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The galaxy bispectrum on scales around and above the equality scale receives contributions from
relativistic effects. Some of these arise from lightcone deformation effects, which come from local and
line-of-sight integrated contributions. Here we calculate the local contributions from the generated
vector and tensor background which is formed as scalar modes couple and enter the horizon. We
show that these modes are sub-dominant when compared with other relativistic contributions.

I. INTRODUCTION

The galaxy bispectrum will help differentiate between cosmological models in future surveys [1–10], test the equiv-
alence principle on large scales [11], further constrains the modified gravity models [12] and will help constrain
primordial non-Gaussianity [13–15]. On large scales the bispectrum is affected by relativistic effects, mainly from
lightcone projection effects on the observed number density [16–25]. These effects can mimic some aspects of primor-
dial non-Gaussianity, and need to be fully understood to extract the primordial signal from further surveys. This
paper forms part of a series investigating these effects [23–25], which is complimentary to other approaches [15, 21].

In this work we extend the previous studies of the bispectrum to include local vector and tensor perturbations.
These vector and tensor perturbations are inevitably generated by scalar modes at second order [26–32]. In fact
the change to the metric from these contributions can reach nearly 1% in the case of vectors [29], which has been
confirmed in numerical simulations [33, 34]. Frame dragging, like tensor perturbations, doesn’t couple strongly to
matter, but it can change gravitational lensing [35, 36] and other lightcone distortion effects in the galaxy correlation
function [37–39], for example. Our analysis, while focused on these secondary modes, can also be adapted to other
sources of vectors and tensors.

II. GALAXY BISPECTRUM WITH LOCAL VECTORS AND TENSORS

Assuming a flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) background, we write the metric in the Poisson
gauge and conformal time η as

ds2 = a2
[
−
(

1 + 2Φ(1)
)

dη2 + ω
(2)
i dxidη +

[(
1− 2Ψ(1)

)
δij +

1

2
h

(2)
ij

]
dxidxj

]
, (1)

where we only keep first order scalar perturbations sourcing the second order vector and tensor perturbations, ω
(2)
i and

h
(2)
ij respectively; the first order vector and tensor modes, which are purely decaying modes, are neglected [36, 40, 41].

Hereafter we drop the (2) superscript on ωi and hij , and we also have Φ(1) = Ψ(1) = Φ. Vector and tensor modes
are characterised by being divergence-free.
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The solution for ωi(x) is given by [31],

∇2ωi(x) =
16f

3ΩmH

[
∇2Φ(x)∂iΦ(x)

]V
, (2)

where V denotes the vector part (i.e, the part of a 3-vector which cannot be written as the gradient of a scalar). Here,

f = d lnD/d ln a is the derivative of the linear growth rate, and Ωm = Ωm0H
2
0/(aH

2).
The other contribution at second-order is the generation of tensor modes as structure forms, considered in [26–

28, 30, 35, 36, 42–48]. These are found from projecting out the tensor part of the ij part of the EFE. This gives
(adapted from [30] to include a cosmological constant)

h′′ij + 2Hh′ij −∇
2hij = Sij(x) = 8

[
∂iΦ∂jΦ +

1

4πGa2ρ
∂i(Φ

′ +HΦ)∂j(Φ
′ +HΦ)

]T

, (3)

= 8

[
1 +

2f2

3Ωm

] [
∂iΦ∂jΦ

]T
, (4)

where T denotes a tensor projection. Note we have used
[
Φ∂i∂jΦ

]T
= −

[
∂iΦ∂jΦ

]T
.

II.1. Second order galaxy number density

We expand the observed galaxy number density to second order as ∆g = ∆
(1)
g + 1

2∆
(2)
g . The expression for ∆g

comprising all the relativistic terms to second order is derived in Ref. [49–52]. Further, the second order galaxy
number density is expanded in terms of Newtonian and relativistic parts as

∆
(2)
g = ∆

(2)
gN + ∆

(2)
gS + ∆

(2)
gV + ∆

(2)
gT , (5)

where ∆
(2)
gV and ∆

(2)
gT are the contribution to the number count from second order (generated by scalars) vector and

tensor perturbations respectively. The expression for the Newtonian part, ∆
(2)
gN, can be found in [23], and the local

parts of the second-order non-Newtonian scalar contribution, ∆
(2)
gS , have been investigated in [24, 25].

One can show that the second-order local contribution of vectors to the galaxy number count is given by [51]:

∆
(2)
gV(z,x) =

[
−be + 2Q+

2(1−Q)

χH
+
H′

H2
+

1

H
∂‖
]
ω‖(x) . (6)

In (6), the radial comoving distance is denoted by χ = η0−η. The evolution bias is be = d ln(a3ng)/d ln a where ng is

the galaxy number over-density, and Q is the magnification bias. The direction of observation is n and ω‖ = niω
(2)
i is

the longitudinal component of the vector perturbation. Throughout the paper, a prime denotes a (partial) derivative
with respect to η. Similarly, for the local tensor contribution, one finds [51]:

∆
(2)
gT (x) = −1

2
(1−Q)h‖ (x)− 1

2H
h′‖ (x) , (7)

with h‖ = h
(2)
ij n

inj . In Fourier space, we may write (6) and (7) in terms of integrals over kernels which we derive in

Appendix A:

∆
(2)
gV(k3) =

∫
d(k1,k2,k3)K(2)

V (k1,k2,k3) , (8)

∆
(2)
gT(k3) =

∫
d(k1,k2,k3)K(2)

T (k1,k2,k3) , (9)

where we define the operator,∫
d(k1,k2,k3) =

∫
d3k1

(2π)3

∫
d3k2 δ

(1)(k1)δ(1)(k2)δD(k1 + k2 − k3) . (10)
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Here, δ(1)(η,k) is the first-order dark matter overdensity defined in the total-matter (T) gauge and δD is the 3-
dimensional Dirac-delta function. The explicit forms for the kernels in (8) and (A26) are derived in Appendix A, and
all geometric quantities associated with the coordinate system we use are defined in Appendix B. For vectors we have

K(2)
V (k1,k2,k3) = 12ΩmH2f

(
µ3

k3
− i
H
k2

3

[
− be + 2Q+

2(1−Q)

χH
+
H′

H2

])

×

[
n · e(k3)

(
k1 · e(k3)

k2
1

+
k2 · e(k3)

k2
2

)
+ n · ē(k3)

(
k1 · ē(k3)

k2
1

+
k2 · ē(k3)

k2
2

)]
, (11)

where e and ē are the 2 polarisation vectors associated with the vector mode. The kernel is complex and symmetric
on k1 ↔ k2. The k-dependence of the real part is O(k−2) and that of the imaginary part is O(k−3). We can see
that for the equilateral configuration i.e., k1 = k2 = k3 = k, this kernel is zero, on using k1 · e(k3) = −k2 · e(k3).
Physically this is because the bispectrum in the equilateral configuration probes vector modes generated by scalar
perturbations of the same wavelength. It was shown in [29] that vectors modes are only generated by 2 scalar modes
when the scalar modes have differing wavelength, otherwise no angular momentum is generated by the interaction
(this is not the case for the tensors).

For the tensors the kernel is

K(2)
T (k1,k2,k3) = 3ΩmH4

{[
− 3Ωm(1 +Q)− 2f2Q− (3Ωm − 2f2)

H′

H2
+ 4

ff ′
H

]
G(η, k3)

+
3Ωm + 2f2

H
G′(η, k3)

}
eij(k3)k1ik2j n

lnmelm(k3) + ēij(k3)k1ik2j n
lnmēlm(k3)

k2
1k

2
2k

2
3

, (12)

where G(η, k) arises from solving the tensor wave equation and is given in the Appendix (A24). Here, eij and ēij
are orthogonal polarization tensors. For both kernels the products of the polarizations with k vectors is complicated
and needs to be done in a coordinate system. This results in different expressions for each permutation – see the
Appendices for full details.

II.2. Bispectrum

We can now give an expression for the local vector and tensor contributions to the galaxy bispectrum in terms
of the respective kernels presented above. We drop the time dependence of ∆g as we only calculate the equal-time
bispectrum. At second order, the bispectrum is defined after symmetrizing over external momenta:

1

2

〈
∆

(1)
g (k1)∆

(1)
g (k2)∆

(2)
g (k3)

〉
+ 2 cyc. perm. = (2π)3Bg(k1,k2,k3)δD(k1 + k2 + k3) . (13)

Using Wick’s theorem, we can write the bispectrum in terms of the kernels as,

Bg(k1,k2,k3) = K(1)(k1)K(1)(k2)K(2)(k1,k2,k3)P (k1)P (k2) + 2 cyc. perm. , (14)

where P is the linear dark matter power spectrum. The first-order kernel has only scalars (S) and is given by [23]:

K(1)(k1) = b1 + fµ2
1 + iµ1

γ1

k1
+
γ2

k2
1

. (15)

The Newtonian part is given by the bias plus redshift-space distortion term, K(1)
N (k1) = b1 + fµ2

1. The γ-coefficients

arise from GR contributions and are given by [24]:

γ1

H
= f

[
be − 2Q− 2(1−Q)

χH
− H

′

H2

]
, (16)

γ2

H2
= f(3− be) +

3

2
Ωm

[
2 + be − f − 4Q− 2

(1−Q)

χH
− H

′

H2

]
. (17)

whilst the second-order kernel has scalars, vectors (V) and tensors (T) i.e.,

K(2) = K(2)
S +K(2)

V +K(2)
T . (18)



4

The scalar contribution has both Newtonian and scalar GR projection effects [23]. For Gaussian initial conditions the
galaxy bispectrum is induced by second order perturbations only. The computation of the galaxy bispectrum from
scalars including first- and second-order GR contributions has already been done in [23–25]. Here, we focus on the
vector and tensor contributions which are given as follows:

BgV(k1,k2,k3) = K(1)(k1)K(1)(k2)K(2)
V (k1,k2,k3)P (k2)P (k1) + 2 cyc. perm. , (19)

BgT(k1,k2,k3) = K(1)(k1)K(1)(k2)K(2)
T (k1,k2,k3)P (k2)P (k1) + 2 cyc. perm. . (20)

Similarly, the full scalar contribution to the bispectrum is defined by:

BgS(k1,k2,k3) = K(1)(k1)K(1)(k2)K(2)
S (k1,k2,k3)P (k2)P (k1) + 2 cyc. perm. . (21)

In each of these expressions we keep the fullO(1) GR kernel. For reference we also plot the pure Newtonian bispectrum.
As the bispectrum is a complex function of several variables it has many properties which cannot be captured on a

single graph. In the Newtonian case it is a purely real function. To compare with this we compute the monopole of
the bispectrum,

B0
g (k1, k2, k3) =

1√
4π

∫ 2π

0
dφ

∫ +1

−1
dµ1Bg(k1, k2, k3, µ1, φ, φn) . (22)

This function gives the mean bispectrum averaged over the sky and some angles in Fourier space, and the sign of
it tells us about whether over-densities appear more or less clustered relative to voids than in a Gaussian random
field. The monopole is a purely real function by symmetry of the bispectrum, so in computing the monopole we
automatically ignore new relativistic contributions which arise only in the imaginary part of the bispectrum, and
signal odd parity symmetries in apparent clustering. In order to see the importance of these we also compute the
monopole of the absolute value of the bispectrum,

B
abs,0
g (k1, k2, k3) =

1√
4π

∫ 2π

0
dφ

∫ +1

−1
dµ1 |Bg(k1, k2, k3, µ1, φ, φn)| . (23)

In the Newtonian case this has contributions from even multipoles of the bispectrum, as well as summing up the total
bispectrum amplitude. Because this includes contributions from all multipoles, this function gives a better overall
picture of the amplitude of the bispectrum than the monopole itself. In the case of the relativistic bispectrum, this
will indicate where new relativistic contributions will be important. To isolate the effects of vector and tensor modes
on the galaxy bispectrum, and to compare them with the Newtonian contributions, we construct the analogues of the
monopole (22) and of the monopole of the absolute value (23) of the whole bispectrum by replacing the bispectrum
Bg(k1, k2, k3, µ1, φ, φn) in Eq. (22) and Eq. (23) by the expressions (19)-(21) or by the Newtonian bispectrum. We
consider the monopoles at z = 1.0, and we use the following numerical values for the other parameters for illustration
purposes [25]:

• b1 =
√

1 + z, b2 = −0.1
√

1 + z and be = Q = 0.

• We include tidal bias with bs = −4(b1 − 1)/7.

• Ωm0 = 1− ΩΛ0 = 0.308 and h = 0.678.

• For the shape of the galaxy bispectrum, we consider the moderately squeezed triangle (k1 = k2 = k and
k3 ≈ k/16).

In Figs. 1 and 2 we show the vector and tensor contributions to the bispectrum, for both monopoles. For reference we
also show the scalar contribution, and the pure Newtonian bispectrum. Finally we show in black the total bispectrum
with all contributions, given by

Bg full GR(k1,k2,k3) = K(1)(k1)K(1)(k2)K(2)(k1,k2,k3)P (k1)P (k2) + 2 cycl. perm. . (24)

First consider Fig. 1. These show that the vectors and tensors are small on all scales as expected, only growing
towards the Hubble scale, because their leading behaviour scales as (H/k)2. We see that while the vector contribution
to the pure monopole is significantly larger than the tensors, it remains about 3 orders of magnitude below the scalar
GR contribution. When the long mode is outside the Hubble radius (and unobservable), the vector part does become
larger than the Newtonian contribution, but this is only because of the effect of tidal bias making the Newtonian
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FIG. 1. The monopole at z = 1.0 for the moderately squeezed configuration. Dashed lines indicate negative.

monopole negative for very large modes. The scalar GR effect on the monopole is negative on all scales, making the
full bispectrum negative on sub-Hubble scales – in contrast the Newtonian result is positive in this region. Note that
the tensors oscillate on small scales, picking up the baryon acoustic oscillations.

Turning now to Fig 2, we see the effect of the vectors and tensors are relatively enhanced compared to the scalar
and Newtonian (though still sub-dominant). In fact the vectors are enhanced by over an order of magnitude because
their dominant contribution is in the anti-symmetric imaginary part (which has no monopole).

III. CONCLUSIONS

We have considered for the first time the relativistic contributions of vectors and tensors on the observed galaxy
bispectrum. We have derived our results using a geometry suitable for any source of vectors and tensors, and then
specialised to the case of vectors and tensors generated by scalar coupling at first order which simplifies the geometry
of the kernels (azimuthal angles only appear as φn− φ meaning the polarizations do not need integrated out for such
a source). We present our results for a moderately squeezed configuration, finding that the local vectors and tensors
(as defined in the Poisson gauge) are small and can safely be neglected in future bispectrum studies. We have not
included the integrated contributions from these sources which may alter this conclusion. In contrast, the scalars
cannot be neglected.
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FIG. 2. The monopole of the absolute value of the bispectrum at z = 1.0 for the moderately squeezed configuration.

Appendix A: Derivation of the kernels for local vectors and tensors

1. Vector bispectrum

Let us consider an observer receiving a photon along the direction n in its rest frame. Neglecting integrated terms
and terms at the observation point, we obtain the contribution of second order local vector modes to the observed
galaxy number density as:

∆
(2)
gV(z,x) =

[
be − 2Q− 2(1−Q)

χH
− H

′

H2

]
v̂

(2)
‖ − 1

H
∂‖v̂

(2)
‖ , (A1)

where v̂
(2)
‖ = niv̂

(2)
i is the longitudinal component of the vector perturbations. All the expressions are implicitly

evaluated at the observed redshift. Note that we have v̂
(2)
i = −ω(2)

i in a ΛCDM Universe and hence

∆
(2)
gV(z,x) =

[
−be + 2Q+

2(1−Q)

χH
+
H′

H2
+

1

H
∂‖
]
ω

(2)
‖ (x) . (A2)

where ω
(2)
‖ = niω

(2)
i . The Fourier transform of a pure vector can be represented in terms of two independent

polarization vectors as [31]:

ω
(2)
i (x) =

∫
d3k

(2π)3

[
ω(k)ei(k) + ω̄(k)ēi(k)

]
eik·x . (A3)

with,

ω(k) =

∫
d3xωi(x)ei(k)e−ik·x, ω̄(k) =

∫
d3xωi(x)ēi(k)e−ik·x (A4)

Taking (A3) we write

ω
(2)
‖ (x) = niω

(2)
i (x) =

∫
d3k

(2π)3

[
ω(k)niei(k) + ω̄(k)niēi(k)

]
eik·x , (A5)
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The Fourier transform of (2) gives,

ωi(k3) = −i
6ΩmH3f

k2
3

∫
d(k1,k2,k3)

[
k1i

k2
1

+
k2i

k2
2

]
. (A6)

Then,

ω(k3) = ei(k3)ωi(k3) = −i
6ΩmH3f

k2
3

∫
d(k1,k2,k3)

[
k1 · e(k3)

k2
1

+
k2 · e(k3)

k2
2

]
. (A7)

The other parity ω̄(k), has similar Fourier solutions with e(k) being replaced by ē(k). We also have

∆
(2)
gV (x) =

∫
d3k3

(2π)3
∆

(2)
gV (k3) eik3·x (A8)

where

∆
(2)
gV (k3) =

∫
d(k1,k2,k3)K(2)

V (k1,k2,k3) , (A9)

and K(2)
V is the kernel for the vector perturbations. These can be written as

K(2)
V (k1,k2,k3) = 12ΩmH2f

µ3

k3
V123 − 12iΩmH3f

[
− be + 2Q+

2(1−Q)

χH
+
H′

H2

]
V123

k2
3

= 12ΩmH2
[
fµ3 − i

γ1

k3

]
V123

k3
, (A10)

where we define

V123 =

[
n · e(k3)

(
k1 · e(k3)

k2
1

+
k2 · e(k3)

k2
2

)
+ n · ē(k3)

(
k1 · ē(k3)

k2
1

+
k2 · ē(k3)

k2
2

)]
(A11)

and γ1 is defined below. At this stage we need to introduce coordinates in Fourier space – we specify how we do this
in Appendix B. This breaks the algebraic cyclic symmetry of the kernel, so we work out the exact form of the kernels,
giving,

V123 =

(
k2

2 − k
2
1

k2
3k1

)√
1− µ2

12

[
µ1

√
1− µ2

12 −
(
k1

k2
+ µ12

)√
1− µ2

1 cos(φn − φ)

]
, (A12)

V231 =

(
k2

3 − k
2
2

k2
3k2

)√
1− µ2

1

√
1− µ2

12cos (φn − φ) , (A13)

V312 =

(
k2

3 − k
2
1

k2
3k1

)√
1− µ2

12

[
µ1

√
1− µ2

12 − µ12

√
1− µ2

1 cos(φn − φ)

]
(A14)

Finally, for Gaussian initial conditions, we obtain the vector contribution to the bispectrum:

BgV(k1,k2,k3) = K(1)(k1)K(1)(k2)K(2)
V (k1,k2,k3)P (k1)P (k2) + 2 cyc. perm. . (A15)

2. Tensor bispectrum

We expand in Fourier space using the polarization tensors eij and ēij which are defined as [28, 32],

eij(k) =
1√
2

[
ei(k)ej(k)− ēi(k)ēj(k)

]
, ēij(k) =

1√
2

[
ei(k)ēj(k) + ēi(k)ej(k)

]
. (A16)

Then,

h
(2)
ij (x) =

∫
d3k

(2π)3

[
h(k)eij(k) + h̄(k)ēij(k)

]
eik·x . (A17)
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with,

h(k) =

∫
d3xhij(x)eij(k)e−ik·x, h̄(k) =

∫
d3xhij(x)ēij(k)e−ik·x (A18)

In Fourier space we then have

h‖(k) = h(k)eij(k)ninj + h̄(k)ēij(k))ninj , (A19)

which obeys

h′′(η,k)− 2Hh′(η,k) + k2h(η,k) = S(η,k) , (A20)

S(k) is the source term in the evolution equation of h(k) which is obtained from the transverse, trace-free part of the
Einstein field equations (4). The galaxy density fluctuations become

∆
(2)
gT(k) = −1

2

(
1−Q+

1

H
∂

∂η

)[
h(k)eij(k)ninj + h̄(k)ēij(k)ninj

]
. (A21)

For simplicity we give the solution for the tensors using the approximation that we are in the matter era. In general,
the solution for the second order tensor is written as an integral over the Green’s function written in terms of the
spherical Bessel functions, [30],

h(η,k) =
1

a

∫ η
dη̃

ηη̃

k2
[j1(kη)y1(kη̃)− j1(kη̃)y1(kη)] a(η̃)S(η̃,k) . (A22)

However, since S(η,k) is nearly constant in time in the matter era at high redshift, we can approximate this as [32]

h(η,k) ≈ G(η, k)

k2
S(k) , (A23)

where G(η, k) is given by ,

G(η, k) = 1 +
3
[
kη cos (kη)− sin (kη)]

(kη)3
. (A24)

The source appearing in the Fourier transformed tensor equation becomes,

S(k) = −6ΩmH4
(

3Ωm + 2f2
)∫

d(k1,k2,k)eij(k)
k1ik2j

k2
1k

2
2

. (A25)

In this approximation, we have ignored the weak time dependence (from g) in the source when integrating over the
Green’s function to obtain (A23). At high redshift this should be a very good approximation. The other parity is
given by the same expression with the other polarisation tensor.

As with the vectors, in Fourier space we write the contribution to the galaxy density contrast as an integral over a
kernel,

∆
(2)
gT(k3) =

∫
d(k1,k2,k3)K(2)

T (k1,k2,k3) , (A26)

and we find:

K(2)
T (k1,k2,k3) = 3ΩmH4

{[
− 3Ωm(1 +Q)− 2f2Q− (3Ωm − 2f2)

H′

H2
+ 4

ff ′
H

]
G(η, k3)

+
3Ωm + 2f2

H
G′(η, k3)

}
T123

k2
3

(A27)

where we defined

T123 =
1

k2
1k

2
2

[
eij(k3)k1ik2j n

lnmelm(k3) + ēij(k3)k1ik2j n
lnmēlm(k3)

]
. (A28)
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As with the vectors, the 123 symmetry is broken on choosing a coordinate system in Fourier space, so we give the
permutations explicitly as

T123 =
1

4k4
3

(
1− µ2

12

)[
k2

3 − k
2
1 +

(
k2

1 − 2k2
2 − k

2
3

)
µ2

1 +
(
2k1k2µ

2
1 − 2k1k2

)
µ12 +

(
3k2

2µ
2
1 − k

2
2

)
µ2

12

+ 4k2
(
k1 + k2µ12

)
µ1

√
1− µ2

1

√
1− µ2

12 cos (φn − φ)

−
(
1− µ2

1

)(
k2

1 + 2k1k2µ12 + k2
2µ

2
12 + k2

3

)
cos 2(φn − φ)

]
, (A29)

T231 = − 1

2k2
3

(
1− µ2

1

)(
1− µ2

12

)
cos 2(φn − φ) , (A30)

T312 =
1

4k2
3

(
1− µ2

12

)[(
1− µ2

12

)(
1− 3µ2

1

)
+ 4µ1µ12

√
1− µ2

1

√
1− µ2

12 cos (φn − φ)

−
(
1− µ2

1

)(
1 + µ2

12

)
cos 2(φn − φ)

]
. (A31)

The tensor contribution to the bispectrum then reads:

BgT(k1,k2,k3) = K(1)(k1)K(1)(k2)K(2)
T (k1,k2,k3)P (k1)P (k2) + 2 cyc. perm. . (A32)

Appendix B: Geometry

Here we define the coordinates in Fourier space in which our Fourier space polarisation vectors are decomposed,
which we show in Fig. 3.

First we consider the relations among the k-vectors, the direction vector n, and the polarisation vectors and tensors
we use:

• The cosines of the angles θi and θij are defined as

cos θi = µi = k̂i · n̂ , cos θij = µij = k̂i · k̂j . (B1)

• The wave vectors form a triangle, k1 + k2 + k3 = 0, and by taking the dot product with n we have

µ1k1 + µ2k2 + µ3k3 = 0 . (B2)

• Now using k2
3 = k2

1 + k2
2 + 2k1k2µ12 and if we define r = k2/k1, we have k3 = k1

√
1 + r2 + 2rµ12. Using the

cosine rule on the other sides of the triangle we have

µ23 =
−(r + µ12)√

1 + r2 + 2rµ12

, µ31 =
−(1 + rµ12)√
1 + r2 + 2rµ12

. (B3)

• Taking dot-products of the polarisation vectors with the triangle of k-vectors, we have

k1 · e(k3) = −k2 · e(k3) , k2 · e(k1) = −k3 · e(k1) , k3 · e(k2) = −k1 · e(k2) , (B4)

k1 · ē(k3) = −k2 · ē(k3) , k2 · ē(k1) = −k3 · ē(k1), k3 · ē(k2) = −k1 · ē(k2) . (B5)

• The polarization tensors eij and ēij are defined as [28, 32],

eij(k) =
1√
2

[
ei(k)ej(k)− ēi(k)ēj(k)

]
, ēij(k) =

1√
2

[
ei(k)ēj(k) + ēi(k)ej(k)

]
. (B6)

Now we set up our coordinate system.

• We choose our coordinates to coincide with the k1 system, with k1 lying along the z-axis, and e(k1) along x.
Then

e(k1) = (1, 0, 0), ē(k1) = (0, 1, 0), k̂1 = (0, 0, 1) (B7)
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1
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FIG. 3. The geometry of the galaxy bispectrum without (left) and with (right) polarizations.

• We define the azimuthal angle n makes with the x-axis as φn, which implies, using θ1 as its polar angle,

n = (sin θ1 cosφn, sin θ1 sinφn, cos θ1) (B8)

• We define the azimuthal angle k2 makes with the x-axis as φ, implying

k2 = k2(sin θ12 cosφ, sin θ12 sinφ, cos θ12) (B9)

This implies µ2 is given by

µ2 = µ1µ12 +
√

1− µ2
1

√
1− µ2

12 cos (φn − φ) . (B10)

• For k3 we write

k3 = k3(− sin θ31 cosφ,− sin θ31 sinφ, cos θ31) (B11)

and using the fact that the wavevectors form a triangle, we find sin θ31 =
k2
k3

sin θ12, giving

k3 = −k2

(
sin θ12 cosφ, sin θ12 sinφ,

k1

k2
+ cos θ12

)
, (B12)

• To define (e, ē)(k2) we choose the triplet [k2, e(k2), ē(k2)] to coincide with [k1, e(k1), ē(k1)] when θ12 = φ = 0
(refer to Fig. 1). This implies

e(k2) = (cos θ12 cosφ, cos θ12 sinφ,− sin θ12) , (B13)

ē(k2) = (− sinφ, cosφ, 0) , (B14)

where the direction is chosen so that (e, ē)(k2) has the same handedness as (e, ē)(k1) (with respect to their k
vectors).

• We specify (e, ē)(k3) in the same way, giving

e(k3) = − 1

k3

([
k1 + k2 cos θ12

]
cosφ,

[
k1 + k2 cos θ12

]
sinφ,−k2 sin θ12

)
, (B15)

ē(k3) = (− sinφ, cosφ, 0) . (B16)
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This implies

k2 · e(k3) = −k1k2

k3

√
1− µ2

12 . (B17)

• Gathering these results together, for the dot products between the mode vectors and polarization vectors we
have,

k1 · e(k2) = −k1

√
1− µ2

12 , (B18)

k1 · ē(k2) = 0 , (B19)

k2 · e(k1) = k2

√
1− µ2

12 cosφ , (B20)

k2 · ē(k1) = k2

√
1− µ2

12 sinφ , (B21)

k2 · e(k3) = −k1k2

k3

√
1− µ2

12 , (B22)

k2 · ē(k3) = 0 . (B23)

• For the tensors we require

eij(k3)k1ik2j = −
k2

1k
2
2√

2k2
3

(1− µ2
12) , (B24)

ēij(k3)k1ik2j = 0 , (B25)

eij(k2)k1ik3j = − 1√
2
k2

1(1− µ2
12) , (B26)

ēij(k2)k1ik3j = 0 , (B27)

eij(k1)k2ik3j = − 1√
2
k2

2(1− µ2
12) cos 2φ , (B28)

ēij(k1)k2ik3j = − 1√
2
k2

2(1− µ2
12) sin 2φ . (B29)

(B30)

• We then have relations with the observation direction

n · e(k1) =
√

1− µ2
1 cosφn , (B31)

n · ē(k1) =
√

1− µ2
1 sinφn , (B32)

n · e(k2) = µ12

√
1− µ2

1 cos (φn − φ)− µ1

√
1− µ2

12 , (B33)

n · ē(k2) =
√

1− µ2
1 sin (φn − φ) , (B34)

n · e(k3) =
k2

k3

[
−
√

1− µ2
1

(
k1

k2
+ µ12

)
cos (φn − φ) + µ1

√
1− µ2

12

]
, (B35)

n · ē(k3) =
√

1− µ2
1 sin (φn − φ) . (B36)
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• For the polarisation tensors contracted along the line of sight, we have,

eij(k1)ninj =
1√
2

(1− µ2
1) cos 2φn , (B37)

ēij(k1)ninj =
1√
2

(1− µ2
1) sin 2φn , (B38)

eij(k2)ninj =
1√
2

[(
1− µ2

12

)
sin2(φn − φ)− µ2

12

(
1− µ2

1

)
cos2(φn − φ) + 2µ1µ12

√
1− µ2

1

√
1− µ2

12 cos (φn − φ)

−µ2
1

(
1− µ2

12

)]
, (B39)

ēij(k2)ninj =
1√
2

[
µ12
(
1− µ2

1

)
sin 2(φn − φ)− 2µ1

√
1− µ2

1

√
1− µ2

12 sin (φn − φ)

]
, (B40)

eij(k3)ninj =
1√
2

{(
1− µ2

1

)
sin2 (φn − φ)−

k2
2

k2
3

[(
k1

k2
+ µ12

)2(
1− µ2

1

)
cos2 (φn − φ) + µ2

1

(
1− µ2

12

)]
− 2

(
k1

k2
+ µ12

)
µ1

√
1− µ2

1

√
1− µ2

12 cos (φn − φ)

]}
, (B41)

ēij(k3)ninj =
1√
2

k2

k3

[
−
(
1− µ2

1

)(k1

k2
+ µ12

)
sin 2(φn − φ) + 2µ1

√
1− µ2

1

√
1− µ2

12 sin (φn − φ)

]
. (B42)
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