
Enforcing Multilevel Security Policies in
Database-Defined Networks

Ali Al-Haj and Benjamin Aziz
School of Computing, University of Portsmouth

Portsmouth PO1 3HE, United Kingdom
{ali.alhaj, benjamin.aziz}@port.ac.uk

Abstract—Despite the wide of range of research and tech-
nologies that deal with the problem of routing in computer
networks, there remains a gap between the level of network
hardware administration and the level of business requirements
and constraints. Not much has been accomplished in literature
in order to have a direct enforcement of such requirements on
the network. This paper presents a new solution in specifying
and directly enforcing security policies to control the routing
configuration in a software-defined network by using row-level
security checks. We show, as a first step, how a specific class of
such policies, namely multilevel security policies, can be enforced
on a database-defined network, which presents an abstraction of
a network’s configuration as a set of database tables. We show
that such policies can be used to control the flow of data in the
network either in an upward or downward manner.

Index Terms—Software-Defined Networking, Database-Defined
Networking, Information Flow Control, Row-Level Security,
Security Policies, Multilevel Security

I. INTRODUCTION

Complexity and robustness remain some of the main chal-
lenges that dominate the networking world [20], which are
still frequently researched and thought over at the low level
of the network hardware with little provision for establishing
a direct relationship with business and application require-
ments and constraints. Moreover, nowadays the majority of
the provided solutions are tightly restricted to vendor-specific
hardware and hence, network administrators require extensive
knowledge of the network technologies in order to enforce
specific administration rules. By contrast, Software-Defined
Networks (SDNs) [22] have emerged as a new paradigm based
on the separation of network control plane from data plane and
therefore facilitate a high-level management of the network
in a direct manner. The control plane, being a logically cen-
tralized controller or a set of cooperating SDN controllers, is
often implemented using standards such as OpenFlow protocol
[28], which collect information from the data plane and offer
a global view to the network operators. Moreover, all the
management tasks are implemented as applications working
on top of the controller.

More recently, a new approach to the implementation of
SDNs has emerged aimed at simplifying the task of net-
work administration through the introduction of further data-
based abstractions of the control and data planes. This ap-
proach is called Database-Defined Networking (DDN) [33],
which represents the entire network through standard relational

databases. DDNs simplify the network management since the
interface to its current state becomes purely database defined.
Hence, the network can be queried and its configuration up-
dated using standard data languages, such as Standard Query
Language (SQL). Interestingly, it becomes straightforward to
divide the network into multiple zones and enforce access rules
on those zones using access control lists [18].

In this short paper, we demonstrate that recent security
mechanisms in databases, particularly, row-level security, can
be used to enforce more complex security policies, such as
those using multilevel security [5], [6], [13] to control the flow
of data. Row-level security has recently emerged as a feature
in database management systems, allowing administrators to
introduce security policy checks at the level of a row in a
table. We demonstrate that changes in the network topology
can be policy-controlled through the enforcement of policies
on table rows such that only “good” topologies are deployed.

The rest of the paper is structured as follows: in Section II,
we give an overview of the background relevant to the work
of this paper discussing both database-defined networking and
row-level security. In Section III, we discuss some related
works in current literature. In Section IV, we give an overview
of our proposed approach to the tackling of the problem of pol-
icy enforcement in database-defined networking. In Section V,
we define a method for enforcing multilevel security policies in
the routing of packets within a database-defined network using
the row-level security feature in modern database systems.
Finally, in Section VI, we conclude the paper and suggest
some directions for future research.

II. BACKGROUND

We give here a summary background on two of the relevant
concepts that drive the work presented in this paper, namely
database-defined networking and row-level security.

A. Database-Defined Networking

Database-Defined Networking (DDN) is a concept of using
relational databases as an abstraction for managing an SDN,
DDN is similar to Declarative Networking [25] but applied in
the context of SDN. The concept of DDN has recently been
introduced in RAVEL [33], which is a database-defined con-
troller that represents the network using a standard relational
database, e.g. PostgreSQL [19]. The architecture of RAVEL
is shown in Figure 1.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/195277375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. RAVEL Architecture [34]

The design of RAVEL is driven by a separation of data
and control planes, which revolves around data representation.
In RAVEL, to merge multiple views into single coherent
forwarding behavior, the system automatically orchestrates the
abstractions thereby allowing multiple simultaneous abstrac-
tions to collectively drive control [33].

Ravel’s database view has numerous benefits as the ad-
hoc programmable abstractions are facilitated through the
database views. This enables the construction and building
of new applications on one another. Another positive feature
is the ability to express integrity constraints above views,
where high-level policy constraints are expressed through the
use of SQL statements, and the controllers are constructed
dynamically while running. Additionally, RAVEL provides
an SQL interface through which the state of the network
can be viewed and its configurations be updated. This will
allow application developers and network operators to control
and query the network through a SQL interface. As a result,
RAVEL represents a network in a flat manner exposing the
topology and forwarding information as three tables:

• tp: this is the network topology table representing pairs
of connected nodes. This table is defined by the type:

tp(sid integer, nid integer, ishost
integer, isactive integer, bw
integer)

↪→

↪→

where sid is an integer representing the identity of the
current switch (node), nid is an integer representing the
identity of the next hop node, ishost is a 0/1 integer
to denote whether the current node is a host (1) or not
(0), isactive is a 0/1 integer to denote whether the
current link between sid-nid is online (1) or not (0)
and finally, bw is an integer denoting the bandwidth of
the link between sid-nid.

• cf: this is a table representing per-switch configurations.
This table is defined by the type:

cf(fid integer, pid integer, sid
integer, nid integer)↪→

where fid is an integer representing the identity of a
flow (path), pid is an integer representing the identity
of the previous hop node, sid is an integer representing
the identity of the current switch (node) and finally, nid
is an integer representing the identity of the next hop
node. It is this table that defines how a packet is routed
over the network.

• tm: this is an end-to-end reachability matrix describing
properties of the current source-to-destination flow (path).
This table is defined by the type:

tm(fid integer, src integer, dst
integer, vol integer, FW integer,
LB integer)

↪→

↪→

where fid is an integer representing the identity of
the current flow, src is an integer representing the IP
address of the source node in the flow, dst is an integer
representing the IP address of the destination node in
the flow, vol is an integer representing the amount of
traffic volume allocated for the path, FW is a 0/1 integer
denoting whether the data flow of the path has to pass
through a firewall (1) or not (0) and finally, LB is a 0/1
integer denoting whether the flow in the path has to be
load-balanced (1) or not (0).

Additionally, there are other node tables, which include a host
and a switch table as well as a generic node table containing
the identities and names of all the nodes in the network.

B. Row-Level Security

Recently, Microsoft [27] and PostgreSQL [30] released a
new feature called Row-Level Security (RLS), that integrates
with their database management systems. Whilst previously,
security was enforced on a whole table, RLS introduces fine-
grained security policy checks at the level of single rows in a
database table. Under an RLS policy, users are able to create
security conditions on tables that they own to grant access to
other subjects. Each security policy consists of:
• A subject to whom the policy grants access.
• An SQL expression that evaluates to true for all records

the subject is able to access in the table.
• An SQL command (Select, Insert, All,
etc) or role that the security policy applies to.

To create a policy, the following syntax is used:
CREATE POLICY name ON table_name
[FOR { ALL | SELECT | INSERT | UPDATE |

DELETE }]↪→

[TO { role_name | PUBLIC | CURRENT_USER |
SESSION_USER } [, ...]]↪→

[USING (using_expression)]
[WITH CHECK (check_expression)]

Various security policies can be defined for a table by users,
these policies can be easily granted, revoked, and modified.
Moreover, anytime users issue a query against a table, the SQL
expressions of all security policies defined on the table that
match the SQL command issued by the subject or the subject’s
role will be evaluated as predicates on the issued query. This
ensures that the query executed by the subject only applies
to records in the table that render the expressions true. Each

existing table row is checked against the expression specified
in USING, while new rows that would be created via INSERT
or UPDATE are checked against the expression specified in
WITH CHECK. Both USING and WITH CHECK accept only
SQL conditional expressions returning a Boolean value (True,
False, Null). In order to created policy to be enforced, RLS
should be enabled using the following command:
ALTER TABLE sometable ENABLE ROW LEVEL

SECURITY;↪→

III. RELATED WORK

Network management has developed and becomes more
vibrant, with the SDN paradogm emerging in recent years
[23]. The integration of the Internet, software technologies
and traditional telecommunication technologies has brought
challenges to network and service operators as far as service
deployment and management [10], [11], [17] are concerned.
One particular challenging area is the management of security
policies. We outline below a few related works in this area
that have been proposed and implemented recently.

The authors in [16] proposed Frenetic, an OpenFlow-based
network programming language, which provides an interface
to query traffic information and create policies to react to
network events. Simplification of network event programming
and retrieval of traffic information is the main focus of
Frenetic, though it does not provide alternative mechanisms
for handling events sent by network switches. Procera, another
high-level language proposed in [21], allows administrators
to define policies and deploy in SDN networks. A dynamic
network reconfiguration is required for this framework since it
focuses on event-driven networks. According to [1], in order to
validate the Procera framework, the scalability of the number
of rules and the performance related to the time of translation
of these rules to OpenFlow rules remains to be evaluated.

Fresco [31] is another OpenFlow-based security framework,
where the security modules are exposed to external users
giving them the ability to define and enforce security policies.
Definition of the types, input/output parameters, actions and
events are all required information for using Fresco. Fresco
can be compared to Procera and Frenetic, in terms of allowing
network events to be manipulated and in handling them
through predefined modules.

Ponderflow [4] uses the Ponder language [12] for managing
an OpenFlow network. The main drawback of Ponderflow,
however, is that it lacks policy conflict resolution mechanisms.
In addition to that, no experiments were made by the authors,
for translating the proposed Ponderflow language to OpenFlow
rules, to validate their approach within a real-world scenario.

OpenSec [24] is another policy-based network security man-
agement system, in which the authors focused on simplifying
how network security policies are implemented and how they
can respond to system alerts. OpenSec implements network
policies in a simple language, which is then automatically
converted into a set of rules that are set up into the network
devices’ level. OpenSec allows administrators to define a flow
in terms of OpenFlow matching fields and identify which

security properties should apply to that flow. Additionally,
administrators can specify security levels that determine how
OpenSec would react to malicious traffic, if detected.

PolicyCop proposed in [3] as, an autonomic framework
for Quality-of-Service (QoS) policy enforcement in SDNs, by
which service-level agreements are allowed to be specified
for implementation and enforcement of QoS policies in an
OpenFlow-based network. PolicyCop converts QoS policies
into flow rules.

Recently, the authors in [32] proposed a network pol-
icy chain criteria based on the Database-Defined Networks
approach, they employ the database integrity constraints to
provide a logical framework to describe network policies.
Moreover, the core idea behind thier work is the semantic
modelling of network policies as integrity constraints that is
managed by relational database.

Finally, the work most relevant to the work presented in
our paper here is the information-flow type system defined
by [8]. The type system ensures secure flow of information
according to some high- and low-level classification relation.
However, their treatment is restricted to the preservation of
the secrecy of data, and it requires the implementation of a
secure controller system that will replace the standard SDN
controller, rendering their approach more complex than ours.

IV. THE PROPOSED APPROACH

Our main approach is to control the manner in which
network routing configurations are generated such that only
those configurations, (in RAVEL, defined by the cf table),
that confirm to some predefined security policy are allowed to
be deployed upon the underlying network architecture. In this
sense, we maintain secure network flow of data as defined by
the security policy being enforced.

As shown in Figure 2, our approach currently uses RLS
to enforce Multi-Level Security (MLS)-based policies. The
interaction of the business applications with the network tables
is limited through the policy specification and enforcement
layers.

Fig. 2. Overview of our Approach

V. ENFORCING MLS POLICIES

We introduce the idea that multilevel security policies can
be used to control the flow of packets and data in a DDN
using the RLS mechanism. We give first a short introduction
to multilevel security, afterward we demonstrate how upward
and downward routing of data packets can be achieved.

A. Multilevel Security

Multilevel Security (MLS) models are built based on the
classifications expressed by security levels of the system
components. Data objects have security levels and users have
clearance levels. The security levels of objects are known as
security labels. A security label can contain one security level
or a list of levels. Formally, an MLS labelling system can be
defined as a bounded lattice, LatticeS of security labels [15]:

LatticeS = (LS ,≤S ,>S ,⊥S)

where LS is a set of labels representing security sensitivity or
classification levels, ranged over by `i, where i ∈ {1, . . . , n}
for some value of n. This set is accompanied by the partial
ordering relation ≤S , which is reflexive, antisymmetric and
transitive. The structure becomes a lattice when for any two
levels, `1, `2 ∈ LS , then both `1 and `2 would have a least
upper bound (>{`1,`2}) and a greatest lower bound (⊥{`1,`2})
within LS . The highest label in the lattice is called >S and
the lowest level ⊥S . An example of a lattice is the lattice
constructed from the power set of a set and ordered by the
non-strict subset inclusion relation, (℘(Set),⊆, Set, {}).

A special case of a lattice is one in which the relation ≤S

is a total ordering, where there are no incomparable elements:

∀`i, `j ∈ LS : (`i ≤S `j ∨ `j ≤S `i)

An example of such a total order would be the chain of
document security classifications:

public ≤S confidential ≤S secret ≤S top secret

Next, we consider the problem of encoding lattices as
tables in order for the information contained in them to be
enforceable within the environment of relational databases. A
lattice of security labels can be encoded as a matrix using ζ
matrices [2] as follows:

ζ(`i, `j) = 1 iff `i ≤S `j

for any two security labels, `i, `j ∈ LS . Otherwise, ζ(`i, `j) =
0. Furthermore, it is possible to model a ζ matrix as a table
with the following type, and where B = {0, 1}:

TableS : LS × LS × B

In SQL, this can be implemented with the following command:
CREATE TABLE mls_lattice (label_i int, label_j

int, zetavalue_ij int)↪→

For example, consider the following lattice:

({`1, `2, `3, `4, `5}, ((`2 ≤S `1), (`3 ≤S `1), (`4 ≤S

`2), (`4 ≤S `3), (`5 ≤S `4)), `1, `5)

This can be represented as the following ζ matrix:

ExS =

`1 `2 `3 `4 `5

`1 1 0 0 0 0
`2 1 1 0 0 0
`3 1 0 1 0 0
`4 1 1 1 1 0
`5 1 1 1 1 1

 (1)

Where the diagonal running from the top left to the bottom
right of the matrix is filled with 1s due to the reflexive
nature of ≤S . The matrix is then encoded as an SQL table
with the values (`i, `j , ζ(`i, `j)) for all i, j ∈ {1, 2, 3, 4, 5}.
Another approach for encoding a lattice as a table was given
by Denning [14] using flow-preserving mappings.

As we discussed earlier and as demonstrated by the RAVEL
system, a DDN facilitates the notion of the management
of network topology and routing using a purely database-
oriented approach. Row-level security further controls the
manner in which the basic network tables should be updated
and viewed. In the case of MLS-based policies, it is possible
to combine the above representation of MLS systems with
network management, for example, how packet routes should
be defined in a DDN. We shall demonstrate next how variants
of two well-known MLS-based policies, the Bell-La-Padula
(BLP) [5] and the BIBA [6] policies, can be encoded in RLS
to enforce upward or downward flows of data. Furthermore,
the security labeling of network components will allow end-to-
end assurance of integrity and/or confidentiality, based on the
security policy type that is enforced. For instance, the authors
in [29] categorised the network into various zones (red, gray
and black) on the basis of data sensitivity that need to be
carried over the network. Similarly, our approach associates
each node (e.g. switch and router) in the network with a
security label and allows policy-controlled traffic among the
classified network.

B. Enforcing Upward Flow of Data
We start first by defining the cf table as a function:

cf : N → ((N ×N ×N) � N)

which takes as input the path’s number (i.e. fid) and returns
as output an injective function, which can provide a sequence
of triples representing the numbers of nodes forming the path,
defined as the number of the current switch (i.e. sid), the
previous (i.e. pid) and next (i.e. nid) nodes. This triple is
an expression of the configuration of the various switches on
the network that the path traverses. The fact that each triple
is itself mapped to a number renders the triple as an ordered
sequence.

For simplicity, and for a given path fid, we refer to the first
node that appears in the path as the source srcfid:

srcfid = fst((cf(fid))−1(1))

where fst is a special function that returns the first element in
a tuple t, assuming n ≥ 1:

∀t, t = (e1, . . . , en) : fst(t) = e1

We can similarly define the second and third elements, assum-
ing consecutively that n ≥ 2 and n ≥ 3:

∀t, t = (e1, . . . , en) : snd(t) = e2

∀t, t = (e1, . . . , en) : thd(t) = e3

We consider here a policy that states that packets (i.e. data)
must only travel upward, akin to the properties of a BLP policy
[5] preserving the secrecy of data. We define the following
logical formula to formalise this kind of data flows:

(θ(fst((cf(fid))−1(i))) ≤S θ(snd((cf(fid))−1(i)))) ∧
(θ(snd((cf(fid))−1(i))) ≤S θ(thd((cf(fid))−1(i)))) (2)

where i is ranged over the number of entries a particular path
fid has in a routing table, equivalent to the size of the injective
function cf(fid):

i = 1 . . . |cf(fid)|

Formula (2) states that packets should only be routed on
switches of increasing security classifications and therefore,
packets (and hence data) are always travelling in an upward
direction in the security lattice.

The security label for a node itself is returned via the special
function θ, defined as:

θ : N → LS

which takes a number identifying some node and returns the
security label for that node.

A simpler and less restrictive variation of Formula (2) would
have been to say that only the source of the packet is less than
or equal in its security classification than other nodes in the
path on which the packet will travel:

∀n ∈ cf(fid)−1(i) : θ(srcfid) ≤S θ(n)

again where i = 1 . . . |cf(fid)|. This variation is less restrictive
as it allows more freedom for the packets to travel within a
section of the network, as long as the section itself is of higher
classification than the classification of the source node.

1) Implementation in SQL: The upward flow of data condi-
tion as formulated in Formula (2) can be enforced as an RLS
policy defined in the following manner:
CREATE POLICY UpwardFlow ON cf FOR ALL TO

PUBLIC USING ((select zetavalue_ij from
mls_lattice where pid=

↪→

↪→

label_i and sid=label_j)=1 and (select
zetavalue_ij from mls_lattice where
sid=label_i and nid=label_j)=1)

↪→

↪→

WITH CHECK ((select zetavalue_ij from
mls_lattice where pid=label_i and
sid=label_j)=1 and (select zetavalue_ij
from mls_lattice where sid=label_i and
nid=label_j)=1);

↪→

↪→

↪→

↪→

The condition on both the USING and WITH CHECK parts
is similar; this is to ensure that the upward flow of data
condition is preserved both in the current and next state
of the cf table after the changes have been applied to it.
Both conditions ensure that ζ(θ(pid), θ(sid)) = 1 and

ζ(θ(sid), θ(nid)) = 1 to ensure that data are always being
routed to switches classified at higher levels.

Figure 3 shows an example of a routing configuration that
will preserve upward routing of packets (á la Formula (2)).

S1

L4

S2

L5

S3

L3

S4

L2

S5

L4

S6

L1
H1

L4

H2

L1

Fig. 3. Example of Routing Following Upward Flow

C. Enforcing Downward Flow of Data

The next policy we consider is the reverse of the previous
one. It requires packets to travel downward only in terms
of security labels. This policy is similar to the BIBA policy
[6], where data are deemed to be potentially dangerous to
the (integrity of the) entities consuming them. As such, by
reversing the direction of ordering in Formula (2), one can
obtain an integrity-preserving policy:

(θ(thd((cf(fid))−1(i))) ≤S θ(snd((cf(fid))−1(i)))) ∧
(θ(snd((cf(fid))−1(i))) ≤S θ(fst((cf(fid))−1(i)))) (3)

again, where i = 1 . . . |cf(fid)|. This formula ensures that only
high-level entities can forward data to the lower-level ones. It
is also possible to obtain its less restrictive variation as follows:

∀n ∈ cf(fid)−1(i) : θ(n) ≤S θ(srcfid)

Which only compares the level of the source node with a
section of the network on which packets will travel, and does
not require that the flow is continuously going downwards.

1) Implementation in SQL: The BIBA integrity condition
is easy to implement and enforce in SQL as an RLS policy,
as follows, in order to enforce Formula (3):
CREATE POLICY DownwardFlow ON cf FOR ALL TO

PUBLIC USING ((select zetavalue_ij from
mls_lattice where pid= label_i and
sid=label_j)=0 and (select zetavalue_ij
from mls_lattice where sid=label_i and
nid=label_j)=0) WITH CHECK ((select
zetavalue_ij from mls_lattice where
pid=label_i and sid=label_j)=0 and (select
zetavalue_ij from mls_lattice where
sid=label_i and nid=label_j)=0);

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

where this time, ζ(θ(pid), θ(sid)) = 0 and
ζ(θ(sid), θ(nid)) = 0 to ensure that data are always
being routed to switches classified at lower levels. Figure
4 shows a different example of a configuration that will
preserve in this case downward routing of packets.

S1

L1

S2

L3

S3

L2

S4

L3

S5

L1

S6

L4
H1

L2

H2

L5

Fig. 4. Example of Routing Following Downward Flow

VI. CONCLUSION

Since the emerging SDN technology attracts more and
more attention and applications with its benefits in flexibility
and programmability, controlling the network correctly and
efficiently with the new architecture is challenging. The con-
cept of a DDN, as abstraction of an SDN, offers a great
opportunity to simplify the network management. Secure flow
of information in networks will continue to be a challenge
to the network operators due to the increasing demands on
the security of data. We presented in this paper a novel
approach in specifying and directly enforcing security policies
to control the routing configuration in a DDN by using row-
level security checks. We showed how multilevel security
policies, upward and downward, can be enforced on a DDN
using the proposed approach, therefore maintaining a secure
flow of data throughout.

For future work, we plan to investigate how other models of
security policies, e.g. event-condition-actions, contextual and
obligation-based policies [26], Clark Wilson [9] and Chinese
Wall [7] can be managed and enforced within our approach
in order to achieve other aspects of information flow security.
Moreover, we plan to investigate how our approach can be
used alongside other dataflow confidentiality and integrity
mechanisms, such as cryptography, to combine different se-
curity approaches.

REFERENCES

[1] Aschoff, R., Rosendo, D., Machado, M., Santos, A., Sadok, D.: A
network access control solution combining orbac and sdn (2017)

[2] Ballantine, C.M., Frechette, S.M., Little, J.B.: Determinants associated
to zeta matrices of posets. Linear Algebra and its Applications 411, 364
– 370 (2005)

[3] Bari, M.F., Chowdhury, S.R., Ahmed, R., Boutaba, R.: Policycop: An
autonomic qos policy enforcement framework for software defined
networks (2013)

[4] Batista, B.L.A., Fernandez, M.P.: Ponderflow: A new policy specification
language to sdn openflow-based networks (2014)

[5] Bell, D.E., LaPadula, L.J.: Secure computer systems: Mathematical
foundations. Tech. rep., MITRE CORP BEDFORD MA (1973)

[6] Biba, K.J.: Integrity considerations for secure computer systems. Tech.
rep., MITRE CORP BEDFORD MA (1977)

[7] Brewer, D.F., Nash, M.J.: The chinese wall security policy. In: Security
and privacy, 1989. proceedings., 1989 ieee symposium on. pp. 206–214.
IEEE (1989)

[8] Chalyy, D., Nikitin, E., Antoshina, E.J.: A simple information flow
security model for software-defined networks (2015)

[9] Clark, D.D., Wilson, D.R.: A comparison of commercial and military
computer security policies. In: Security and Privacy, 1987 IEEE Sym-
posium on. pp. 184–184. IEEE (1987)

[10] Clayman, S., Clegg, R., Mamatas, L., Pavlou, G., Galis, A.: Monitoring,
aggregation and filtering for efficient management of virtual networks
(2011)

[11] Clegg, R.G., Clayman, S., Pavlou, G., Mamatas, L., Galis, A.: On the
selection of management/monitoring nodes in highly dynamic networks.
IEEE Transactions on Computers 62(6), 1207–1220 (2013)

[12] Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The ponder policy
specification language. Policy 1, 18–38 (2001)

[13] Denning, D.E.: A lattice model of secure information flow. Communi-
cations of the ACM 19(5), 236–243 (May 1976)

[14] Denning, D.E.: On the Deriviation of Lattice Structured Information
Flow Policies. Tech. Rep. CSD TR 180, Purdue University (Mar 1976)

[15] Dilworth, R.P.: Review: G. birkhoff, lattice theory. Bull. Amer. Math.
Soc. 56(2), 204–206 (03 1950)

[16] Foster, N., Harrison, R., Freedman, M.J., Monsanto, C., Rexford, J.,
Story, A., Walker, D.: Frenetic: A network programming language (Sep
2011). https://doi.org/10.1145/2034574.2034812, http://doi.acm.org/10.
1145/2034574.2034812

[17] Galis, A., Rubio-Loyola, J., Clayman, S., Mamatas, L., Kukliński, S.,
Serrat, J., Zahariadis, T.: Software enabled future internet–challenges in
orchestrating the future internet (2013)

[18] Glaeser, N., Wang, A.: Access control for a database-defined network
(2016)

[19] PostgreSQL Global Development Group: PostgreSQL. http://www.
postgresql.org (2008)

[20] Jammal, M., Singh, T., Shami, A., Asal, R., Li, Y.: Software defined
networking: State of the art and research challenges. Computer Networks
72, 74–98 (2014)

[21] Kim, H., Feamster, N.: Improving network management with software
defined networking. IEEE Communications Magazine 51(2), 114–119
(2013)

[22] Kreutz, D., Ramos, F.M., Verissimo, P.E., Rothenberg, C.E., Azodol-
molky, S., Uhlig, S.: Software-defined networking: A comprehensive
survey. Proceedings of the IEEE 103(1), 14–76 (2015)

[23] Lange, S., Gebert, S., Zinner, T., Tran-Gia, P., Hock, D., Jarschel, M.,
Hoffmann, M.: Heuristic approaches to the controller placement problem
in large scale sdn networks. IEEE Transactions on Network and Service
Management 12(1), 4–17 (2015)

[24] Lara, A., Ramamurthy, B.: Opensec: Policy-based security using
software-defined networking. IEEE Transactions on Network and Ser-
vice Management 13(1), 30–42 (2016)

[25] Loo, B.T., Condie, T., Garofalakis, M., Gay, D.E., Hellerstein,
J.M., Maniatis, P., Ramakrishnan, R., Roscoe, T., Stoica,
I.: Declarative networking. Commun. ACM 52(11), 87–
95 (Nov 2009). https://doi.org/10.1145/1592761.1592785,
http://doi.acm.org/10.1145/1592761.1592785

[26] Lupu, E.C., Sloman, M.: Conflicts in policy-based distributed systems
management. IEEE Transactions on Software Engineering 25(6), 852–
869 (Nov 1999)

[27] Macauley, E., Hamilton, B., West, R., Byham, R., Guyer, C.:
Row-level security (2017), https://docs.microsoft.com/en-us/sql/
relational-databases/security/row-level-security

[28] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson,
L., Rexford, J., Shenker, S., Turner, J.: Openflow: enabling innovation in
campus networks. ACM SIGCOMM Computer Communication Review
38(2), 69–74 (2008)

[29] NSA/CSS: Multi-Site Connectivity (MSC) Capability Package V1.0. Ca-
pabilities Directorate (2017), https://www.nsa.gov/resources/everyone/
csfc/capability-packages/assets/files/msc-cp.pdf

[30] PostgreSQL: Row security policies (2017), https://www.postgresql.org/
docs/current/static/ddl-rowsecurity.html

[31] Shin, S., Porras, P., Yegneswaran, V., Fong, M., Gu, G., Tyson, M.:
Fresco: Modular composable security services for software-defined
networks (2013)

[32] Wang, A.: Database criteria for network policy chain. In: Proceedings of
the 2018 ACM International Workshop on Security in Software Defined
Networks & Network Function Virtualization. pp. 49–54. SDN-NFV
Sec’18, ACM, New York, NY, USA (2018)

[33] Wang, A., Mei, X., Croft, J., Caesar, M., Godfrey, B.: Ravel: A database-
defined network. In: Proceedings of the Symposium on SDN Research.
pp. 5:1–5:7. SOSR ’16, ACM, New York, NY, USA (2016)

[34] Wang, A., Mei, X., Croft, J., Caesar, M., Godfrey, B.: Ravel: a database-
defined network (2016), http://ravel-net.org/docs/SOSR16slide2.pdf,
sOSR ’16

