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Current searches for the gravitational-wave signature of compact binary mergers rely on matched-
filtering data from interferometric observatories with sets of modeled gravitational waveforms. These
searches currently use model waveforms that do not include the higher-order mode content of the
gravitational-wave signal. Higher-order modes are important for many compact binary mergers and their
omission reduces the sensitivity to such sources. In this work we explore the sensitivity loss incurred from
omitting higher-order modes. We present a new method for searching for compact binary mergers using
waveforms that include higher-order mode effects, and evaluate the sensitivity increase that using our new
method would allow. We find that, when evaluating sensitivity at a constant rate-of-false alarm, and when
including the fact that signal-consistency tests can reject some signals that include higher-order mode
content, we observe a sensitivity increase of up to a factor of 2 in volume for high mass ratio, high total-
mass systems. For systems with equal mass, or with total mass ∼50 M⊙, we see more modest sensitivity
increases, < 10%, which indicates that the existing search is already performing well. Our new search
method is also directly applicable in searches for generic compact binaries.
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I. INTRODUCTION

The Advanced LIGO gravitational-wave observatories
[1] have observed multiple black hole binary mergers in
Advanced LIGO’s first two observing runs [2–4]. Many
additional black hole binary mergers are expected to be
observed in the coming years [4], with additional detectors
in Italy [5], Japan [6], and India [7] helping to improve
coverage of the gravitational-wave sky [8]. The continued
observation of black hole binary mergers will allow for a
better understanding of the rate of such mergers [9], and
give a sense of the mass and component spin distribution of
black hole binary systems [10,11]. This will in turn allow a
better understanding of how such systems form [12–17].
Searches for compact binary mergers rely on matched

filtering the data taken from gravitational-wave observa-
tories with theoretical filter waveforms [18–22]. The set of
filter waveforms is chosen such that a signal occurring
anywhere within the parameter space of interest can be
recovered well by at least one of the waveforms in the set of
filters [23–27]. It is critical that the waveform models being
used as filters are accurate representations of the signals
that will be produced from compact binary mergers in the

Universe. Much work in the years leading up to Advanced
LIGO’s first discovery focused on modeling waveforms
using numerical [28–36] and analytical [37,38] techniques,
and on combining these methods together to create wave-
form models accurate at all stages of the merger [39–42].
However, a number of assumptions are made about the

emitted gravitational-wave signal to simplify the search and
reduce the search parameter space. Specifically, current
searches for compact binary mergers neglect any affect due
to precession of the orbital plane [43], orbital eccentricity
[44] or neutron-star equation-of-state [45,46]. Current
searches also neglect the affect of the so-called higher-
order modes of gravitational-wave emission [47], and it is
on this topic that we will focus in this manuscript. Making
these simplifying assumptions does not affect the ability to
observe the majority of compact binary mergers, as evident
from the current observations, but can mean that the
detection efficiency is not optimal. It would also induce
an observational bias against compact binary mergers that
are not well described by these assumptions, and these kind
of systems can be the ones of most value, astrophysically,
as the additional information from features such as higher-
order modes allows more precise measurement of the
various source parameters [48].
Several studies have shown that the omission of higher-

order modes in searches can lead to a reduction in detection
rate [49–54]. Specifically, the omission of higher modes
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is likely to reduce the detection of systems with large
mass ratio q ¼ m1=m2 ≥ 4 and large total massM ¼ m1 þ
m2 > 100 M⊙ [50–54]. To date Advanced LIGO has only
detected systems with mass ratios and total masses lower
than these values. However, we still know very little about
the mass distribution of compact binary mergers and
searches should be capable of observing any possible
system. For such high-mass systems, more loosely modeled
search techniques [55–59] also offer the ability to observe
short duration compact binary mergers [60]. For very high-
mass systems the sensitivity of such searches can become
comparable to that of modelled search methods, and could
potentially exceed the sensitivity of modeled searches in
the case that the system is not well described by the model.
Nevertheless, in cases where the waveform model is well
understood, searches that use that knowledge should be
more sensitive than those that do not.
In this study, we present the first end-to-end modeled

search method for black hole binary mergers using filter
waveforms that include the higher-order modes of the
gravitational-wave signals and demonstrate the improve-
ment in sensitivity that can be obtained when using this
method to search for compact binary mergers in Advanced
LIGO data. Our method involves including the source
orientation angles in the list of parameters that are sampled
over when creating a set of filter waveforms to use in the
search. At the time of writing, the only waveform model
that is available including both the full inspiral, merger and
ringdown components of the waveform and including
higher-order modes, is the nonspinning effective-one-body
model presented in [61]. We must therefore restrict our-
selves in this work to only considering waveforms that do
not include the effects of the components’ spins. However,
the methods we describe here are directly applicable to the
case of aligned-spin waveform models, which are now in an
advanced stage of development [62,63]. Indeed the search
method presented here is fully generic, and could be run
on eccentric, precessing waveforms including higher-
order modes.
The layout of this paper is as follows. In Sec. II we

motivate the parameter range that we choose to consider in
this work. In Sec. III we give a brief reminder of how the
presence of higher-order modes will affect the emitted
gravitational-wave signal, and discuss the waveform mod-
els used in this work. In Sec. IV we introduce the fully
generic search method that we will use. In Sec. V we assess
the benefit of deploying a search including the higher-order
mode components of the gravitational-wave signal. In
Sec. VI we also explore how signal-based consistency
tests, necessary in searches of real data to distinguish real
signals from instrumental transients, can sometimes falsely
reject real gravitational-wave signals containing higher-
order modes, and how this problem is alleviated when using
higher-order mode waveforms as filters. Finally we con-
clude in Sec. VII.

II. PARAMETER SPACE CONSIDERATIONS

In this section we motivate and describe the black hole
binary parameter space that we will use in the rest of this
work. While we will use a specific parameter space here,
we stress again that the search methods we will describe
can be applied for any parameter space of interest.
It was recently reported that no gravitational-wave

signals were observed in a search of Advanced LIGO
data targeting “intermediate mass black hole binaries,”
which are defined to be black hole binaries with total mass
M ≥ 100 M⊙ [10].
These sources are important from an astrophysical point

of view. They are proposed to be precursors of super-
massive black holes in some hierarchical formation scenar-
ios [12–17]. However, there is not yet evidence for their
existence. Detection of higher-order modes would allow for
more detailed tests of general relativity in the strong field
regime. Examples of this include studies of the quasinormal
ringdown modes [64,65] and studies evaluating the mass
of the graviton via searching for a dispersion relation in the
speed of propagation of gravitational waves [66]. For the
kind of sources considered in that work, higher-modes are
believed to have a significant impact on gravitational-wave
signals [50,52–54].
The effect of higher-order modes was not studied in the

search for “intermediate mass black hole binaries” reported
in [10]; both the waveforms used in the search, and the
simulations to assess its sensitivity, did not include higher-
order modes. It is therefore interesting to explore the same
parameter space here and assess whether neglecting higher-
order modes is a fair assumption in such studies, and to
demonstrate the sensitivity increase that is possible if
higher-order modes are included. The matched-filter search
used in [10] targeted black hole binary mergers with total
mass between 50 M⊙ and 600 M⊙. At 600 M⊙ compact
binary mergers emit gravitational-wave signals that are for
the most part too low frequency to be observed by
Advanced LIGO and the sensitive distance rapidly
decreases. It is also challenging to distinguish such signals
from non-Gaussianities in the detector noise. Here we
choose to use a maximum total mass of 400 M⊙. Our
constraints on the mass ratio, q, are limited by constraints
on the waveform model we use, which we will discuss in
the next section. We use a limit of q ≤ 10, which also
matches the limits chosen in [10]. When we discuss masses
in this work we will always refer to the masses of the signal
observed by the observatory, often referred to as “detector
frame masses.” Sources at cosmological distances will be
redshifted with respect to the observer, causing the signal to
appear to have higher masses than the actual ones measured
in the “source frame.”
The sensitivity of Advanced LIGO has been improving

since the beginning of Advanced LIGO’s first observing
run and will continue to improve over the next years, before
reaching its design sensitivity. In order to obtain reasonable
estimates of the improvements derived from our search
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method, we will use two noise curves in this study. We will
use a representative measurement of the sensitivity curve
from Advanced LIGO’s first observing run (O1) [67] and
we will use Advanced LIGO’s “zero-detuned high-power”
design sensitivity curve [68]. For the former, we set the
lower frequency of our matched-filter to flow ¼ 20 Hz
while for the latter we use flow ¼ 10 Hz.

III. GRAVITATIONAL-WAVE SIGNALS
INCLUDING HIGHER-ORDER MODES

The gravitational-wave emission from a non eccentric
black hole binary merger depends on 15 parameters. The
individual masses,mi, and dimensionless angular momenta
(spins), χ⃗i ¼ s⃗i=mi, of its two components are parameters
intrinsic to the source—collectively denoted Ξi. The time
of the coalescence, measured in the frame of the observer, is
denoted tc. The remaining parameters describe the location
and orientation of the observer, with respect to the source.
Consider a frame of reference in standard spherical
coordinates ðD; ι;φÞ with origin in the center of mass of
the black hole binary. The polar angle ι is defined such that
ι ¼ 0 coincides with the total angular momentum of the
binary.1 The remaining 3 parameters are the sky-location of
the source in the frame of the observer ðθ;ϕÞ, and the
polarisation ψ of the signal. A black hole binary is said to
be “face-on” if ι ¼ 0 or ι ¼ π and “edge-on” if ι ¼ π=2.
For a generic gravitational-wave source observed by an

interferometric detector the observed strain hðtÞ can be
expressed as the sum of the two gravitational-wave polar-
izations weighted by the sensitivity of the observer to each
polarization

hðtÞ ¼ Fþðθ;ϕ;ψÞhþðtÞ þ F×ðθ;ϕ;ψÞh×ðtÞ: ð1Þ

Here Fþ and F× denote the response function of the
detector to each polarization [69,70]. The gravitational-
wave polarizations hþðtÞ and h×ðtÞ can be expressed as

hþðtÞ þ ih×ðtÞ ¼
X
l≥2

Xm¼l

m¼−l
Y−2
l;mðι;φÞhl;mðtÞ; ð2Þ

where Y−2
lm denote the spherical harmonics of weight −2

[71] and the hl;mðtÞ denote the various “modes” of
gravitational-wave emission. For the case of compact
binary mergers hl;mðtÞ will be a function of Ξi, tc and
D according to

hl;mðΞ; tÞ ¼ Al;mðΞ; D; t − tcÞe−iυl;mðΞ;t−tcÞ: ð3Þ

Here Al;m is a real amplitude scaling for the various modes,
and υl;m is a real time-series giving the evolution of the
phase of the various modes.

The black hole binaries detected by LIGO so far are
characterized by a low mass ratio q ≤ 4 and a total mass
M < 100 M⊙ [3,4,10]. For such sources the ðl; mÞ ¼
ð2;�2Þ modes dominate the above sum for the vast
majority of the possible orientations of the source [50].2

The rest of the modes, known as higher-order modes, have
only a small contribution during most of the inspiral and are
only significant to the resulting gravitational-wave signal in
the last few cycles and eventual merger of the black hole
binary [53,72,73]. The amplitude of the higher-order modes
grows as the mass ratio q of the system deviates from 1,
making their impact much stronger for large mass ratio
black hole binaries. In addition, the Y−2

2;�2 spherical har-
monics have maxima at ι ¼ 0 and ι ¼ π and a minimum at
ι ¼ π=2. For many of the other harmonics ι ¼ π=2 is a
maximum. Therefore, the ðl; mÞ ¼ ð2;�2Þ modes will
completely dominate the gravitational-wave signal for
face-on sources. For edge-on systems, especially ones with
a high-mass ratio, the higher-order modes are an important
contribution to the full gravitational-wave emission
[49–54]. In addition, higher-order modes have a stronger
affect in signals emitted by large total mass sources. The
phase of the ðl; mÞ mode scales, to good accuracy, as
υl;m ∝ m × υorb=M, where υorb denotes the orbital phase of
the binary. At high values of total mass, M, the dominant
ð2;�2Þ modes can fall below the sensitive band of the
observatory, while the highermmodes, at higher frequency,
are still observable.
Waveform models that describe the full black-hole

binary coalescence—through inspiral, merger and ring-
down—can be broadly divided into two approaches. The
first is the “effective-one-body” approach, calibrated
against numerical relativity simulations [38–40,74], the
second is the various phenomenological frameworks,
also calibrated against numerical relativity simulations
[42,75,76]. There are a number of different waveform
models, from both of these approaches, which have been
used in the recent results papers from the LIGO and Virgo
Collaborations. However, with the exception of numeri-
cally generated waveforms, which are currently impractical
to use for searches with a wide parameter space, these
waveform models do not include the higher modes of the
gravitational-wave emission, and consider solely the dom-
inant modes. The only waveform model available at the
time of this study, which includes both higher-order modes

1The origin of the φ parameter is chosen to lie in the line
connecting the two components at some fiducial time.

2We note that for systems with misaligned spins the orbital
plane precesses. Here the normal approach is to define ι and φ in a
stationary source frame, and then if the orbital plane has
precessed ι ¼ 0 no longer corresponds to the direction of orbital
angular momentum and the other l ¼ 2 modes can become
dominant. One can alternatively consider a source frame that
tracks the precessing orbital angular momentum, and then ι and φ
will vary with time. In this frame, the ðl; mÞ ¼ ð2;�2Þ modes
will again dominate the emitted gravitational-wave signal. We do
not consider precessing systems in this work.
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and includes the merger and ringdown components of the
gravitational-wave signal is an effective-one-body wave-
form described in [61]. This model includes the ðl; jmjÞ ¼
ð2;�1Þ; ð2;�2Þ; ð3;�3Þ; ð4;�4Þ and ð5;�5Þ modes.3 The
most significant mode not included in this model is the
ð3;�2Þ mode, which can have comparable amplitude to
the (5, 5) mode [61,72]. While the paper [61] does
demonstrate the accuracy of this model to generic wave-
forms, it would of course be beneficial to have this, and
other modes, included in future waveform models.
Unfortunately, this effective-one-body waveform model
does not include the effect of the components’ spins.
Nevertheless this nonspinning waveform model is suffi-
cient to demonstrate the methodology described later in this
work, and with it we can investigate the sensitivity increase
to nonspinning compact binary mergers if one searches
with waveform filters that include higher-order modes. We
might expect that the relative sensitivity with non-spinning
waveforms would be similar to that with aligned-spin
waveforms as the effects of spin inclusion and higher-
order modes are largely orthogonal. However, it is true that
systems with antialigned spins have slightly stronger higher
modes than systems with aligned spins [78] and therefore it
is possible that higher-modes would help more for negative
spin sources than for positive ones. We will investigate this
in the future when waveform models are available to do so.
Finally, we note that during the writing of this manu-

script a number of waveform models, in both the effective-
one-body and phenomenological frameworks are being
developed that include higher-order modes, and allow for
nonzero component spins aligned with the orbital angular
momentum [62,63]. The methods described here can be
applied directly to these waveform models when they
become available, and this would be a necessary step
before utilising this methodology to search for higher-order
mode waveforms in real data. There is also work demon-
strating that sets of numerical relativity waveform might be
used directly in a search [79], or that surrogate models
could be created by interpolating between a set of numeri-
cal relativity waveforms [80–82]. Such approaches might
also present a way to use accurate aligned-spin, or even
precessing, higher-order mode waveforms in searches, but
we do not explore that here.

IV. A MODELED SEARCH FOR COMPACT
BINARY MERGERS WITH HIGHER-ORDER

MODE WAVEFORMS

There are currently a number of different search methods
being used to observe compact binary coalescences using
modeled waveforms in the data being collected by

Advanced LIGO and Advanced Virgo [18–22,83,84].
The core of all of these different methods is the two-phase
matched-filter that was described in [23,85]. This two-
phase matched-filter has proved to be very powerful in
observing compact binary mergers, but it does make a
number of assumptions about the signal model, which are
not true generically, in particular when one is considering
higher-order modes. Specifically the method assumes that
the normalized frequency domain representation of the þ
component of the gravitational wave signal ~hþ is related to
the frequency domain representation of the × component of
the gravitational wave signal ~h× according to ~hþ ∝ i ~h×. In
addition, it is assumed that the “extrinsic” parameters of a
gravitational-wave signal—the sky-location, source orien-
tation, polarization phase and distance—can all be
absorbed by applying a constant phase-shift, constant
time-shift, and a constant amplitude scaling to the observed
waveform. With these assumptions in place, one can
analytically maximize over an overall amplitude and phase
of the signal, and use an inverse Fourier transform to
quickly evaluate the statistic as a function of time [23,85].
Then only the “intrinsic” parameters—the component
masses and spins—are searched over by repeating the
search process with a well chosen discrete set of waveform
models with varying values of the component masses and
spins, known as the “template bank.” Physically, these
assumptions hold if one assumes that the sources being
observed have no orbital eccentricity, no precession and no
contribution from higher-order modes to the gravitational-
wave signal. However, these assumptions do not hold in the
case here where we wish to use waveforms including
higher-order modes as filters in the search.
In [86,87] the authors explored relaxing the assumption

that the system was not precessing and developed search
statistics that can be used in that case. In the method
described in [86] a complex maximization scheme was
used to maximize over all nonintrinsic parameters, which
was found to be computationally prohibitive if forced to
restrict to only physically possible values. Whereas, in [87]
the authors included the inclination of the source with
respect to the observer as a parameter when constructing
the template bank, effectively considering this as an
intrinsic parameter. However, this method cannot be
applied to a generic search because the assumption that
the φ parameter (the azimuthal angle to the observer in the
source frame) can be modeled as an overall phase shift in
the Fourier domain breaks down when considering gravi-
tational-wave signals with higher-order modes.
Nevertheless one can extend the method in [87] in a

reasonably trivial manner by relaxing the assumption on φ
and also considering this as a parameter to search over in
the template bank. This is the approach we use in this work.
The resulting statistic is not new to this work, it also
appears in [51,88]. This work, however, is the first case in
which this has been applied in an end-to-end search.

3This waveform model is known as EOBNRv2HM and is
available in the LIGO Algorithm Library (LAL). We also use a
frequency-domain reduced-order model [77] of this waveform
known as EOBNRv2HM_ROM in LAL.
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A. A search statistic applicable for generic searches
for compact binary mergers

When searching for a signal h, with known form, but
unknown amplitude, in Gaussian, stationary noise n, with
noise-power spectral density SnðfÞ it can be demonstrated
[89,90] that the optimal statistic for deciding whether a
signal h is present, or not, in the data is given by

ρ2 ≡ ðRe½hsjhi�Þ2
hhjhi ¼ ðRe½hsjĥi�Þ2; ð4Þ

where ρ defines a signal-to-noise ratio, â denotes a
normalization of any filter waveform a such that

â ¼ a

hajai12 ; ð5Þ

and we define the complex matched-filter

hajbi ¼ 4

Z
∞

0

~aðfÞ ~b�ðfÞ
SnðfÞ

df: ð6Þ

For simplicity in what follows, we will distinguish between
the complex matched-filter, and the real component of the
complex matched-filter by defining

ðajbÞ ¼ Re½hajbi�; ð7Þ

such that

ρ2 ¼ ðRe½hsjĥi�Þ2 ¼ ðsjĥÞ2: ð8Þ

As already mentioned in Sec. III, gravitational-wave
signals observed in an interferometric observatory such as
LIGO or Virgo can be expressed as a linear combination of
the two gravitational-wave polarizations

hðtÞ ¼ Fþðθ;ϕ;ψÞhþðtÞ þ F×ðθ;ϕ;ψÞh×ðtÞ: ð9Þ

As the amplitude of hðtÞ is removed by normalization in
Eq. (8) we can freely scale the amplitude when defining
hðtÞ. It is convenient to combine Fþ and F× into an overall
amplitude rescaling and a single further parameter by
defining

hðtÞ ¼ AðuĥþðtÞ þ ĥ×ðtÞÞ; ð10Þ

where

u ¼ Fþ
F×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hĥþjĥþi
hĥ×jĥ×i

s
ð11Þ

and

A ¼ F×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hĥ×jĥ×i

q
: ð12Þ

One can then insert Eq. (10) into Eq. (8), which removes
the amplitude term A, and from there analytically maximize
ρ over u. This results in the following expression,

max
u

ðρ2Þ ¼ ðsjĥþÞ2 þ ðsjĥ×Þ2 − 2ðsjĥþÞðsjĥ×Þðĥþjĥ×Þ
ð1 − ðĥþjĥ×Þ2Þ

:

ð13Þ

Furthermore it is trivial to see that in the limit that ~hþ ∝ i ~h×
this will collapse to the more familiar statistic used in
current searches

max
u

ðρ2Þ≃ khsjĥþik2: ð14Þ

The statistic defined in Eq. (13) is generic and can be
applied to any single detector search for compact binary
coalescences. Physically, this statistic maximizes over the
D, θ, ϕ, and ψ parameters—or the distance, sky location
and polarization phase—leaving all other parameters to be
included in the template bank. For the case of eccentric,
precessing, higher-order mode waveforms, this will result
in a very large dimension parameter space, which may
prove unfeasible in some situations. In such cases
approaches such as the ones explored in [86,91] might
be useable to further shrink the dimensionality of the
parameter space by maximizing over the Y−2

l;m components,
but this has yet to be successfully applied to generic
systems. However, as we explore below, our simple
approach can successfully be applied to the case of
searching for higher-order mode signals in Advanced
LIGO data.

B. Exploring the necessity of the generic statistic
for higher-order mode searches

In Eq. (13) we described a generic matched-filter statistic
that maximizes only over the amplitude, polarization phase,
and sky location of the signal. While this statistic can be
used generically, it is more computationally efficient to use
the more commonly used statistic in Eq. (14) as it requires
only one matched-filter computation. Equation (13) col-
lapses to the form shown in (14) in the case when ~hþ ∝ i ~h×.
It is therefore worth investigating how well this relationship
holds in the parameter space being considered to decide
whether it is possible to approximate Eq. (13) with the more
efficient Eq. (14). It is also possible to use the more efficient
statistic in some part of the parameter space and swap over
to the generic statistic only in the regions of parameter
space where it is needed.
To investigate the possibility of using this approxima-

tion, we can simply calculate the magnitude of the
imaginary component of the overlap between ĥþ and ĥ×
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for systems within the parameter space defined in Sec. II.
To do this we generate 5 million waveforms, with compo-
nent masses uniformly chosen within our chosen parameter
space, and with isotropic distribution of inclination and
reference orbital phase4 For each of these waveforms we
compute the imaginary component of the overlap between
ĥþ and ĥ×, Imðhĥþjĥ×iÞ. The results are then binned in
terms of the total mass and mass ratio, and we show the
minimum value of this overlap, as a function of the total
mass and mass ratio in Fig. 1. We see that for both the early
and design Advanced LIGO sensitivity curves the mini-
mum value of this overlap is ∼0.985. If we were instead to
plot the average value of this overlap the value would be
larger than 0.997 everywhere. These values indicate the
largest loss of signal-to-noise ratio that is possible when
making the assumption that the polarization phase can be

simplified. For example in the case where the value of the
imaginary component of the overlap is 0.985, then 1.5% of
the maximum signal-to-noise ratio would be lost if the
signal observed in the detector is described by the ×
component of hðtÞ and the þ component is used as a
template. For other values of polarization phase—such that
the detector would observe a combination of the þ and ×
components—> 98.5% of the optimal signal-to-noise ratio
would be recovered. Given that we will allow a 3% loss of
signal-to-noise ratio due to the discreteness of the set of
filter waveforms used, this indicates that for the parameter
spaces and noise curves that we consider in this work it is
sufficient to use the simple statistic in all regions of
parameter space. We also verify this claim later in the
results sections. We emphasize though that if this method is
used in future searches using an extended region of
parameter space, or including effects of spin precession,
this should be evaluated again.

V. ASSESSING THE SENSITIVITY INCREASE
OF A HIGHER-ORDER MODE SEARCH

In the previous section we described a method that will
allow the use of template waveforms that include higher-
order modes in searches for compact binary mergers. In this
section we will assess the increase in sensitivity that can be
obtained by using this method to search for compact binary
mergers in Advanced LIGO data. We begin by creating
“template banks” of waveforms to cover the full parameter
space described earlier in Sec. II. From there we will
explore the sensitivity increase that can be obtained when
using higher-order mode waveforms. We will first assess
this by comparing sensitivities above a constant signal-to-
noise ratio threshold, for both the standard search, and our
new method using higher-order mode waveforms. We will
also identify the points in parameter space for which the
sensitivity increases the most when including higher-order
mode waveforms. Finally, we will use our new method in
the PyCBC analysis framework [19,20,92] to analyse 5 days
of Gaussian noise, colored to Advanced LIGO sensitivities.
This will allow us to assess the increase in the background
rate when including the larger number of templates that are
needed to cover the higher-order mode signal parameter
space. This will then enable us to compute the sensitivity
increase at a constant false-alarm rate threshold between a
search that includes the effects of higher-order modes, and
one that does not.

A. A template bank of filter waveforms including
higher order modes

The first step in assessing the sensitivity improvement
that can be achieved by including the effects of higher-
order modes in the filter waveforms is to create the set of
filter waveforms, or “template bank”. In this subsection we
describe the construction of the template banks that we will

FIG. 1. The imaginary component of the complex overlap
between ĥþ and ĥ× for the representative early Advanced LIGO
noise curve (top), and for the predicted design sensitivity curve of
Advanced LIGO (bottom). The overlap is numerically minimized
over inclination and reference orbital phase within each of the
pixels shown on these plots.

4As we are only using hþ and h× we do not need to choose a
sky location, polarization phase or coalescence time for this set of
signals.
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use, highlighting any problems specific to construction of
template banks of higher-order mode signals.
We begin by defining the overlap, oða; bÞ, between a

potential signal waveform a and a filter waveform b as the
fraction of the optimal signal-to-noise-ratio ðajaÞ of a that
is recovered when using b as a filter waveform,

oða; bÞ≡max
Φ

ððâjb̂ðΦÞÞÞ; ð15Þ

where Φ denotes the extrinsic parameters of b that are not
included as parameters in the template bank and are
maximized over. In this work we calculate overlaps by
maximizing over the coalescence time and the parameter u
defined in Eq. (11) using either Eq. (13) or (14) as
appropriate.
The “fitting factor” (often called “effectualness”) [43] is

then defined as the maximum overlap between a and all of
the filter waveforms in the template bank bi

FFða; biÞ ¼ max
i
oða; biÞ: ð16Þ

When constructing template banks to use in analysis of
gravitational-wave data the normal choice is to demand that
for any point in the parameter space that the template bank
covers, the fitting factor with the template bank must be
greater than 0.97 [23,24,83]. That is to say that the
maximum loss in signal-to-noise ratio due to discreteness
of the bank must not be greater than 3% anywhere in the
parameter space. However, as this parameter space explic-
itly does not include the effect of higher-order modes—or
precession, or eccentricity—fitting factors for real gravi-
tational-wave signals can be lower than this. For the case of
template banks used in the most recent analyses of
Advanced LIGO data, the template bank is placed to cover
a broad range of masses and spins [27,93]. When higher-
order modes and precession are not considered, the
orientation of the source with respect to the observer is
degenerate with u, which is analytically maximized over,
and so the template bank is placed in a 4-dimensional
parameter space—the two masses, and two component
spins—using methods described in [25–27,94–96].
In [87] the authors discussed how to place a template

bank for precessing waveforms, and we follow a very
similar approach here. Specifically, we use the “stochastic”
placement algorithm described in [25,94,95], to create our
template banks. The basic idea of the stochastic placement
algorithm is that potential template points are chosen
randomly in the specified parameter space, and the fitting
factor of these points computed with the points currently
accepted to the template bank. Points are added to the
template bank if the fitting factor is smaller than 0.97, and
the process iterates until some prespecified stopping con-
dition is reached. In the case of the higher-order mode
template banks we use here, we place waveforms in a
4-dimensional parameter space, the two component masses

and the source orientation parameters (ι;φ). This method
can be directly extended to cover the additional two-
dimensions, describing the components’ spins aligned with
the orbit, when waveforms including aligned-component
spins and higher-order modes become available.
For this work we compute template banks both for the

representative early Advanced LIGO sensitivity curve and
the Advanced LIGO design noise curve, discussed earlier
in Sec. II. The template banks are chosen to cover systems
with total mass greater than 50 and less than 400 solar
masses, with mass ratio limited to be less than 10, which we
also discussed in Sec. II. We compute template banks for
waveforms that include higher-order mode effects, and
template banks including waveforms without any higher-
order modes. For each of the two sensitivity curves, we
begin by constructing a template bank of waveforms,
covering our range of masses, that do not include
higher-order modes. We then take that template bank
and add to it templates containing higher-order modes,
using the stochastic process, until we also have a template
bank that is suitable for higher-order mode waveforms.
When placing the template bank of higher-order mode
waveforms we use Eq. (13) to maximize over u. The sizes
of these template banks are given in Table I. We note that
the higher-order mode template banks are an order of
magnitude bigger than the standard template banks.
In Fig. 2 we visualize the distribution of the waveforms

in the template banks that we have created. The left panel of
Fig. 2 shows the distribution of the templates as a function
of the total mass and mass ratio when including, and when
not including, higher-order mode effects. As well as being
able to see that many more templates are needed when
including higher-order modes, we observe that we espe-
cially need many more templates at both high masses
and high-mass ratios compared to the no higher-order
modes bank where these regions are sparsely populated.
In the right panel of Fig. 2 we show the distribution of the
inclination angle of higher-order mode waveforms in the
template bank. We can see that many more templates are
needed for edge-on systems than for face-on or face-away
systems. We also observe two local maxima at ∼35 and
∼135 degrees. These peaks are an artifact of the two-stage
template bank creation process, and the fact that templates
are added to a set of non-higher-order mode waveforms,
which will match well face-on and face-away systems.

TABLE I. Sizes of the template banks considered in this work.
The Advanced LIGO sensitivity curves and parameter spaces
considered here are discussed in Sec. II and the bank construction
discussed in Sec. VA.

O1 noise
curve

Design
noise curve

Waveforms without higher-order modes 173 1745
Waveforms with higher-order modes 6214 20 500
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B. Sensitivity comparison at fixed signal-to-noise ratio

We wish to evaluate and compare the sensitivity to a set
of given signals using both our template banks containing
higher-order mode waveforms, and not containing them.
This directly gives a measure of how much sensitivity
would be gained by using our new higher-order mode
search method. We first must define how this sensitivity
will be computed. To assess the sensitivity to a given set of
waveforms, drawn from some stated distribution, we must,
for each waveform gi in the parameter space we consider,
compute the fitting factor that will be recovered using the
given template bank, composed of waveforms bi. The
distribution of fitting factors for the set of signals allows us
to understand what fraction of signal-to-noise ratio we will
recover for each waveform, and identify regions of param-
eter space where sensitivity is poor. However, it can often
be misleading to only show the distribution of fitting
factors, as often the systems for which fitting factors are
smallest are also those ones whose observable gravita-
tional-wave signal is weaker. To take into account the fact
that different signals can be observed at different distances,
one can define the corresponding “signal recovery fraction”
of a given template bank bi to a distribution of signals gi as

SRF ¼
P

iðFFðgi; bjÞÞ3ðgijgiÞ3P
iðgijgiÞ3

: ð17Þ

This was first introduced in terms of an “effective fitting
factor” in [97]. One can understand the signal recovery
fraction as the fraction of signals from a distribution gi that
would be recovered above a fiducial signal-to-noise ratio
threshold with the template bank bi compared to a template
bank with a fitting factor of 1 for all gi. For the plots shown

in this section we compute the fitting factor, and then signal
recovery fractions, using Eq. (14) to maximize over u. We
have also created the plots using Eq. (13) and the numeric
values agree to within 0.05% with those in the plots shown.
This demonstrates again that it is sufficient to use the
computationally simpler Eq. (14) when performing a search
using higher-order mode waveforms.
In Fig. 3 we plot the signal recovery fraction as a

function of the two component masses for both the early
and design Advanced LIGO sensitivity curves, and for
template banks with and without higher-order modes. For
each point shown on this plot the signal recovery fraction is
calculated by choosing a set of gi consisting of 500
waveforms. Each waveform has the same values of com-
ponent masses, and the source orientations and sky loca-
tions are chosen isotropically. We show 1000 unique points
in these plots, so a total of 500 000 waveforms are used in
these simulations. We can clearly see in these plots that for
equal mass systems the signal recovery fractions are large
for template banks with and without higher-order modes.
However, as the mass ratios become larger the signal
recovery fraction can become as small as 0.65 when
omitting higher-order modes, implying that ignoring
higher-order modes in a search would result in a reduction
in detection rate of up to 35% for systems with those
masses. When we include higher-order mode waveforms,
the signal recovery fractions are much more uniform, as
expected. Values of 0.95 are consistent with the loss
expected due to discreteness of the template bank. For
the Advanced LIGO design sensitivity curve the effect of
higher-order modes is smaller than that of the representa-
tive early Advanced LIGO noise curve. This is expected as
the early Advanced LIGO noise curve is comparatively less

FIG. 2. The left panel shows the distribution of templates, as a function of the total mass and mass ratio, for the template bank created
for the early Advanced LIGO noise curve. The black crosses indicate the templates that are needed to cover the parameter space if
higher-order modes are omitted, the red circles indicate the additional templates that are required if higher-order modes are included in
the search parameter space. The right panel shows the distribution of the inclination angle of the higher-order mode waveforms in the
template bank created for the Advanced LIGO design noise curve.
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sensitive at lower frequencies, where higher-order modes
are less important. These results are consistent with earlier
works exploring the effects of higher-order modes
[50,53,78], reinforcing that higher-order modes are impor-
tant for systems where the mass ratio and total mass
is large.
In Fig. 4 we show the cumulative distribution of fitting

factors for all of the 500 000 waveforms described above.
This is shown for both the early and design Advanced
LIGO sensitivity curves and for template banks both
including and not including higher-order mode waveforms.
We can clearly see here that there is a significant proportion
of systems recovered with low fitting factors if higher-order
modes are neglected. Using our higher-order mode tem-
plate banks completely removes the tail of low fitting
factors. We also show fitting factor as a function of the
source orientation for all signals simulated at a total mass of
95 M⊙ and a mass ratio of 8. We can clearly see that the
lowest fitting factors are obtained when the inclination
angle is edge-on, as expected.

C. Sensitivity comparison at fixed false-alarm rate

The results in Sec. V B demonstrate that when including
higher-order mode effects in the waveform filters used in a
search the search efficiency will increase when evaluating
efficiency above a constant signal-to-noise ratio threshold.
However, in a real search the signal-to-noise ratio threshold
is a function of the number of waveform templates, and the
size of the parameter space covered. Our higher-order mode
template banks are roughly an order of magnitude larger
than the corresponding nonhigher-order mode template
banks. This increase in the number of templateswill increase
the rate of background events in the search, and therefore a
signal would require a larger signal-to-noise ratio to achieve
the same significance, when evaluated in terms of a false-
alarm rate. In this section we will assess the sensitivity
increase that can be obtained when using our higher-order
mode template banks, at a constant false-alarm-rate thresh-
old, which takes into account the increase in background
triggers from using a larger number of template waveforms.

FIG. 3. The signal recovery fraction plotted as a function of the total mass and mass ratio. The top panels show results using a
representative early Advanced LIGO sensitivity curve, while the bottom panels use the design Advanced LIGO sensitivity. The left
panels are generated using appropriate template banks that do not include higher-order mode waveforms, the right panels are generated
with template banks that include higher-order mode waveforms.
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The first step is to create a mapping between signal-to-
noise ratio and false-alarm rate. We do this for each of our
template banks by simulating ∼5 days of Gaussian noise
with either the representative early Advanced LIGO sensi-
tivity curve or the Advanced LIGO design sensitivity curve.
We then analyse this data with the various template banks
using the PyCBC analysis framework [19,20,92], which
allows us to directly map the signal-to-noise ratio to a false-
alarm rate. A false-alarm weighted relative signal-recovery
fraction can then be computed according to

SRF ¼
P

iðFFðgi; bjÞÞ3ðgijgiÞ3
ρ3thresh

P
iðgijgiÞ3

; ð18Þ

where ρthresh is the signal-to-noise threshold corresponding
to the desired false-alarm rate. This does not have meaning
as a statistic on its own, but the ratio of this quantity
computed for two different searches, which will have
different values of fitting factor and ρthresh, directly gives
the relative sensitivity. One could compute this directly for
our higher-order mode, and nonhigher-order mode template
banks. However, this would result in a non-negligible
decrease in sensitivity in the equal mass region of param-
eter space. This is because this region of parameter space is
already well recovered by nonhigher-order mode wave-
forms and the increased signal-to-noise ratio threshold, due
to the higher-order mode waveforms, only causes a
reduction in sensitivity for equal-mass systems. Instead,
we can choose to consider two separate searches, one with
higher-order modes and one without, and combine the
results together, including the necessary trials factor of 2.
This would limit the decrease in sensitivity to ∼1% in
regions where higher-order modes contribute nothing while

still allowing a sensitivity increase where higher-order
modes are important. Formally the false-alarm weighted
relative signal-recovery fraction for this combined search
would be computed according to

SRFcombined ¼
�P

iðFFweightedÞiðgijgiÞ3P
iðgijgiÞ3

�
; ð19Þ

where we define

ðFFweightedÞi ¼ max
j
fðρthreshÞ−3j FF3i;jg; ð20Þ

where j denotes the values for the two searches being
performed.
In Table II we show the network signal-to-noise ratios

corresponding to a false-alarm rate of 10−3 yr−1. This is the

FIG. 4. Left: Cumulative distribution of fitting factors for the 500 000 higher-order mode signal waveforms we describe in Sec. V B.
The black curves show results for the Advanced LIGO design sensitivity curve and the red curves show results for the representative
early Advanced LIGO sensitivity curve. Dotted lines indicate results when using template banks that do not include higher-order modes,
solid lines show results using template banks including higher-order mode waveforms. Right: Distribution of fitting factors as a function
of the source orientation ðι;φÞ for 500 signal waveforms with total mass of 95 M⊙ and mass ratio of 8.

TABLE II. Signal-to-noise ratio thresholds at the false-alarm
rate values used in this study for the various template banks and
sensitivity curves considered. “Early” refers to the representative
sensitivity curve from Advanced LIGO’s first observing run,
“Design” refers to Advanced LIGO’s design sensitivity. “HOM”
stands for “higher-order modes,” “SNR” stands for “signal-to-
noise ratio.”

Bank

SNR threshold
at false-alarm

rate of 10−3 yr−1

SNR threshold at
false-alarm rate

of 0.5 × 10−3 yr−1

Early, no HOM 9.10 9.16
Early, with HOM Not applicable 9.68
Design, no HOM 9.31 9.37
Design, with HOM Not applicable 9.70
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threshold at which we choose to evaluate the relative
sensitivity of our higher-order mode search. When comput-
ing the combined search sensitivity we incorporate the
trials factor by using a false-alarm rate of 0.5 × 10−3 yr−1

in each search, and therefore 10−3 yr−1 in the combined
search. To the accuracies quoted in this table, the threshold
obtained is the same if we use Eq. (14) or (13) to maximize
over u. In Fig. 5 we show the sensitivity increase between
the higher-order mode and non-higher-order mode searches
as a function of the total mass and mass ratio. This is
computed from the same set of waveforms as used in Fig. 3.
We see that in both cases there is no increase in sensitivity
for equal mass systems but an increase in sensitivity of up
to 25% for the systems with the highest total mass and mass
ratio that we consider here. It is important to again
emphasize that while these averaged sensitivity increases

are modest, even a single observation of a compact binary
merger with measurable higher-order mode emission
would allow for much more precise measurement of
source parameters than systems where only the dominant
gravitational-wave emission modes are observable
[52,53,78,98]. In this sense, we stress that we are present-
ing a gain in sensitivity which is averaged over the possible
orientations of the binary. These results are often dominated
by face-on binaries, which have a stronger emission, and
for which the quadrupolar bank shows an excellent signal
recovery. The sensitivity gain is much larger for edge-on
binaries, whose emission has a strong higher mode con-
tribution, leading to a poor signal recovery when a
quadrupolar bank is used as demonstrated in Fig. 4. To
emphasize this, in the lower panel of Fig. 3 we also show
the sensitivity increase if considering only those waveforms

FIG. 5. The sensitivity ratio between a search using higher-order mode waveforms as templates and a search using non-higher-order-
mode waveforms as templates, evaluating sensitivity using only signal-to-noise ratio to rank potential events. Plotted for the early
Advanced LIGO sensitivity curve (left) and the Advanced LIGO design sensitivity curve (right). The plots on the top row consider the
full injection set, while plots on the bottom row consider only injections where the inclination (ι) is between 60 and 120 degrees. The
sensitivity is evaluated at a false-alarm rate of 1 per 1000 years, which includes the larger background that is present when using higher-
order mode waveforms as templates, as more template waveforms are needed. Values greater than one indicate an increase in sensitivity,
values less than one indicate a decrease in sensitivity.
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with 60° < ι < 120°, which are those waveforms oriented
edge-on to the observer and for which higher-modes are
most important. Here we observe much higher sensitivity
increases—up to 80%—than with the full set of simulated
waveforms.
We note that Eq. (19) defines a simple measure for

combining the higher-order mode and nonhigher-order
mode searches, which does not reduce significantly the
sensitivity to nonhigher-order mode waveforms, while
simultaneously allowing a sensitivity increase for systems
where higher-order modes are important. However, a more
optimal method to combine these two searches, would be to
utilize a method similar to that defined in [99], which uses
Bayesian methodology to weight each template waveform
according to its probability of observing a system.
However, such a method requires a good knowledge of
the astrophysical distribution of systems, which is not
known for intermediate-mass black hole binary systems,
and requires knowing relatively how often each template is
to observe a signal, which is difficult to compute with
curved and degenerate parameter spaces where it can be
difficult to determine what region of parameter space is best
covered by each template.

VI. REAL DATA CONCERNS FOR SEARCHES
FOR HIGH-MASS WAVEFORMS

In the previous sections we have evaluated the sensitivity
increase when using filter waveforms containing higher-
order modes assuming that the detector noise is Gaussian
and stationary and using only the signal-to-noise ratio to
evaluate the significance of events. In reality, data taken
from gravitational-wave observatories is neither Gaussian
nor stationary and instrumental non-Gaussian noise tran-
sients will produce large values of signal-to-noise ratio in a
matched-filter search [100–102]. Therefore search strate-
gies for compact binary coalescences must take into
account such non-Gaussian transients and be able to
distinguish them from genuine astrophysical signals.
There are numerous works that have focused on this
problem [18,83,85,103–105]. However, many of these tests
were created considering lower mass compact binary
mergers than those considered here and these tests are
known to be less efficient when searching for intermediate-
mass black hole binary mergers [106]. Some tests are
beginning to focus on the efficiency to higher mass black
hole binary mergers, but are not yet able to separate all
forms of transient noise, and are not fully tuned for higher-
order mode waveforms [107].
Indeed for certain regions of the parameter space

unmodeled search techniques have been found to be more
sensitive to compact binary mergers in data from LIGO’s
first observing run than modeled searches, because they are
better at removing instrumental artifacts [108,109].
Optimizing searches to better distinguish real astrophysical
signals from instrumental noise at high masses is an

interesting topic that should be addressed, but this should
be done in a separate work, and we will not attempt to
address this specific question here.
In this section we will explore how existing tests to

separate real signals from noise artifacts can be applied
when using higher-order mode waveforms, we will dem-
onstrate that these tests can misclassify genuine astrophysi-
cal signals with significant higher-order mode contribution
as instrumental artifacts, and that this problem is signifi-
cantly mitigated when using higher-order mode waveforms
as filters in the search.

A. Reweighted signal-to-noise ratio

One of the most common methods for discriminating
between gravitational wave triggers and noise artifacts is to
check whether the morphology of a potential signal in the
data, s, is consistent with that of the filter waveform being
used, h. Several methods for doing this, testing different
features of the potential signal’s morphology, have been
proposed [83,85,103,105]. Of these, arguably the most
effective test is the one described in [85]. In that test a
number of filters are constructed from the template wave-
form h in the following way. A set of N filters hi is chosen
such that each hi is constructed, in the frequency domain as

~hiðfÞ ¼
�

~hðfÞ for fL < f <¼ fU
0 otherwise

: ð21Þ

Each filter hi uses nonoverlapping frequency windows, fL
and fU, such that

P
ihi ¼ h. Also ðhijhiÞ ¼ ðhjjhjÞ for any

value of i and j and ðhijhjÞ ¼ 0 for any i ≠ j. By this
definition if the data s is a good match to the filter
waveform then each of the hi should recover the same
signal-to-noise ratio, within deviations expected in
Gaussian noise. In contrast, noise artifacts are often well
localized in time and would often produce a very large
signal-to-noise ratio in a small number of hi and a small
signal-to-noise ratio in the rest. Therefore one can construct
a chi-squared test as

χ2 ¼ N
hhjhi

XN
i¼1

����hsjhii − hsjhi
N

����2: ð22Þ

If s is described byGaussian noisewith an added signal well
modelled by h, this will follow a χ2 distribution with 2N − 2
degrees of freedom [85]. For non-Gaussian artifacts it has
been empirically demonstrated that this will take larger
values [83,85], allowing for separation between real signals
and Gaussian artifacts. There are a number of different
techniques for combining the χ2 test with the signal-to-noise
ratio to produce a ranking statistic [18,83,84,105], we
choose to use here the combination described in [83], which
has been used to analyse Advanced LIGO data with the
PyCBC analysis method [110]. This “reweighted signal-to-
noise ratio” is given by [83]
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ρreweighted ¼
8<
:

ρ for χ2 <¼ nd

ρ
h
1
2

�
1þ

�
χ2

nd

�
3
�i

1=6
for χ2 > nd

;

ð23Þ

where nd ¼ 2N − 2. We want to explore how well this
reweighted signal-to-noise ratio performs when searching
for higher-ordermode signals with andwithout higher-order
mode filter waveforms.

B. Sensitivity comparison at fixed false-alarm rate
with reweighted signal-to-noise ratio

We generate a large set of simulated intermediate-mass
black hole binary waveforms to assess the sensitivity of our
higher-order mode search method when evaluating sensi-
tivity using the reweighted signal-to-noise ratio defined
above. We use the same distribution of parameters as
described in Sec. V, but as the values of the χ2 test will
depend on the amplitude of the signal, we include the
distance and sky location as parameters when generating
the simulation set. We also add the simulated signals to
simulated Gaussian noise when measuring the signal-to-
noise ratio and χ2. The signals are added to noise simulat-
ing both Advanced LIGO observatories and the quadrature
sum of the recovered ρreweighted is used to rank events. In
total we choose to simulate signals with 110 unique masses
and using ∼10 000 unique simulated signals for each mass.
In Fig. 6 we show the distribution of χ2 values as a

function of signal-to-noise ratio, both with and without
higher-order mode filter waveforms. The dashed lines show

contours of constant ρreweighted; the ρreweighted increases as
the signal-to-noise ratio increases and as the value of the χ2

test decreases. When searching for systems that are oriented
face-on to the observer using nonhigher-order mode filter
waveforms the χ2 values tend to be low as the higher-order
mode content is negligible. However, as the inclination ι
increases, higher-modes contribute more to the resulting
signal, increasing the mismatch between signal and tem-
plate and causing the χ2 to grow. When using higher-order
mode filter waveforms the χ2 values are lower, and lie away
from the contour lines where non-Gaussian artifacts would
appear in real data. The χ2 test would therefore cause an
additional loss in sensitivity over that considered in Sec. V
if searching for higher-order mode waveforms using filters
that neglect higher-order modes.
We therefore reproduce the figures shown in Fig. 5, but

using ρreweighted to rank potential events instead of using
signal-to-noise ratio. This is shown in Fig. 7. We see in this
plot a larger sensitivity increase when including higher-
order modes compared to that seen in Fig. 5 due to the
effect of the χ2 test. We also now see a larger sensitivity
increase for the design Advanced LIGO sensitivity curve,
whereas previously the larger sensitivity increase was seen
with the early Advanced LIGO sensitivity curve. This
indicates that the χ2 test is misclassifying more systems for
the design sensitivity curve than for the early curve. These
results qualitatively match the results in [51] where the
authors made predictions of how the sensitivity should
increase if one were able to include higher-order mode
waveforms as filters in a search. As with Fig. 5, we also
show results considering only injections aligned close to
edge-on to the observer in the lower panels. As before, we

FIG. 6. Impact of higher-modes on the χ2 signal consistency test. We plot χ2 against signal-to-noise ratio for a randomly chosen subset
of the simulated signals discussed in Sec. VI. The inclination angle of the simulated signals are shown on the color bar, here we restrict
the inclination angle to values between 0 and π=2 by taking π=2 − jπ=2 − ιj. The dashed lines denote contours of equal ρreweighted. The
left panel shows the results when searching with a template bank that does not include higher-order mode waveforms, the right panel
shows the results when searching with higher-order mode templates. Both panels are generated using the design Advanced LIGO
sensitivity curves.

SEARCHING FOR THE FULL SYMPHONY OF BLACK HOLE … PHYS. REV. D 97, 023004 (2018)

023004-13



observe much larger sensitivity increases, and again this
increase is larger when including the effects of the χ2 test.
In Fig. 7 we chose to set the maximum value on the
colorbar to 2 to allow the reader to observe improvements
in sensitivity that are less than 1.5. However there are some
values that are much larger than this, up to a value of 4—
indicating a 300% increase in the number of observed
signals—for the points with the largest mass and largest
mass ratio in the lower right panel. In such regions our new
higher-order mode search is especially needed.
While it would be beneficial to work on exploring and

tuning various signal-based consistency tests and classifiers
to improve the performance of searching for higher-order-
mode waveforms with template waveforms that do not

include higher-order modes, such tests and classifiers will
be more powerful if the template waveforms being used
match well to the signals in the data. Some more work is
needed to improve the separation of noise transients from
real signals, in the intermediate-mass black hole binary
parameter space, and in the case where the template
waveforms match well. However, we recommend that such
work is performed while using waveforms that include
higher-order mode waveforms, as described in this work.

VII. CONCLUSIONS

In this work we have presented a new method for
searching for compact binary coalescences using filter

FIG. 7. The relative sensitivity between a search using higher-order mode waveforms as templates and a search using nonhigher-order-
mode waveforms as templates when evaluating sensitivity using ρreweighted at a constant rate of false alarm. Plotted for the representative
early Advanced LIGO sensitivity curve (left) and the design Advanced LIGO sensitivity curve (right). The plots on the top row consider
the full injection set, while plots on the bottom row consider only injections where the inclination (ι) is between 60 and 120 degrees. The
sensitivity is evaluated at a false-alarm rate of 1 per 1000 years, which includes the larger background that is present when using higher-
order mode waveforms as templates. Values greater than one indicate an increase in sensitivity, values less than one indicate a decrease in
sensitivity. Here the color bars are capped at a value of 2 to aid distinguishability of values between 1 and 2. However some values are
larger than this, especially in the lower right panel, where the points with highest mass and highest mass ratio have a relative sensitive
volume of ∼4.
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waveforms which include higher-order mode gravitational-
wave emission. This method will allow for the first time
searches using higher-order mode filter waveforms to be
performed in ongoing analysis of data from second-
generation gravitational-wave observatories. We have dem-
onstrated the sensitivity improvement this method would
allow. This improvement is as much as a 100% improve-
ment for systems with mass ratios of 10 and total mass of
400 M⊙, but is much more modest, < 10%, for systems
with equal mass or with total mass of 50 M⊙. In the cases
where the improvement is modest, it implies that the
efficiency of the current, nonhigher order mode search,
is already good in these areas. The improvement in
sensitivity is largest—as much as 300%—for systems
oriented edge-on to the observer, which are intrinsically
fainter in gravitational-waves than face-on systems, but for
which higher-order modes are especially important. The
detection of such signals is key for testing fundamental
aspects of general relativity. For instance, a clear observa-
tion of at least two ringdown modes is needed for testing
the no-hair theorem [111,112]. The method we present is
also fully generic and could be applied also in searches for
eccentric, or precessing, compact binary mergers.
Using this method to search for higher-order mode

signals in the latest Advanced LIGO and Advanced
Virgo data would require waveform models that include
both higher-order mode emission and model the effect of
the components’ spins. At the time of writing such wave-
form models are not available, but are currently in rapid
development [62,63]. When these waveform models are
available it is trivial to extend the results shown here to
include the component spins, although the size of both
higher-order mode and nonhigher-order mode template
banks will increase when including this additional freedom.

Nevertheless, we see no reason why one would not expect
the same relative sensitivity improvement as seen here with
nonspinning waveform models, when using spinning
higher-order mode waveforms.
A current problem with searches for intermediate-mass

black hole binary mergers is that the gravitational emission
from such systems is only observed for a very short time
and can be confused with non-Gaussian noise transients.
Developing better techniques to distinguish between noise
transients and genuine gravitational-wave signals would be
very beneficial in this search space, although this task is
orthogonal to the problem addressed in this paper. We
have also demonstrated that the performance of current
signal-based consistency tests is improved significantly
by including higher-order mode effects in the search
parameter space.
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