terms can be removed by a nonlinear local trans-
formation. Shifting the metric perturbations via

hμν → hμν −
2P1

Λ3
3

∂μπ∂νπ þ 4P2

Λ3
3

ημν∂απ∂απ

þ 8P2

Λ3
3

∂απð∂αhμν − ∂ðμhνÞαÞ; ð53Þ

we find that the Λ3 suppressed term in the cubic action
reduces to

Lð3Þ
Λ3 ¼ P1π½ð□πÞ2 − ΠμνΠμν�; ð54Þ

which is simply the Galileon type self-interaction. Invacuum,
this shows the equivalence of the action (15) to the standard
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dRGT theory. In the presence of matter, since the shift (53)
contains up to first derivatives only, no instability from cubic
order interactions arises.
Using the conditions for the absence of Λ5 cubic

interactions (50), we now move on to the interactions of
quartic order in perturbations. There are two cases. From
the mass term, we expect the ∂8π4 term at Λ4, while the
kinetic part should bring ∂10π4 at Λ5 and ∂8hπ3 at Λ4. We

find that both π4 terms are boundary terms and only the
∂8hπ3 interaction remains. Formally, we have

δð4ÞL ¼ 1

Λ8
4

Lð4Þ
Λ4 þ

1

Λ6
3

Lð4Þ
Λ3 þO

�
m2=3

M2=3
p

�
: ð55Þ

Up to boundary terms, we can compute the Λ4 suppressed
terms as

Lð4Þ
Λ4 ¼ 16½ðR3 −R7ÞΠ2 − ðR2 þ 2R4ÞΠμνΠμν�ðh□Π − hρσ□ΠρσÞ þ 2ðR1 þ 8R2 − 48R6Þh□ΠμνΠμρΠν

ρ

− 16ðR3ΠμνΠ −R2Πμ
ρΠρνÞðhμν□Π − 2hμσ□Πσ

νÞ − 2ðR1 þ 16R5Þ∂μ∂νΠρσΠρσðhΠμν − 2hμαΠανÞ
− 16ðR3 þ 4R4 − 2R5Þh□ΠμνΠμνΠþ hμν∂μ∂νΠρσ½32ð2R4 −R5ÞΠρσΠ − 2ðR1 − 48R6ÞΠραΠα

σ�
− 2hμν□Πρσð16R5ΠμνΠρσ þR1ΠμρΠνσÞ
þ h∂μΠ½16ðR2 þR3 − 2R7Þ∂μΠΠ − 4ðR1 þ 8R2 þ 32R4Þ∂μΠρσΠρσ − 2ðR1 − 16R2 þ 8R3Þ∂νΠΠμν�
þ h∂μΠρσ½−16ðR2 þ 4R4 − 2R5Þ∂μΠρσΠþ 2ð3R1 − 16R5 − 96R6Þ∂νΠρσΠμν�
þ hμν∂ρΠμν½−32R2∂ρΠΠþ 4R1∂ρΠαβΠαβ þ 4ðR1 − 8R2Þ∂σΠΠρσ�
þ hμν∂μΠ½−16ðR3 − 2R7Þ∂νΠΠþ 32ðR2 þ 4R4Þ∂νΠρσΠρσ − 32ðR2 −R3Þ∂ρΠΠνρ�
þ hμν∂μΠρσ½32ðR2 þ 2R4 −R5Þ∂νΠρσΠ − 8ðR1 − 24R6Þ∂νΠραΠα

σ

−4ðR1 − 16R5Þ∂αΠρσΠνα þ 4ðR1 þ 8R2Þ∂ρΠΠν
σ� − 16hμνΠμνðR3∂ρΠ∂ρΠþ 2R5∂αΠρσ∂αΠρσÞ; ð56Þ

where

R1≡A2
1þA1−8A4

A3
1

; R2≡B4

A3
1

; R3≡ C2
A3

1

; R4≡ C3
A3

1

; R5≡B5

A3
1

; R6≡B6

A3
1

; R7≡D1

A3
1

: ð57Þ

Since we have already added boundary terms to isolate
hμν without any derivatives, all of these terms contain
high derivatives and cannot be further eliminated. To
simultaneously remove all of these terms, we need
R1 ¼ R2 ¼ R3 ¼ R4 ¼ R5 ¼ R6 ¼ R7 ¼ 0, or

A4 ¼
A1ðA1 þ 1Þ

8
;

B4 ¼ B5 ¼ B6 ¼ C2 ¼ C3 ¼ D1 ¼ 0: ð58Þ
To summarize, combining the conditions for consistent

background (33), avoiding ghost modes in the free theory
(39), removing theΛ5 cubic interactions (50) and Λ4 quartic
interactions (58), we obtain the following conditions:

A2¼ 1; A3 ¼
A1ðA1−3Þ

4
; A4 ¼

A1ðA1þ1Þ
8

; ð59Þ

B1 ¼ B2 ¼ B3 ¼ B4 ¼ B5 ¼ B6 ¼ 0; ð60Þ
C1 ¼ C2 ¼ C3 ¼ 0; ð61Þ

D1 ¼ 0; ð62Þ
i.e., we obtain three conditions on thevalue of the coefficients
on the background, six conditions on their first derivatives,
three conditions on the second derivatives, and one condition

on the third derivative. In principle, this procedure can be
extended to higher order interactions. However, at quartic
order, we observe that only the quantity A1 survives the
stability conditions below Λ3 at quartic order. Remarkably,
the functional form of the coefficients turned out to be
irrelevant: all four coefficientsC,D,E, andF are forced to be
constant up to quartic order. We will consider the constant
coefficients as a separate case in the following section.

V. DISFORMAL RELATION WITH
CONSTANT COEFFICIENTS

The conditions for stability below Λ3 obtained in Sec. IV
indicate that the coefficients C, D, E, and F in (14) should
be constant, at least up to quartic order in perturbations
around flat spacetime. In this section, we investigate the
special case of constant coefficients.
For this case, the only relevant combinations are An

which are constrained by conditions (59). Using their
definitions given in Appendix D, these conditions fix
two of the coefficients,

D ¼ �2
ffiffiffiffi
C

p ffiffiffiffi
E

p
; F ¼ 0; ð63Þ

while the normalization of the background metric in the
Jordan frame can be determined by solving
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ð
ffiffiffiffi
C

p ffiffiffiffiffiffi
Ω0

p
�

ffiffiffiffi
E

p
Þ2 ¼ 1: ð64Þ

With these restrictions, the relation between the dRGT and
Jordan frame metrics (14) simply becomes

g̃μν ¼ Cgμν � 2
ffiffiffiffi
C

p ffiffiffiffi
E

p
gμσð ffiffiffi

γ
p Þσν þ Efμν; ð65Þ

or in matrix form

g̃ ¼ Cg

�
1�

ffiffiffiffi
E

p
ffiffiffiffi
C

p ffiffiffi
γ

p �2

: ð66Þ

Left multiplying both sides by f−1, we get

γ̃−1 ¼ C

�
γ−1=2 �

ffiffiffiffi
E

p
ffiffiffiffi
C

p 1

�2

: ð67Þ

Taking the matrix square root of both sides, we can invert
this relation

γ−1 ¼ 1

C

�
γ̃−1=2 þ

ffiffiffiffi
E

p
ffiffiffiffi
C

p 1

�2

: ð68Þ

Finally, by contracting with f from the left, we can rewrite
this relation in the component form as

gμν ¼ α2g̃μν þ 2αβg̃μσ
ffiffiffĩ
γ

p
σ
ν þ β2fμν; ð69Þ

where we defined

α≡ 1ffiffiffiffi
C

p ; β≡�
ffiffiffiffi
E

p
ffiffiffiffi
C

p : ð70Þ

Thus the matter couples minimally to metric gμν, which is
related to the dRGT frame metric g̃μν disformally with
constant coefficients. This is nothing but the composite
matter coupling introduced in [25]. The stability conditions
(59) imply that this coupling is the unique disformal
coupling with constant coefficients that does not generate
the Boulware-Deser mode below Λ3. Our perturbative
study in the previous section reveals that any functional
dependence in the coefficients is forbidden at least up to
quartic order.
There is a simpler way to see why this example actually

works. Let us consider only the longitudinal scalar field
interactions around flat spacetime, yet in a nonperturbative
manner. In this case, we have

g ¼ η; γ ¼ ð1þ ∂∂πÞ2; ð71Þ
where ∂∂π denotes the Hessian matrix for π. We can then
rearrange (66) to get

g̃ ¼ ½ð
ffiffiffiffi
C

p
�

ffiffiffiffi
E

p
Þ1�

ffiffiffiffi
E

p ∂∂π�η½ð ffiffiffiffi
C

p
�

ffiffiffiffi
E

p
Þ1�

ffiffiffiffi
E

p ∂∂π�;
ð72Þ

or in component form we can rewrite it as

g̃μν ¼ ηρσ
∂yρ
∂xμ

∂yσ
∂xν ; ð73Þ

where

yμ ≡ ð
ffiffiffiffi
C

p
�

ffiffiffiffi
E

p
Þxμ �

ffiffiffiffi
E

p ∂μπ: ð74Þ
This form of the transformation reveals why the composite
coupling is special. The transformation is simply a non-
linear coordinate transformation for the flat metric and thus
keeps the Einstein-Hilbert action invariant. Although we
did not allow the spacetime perturbations, we introduced
nonlinear Stückelberg perturbations. The composite cou-
pling, thanks to its full-squared form, prevents the gen-
eration of the most dangerous derivative interactions.

VI. DISCUSSION

In this paper, we explored the possibility of new inter-
actions by keeping the matter coupling generic. We intro-
duced a newgeometry relevant formatter dynamics, which is
related to theoriginal geometryvia a four-field generalization
of the disformal relation. In dRGT massive gravity preserv-
ing the number of d.o.f. is not possible for general matter
couplings. Instead, we extracted information on what our
four free functions should be, by requiring the newd.o.f. does
not appear at least within the strong coupling scale Λ3.
Perturbatively, we calculated dangerous interaction terms
and obtained stability conditions, which revealed that all four
functions need to be constant up to quartic order interactions.
The constant coefficient case provides a unique relation

between the dRGT and Jordan frames, which coincides
with the composite metric coupling scenario, proposed in
Ref. [25] to control quantum corrections from spoiling the
dRGT tuning. Our approach gives a new perspective for
this coupling. The cosmology of massive gravity with
composite coupling is known to evade the cosmological no-
go result [25,43,44] and has a stable de Sitter attractor [45],
which is in agreement with background observations [46].
In a scenario where the standard model follows the geo-
desics of the composite metric, it is expected that the
propagation speed of gravitational waves will generically
be different from the speed of light and will be constrained
by the observation of gravitational and electromagnetic
waves from neutron star merger GW170817 [47]. Such a
constraint is available for the bimetric version of the
composite coupling [48] although similar constraints
may affect the massive gravity case at hand. On the other
hand, a stable cosmology only requires a single sector to
couple compositely. Therefore, a scenario which breaks the
weak equivalence principle, where the Standard Model
couples minimally to one metric, while a hidden sector that
couples compositely would be unconstrained by the gravi-
tational wave propagation bounds.
Due to the perturbative nature of our study, we were not

able to provide a proof at the nonlinear level for the
uniqueness of the composite metric coupling. Therefore we
cannot conclude whether viable examples other than the
composite coupling exist. The total-squared form of the
composite case allows it to evade dangerous high derivative
interactions that stem from the Einstein-Hilbert term which
would be very difficult to emulate when the four functions
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are not constant. However, the relation between different
geometries that we used is built out of the tensorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂μϕ

a∂νϕ
b

q
, which naturally reproduces the composite

coupling. Conversely, a naive generalization of disformal
relations to four functions built out of ∂μϕ

a∂νϕ
b

would yield nontrivial values for the derivatives of the
coefficients, and to recover the composite case we would
have to remove all low energy interactions at all orders in
perturbation theory. We therefore cannot exclude the
possibility that another convenient parametrization to yield
another example cannot be uncovered in the current
approach.
Our formulation can easily be extended to the case

where the translation symmetry of the scalar fields are
broken. This would allow us to introduce field dependen-
cies in the four functions. Although this could complicate
the perturbative study, removing the field derivative
dependence can potentially reveal new interactions in
the so-called “generalized massive gravity” proposed
by Ref. [39].
Finally, if one uses an external field to define a

new geometry for matter (as opposed to the four
Stückelberg fields), the survival of the dRGT constraint
is less of an issue, although this increases the number
of d.o.f. with respect to the original dRGT massive
gravity [49,50].
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APPENDIX A: FORM OF THE GENERALIZED
DISFORMAL TRANSFORMATION

Here we provide a derivation of the disformal trans-
formation (14) in the fashion of Bekenstein [1]. We write
the Finsler line element as

ds2 ¼ gαβdxαdxβFðfIAg; fHAgÞ; ðA1Þ

where with the Poincaré symmetry of the field space in
mind, we did not consider direct dependence on the fields
ϕa. For ds2 to be a homogeneous function of second order
in dxα, we choose IA and HA as

IA ≡ ½XA�; HA ≡ gμρðXAÞρνdxμdxν
−gαβdxαdxβ

; ðA2Þ

where Xμ
αXα

ν ¼ gμαfαν and A denotes the order of matrix
power.11 Since X4 can be written in terms of the lower
powers of X and characteristic polynomials enðXÞ,HA runs
through A ¼ 1, 2, 3 while IA runs through A ¼ 1, 2, 3, 4.
The combinations IA and HA are thus the only quantities of
this form that are degree-zero homogeneous functions of
dxα that depend on the first derivatives of the fields ϕa.
Given these definitions, we can extract the quasimetric

g̃μν via [1]

g̃μν ¼
1

2

∂2ðds2Þ
∂dxμ∂dxν ; ðA3Þ

which gives

g̃μν ¼
�
F −

∂F
∂HA

HA

�
gμν −

∂F
∂HA

gμαðXAÞαν

−
2gατgβηdxαdxβ

−gρσdxρdxσ
∂2F

∂HA∂HB
½ðXAÞτμðXBÞην

þ ðXAÞτμHBδ
η
ν þ ðXBÞτνHAδ

η
μ þHAHBδ

τ
μδ

η
ν�; ðA4Þ

where summation convention also applies to uppercase
latin indices. In order to obtain a Riemannian geometry, we
impose that g̃μν is independent of dxα. This is achieved if
the second derivative of F vanishes.12 Thus the Finsler
factor reduces to the form

F ¼ CðfIBgÞ þDAðfIBgÞHA: ðA5Þ

Using this expression, the quasimetric then becomes

g̃μν ¼ Cðf½XB�gÞgμν −DAðf½XB�gÞgμαðXAÞαν; ðA6Þ
which we can rewrite as

g̃μν ¼ Cðf½XA�gÞgμν þDðf½XA�gÞgμαXα
ν þ Eðf½XA�gÞfμν

þ Fðf½XA�gÞfμαXα
ν; ðA7Þ

which is precisely the form of Eq. (14).

APPENDIX B: EQUIVALENCE OF THE
FORMULATIONS

In this Appendix, we show that the formulation with
square roots (14) is equivalent to the disformal trans-
formations of four scalar fields (13).

11One can also define the functions HA and IA without the
square root, by replacing X with g−1f, resulting in transforma-
tions (13). Although the formulation is equivalent (see Appen-
dix B), we adopt the square-root formulation in the main text as it
is better suited to the form of the dRGT action.

12In the single scalar field case of Ref. [1], the first term in the
square brackets is also independent of dxα, although in this
general case, this is not true for all values of A and B.
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We start with the Cayley-Hamilton theorem for 4 × 4 for
square matrices:

γ2¼e1ð ffiffiffi
γ

p Þγ3=2−e2ð ffiffiffi
γ

p Þγþe3ð ffiffiffi
γ

p Þ ffiffiffi
γ

p
−e4ð ffiffiffi

γ
p Þ1: ðB1Þ

By multiplying this relation twice with
ffiffiffi
γ

p
and using the

intermediate relation, we obtain the following:

γ3 ¼ ðe3 − 2e1e2 þ e31Þγ3=2 − ðe4 − e1e3 − e22 þ e21e2Þγ
þ ðe21e3 − e2e3 − e1e4Þγ1=2 − e4ðe21 − e2Þ1; ðB2Þ

where en ¼ enð ffiffiffi
γ

p Þ. We can now use the above two
equations to solve for

ffiffiffi
γ

p
and γ3=2 and write them in terms

of γ, γ2, and γ3. This is the first step in building a relation
between the two formulations. The missing piece is to
relate the characteristic polynomials of the two formula-
tions enð ffiffiffi

γ
p Þ and EnðγÞ. By multiplying (B2) twice withffiffiffi

γ
p

and replacing all the half-integer powers of γ, we obtain

γ4 ¼ ðe21 − 2e2Þγ3 − ð2e4 − 2e1e3 þ e22Þγ2
þ ðe23 − 2e2e4Þγ − e241: ðB3Þ

On the other hand, we also have the analogue of Eq. (B1)
for γ which is

γ4 ¼ E1ðγÞγ3 − E2ðγÞγ2 þ E3ðγÞγ − E4ðγÞ1: ðB4Þ

The above two relations allow us to relate the characteristic
polynomials for γ and

ffiffiffi
γ

p
. It is convenient to rewrite the

relation in terms of traces:

ð3ð½γ�2 − 2½γ2�Þ − 6½γ�½ ffiffiffi
γ

p �2 þ ½ ffiffiffi
γ

p �4 þ 8½ ffiffiffi
γ

p �½γ3=2�Þ2
¼ 24ð½γ�4 − 6½γ�2½γ2� þ 8½γ�½γ3� þ 3½γ2�2 − 6½γ4�Þ;
3½γ�3 þ 9½ ffiffiffi

γ
p �2ð½γ�2 − 2½γ2�Þ − 18½γ�½γ2� − 9½γ�½ ffiffiffi

γ
p �4

þ 24½γ3� þ ½ ffiffiffi
γ

p �6 þ 16½ ffiffiffi
γ

p �3½γ3=2� − 8½γ3=2�2 ¼ 0:

ðB5Þ
These two equations give ½ ffiffiffi

γ
p � and ½γ3=2� in terms of [γ],

½γ2�, ½γ3�, and ½γ4�. This shows that formulation with
ffiffiffi
γ

p
is

equivalent to the one with γ.
On the other hand, the system above has 16 solutions,13

so solving it is equivalent to taking the square root of a
4 × 4 matrix. In other words, given a theory in γ formu-
lation, there are 16 distinct equivalent

ffiffiffi
γ

p
formulations.

However, when considering perturbations around flat
space, γ is proportional to identity. Thus, taking the square
root amounts to choosing the sign of each diagonal entry.
Once the background is fixed to, say,

ffiffiffi
γ

p ¼ 1, then the
complicated nonlinear system of algebraic equations above
become a very simple linear system for the perturbations.
To summarize, the two formulations are equivalent, but

starting from γ formalism, there is no single way to
generically go to

ffiffiffi
γ

p
formulation. However, around a

simple background with γ ¼ 1, fixing
ffiffiffi
γ

p ¼ 1 picks a
single solution and we argue that the decoupling limit
analysis is to be equivalent in both languages.

APPENDIX C: WRITING THE EXACT THEORY
IN THE JORDAN FRAME

In this section, we consider the most general disformal
transformation as defined in Eq. (14), using the

ffiffiffi
γ

p
tensor

as the building block. This relation allows us to express
the dRGT frame metric g̃ in terms of the Jordan frame
metric g. We first start by relating the determinants of the two
metrics as

detg̃
detg

¼C4þC3½De1þðe21−2e2ÞEþðe31−3e2e1þ3e3ÞF�þC2½D2e2þDðe1e2−3e3ÞEþDðe2e21−e3e1−2e22þ4e4ÞF

þðe22−2e1e3þ2e4ÞE2þð−2e3e21þe22e1þ5e4e1−e2e3ÞEFþðe32−3e1e3e2−3e4e2þ3e23þ3e21e4ÞF2�
þC½D3e3þD2ðe1e3−4e4ÞEþD2ðe3e21−e4e1−2e2e3ÞFþDðe2e3−3e1e4ÞE2þDð−3e4e21þe2e3e1−3e23þ4e2e4ÞEF
þDðe3e22−e1e4e2−2e1e23þ5e3e4ÞF2þðe23−2e2e4ÞE3þðe1e23−e4e3−2e1e2e4ÞE2F

þð−2e4e22þe23e2þ4e24−e1e3e4ÞEF2þðe33−3e2e4e3þ3e1e24ÞF3�þD4e4þD3e1e4EþD3ðe21−2e2Þe4FþD2e2e4E2

þD2ðe1e2−3e3Þe4EFþD2e4ðe22−2e1e3þ2e4ÞF2þDe3e4E3þDðe1e3−4e4Þe4E2FþDe4ðe2e3−3e1e4ÞEF2

þDe4ðe23−2e2e4ÞF3þe24E
4þe1e24E

3Fþe2e24E
2F2þe3e24EF

3þe34F
4; ðC1Þ

where the elementary polynomials en¼enð ffiffiffi
γ

p Þ are given in (9).With this, we can express the inverse metric in the following form:

g̃μν ¼ det g
det g̃

½C̃ð½ ffiffiffi
γ

p n�Þgμν þ D̃ð½ ffiffiffi
γ

p n�Þð ffiffiffi
γ

p
g−1Þμν þ Ẽð½ ffiffiffi

γ
p n�Þðγg−1Þμν þ F̃ð½ ffiffiffi

γ
p n�Þðγ3=2g−1Þμν�; ðC2Þ

13The first equation has two solution for ½γ3=2� which is a polynomial in ½ ffiffiffi
γ

p �. Using each of these solutions in the second equation
yields a polynomial equation for ½ ffiffiffi

γ
p � of eighth order; hence there are 16 solutions.
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where the coefficients are given by

C̃ð½ ffiffiffi
γ

p n�Þ≡ ½C3þDe1C2þEðe21−2e2ÞC2þFðe31−3e2e1þ3e3ÞC2þD2e2CþDEðe1e2−3e3ÞCþE2ðe22−2e1e3þe4ÞC
þDFðe2e21−e3e1−2e22þ2e4ÞCþEFð−2e3e21þe22e1þ3e4e1−e2e3ÞC
þF2ðe32−3e1e3e2−2e4e2þ3e23þ2e21e4ÞCþD3e3þD2Fðe21−2e2Þe3þD2Eðe1e3−e4Þ
þDF2e3ðe22−2e1e3þ2e4ÞþDE2ðe2e3−e1e4ÞþE3ðe23−e2e4ÞþDEFð−e4e21þe2e3e1−3e23þ2e2e4Þ
þF3ðe33−2e2e4e3þe1e24ÞþEF2ð−e4e22þe23e2þe4ðe4−e1e3ÞÞþE2Fðe1ðe23−e2e4Þ−e3e4Þ�;

D̃ð½ ffiffiffi
γ

p n�Þ≡−e2D3−Ce1D2−Ee1e2D2þFð−e2e21þ2e22−e4ÞD2−C2DþCEð2e2−e21ÞDþCFð−e31þ3e2e1−e3ÞD
þE2ðe4−e22ÞDþF2ð−e32þ2e1e3e2−e21e4ÞDþEFð3e2e3−e1ðe22þe4ÞÞDþCE2e3þCEFð2e1e3−2e4Þ
þCF2ðe3e21−e4e1−e2e3ÞþE3ðe1e4−e2e3ÞþEF2e2ð2e1e4−e2e3ÞþE2Fðe4e21−e2e3e1þe2e4Þ
þF3ðe4e22−e23e2−e24þe1e3e4Þ;

Ẽð½ ffiffiffi
γ

p n�Þ≡e1D3þEe21D
2þCD2þFðe31−2e1e2ÞD2−CEe1D−2CFe2DþE2e1e2DþEFðe2e21−3e3e1þ2e4ÞD

þF2e1ðe22−2e1e3þ2e4ÞD−C2EþCE2ðe2−e21ÞþCEFð−e31þe2e1−e3ÞþE2Fe1ðe1e3−2e4Þ
þE3ðe1e3−e4ÞþCF2ð−e2e21þe3e1þe22−e4ÞþEF2ð−e4e21þe2e3e1−e2e4ÞþF3ðe1e23−e4e3−e1e2e4Þ;

F̃ð½ ffiffiffi
γ

p n�Þ≡−D3−Ee1D2þFð2e2−e21ÞD2þ2CEDþCFe1D−E2e2DþEFð3e3−e1e2ÞD
þF2ð−e22þ2e1e3−e4ÞDþCEFe21−C2FþCE2e1þCF2ðe1e2−2e3Þ−E3e3

þE2Fðe4−e1e3ÞþEF2ðe1e4−e2e3ÞþF3ðe2e4−e23Þ: ðC3Þ

Using these, the Christoffel symbols for the g̃ metric can be
obtained as

Γ̃α
βγ ¼ Γα

βγ þ ΔΓα
βγ; ðC4Þ

where

ΔΓα
βγ ≡ g̃αδ

2
ð∇βg̃δγ þ∇γ g̃βδ −∇δg̃βγÞ; ðC5Þ

and ∇ is the covariant derivative operator compatible with g.
Finally, the Ricci scalar for the tilde metric is computed via

R̃ ¼ Rμνg̃μν þ g̃μνg̃βρg̃αγðΔΓρ
νγΔΓβ

αμ − ΔΓρ
αγΔΓβ

μνÞ
þ g̃αρg̃μνð∇α∇νg̃μρ −∇μ∇νg̃αρÞ: ðC6Þ

This expression, along with the determinant (C1) allows us to
write the kinetic part of the action (15) in the Jordan frame.
Generically, this introduces a derivative coupling between the g
and f metrics through ∇g̃ type terms.
For the mass terms in Eq. (15), our options are limited.

These depend on the tensor
ffiffiffĩ
γ

p ¼
ffiffiffiffiffiffiffiffiffiffi
g̃−1f

p
, where technically

the square-root operation cannot be performed in an exact
manner. For these terms, we will rely on the existence of a
vacuum solution where one can unambiguously evaluate the
square roots, and then discuss the mass terms perturbatively.

APPENDIX D: FORM OF THE COEFFICIENTS
IN THE PERTURBATIVE EXPANSION

In this section, we define some combinations of the
derivatives of coefficients C–F in (14) evaluated on the
Minkowski background.

We first define

C0 ≡ Cjg=Ω0¼f¼η; Ci ≡ ∂C
∂½ ffiffiffi

γ
p i�

				
g=Ω0¼f¼η

;

Cij ≡ ∂2C
∂½ ffiffiffi

γ
p i�∂½ ffiffiffi

γ
p j�

				
g=Ω0¼f¼η

;

Cijk ≡ ∂3C
∂½ ffiffiffi

γ
p i�∂½ ffiffiffi

γ
p j�∂½ ffiffiffi

γ
p k�

				
g=Ω0¼f¼η

; ðD1Þ

and similar relations hold for the functions D, E, and F.
Using these we define the quantities A which contain only
the background values of the coefficients, while B, C, andD
depend only on the first, second, and third derivatives,
respectively. The combinations below exhaust all coeffi-
cients that appear in the expansion of the action up to
quartic order in perturbations:

A1≡−
ffiffiffiffiffiffi
Ω0

p
D0

2
−C0Ω0þ

F0

2
ffiffiffiffiffiffi
Ω0

p ;

A2≡
ffiffiffiffiffiffi
Ω0

p
D0þE0þC0Ω0þ

F0ffiffiffiffiffiffi
Ω0

p ;

A3≡3
ffiffiffiffiffiffi
Ω0

p
D0

8
þC0Ω0−

F0

8
ffiffiffiffiffiffi
Ω0

p ;

A4≡ 5F0

16
ffiffiffiffiffiffi
Ω0

p −
D0

ffiffiffiffiffiffi
Ω0

p
16

;

GENERALIZING THE MATTER COUPLING IN MASSIVE … PHYS. REV. D 99, 084004 (2019)

084004-13



B1≡C2þ
3C3ffiffiffiffiffiffi
Ω0

p þ6C4

Ω0

þ D2ffiffiffiffiffiffi
Ω0

p þ3D3

Ω0

þ 6D4

Ω3=2
0

þE2

Ω0

þ 3E3

Ω3=2
0

þ6E4

Ω2
0

þ F2

Ω3=2
0

þ3F3

Ω2
0

þ 6F4

Ω5=2
0

;

B2≡3
ffiffiffiffiffiffi
Ω0

p
C1

8
þC2þ

15C3

8
ffiffiffiffiffiffi
Ω0

p þ3C4

Ω0

þ3D1

8
þ D2ffiffiffiffiffiffi

Ω0

p þ15D3

8Ω0

þ 3D4

Ω3=2
0

þ 3E1

8
ffiffiffiffiffiffi
Ω0

p þE2

Ω0

þ 15E3

8Ω3=2
0

þ3E4

Ω2
0

þ3F1

8Ω0

þ F2

Ω3=2
0

þ15F3

8Ω2
0

þ 3F4

Ω5=2
0

;

B3≡3
ffiffiffiffiffiffi
Ω0

p
C1

2
þ3C2þ

9C3

2
ffiffiffiffiffiffi
Ω0

p þ6C4

Ω0

þ5D1

4
þ 5D2

2
ffiffiffiffiffiffi
Ω0

p þ15D3

4Ω0

þ 5D4

Ω3=2
0

þ E1ffiffiffiffiffiffi
Ω0

p þ2E2

Ω0

þ 3E3

Ω3=2
0

þ4E4

Ω2
0

þ3F1

4Ω0

þ 3F2

2Ω3=2
0

þ9F3

4Ω2
0

þ 3F4

Ω5=2
0

;

B4≡−
D1

16
−

D2

8
ffiffiffiffiffiffi
Ω0

p −
3D3

16Ω0

−
D4

4Ω3=2
0

þ 3F1

16Ω0

þ 3F2

8Ω3=2
0

þ 9F3

16Ω2
0

þ 3F4

4Ω5=2
0

;

B5≡3
ffiffiffiffiffiffi
Ω0

p
C1

8
þC2þ

15C3

8
ffiffiffiffiffiffi
Ω0

p þ3C4

Ω0

þ3D1

16
þ D2

2
ffiffiffiffiffiffi
Ω0

p þ15D3

16Ω0

þ 3D4

2Ω3=2
0

−
3F1

16Ω0

−
F2

2Ω3=2
0

−
15F3

16Ω2
0

−
3F4

2Ω5=2
0

;

B6≡5
ffiffiffiffiffiffi
Ω0

p
C1

16
þC2þ

35C3

16
ffiffiffiffiffiffi
Ω0

p þ4C4

Ω0

þ5D1

16
þ D2ffiffiffiffiffiffi

Ω0

p þ35D3

16Ω0

þ 4D4

Ω3=2
0

þ 5E1

16
ffiffiffiffiffiffi
Ω0

p þE2

Ω0

þ 35E3

16Ω3=2
0

þ4E4

Ω2
0

þ 5F1

16Ω0

þ F2

Ω3=2
0

þ35F3

16Ω2
0

þ 4F4

Ω5=2
0

;

C1≡C11

4
þ C12ffiffiffiffiffiffi

Ω0

p þ3C13

2Ω0

þ2C14

Ω3=2
0

þC22

Ω0

þ3C23

Ω3=2
0

þ4C24

Ω2
0

þ9C33

4Ω2
0

þ6C34

Ω5=2
0

þ4C44

Ω3
0

þ D11

4
ffiffiffiffiffiffi
Ω0

p þD12

Ω0

þ 3D13

2Ω3=2
0

þ2D14

Ω2
0

þ D22

Ω3=2
0

þ3D23

Ω2
0

þ4D24

Ω5=2
0

þ 9D33

4Ω5=2
0

þ6D34

Ω3
0

þ4D44

Ω7=2
0

þ E11

4Ω0

þ E12

Ω3=2
0

þ3E13

2Ω2
0

þ2E14

Ω5=2
0

þE22

Ω2
0

þ3E23

Ω5=2
0

þ4E24

Ω3
0

þ9E33

4Ω3
0

þ6E34

Ω7=2
0

þ4E44

Ω4
0

þ F11

4Ω3=2
0

þF12

Ω2
0

þ 3F13

2Ω5=2
0

þ2F14

Ω3
0

þ F22

Ω5=2
0

þ3F23

Ω3
0

þ4F24

Ω7=2
0

þ 9F33

4Ω7=2
0

þ6F34

Ω4
0

þ4F44

Ω9=2
0

;

C2≡C11

4
þ C12ffiffiffiffiffiffi

Ω0

p þ3C13

2Ω0

þ2C14

Ω3=2
0

þC22

Ω0

þ3C23

Ω3=2
0

þ4C24

Ω2
0

þ9C33

4Ω2
0

þ6C34

Ω5=2
0

þ4C44

Ω3
0

þ D11

8
ffiffiffiffiffiffi
Ω0

p þD12

2Ω0

þ 3D13

4Ω3=2
0

þD14

Ω2
0

þ D22

2Ω3=2
0

þ3D23

2Ω2
0

þ2D24

Ω5=2
0

þ 9D33

8Ω5=2
0

þ3D34

Ω3
0

þ2D44

Ω7=2
0

−
F11

8Ω3=2
0

−
F12

2Ω2
0

−
3F13

4Ω5=2
0

−
F14

Ω3
0

−
F22

2Ω5=2
0

−
3F23

2Ω3
0

−
2F24

Ω7=2
0

−
9F33

8Ω7=2
0

−
3F34

Ω4
0

−
2F44

Ω9=2
0

;

C3≡3C11

16
þ 7C12

8
ffiffiffiffiffiffi
Ω0

p þ3C13

2Ω0

þ 9C14

4Ω3=2
0

þC22

Ω0

þ27C23

8Ω3=2
0

þ5C24

Ω2
0

þ45C33

16Ω2
0

þ33C34

4Ω5=2
0

þ6C44

Ω3
0

þ 3D11

16
ffiffiffiffiffiffi
Ω0

p þ7D12

8Ω0

þ 3D13

2Ω3=2
0

þ9D14

4Ω2
0

þ D22

Ω3=2
0

þ27D23

8Ω2
0

þ5D24

Ω5=2
0

þ 45D33

16Ω5=2
0

þ33D34

4Ω3
0

þ6D44

Ω7=2
0

þ 3E11

16Ω0

þ 7E12

8Ω3=2
0

þ3E13

2Ω2
0

þ 9E14

4Ω5=2
0

þE22

Ω2
0

þ27E23

8Ω5=2
0

þ5E24

Ω3
0

þ45E33

16Ω3
0

þ33E34

4Ω7=2
0

þ6E44

Ω4
0

þ 3F11

16Ω3=2
0

þ7F12

8Ω2
0

þ 3F13

2Ω5=2
0

þ9F14

4Ω3
0
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