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Abstract

Background: Computer simulation models could play a key role in developing
novel therapeutic strategies for patients with chronic obstructive pulmonary disease
(COPD) if they can be shown to accurately represent the pathophysiological
characteristics of individual patients.

Methods: We evaluated the capability of a computational simulator to reproduce
the heterogeneous effects of COPD on alveolar mechanics as captured in a number
of different patient datasets.

Results: Our results show that accurately representing the pathophysiology of
individual COPD patients necessitates the use of simulation models with large
numbers (up to 200) of compartments for gas exchange. The tuning of such
complex simulation models ‘by hand’ to match patient data is not feasible, and thus
we present an automated approach based on the use of global optimization
algorithms and high-performance computing. Using this approach, we are able to
achieve extremely close matches between the simulator and a range of patient data
including PaO2, PaCO2, pulmonary deadspace fraction, pulmonary shunt fraction, and
ventilation/perfusion (V̇/Q) curves. Using the simulator, we computed combinations
of ventilator settings that optimally manage the trade-off between ensuring
adequate gas exchange and minimizing the risk of ventilator-associated lung injury
for an individual COPD patient.

Conclusions: Our results significantly strengthen the credibility of computer
simulation models as research tools for the development of novel management
protocols in COPD and other pulmonary disease states.

Keywords: COPD; Computer simulation; Mechanical ventilation; Critical care
medicine; Model matching; Global optimization
Background
Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality and dis-

ability internationally and is predicted by 2020 to be the third most likely cause of

death [1,2]. COPD is a progressive disease and is associated with increasing frequency

and severity of exacerbations. Mechanical ventilation (MV), either invasive or non-

invasive, may be a life-saving measure in managing respiratory failure due to an acute

exacerbation of COPD [3]. However, mechanical ventilation is also associated with

significant rates of morbidity and mortality. An improved understanding of the
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underlying pathophysiologic mechanisms of COPD is essential for the development of

more effective and more individualized ventilation strategies for COPD patients.

Computer simulators that can accurately represent the particular disease state of an

individual COPD patient could be an extremely valuable research tool for investigating

the respiratory pathophysiology of COPD and predicting the effects of specific MV set-

tings on the patient. Many researchers have worked on the development of physio-

logical simulators, and various types of mathematical models have been proposed in

the literature (e.g., [4-11]). However, these models generally employed only a very small

number of compartments for gas exchange - in this paper, we show that such model

cannot provide an accurate representation of the particular heterogeneous effects of

COPD on alveolar mechanics. Also, most previous efforts to match physiological simu-

lators to specific disease states have relied on manually manipulating the parameters in

the simulator. Loeppky and co-workers [7] used a two-compartment model to match

the COPD patient data generated from the multiple inert gas elimination technique

(MIGET). Besides the use of a rather simplistic model, the study suffered from the use

of only two parameters to represent V̇/Q mismatching; this is a significant limitation,

since gas exchange in COPD patients is often characterized by different V̇/Q patterns

with two or three modes [12]. In more sophisticated multi-compartmental models,

matching has been achieved with some success by adjusting the resistance for 100 com-

partments manually [13], a challenging and time-consuming task. Indeed, it is obvious

that manual matching is only practical for relatively simple models with a small set of

adjustable parameters and a limited set of patient data for matching.

A small number of previous studies have investigated the use of numerical optimisa-

tion approaches for the model matching task; a tidally breathing model has been

matched to MIGET measurements from emphysema and embolism patients using the

interior-reflective Newton algorithm [14], and two and three compartmental models

were matched to data from intensive care patients with acute lung injury (ALI) using

Brent's method [15]. These studies again used rather simple models with only a few

compartments, and both studies employed very simple optimization algorithms, for

which the quality of the matching achieved depended completely on the initial values

chosen for the optimisation parameters. Since there is very little information available

about how to choose these initial estimates, the likelihood of such approaches finding

the best possible match to patient data is very small. Moreover, due to the simplified

nature of the models used, continuous V̇/Q distributions could not be produced, and

thus, the model outputs can only be compared to patient data at two or three isolated

points on the V̇/Q curve.

In this paper, we investigate the minimum level of complexity required in a computer

simulation model in order to provide a representation of COPD pathophysiology that is

accurate enough to allow the simulator to be used for studies on the design of novel

therapeutic strategies for individual patients. In order to address this question, we em-

ploy a sophisticated simulation model of lung physiology that incorporates tidal ventila-

tion, pulsatile pulmonary blood flow, hypoxic pulmonary vasoconstriction (HPV), a

realistic and validated oxygen-hemoglobin model, and up to 200 individually configur-

able alveolar compartments. Our simulator has been developed over the past decade

and has been used and validated in a number of previous studies [16,17,13]. In the

present study, we couple this simulator to software implementing a global optimization
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algorithm [18], based on evolutionary principles (a genetic algorithm) which allows

large numbers of model parameters to be simultaneously optimized in order to match

the model outputs to detailed COPD patient data. An attractive feature of our approach

from the point of view of clinical researchers and practitioners is that it can be highly

automated, so that the user does not need to have detailed knowledge of the underlying

algorithms but can use the software to fit models of varying complexity to different pa-

tient data sets. To illustrate how the proposed simulator could be used to investigate

questions of clinical relevance, we present the results of an investigation into comput-

ing ventilator settings that optimally manage the trade-off between ensuring adequate

gas exchange and minimizing the risk of ventilator-associated lung injury for an indi-

vidual COPD patient.
Methods
The computational simulator

The simulation used in this study is a multi-compartmental computational model that

uses an iterative technique to simulate integrated respiratory and cardiovascular patho-

physiological scenarios [17,19,20]. A detailed description of the principles and mathem-

atical equations underlying the computational model implemented in our simulator is

provided in Additional file 1. In contrast to previous models of COPD pathophysiology

that included only two or three alveolar compartments, our model allows the user to

define the number of compartments (each with its own individual mechanical charac-

teristics) to be implemented in the simulation. This allowed us to investigate in detail

the relationship between the number of compartments in the model and its ability to

match individual patient data. Each ith alveolar compartment has a unique and con-

figurable bronchiolar resistance RB,i [cmH2O∙s/l], pulmonary vascular resistance RV,i
[dyn∙s/cm5], stiffness index Si [cmH2O/ml2], and extrinsic pressure Pext,i [cmH2O]

(giving 4×N adjustable parameters in total, where N is the number of compart-

ments). The ability to adjust these parameters individually across up to 200 alveolar

compartments allows the model to recreate the heterogeneous effects of COPD on

the overall physiology of the lung. The model also includes specific equations to rep-

resent the effects of alveolar collapse, threshold opening pressure, alveolar stiffening,

and airway obstruction. The net effect of these components of the simulation is that

the defining, clinical features of COPD may be observed in the model: alveolar gas

trapping (with intrinsic positive end-expiratory pressure (PEEP)), collapse-reopening

of alveoli (with gradual reabsorption of trapped gas if reopening does not occur),

limitation of expiratory flow, and increased functional residual capacity - see Additional

file 1 for further details.
Patient data

Two different sets of patient data from the literature are used in this study. The first

dataset is from [21], where a 55-year-old patient is sedated and paralyzed, and relevant

data for configuring the model and ventilator settings are shown in Table 1. For this

case, we attempt to match the outputs of our simulator to the data reported for the fol-

lowing patient variables - PO2, PCO2, deadspace, shunt, mean and standard deviation

of V̇ and Q, and ventilation-perfusion distribution across a number of ranges



Table 1 Model configuration for the first patient dataset

Parameter Value

Respiratory frequency [bpm] 13

Tidal volume [ml] 590

FIO2 0.4

Inspiratory flow pattern Constant flow

Cardiac output [l/min] 5.0

PEEP [cmH2O] 0

IE 1:3

RQ 0.8
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(see Table 2). The second set of patient data is from [12]. The 64-year-old patient is re-

ported to be in a stable condition, and relevant model and ventilator configuration pa-

rameters are shown in Table 3. For this case, we attempt to match our model directly

to patient V̇/Q curves generated via MIGET measurements.

Automated matching to patient data

Exacerbations of COPD are frequently associated with deterioration in gas exchange

and associated hypoxemia. Unsurprisingly, increased inequality in V̇/Q relationships

appears to be the major determinant of these changes [1]. Therefore, a key requirement

for the simulation of COPD pathophysiology is the ability to accurately match the V̇/Q

distributions seen in patient data. In our simulator, the V̇/Q distribution can be manipu-

lated by adjusting the bronchiolar resistance and pulmonary vascular resistance, stiffness,

and extrinsic pressure for each compartment in the model. For example, by increasing

vascular resistance in a region of the lung, an area of relative dead space can be created.

While all parameters can be manually adjusted, this becomes impractical as the number

of compartments N in the model increases, since the total number of parameters is 4×N.

To address this issue, we formulate the model-matching problem as an optimization

problem, where the difference between the model outputs and the data is captured in a

cost function, and the model parameters that can be varied are the variables for the

optimization problem. As mentioned above, two sets of patient data are considered in

this study. For both cases, a primary focus is on accurately representing the imbalance

in the V̇/Q distribution caused by the disease state. In the first dataset [21], the hori-

zontal axis of the V̇/Q diagram is divided into several segments on which the percent-

age of V̇/Q indicated in the data will be matched. Other parameters that also need to

be matched include PaO2, PaCO2, and mean and standard deviation of ventilation and

perfusion. For the second case, the whole V̇/Q curve is considered (i.e., every point on

the curve is to be matched). The matching error can then be defined based on these

data, which is given as:

ET ¼
Xn

i¼1

Ei
2

where ET is the total residual error representing the matching accuracy, Ei ¼ xi−xid is
xid

the error for parameter i, xi is the model output value for parameter i, and xid is the

value of the data for parameter i.



Table 2 Matched parameter values and the reference data for the first patient dataset

No. Parameter Data Model outputs (N = number of compartments)

N = 10 N = 25 N = 50 N = 100

1 PaO2 [mm Hg] 125.2 165.29 143.18 133.73 127.92

2 PaCO2 [mm Hg] 46 43.08 44.73 43.62 45.76

3 Dead space fraction 64.9 61.24 62.76 61.28 65.28

4 Shunt fraction 6.8 12.9 9.02 8.07 7.2

5 mean_ V̇ 0.99 1 1 1 1

6 mean_Q 0.27 0.2 0.2 0.25 0.2

7 sd_V̇ 1 0.92 1.15 0.92 1.15

8 sd_Q 1.34 1.38 1.38 1.38 1.38

9 0.1 < V̇/Q < 1, V̇ 19.9 20.43 20.06 22.68 19.94

10 1 < V̇/Q < 10, V̇ 14.3 19.69 16.57 16.47 14.48

11 0.01 < V̇/Q < 0.1, P 15.8 22.63 18.86 14.64 16.16

12 0.1< V̇/Q < 1, P 62.1 55.21 58.12 65.57 64.92

13 1 < V̇/Q < 10, P 10.9 11.05 11.58 10.63 10.56

Total matching error 1.33 0.46 0.11 0.10

Simulation time [h] 11 32 41 67
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Global optimization algorithms can then be used to find model parameter values that

minimize the value of ET, i.e., minimize the difference between the model outputs and

the data. The procedure is illustrated in Figure 1 - in each iteration, a set of parameter

combinations are sent to the simulator, and the outputs from the simulator are evalu-

ated by the optimization algorithm which then generates the updated parameter values

for the next iteration until the termination criterion is reached (i.e., the condition to

get a best matching is found).

In the model-matching procedure, the model parameters are allowed to vary continu-

ously between physiologically realistic upper and lower bounds - see Table 4. COPD is

characterized by restrictions to flow in airways (bronchi and bronchioles) due to in-

creased excretion of mucus and inflammation of the bronchiolar walls, effectively redu-

cing the radius of the tube through which the airways ventilate the alveoli. Based on

the Hagen-Pouiselle relationship:

R∝
ηL
r4
Table 3 Model configuration for the second patient dataset

Parameter Value

Respiratory frequency [bpm] 16

Tidal volume [ml] 410

FiO2 0.21

Inspiratory flow pattern Constant flow

Cardiac output [l/min] 3.4

PEEP [cmH2O] 0

IE 1:3

RQ 0.8



Figure 1 Conceptual representation of the model matching process.
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the resistance (R) in a single tube is directly proportional to the length (L) of the tube and

the viscosity (η) and inversely proportional to the fourth power of the radius (r4). To achieve

the required precision in matching the extreme ranges of V̇/Q distributions for the second

dataset, we have investigated the effect of increasing the upper bound on compartmental re-

sistances from 500 to 2,000 times their nominal values, i.e., the radius of the airways can be

reduced by as much as 85%. To ensure that this does not result in model configurations that

produce unrealistic values for total lung resistance, we incorporated a constraint function

into the optimization algorithm that limits the increase in the total lung inflow resistance to

ten times its basic (healthy) value, as expected in patients with COPD [22].

Previous attempts to use optimization for matching models of pulmonary disease states

to patient data have used rather simple algorithms that require good initial ‘guesses’ for

the parameters in order to be effective. In the case of COPD, however, current under-

standing of the associated pathophysiology provides little guidance into how to choose ini-

tial values for the model parameters across large numbers of alveolar compartments. In

this study, we therefore employed an advanced global optimisation algorithm known as a

genetic algorithm. This general purpose stochastic search and optimization procedure,

based on genetic and evolutionary principles [23], has been shown to have a much higher

chance of finding optimal solutions for difficult problems with large numbers of variables.

Full details of the particular optimization algorithm used in this study and how it was im-

plemented with the model are provided in Additional file 1.
Using the simulator for clinical investigations

To illustrate how the simulator can be used for clinical investigations, we consider the prob-

lem of identifying ventilator settings that minimize the risk of ventilator-associated lung in-

jury (VALI). We consider the following five key ventilator settings as variable parameters

that may be adjusted to optimize the trade-off between effective gas exchange and minimiz-

ing the risk of VALI: (1) tidal volume (Vtidal, [ml]) - the volume of air traveling in or out of

the patient's lungs during every breath; (2) ventilation rate (VentRate, [breaths/min]) - the

number of breaths per minute; (3) duty cycle (I:E) - the ratio of inspiratory time to total

ventilatory cycle duration; (4) PEEP, [cmH2O] - the positive pressure in the lungs at the end

of exhalation; and (5) fraction of inspired oxygen (FIO2) - the fraction of oxygen constituting

the inhaled volume of gas as provided by the mechanical ventilator.



Table 4 Model parameters – nominal values and allowable ranges (for N = 100)

Parameters Nominal value Variation ranges

Bronchiolar resistance RBi [cmH2O∙s/l] 600 [300, 3 × 105]

Vascular resistance RVi [dyn∙s/cm5] 1.6 × 104 [8 × 103, 8 × 106]

Stiffness coefficient Si [cmH2O/ml2] 0.05 [0.025, 0.15]

Extrinsic pressure Pext,i [cm H2O] 28.8 [−20, 28.8]
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The maximum allowable ranges of variation for the values of these parameters have

been defined based on current clinical practice and to be consistent with data available

from clinical trials [24,25]. Vtidal is allowed to vary within a range from 390 to 650 ml,

corresponding to 6 to 10 ml/kg for a body weight of 65 kg. VentRate is bounded within

the range 9 to 16 breaths/min, I:E is limited to the interval 0.25 to 0.5 (i.e., a ratio be-

tween 1:4 and 1:2), PEEP is constrained within 0 to 5 cmH2O, and FIO2 is bounded

within 0.21 to 1. A summary is provided in Table 5.

Three key physiological indicators are also defined. To monitor effective arterial oxy-

genation, partial pressure of oxygen, PaO2, needs to be considered. In order to maintain

effective arterial oxygenation, PaO2 is constrained to be higher than 8 kPa, with a de-

sired value of 12 kPa. Arterial partial pressure of carbon dioxide, PaCO2 is another key

indicator of alveolar ventilation that also indirectly reflects acid-base balance. PaCO2 is

constrained to be between 4 and 8 kPa with a desired value of 5.3 kPa. The risk of

barotrauma is proportional to the peak alveolar pressure, (Palv, kPa above atmospheric

pressure), and Palv is limited to 4 kPa, where Palv is calculated as the average of the

peak pressure in the most highly pressurized 25% of all alveoli.

Requirements on the above physiological indicators can be captured as an optimization

problem and formulated mathematically as:

min J1; ; J2f g
where
J1 ¼ w1 PaO2−12j j þ w2 PaCO2−5:3j j
J2 ¼ w3Palv
Table 5 MV setting parameter variation bounds and desired model outputs

Variation ranges

Acceptable values Desired

MV setting parameters

Vt [ml] [390, 650]

VentRate [bpm] [9,16]

I:E [0.25, 0.5]

PEEP [cmH2O] [0, 5]

FiO2 [0.21, 1]

Model outputs

PO2 [kPa] >8 12

PCO2 [kPa] >4, <8 5.3

Palv [kPa] <4 -
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Large values of J1 will be produced by ventilator settings that provide poor gas ex-

change, while large values of J2 will be produced by combinations of ventilator settings

that cause high peak alveolar pressures (and hence increase the risk of VALI). By re-

quiring both J1 and J2 to be minimized simultaneously, we can search for combinations

of ventilator settings that optimally manage the trade-off between effective gas ex-

change and minimizing the risk of VALI. w1,w2, and w3 are weighting functions that

are used in the optimization process to ensure that equal priority is given to each of

the different objectives. Since we are trying to minimize two objectives J1 and J2 at the

same time, a multi-objective optimization algorithm called non-dominated sorting

genetic algorithm II (NSGA-II) was used here [26].
Results
Matching results for the first dataset

For the first dataset, the ventilation-perfusion distribution is characterized by several

segments based on the V̇/Q ratio, which includes the amount of ventilation in the

ranges 0.1< V̇/Q < 1 and 1< V̇/Q < 10, and the amount of perfusion in the ranges 0.01<

V̇/Q < 0.1, 0.1< V̇/Q < 1, and 1< V̇/Q < 10 together with the shunt and dead space.

Other data considered are the PO2, PCO2, mean V̇/Q ratio of the pulmonary blood

flow, and ventilation distribution as well as standard deviations (dispersion) of pulmon-

ary blood flow and ventilation. The simulation was performed separately for four cases

with the total number of compartments in the model being varied between 10, 25, 50,

and 100 to represent different levels of model complexity.

Figure 2 and Table 2 report the fitted results for each scenario. It can be seen that

incorporating a larger total number of compartments into the model significantly

improves its ability to accurately represent the patient data, with the total fitting error

reduced from 1.33 for 10 compartments to 0.46 for 25 compartments, to 0.11 for 50

compartments. Interestingly, when the total compartment number is increased from 50

to 100, the fitting error only reduces from 0.11 to 0.10, indicating that for this
Figure 2 Comparison of matching errors for different numbers of compartments. Bars show matching
error for each of the 13 parameters for simulation models with N = 10 (blue), 25 (red), 50 (green), and 100
(purple) compartments; E is total matching error.
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particular dataset, 50 compartments represent an adequate level of complexity. Consid-

ering that the computational burden associated with the parameter optimization rises

proportionally with the complexity of the model, the ability to identify just how com-

plex a model needs to be is clearly of primary importance for this type of problem.
Matching results for the second dataset

In the second dataset, we attempt to reproduce in our model the complete V̇/Q curve

generated from MIGET results [12]. Forty evenly distributed points are selected along

the logarithm axis from 0.01 to 100 with each point representing an equal small seg-

ment. The ventilation and perfusion at each point are calculated by summing up the

ventilation and perfusion of all alveoli with V̇/Q ratio that falls into the respective seg-

ment. The values at each point are then compared with the data, and the total error

was calculated based on Equation 1. An initial minimum number of 50 compartments

were used in the model, based on the results of the previous dataset reported above.

However, as shown in Figure 3a, with this number of compartments, a large discrep-

ancy is observed between the data and best model fit (total fitting error 5.68). When

the number of compartments is increased to 100 and 200, however, it can be seen from

Figure 3c,e that the ability of the model to represent the V̇/Q curve improves, with the

fitting error reducing to 4.46 and 3.91, respectively. To improve the model fit over the

left part of the V̇/Q curve, higher bounds on the resistance variation �R were then

allowed in the optimization procedure. Figure 3b shows that, for 50 compartments, the

V̇/Q curve in the range of 0.1 to 3 is matched much more closely after using a higher

upper bound for the resistance, and the total matching error E is reduced from 5.68 to

4.25. Increasing the number of compartments to 100 and 200 further reduces the

matching error to 3.24 and 2.80, respectively, so that, as shown in Figure 3f, a very ac-

curate representation of the total V̇/Q curve can be produced by the model. Note that,

for the higher upper bound on the resistances, the use of a constraint function in the

optimization algorithm to ensure that the total lung resistance stays within physiologic-

ally reasonable values for COPD patients results in a doubling of the overall computa-

tion time required for the optimization to converge.
Computation of optimal ventilation strategies using the simulator

Table 6 compares the optimal MV settings computed using our simulator with those

provided in the first patient dataset [21]. Figure 4 shows the so-called Pareto front

returned by the NSGA-II algorithm. Each point on the Pareto front corresponds to a

combination of ventilator settings for which any improvement in one objective function

(e.g., gas exchange) necessarily results in a deterioration in the other (e.g., peak alveolar

pressure). Thus, the Pareto front defines the trade-off inherent in the problem and al-

lows us to investigate how different combinations of ventilator settings manage that

trade-off. The optimal settings reported in Table 6 correspond to point No. 1 in Figure 4

and provide the most balanced solution to the two competing objectives. Compared

with the data values, the peak alveolar pressure has been reduced from 5.1 kPa to 3.8

kPa, so that it is now within the maximum specified value of 4 kPa. This improvement

has been achieved at the cost of a small increase in PaCO2 (from 6.1 to 6.3 kPa), while

the value of PaO2 (12.2 kPa) is now very close to its desired value of 12 kPa. This



Figure 3 Simulated V̇/Q distribution compared with the data. N is the number of compartments used,
�RBi denotes upper bounds of bronchiolar resistance, and �RVi denotes upper bounds of vascular resistances
for the ith compartment. (a) N = 50, �RBi = 3 × 105, �RVi = 8 × 106, Error = 5.68. (b) N = 50, �RBi = 1.2 × 106,
�RVi = 3.2 × 107, Error = 4.25. (c) N = 100, �RBi = 3 × 105, �RVi = 8 × 106, Error = 4.46. (d) N = 100, �RBi = 1.2 × 106,
�RVi = 3.2 × 107, Error = 3.24. (e) N = 200, �RBi = 3 × 105, �RVi = 8 × 106, Error = 3.91. (f) N = 200, �RBi = 1.2 × 106,
�RVi = 3.2 × 107, Error = 2.80.
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‘rebalancing’ of the ventilator settings in favor of a more lung protective strategy has

been achieved principally by reducing tidal volume from 590 to 506 ml, while simultan-

eously increasing the ventilation rate from 13 to 15 bpm. Changes in the other three

ventilator settings are more modest, indicating that they have a relatively smaller influ-

ence on the chosen physiological indicators for this patient. Moving along the curve

shown in Figure 4, different combinations of ventilator settings are computed which

place more emphasis on one objective or the other. Point No. 2, for example, corresponds

to a maximally protective strategy, where Palv has been further reduced to 2.8 kPa, at the

cost of increasing PaCO2 to 7.4 kPa and reducing PaO2 to 11.9 (note that both PaCO2

and PaO2 are still within their specified limits).



Table 6 Optimal MV settings and model outputs compared with first patient dataset

Data Optimal

MV setting parameters

Vt [ml] 590 506

VentRate [bpm] 13 15

I:E 0.33 0.32

PEEP [cmH2O] 0 1

FiO2 0.4 0.3

Model outputs

PaO2 [kPa] 17 12.2

PaCO2 [kPa] 6.1 6.3

Palv [kPa] 5.1 3.8
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Discussion and conclusions
The high mortality and morbidity associated with COPD will make the condition a crit-

ical health burden for the future, particularly if current trends are allowed to continue

[27,28]. The main treatment option for critical exacerbations of COPD remains mech-

anical ventilation (non-invasive and invasive) and for long-term management, oxygen

therapy [25]. Prognosis of COPD is worsened with underlying respiratory failures, add-

ing greatly to the cost of treating the disease [29,30]. Research into the condition using

animal models of lung injury and in vitro experiments have failed to show a clear way

forward, and large-scale clinical trials to monitor long-term effects in this fragile popu-

lation are not possible [31,6].

Computer simulations [6,32] offer a potentially powerful alternative platform for re-

search into the development of new treatment strategies, but no previous studies have

been able to demonstrate adequate matching to the particular disease characteristics of
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COPD. In this study, we have described a computer simulation model that can accur-

ately simulate an individual COPD patient receiving MV. Our study has focused on sin-

gle patient subjects described in the literature, and the two studies that have been

selected represent the spectrum of COPD cases that are found in clinical practice. Our

results clearly show the importance of employing mathematical models of sufficient

complexity to allow an accurate representation of disease states in individual patients.

In particular, the heterogeneous effects of COPD on lung alveoli in different regions of

the lung make it essential that large numbers of compartments are included in the

model - for all datasets considered, matching between the simulation outputs and pa-

tient data was significantly improved as the number of alveolar compartments in the

model was increased.

The need for a large number of compartments with heterogeneous dynamics creates

an additional challenge - how to choose appropriate values for the large number of cor-

responding model variables. Indeed, a second major conclusion of our study is that

‘manual’ tuning of such parameters is simply not feasible for models of the complexity

required. Instead, we have shown how global optimization algorithms, implemented

using sophisticated parallel processing protocols, can allow optimal values of very large

numbers of parameters to be identified. A significant advantage of this approach is that

it can be largely automated, with the clinical researcher needing only to input the pa-

tient data and the simulation platform taking care of all other aspects of the model-

matching process.

Due to the nature of COPD, multiple comorbidities are associated with the symptoms

and development of COPD including inflammation and heart and kidney dysfunctions.

This presents a unique challenge to the clinician in terms of maintaining the correct

balance between raising pressures and delivering oxygen, while keeping hypercapnea

and hypoxia to a minimum [33,34]. The clinician needs to monitor multiple aspects of

physiology simultaneously, and many adverse effects are not always immediately clear.

Currently, MV is applied in a rather generic manner; however, the clinicians have rec-

ognized the need for accounting for inter-patient variation [35,36]. VALI due to over-

stretching of lung parenchyma can be minimized by applying lower tidal volumes [37],

but this needs to be achieved without allowing PaCO2 and pH to rise to dangerous

levels (permitted hypercapnea). Sophisticated computer simulation platforms that can

accurately represent individual COPD patient characteristics could provide a powerful

experimental tool for the development of improved treatment strategies for COPD that

address many of the above issues.
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