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Abstract

Tyres are one of the most important safety components on a vehicle. Ignoring or failing to correctly set the tyre pressure

may lead to accidents, and can affect the vehicle’s fuel efficiency and tyre lifespan. Hence, there is a need for a Tyre

Pressure Monitoring System (TPMS) that can effectively monitor tyre condition. The current threshold-based TPMSs

are characterised by a high number of false alarms. This is mainly due to: (i) the non-static and complex relationship

between tyre pressure and temperature; and, (ii) the measurement error of the pressure/temperature sensors that are

used for data collection. In this paper, we propose an innovative decision rule-based approach to tyre monitoring.

This approach relies on the Dominance-based Rough Set Approach (DRSA), which is a well-known multicriteria

classification and preference learning method. The DRSA takes a decision table as an input and it generates a collection

of if-then decision rules as an output. The complexity of pressure/temperature relationship is solved by fixing one of the

parameters and then generating the decision rules based on the other parameter. The problem of false alarms is solved

by a discretisation of the scale of the fixed parameter. Based on these solutions, we designed two types of analysis

levels: pressure-oriented analysis and temperature-oriented analysis. The proposed approach has been validated and

implemented within an important travelling company that operates in the South of England. The real-world tests showed

that the proposed approach has improved the current system and has led to a substantial reduction of false alarms.

Keywords: Rough sets, dominance-based rough set approach, tyre pressure monitoring system, tyre pressure, tyre

temperature

1. Introduction

Although tyres are one of the most important safety components on a vehicle, they are often ignored. However, a

tyre’s condition is critical for vehicle safety. According to Royal Automobile Club (2016), over 3 million motorists put

their life at risk by never checking their tyre pressure or general tyre condition. The study in Royal Automobile Club

(2016) reveals that one in eight vehicles on the UK roads have at least one illegal tyre. This was described as an

alarming degree of neglect by the Automobile Association (which is a British motoring association that provides car

insurance, motoring and safety advice, and other services). TyreSafe, in partnership with Highways England, surveyed
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over 340,000 tyres as they were being replaced at 819 retail outlets across England, Northern Ireland, Scotland and

Wales. Their survey reveled that the average proportion of illegal tyres at the point of replacement across the UK was

more than 27%. This means that one-in-four of the 35 million cars and light commercial vehicles on the UK roads are

currently being driven with illegal tyres. Dangerous tyre condition, which includes under- or Over-inflated tyres, is the

largest single contributor to accidents that result in casualty. About 6% of fatal motorway accidents are a result of the

sudden failure of Under-inflated tyres (Royal Automobile Club, 2016).

More so, a smaller tyre deflection (17%) can increase fuel consumption by 2% and decrease the tyre’s lifespan

by 25%. Every year in the European Union, 20 million tons of fuel are wasted, 2 million tons of carbon-dioxide are

generated and 200 million tyres are wasted before the end of their expected lifespan (Marton et al., 2014). Tyre safety

is simply not an option but is a necessity. This has prompted the need for a Tyre Pressure Monitoring System (TPMS)

(see Section 2) that monitors the internal tyre conditions using sensors and which alerts the user when the temperature

or pressure crosses a set threshold.

This paper proposes an innovative decision rule-based approach to tyre monitoring that is based on data collected

from one of the UK’s South-West coach operators. This approach relies on the Dominance-based Rough Set Approach

(DRSA), which is a well-known multicriteria classification and preference learning method (Greco et al., 2001, 2002;

Słowiński et al., 2002, 2012). The DRSA takes a decision table as an input and it then generates a collection of

if-then decision rules. The DRSA has some powerful characteristics that make it attractive in real-world decision

problems (Chakhar et al., 2016). Among the main characteristics of the DRSA is the use of a learning set as an input

to elicit and generalise the preferences of the decision makers, which minimises the cognitive effort required from

them. Although the use of a learning set as an input has been adapted in several multicriteria classification methods,

the main addition of the DRSA as compared to other multicriteria classification methods is its simplicity and its

easily understandable if-then decision rules provided as an output, while other methods have no such straightforward

interpretation (Blaszczyński et al., 2012).

The non-static/dynamic relationship between tyre pressure and temperature aswell as the measurement error of the

sensors, the application of the DRSA using both the temperature and pressure values will lead to a high number of

non-coherent and conflicting decision rules. In addition, using the current threshold-based approach may lead to false

alarms. The author’s proposed solutions to resolve these issues consist of: (i) fixing one of the parameters and generating

the decision rules based on the other parameters; and, (ii) a discretisation of the scale of the fixed parameter. These

two solutions resolve the issue related to the non-static/dynamic relationship between tyre pressure and temperature,

subsequently preventing false alarms. Based on these solutions, we designed two types of analysis levels: (i) pressure-

oriented analysis; and, (ii) temperature-oriented analysis. The principle of these analysis levels is to discretise the fixed

parameter values into a set of ordered ranges, then construct a decision table for each range, and then use the DRSA to

infer a collection of decision rules. The generated decision rules need to be validated and refined by adding the implicit

condition relative to the fixed parameter (temperature in the case of pressure-oriented analysis or pressure in the case

of temperature-oriented analysis).

The proposed approach has been validated and implemented within an important travelling company that operates
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in the South of England. Our real-world tests showed that the proposed approach considerably improved the tyre

monitoring system and led to a very substantial reduction of false alarms.

The rest of the paper is organised as follows. Section 2 introduces the TPMS, and it discusses the main approaches

to design and implement them. Section 3 details the decision rule-based proposed approach to the TPMS. Section

4 comments on the system implementation and validation. Section 5 presents the case study. Section 6 provides a

comparative study and validates the analysis approach with large datasets. Section 7 concludes the paper.

2. Tyre maintenance and existing approaches to tyre pressure monitoring systems

This section introduces the concept of tyre maintenance and it describes the various forms of wear caused by

incorrect tyre inflation (Section 2.1). It also explains TPMS, which can be divided into two categories, namely: direct

TPMS (dTPMS) and indirect TPMS (iTPMS) (2.2). Finally, the main shortcomings of the current approaches are

discussed (Section 2.3).

2.1. Tyre maintenance

Ensuring that tyres are inflated at the correct pressure is vital because the pressurised air in the tyres helps to support

the weight of the vehicle and its load. As mentioned in Section 1, it can also affect the vehicle’s fuel efficiency. The

required tyre pressure often varies among vehicle type, tyre make and/or load being carried. It is recommended that

the tyre pressure is checked regularly against the manufacturer’s recommended pressure for the right load profile of

the vehicle. This is essential for commercial vehicles because of the variation of their load. The recommended tyre

inflation pressure is normally based on the vehicle’s specification and on the tyre’s walls. The effects of having the

correct or incorrect inflation pressure on the tyre wear/tread pattern is shown in Figure 1. It can be seen that the tyre

tends to wear more on both sides when Under-inflated and it wears more at the centre when Over-inflated. These uneven

wear patterns are a risk to the driver, including: reducing road traction, increasing stop time, increasing the risk of tyre

blowout (which can be fatal in some cases), and they can lead to a potential police fine and 3 points on a driving license.

These issues have increased the need for a TPMS that is able to monitor the tyre condition in real-time.

Figure 1: Effect of Tyre Inflation Pressure
Source: http://www.rsa.ie/PageFiles/5206/TyreXSafety_Information_Guide_.PDF
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2.2. Tyre pressure monitoring system

A TPMS is an electronic system that is designed to monitor the air pressure inside pneumatic tyres. The TPMS

reports the real-time tyre temperature and pressure reading to the driver or a central control unit. This can be done

with a gauge, a pictogram display or a simple low-pressure warning light. There are two types of TPMS: dTPMS and

iTPMS. The TPMS is provided either at factory level for cars or it can be made available as an aftermarket solution.

The use of a TPMS can reduce the likelihood of road accidents caused by tyres, and they can increase fuel efficiency

and reduce tyre wear due to Over- or Under-inflation.

2.2.1. Indirect tyre pressure monitoring system

An iTPMS relies on the wheel speed sensors that are used by the anti-lock braking system. These sensors measure

the rate of revolution of each wheel, which are then compared to themselves and other vehicle operating data, such as

the speed, through an on-board computer system. The first generation iTPMS are based on the premise that Under-

inflated tyres will have a smaller diameter (hence, a higher angular velocity) as compared to correctly inflated tyres.

However, this approach fails when there are several Under-inflated tyres. The second generation iTPMS resolves the

problem of simultaneous detection by using spectrum analysis of individual wheels. This can be realised using advanced

signal processing techniques. Spectrum analysis is based on the principle that certain Eigen forms and frequencies of

the tyre/wheel assemble are highly sensitive to the inflation pressure. These oscillations can be monitored through

advanced signal processing of the wheel speed signals (Premarsha, 2016).

An example of an iTPMS is discussed in Na et al. (2016) (see also Na et al. (2017)). However, this approach of tyre

monitoring can become inaccurate and unreliable when a different tyre is purchased, the tyres are unevenly worn, or

the system had not been reset after proper inflation or after tyre rotation. Thus, tyre pressure must be measured directly

to ensure that the driver/operator receives reliable information.

2.2.2. Direct tyre pressure monitoring system

A dTPMS employs pressure/temperature sensors on each wheel, either internal or external. The sensor measures

the tyre pressure/temperature of the individual wheel and sends this information to the driver and/or to a data collection

point. This device can detect Under-inflation in any combination, be it just one or multiple tyres simultaneously.

This is presently the most widely used approach because it resolves some of the issues faced using iTMPS and can

simultaneously detect tyres Under/Over-inflation. There are five types of dTPMS that are able to directly measure the

tyre pressure/temperature of a heavy vehicle, which are: rim mount (inside tyre envelope), tyre patch (mounted to tyre

inside tyre envelope), interior valve stem (inside tyre envelope), flow-through (outside of tyre) and end-of-valve stem

mount (outside of tyre) (Premarsha, 2016). This paper used the rim mount dTPMS approach. The system consists of

sensors, unique identifier chip, antenna, display unit, transceiver (trailer box) and vehicle identification number.

2.3. Some existing approaches

The current TPMS systems are pressure based and they are a threshold system, where the end user sets the mini-

mum and maximum pressure for an alert. However, the tyre temperature and pressure relationship is not static since

temperature varies with pressure in a complex way. This can result in a false alarm because the daily variation of tyre
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internal temperature can be considerably high, especially in a hot climate. This can cause the pressure to exceed the set

threshold, thereby triggering a false fault alarm. It is imperative to dynamically determine the appropriate pressure at

certain temperature to avoid a false alarm and also to detect early tyre defects. This can be resolved by an appropriate

decision making algorithm that is temperature and pressure dependant.

Vishnoi et al. (2015) developed a wireless TPMS electronic system that measures the tyre’s internal tempera-

ture/pressure and then sends this data through a Radio Frequency (RF) remote controlto an on-board system. This

paper focused on the hardware requirements for the design of a simplified TPMS system with no data analysis.

Hasan et al. (2011) introduced a method to implement TPMS in vehicles. These authors proposed a system that relies

solely on air pressure inside pneumatic tyres of automobiles. A warning is generated whenever tyre pressure crosses the

maximum or minimum safe pressure level, or when it changes abruptly. The lower level and upper limit of tyre pressure

or safe range of abrupt change can be modified by the user. The paper by Karhe & Patil (2016) focused on the design

and development of a TPMS system based on Android using the ATmega16 microcontroller. The tyre temperature

and pressure measurements from the sensors are displayed on an Liquid-Crystal Display (LCD) display and they can

be sent to an Android phone through Bluetooth. There is no additional processing of the temperature and pressure

measurements.

Garcia-Pozuelo et al. (2017) implemented a novel strain-based method to estimate tyre conditions such as inflation

pressure, vertical load or rolling speed using fuzzy logic. Coppo et al. (2017) developed a multi-sensing set-up to

measure experimentally the tyre strain using optical sensors on a rolling tyre. Kubba & Jiang (2014) conducted a

compressive study of TPMS technologies and potential energy saving solutions. The study focused on comparing

various types of pressure transducers, their measuring accuracy and power consumptions.

Svensson et al. (2017) designed and developed an iTPMS using a supervised machine learning approach. The

system permits to detect both incorrect tyre pressure and thread depth for different type of vehicles within a fleet

without the need for additional physical sensors or vehicle specific parameters. The empirical results showed that the

developed system has an accuracy of 90.54%. The limitation of their work lies in the use of iTPM as outlined in Section

2.2.1. More so, their confusion matrix showed that 10.93% of the mislabelled are false negative and 89.9% are false

positive. This means more faulty tyres are misclassified as good, which can be catastrophic. It is important that this

false positive be reduced to the barest minimum.

The authors in Li et al. (2010) proposed a fuzzy comprehensive evaluation model to determine and classify tyre

safety states into five levels of safety, namely: Very Safe, Safe, Basic Safe, Dangerous, Very Dangerous. The fuzzy

model consists of five input variables, which are: tyre temperature, pressure, vehicle speed, tyre load and tyre wear.

They used the Analytic Hierarchy Process (Saaty, 1980) to compute the relative weight of all the input parameters.

These weights are then used to identify the tyre’s safety state.

2.4. Summary

Based on this discussion, we can identify several shortcomings that characterise existing approaches:

• The current threshold-based TPMSs are characterised by a high number of false alarms. This is mainly due to: (i)
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the complex relationship between tyre temperature and pressure (which are the main input parameters to TPMS);

and, (ii) the measurement errors of the sensors used for the data collection.

• Also, most of the existing studies focused on the technical aspects of the TPMS hardware, and they gave little

attention to the decision aspects.

• Apart from the proposal of Li et al. (2010), none of the above-cited studies addresses tyre pressure monitoring

using multicriteria analysis. Most of the previous systems focused on a single parameter (most often pressure)

along with a set threshold.

• As a consequence, existing approaches cannot handle the complex relationship between pressure and temperature

variables and their preference direction.

• The use of conventional machine learning approaches is insufficient to consider the ordinal relationships that

characterise tyre health situations.

3. Proposed approach

The objective of this section is to present a rule-based decision approach to TPMS. This approach relies on the

DRSA, which is a well-known multicriteria classification and preference learning method. A brief overview of the

DRSA is provided in Section 3.1, and followed by an analysis strategy in Section 3.2. Induction and refinement of

monitoring rules are addressed in Section 3.3. Finally, the validation and exploitation of these rules are discussed in

Section 3.4.

3.1. Principles of Dominance-based Rough Set Approach

The extraction of monitoring rules relies on a well-known multicriteria classification method, namely the DRSA.

The DRSA principles and concepts are given in the rest of this subsection and a formal and brief overview of DRSA

is given in Appendix A. The input for the DRSA is a decision table S = ⟨U,Q, V, f⟩, where U is a non-empty finite

set of objects and Q is a non-empty finite set of attributes such that q : U → Vq for every q ∈ Q. The Vq is the domain

of attribute q, V =
∩

q∈Q Vq , and f : U ×Q → V is the information function defined such that f(x, q) ∈ Vq for each

attribute q and object x ∈ U . The set Q is divided into a subset F ̸= ∅ of condition attributes and a subset D ̸= ∅ of

decision attributes, such that F ∪D = Q and F ∩D = ∅. The domains of the condition attributes are supposed to be

ordered according to a decreasing or increasing preference. These attributes are called criteria. The DRSA assumes that

the preference is increasing with f(·, q) for every q ∈ F . They also assume that the set of decision attributesD = {E} is

a singleton. The unique decision attribute E makes a partition of U into a finite number of preference-ordered decision

classes Cl = {Clt, t ∈ T}, T = {0, · · · , n}, such that each x ∈ U belongs to one and only one class.

Due to the ordinal nature of decision classes, the knowledge is represented through a collection of upward unions

Cl≥t and downward unions Cl≤t of classes of classes as follows:

Cl≥t =
∪
s≥t

Cls, Cl≤t =
∪
s≤t

Cls.
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The assertion “x ∈ Cl≥t ” means that “x belongs to at least class Clt” while assertion “x ∈ Cl≤t ” means that “x belongs

to at most class Clt”.

The main philosophy of rough set theory is to handle inconsistent data by clearly separating certain and doubtful

information. By inconsistent data, we mean data containing examples described by the same criteria values but assigned

to different decision classes. This means that rough set theory does not correct or aggregate inconsistencies but handles

them by determining for each decision class its lower approximation (corresponding to districts which certainly belong

to the class according to their description) and its upper approximation (corresponding to districts which possibly

belong to the class). Boundary is the difference between upper and lower approximations.

The definition and computation of the lower and upper approximations relies on the dominance relation. The

principle of dominance requires that a district x dominating district y on all considered criteria (i.e. x having evaluations

at least as good as y on all considered criteria) should also dominate y on the decision (i.e. x should be assigned to at

least as good decision class as y). Districts satisfying the dominance principle are called consistent, and those violating

the dominance principle are called inconsistent.

The dominance relation is used to define two types of knowledge granules generated by the criteria set. These

granules are dominance cones associated with each district x in the set of learning examples. The first type is denoted

∆+(x) and called dominating set or positive dominance cone containing the district that dominates x. The second type

is denoted ∆−(x) and called the dominated set or negative cone containing the district dominated by x.

The lower approximation of union of classes Cl≥t is composed of such districts x that the positive dominance cone

∆+(x) in the criteria space is included in this union. The upper approximation of union of classes Cl≥t is composed of

such districts x that the negative dominance cone ∆−(x) in the criteria space has a non-empty intersection with this

union. Analogously, the lower approximation of union of classes Cl≤t is composed of such districts x that the negative

dominance cone ∆−(x) in the criteria space is included in this union. The upper approximation of union of classes

Cl≤t is composed of such districts x that the positive dominance cone ∆+(x) in the criteria space has a non-empty

intersection with this union.

The obtained approximations are then used to induce a collection of decision rules that summarize the content of

decision table. Decision rules take the form of ‘if–then’ conditional statements. The condition part specifies the values

assumed by one or more criteria, and the decision part specifies an assignment to one or more decision classes. The

following three types of decision rules may be considered: (i) certain rules generated from the lower approximations of

unions of classes; (ii) possible rules generated from the upper approximations of unions of classes; and, (iii) approximate

rules generated from the boundary regions. The general structures of certain decision rules are as follows:

IF condition(s), THEN At Most Clt

IF condition(s), THEN At Least Clt

The decision part of a certain decision rule takes the form of an assignment to at most class unions or at least

class unions. The general structures of the possible decision rules is similar to those of certain decision rules but their

decision parts are of the form “Possibly At Most Clt" or “Possibly At Least Clt. Approximate decision rules have a

decision part of the form “Belongs to Cls ∪ Cls+1 ∪ · · · ∪ Clt".
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An object supports a decision rule if the description of the object matches both the condition and the decision parts

of this rule. The support of a rule is the number of objects supporting the rule. A decision rule covers an object if

the description of the object matches at least the condition part of the rule. The coverage is the number of the object

covered by the rule. The strength of a rule is the number of positive examples covered by the rule. The relative strength

is the number of positive examples covered by the rule divided by the number of all positive examples in the union of

classes. We note that if the consequence is univocal (i.e., contains only one decision), the rule is exact; otherwise, it is

approximate.

3.2. Analysis strategy

The first investigations of the raw data related to tyre monitoring show that the relationship between temperature

and pressure is not static as the temperature varies with pressure in a complex way. The raw data from one of the

coaches that we used as a testbed with a tyre size 315\80 is shown in Figures 2 and 3. Figure 2 shows the time series

of temperature and pressure measurements from a real-time data while Figure 3 shows the raw data temperature versus

pressure plot. Based on these figures, the health of a tyre profile can be classified into three zones or categories: 0 –

Normal, 1 – Over-inflated and 2 – Under-inflated. Considering that a tyre size of 315\80 22.5 was used for this paper;

for a given temperature, the pressure can vary between [100, 160] and similarly for a given pressure, the temperature

can also vary. An immediate consequence of this is that we cannot specify the preference direction of the considered

criteria because the normal situation (i.e. zone 0) is somewhere between a high pressure value (i.e. in zone 2) and a low

pressure value (i.e. in zone 1).

Figure 2: Temperature and pressure measurements from a real-time data
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Figure 3: raw data temperature versus pressure

Due to the complex pressure/temperature relationship and measurement error, the application of DRSA using jointly

the temperature and pressure values will lead to a high number of non-coherent and conflicting decision rules. To avoid

the problem of pressure/temperature complex relationship, one possible solution consists of fixing one of the criteria

and then generating the rules for the other criterion. Because both criteria are continuous, including all possible values,

this will lead to a very high number of decision rules. Furthermore, due to the measurement error of the sensors, the

decision rules will overlap. The idea that we have used in this paper to address this additional issue by relying on a

discretisation of the scale of the fixed criterion to obtain an ordered series of intervals and maintain the values of the

other criterion as they are. Two discretisation factors are required: α for pressure and β for temperature.

The application of the DRSA requires the identification of a subset of learning examples and their assignment

to a predefined set of decision classes. The decision objects in the considered case study correspond to the different

readings collected by the different sensors. The three decision classes Cl0, Cl1 and Cl2 that are considered in this paper

correspond to the three zones, 0-1-2. These decision classes obey the following preference order Cl0 ≺ Cl1 ≺ Cl2,

which can be justified as follows. Decision class Cl0 corresponds to the Normal condition and there is no action to

handle. Decision class Cl1 corresponds to Over-inflation, which could lead to a reduced traction uneven wear on the

centre of the centre. Decision class Cl2 corresponds to Under-inflation, which can be more dangerous. When tyres

are Under-inflated, the internal temperature increases, which can overheat the building structure of the tyres. This can

cause a tyre blowout, which can be fatal. Additionally, Under-inflated tyres are not economical because they increase
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the fuel consumption of a vehicle due to their increased rolling resistance.

Based on this discussion, we designed an analysis strategy that is illustrated graphically in Figure 4. Two main

analysis levels can be distinguished: (i) pressure-oriented analysis; and, (ii) temperature-oriented analysis. Each of these

analysis levels will be further subdivided into two sub-levels and only two decision classes are considered: the first

sub-level analysis uses the decision classesCl0, andCl1 and the second sub-level uses the decision classesCl0 andCl2.

This will lead to four analysis levels, as illustrated in Figure 4. The pressure-oriented analysis starts by a discretisation

of the temperature values into collection of ranges T and for each range Tk ∈ T (where k = i, i+α, i+2α, . . . , n; α

is the width of ranges, and n is the number of ranges) constructs two decision tables Sk and S′
k each with one condition

criterion relative to tyre pressure and one decision attribute relative to the health of the tyre. The decision table Sk

includes the readings relative to Under-inflation (Cl1) and Normal (Cl0) conditions, where the Pressure criterion

is specified as cost. The decision table S′
k includes the readings relative to Over-inflation (Cl2) and Normal (Cl0)

situations, where the Pressure criterion is specified as gain.

Figure 4: Analysis strategy

Similarly, the temperature-oriented analysis starts by a discretisation of the pressure values into collection of ranges

P and for each range Ph ∈ P (where h = j, j + β, j + 2β, . . . ,m; β is the width of ranges, and m is the number

of ranges) constructs two decision tables Sh and S′
h, each with one condition criterion relative to temperature and one

decision attribute relative to the health of the tyre. The decision table Sh includes the readings relative to Under-inflation

(Cl1) and Normal (Cl0) conditions, where the Temperature criterion is specified as cost. The decision table S′
h in turn

includes the readings relative to Over-inflation (Cl2) and Normal (Cl0) conditions, where the Temperature criterion is

specified as gain.

After the construction of the decision tables, the DRSA can then be used to approximate the decision classes’ unions

as explained in Section 3.1 by using the equations given in Appendix A. In this analysis strategy, the decision tables
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used as input to DRSA use two decision classes (Cl0 and Cl1 for the first and third analysis levels; or Cl0 and Cl2 for

the second and fourth analysis levels) with two different preferences orders Cl0 ≺ Cl1 (for the first and third analysis

levels) or Cl0 ≺ Cl2 (for the second and fourth analysis levels). In addition, the non-fixed criterion for both analyses

levels is specified as gain.

3.3. Induction and refinement of monitoring rules

The monitoring rules are extracted from the rough approximations obtained by applying the DRSA. More details on

rules induction are given in Appendix A.3. As mentioned earlier, three types of decision rules can be considered for the

application purposes of DRSA: certain, possible and approximate. The monitoring rules considered in this application

rely on certain decision rules. This choice is not specific to the application considered in this paper since possible and

approximate decision rules are often used only for sensitivity analysis or when there is no or very few certain decision

rules.

The decision part of a certain decision rule takes the form of an assignment to at most class unions or at least class

unions. The first investigations show that rules obtained in the case of the first sub-level of pressure-oriented analysis

have the following general syntaxes:

• If Pressure ≥ p2 then Health = At most Cl0 (Normal),

• If Pressure ≤ p1 then Health = At least Cl1 (Under-inflation),

and the rules obtained in the case of the second sub-level of pressure-oriented analysis have the following general

syntaxes:

• If pressure ≤ p3 then Health = At most Cl0 (Normal),

• If Pressure ≥ p4 then Health = At least Cl2 (Over-inflation),

where p1, p2, p3 and p4 are the pressure values that verify p1 < p2 < p3 < p4. All of the decision rules are certain

(because they indicate a single decision class). The four decision rules are illustrated graphically in Figure 5(a). Figure

5(a) shows that these four rules can be replaced by three decision rules, as shown below:

• If Pressure ≥ p2 and Pressure ≤ p3 then Health = Cl0 (Normal)

• If Pressure ≤ p1 then Health = Health = Cl1 (Under-inflation)

• If Pressure ≥ p4 then Health = Health = Cl2 (Over-inflation)

A careful examination of Figure 5(a) indicates that the decision parts for ‘Pressure≥ p4’, ‘Pressure ≤ p1’ and ‘p2 ≤

Pressure ≤ p3’ is straightforward. It can also be noted that the gaps between p1 and p2, and between p3 and p4 are due

to discretisation. Hence, p1 + α = p2 and p3 + α = p4 where α is the discretisation factor and it is equivalent to the

measurement error. The decision rules have been inferred for a given temperature range Tk ∈ T . Thus, they should be

transformed by adding the implicit condition relative to the temperature. The final list of rules for range Tk will be as

follows:
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Figure 5: Overlapping of decision rules

• If Temperature ∈ Tk and Pressure > p1 and Pressure < p4 then Health = Cl0 (Normal)

• If Temperature ∈ Tk and Pressure ≤ p1 then Health = Cl1 (Under-inflation)

• If Temperature ∈ Tk and Pressure ≥ p4 then Health = Cl2 (Over-inflation).

Similarly, the decision rules obtained in the case of the first and second sub-levels of temperature-oriented analysis

have the following general syntaxes:

• If Temperature ≥ t2 then Health = At most Cl0 (Normal),

• If Temperature ≤ t1 then Health = At least Cl1 (Under-inflation),

• If Temperature ≤ t3 then Health = At most Cl0 (Normal),

• If Temperature ≥ t4 then Health = At least Cl2 (Over-inflation),

where t1, t2, t3 and t4 are the temperature values that verify t1 < t2 < t3 < t4. All of the decision rules are certain

(because they indicate a single decision class). These rules are illustrated graphically in Figure 5(b). The four rules in

Figure 5(b) can then be replaced by the following three decision rules:

• If Temperature ≥ t2 and pressure ≤ t3 then Health = Cl0 (Normal)

• If Temperature ≤ t1 then Health = Cl1 (Under-inflation)
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• If Temperature ≥ t4 then Health = Cl2 (Over-inflation).

The analysis of the condition of the decision rules show that t1+β = t2 and t3+β = t4 where β is the discretisation

factor that is equivalent to the measurement error. Finally, the decision rules have been inferred for a given pressure

range Ph ∈ P . Thus, they should be transformed by adding the implicit condition relative to the pressure. The final

list of rules for the range Ph will be as follows:

• If Pressure ∈ Ph and Temperature > t1 and Temperature < t4 then Health=Cl0 (Normal)

• If Pressure ∈ Ph and Temperature ≤ t1 then Health = Cl1 (Under-inflation)

• If Pressure ∈ Ph and Temperature ≥ t4 then Health = Cl2 (Over-inflation).

3.4. Validation and exploitation of monitoring rules

The generated monitoring rules first need to be validated and they can then be used in practice. The authors in

Hu et al. (2017) distinguish three complementary techniques for decision rules validation: (i) direct analysis of the

monitoring rules analysis; (ii) reclassification; and, (iii) cross-validation. In the direct analysis validation technique,

the decision maker is asked to consider all the decision rules and indicate his/her level of agreement on a five-level

Likert scale (strongly disagree to strongly agree). When required, the decision maker can suggest modifications to one

or more monitoring rules.

The reclassification analysis is based on the use of the generated monitoring rules on the original data. In theory,

the application of these rules should lead to the same health status as the tyres in the original data. In practice, however,

especially with real industrial data, this is not always the case and a limited number of misclassifications may be

tolerated. If the number of misclassifications becomes unacceptable, then the learning phase must be iterated and the

decision maker asked to revise his/her initial assignments to improve the quality of the monitoring rules generated.

In the cross-validation analysis, the available data is divided into training and testing subsets, and they are then used

to evaluate the prediction accuracy of the system. The training subset trains the model and the testing subset measures

the accuracy of the prediction. Several iterations of cross-validation are performed on different subsets of training and

testing data, and the validation results are averaged over the rounds. The key difference between cross-validation and

reclassification is that the testing data subset is always unknown and not used to train the system previously.

In this paper, the reclassification technique is used to validate the initial set of monitoring rules (see Section 5.3.1

and Section 5.3.2).

4. System implementation and validation

The obtained and validated decision rules have been used to design a classifier that will be embedded, through a

series of plugins, in the TPMS. In this section, the architecture of the monitoring system is discussed (Section 4.1) and

a certain number of meta-rules were developed to enhance the tyre monitoring system (Section 4.2).
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4.1. Monitoring system architecture

The network architecture for the system1 is shown in Figure 6. The modem enables the connection of various remote

application devices via cellular network. It provides local control, connection management and key performance data.

The modem consists of an ARM Cortex M4 32-bit processor with recognised interfaces, which allows the users to

develop custom software programs to monitor and control application devices. The modem range covers 2G, 3G and

4G families. The communication ports are USB and RS232, and the modem uses a Subscriber Identification Module

(SIM) card to connect to the mobile network to transmit tyre information and location to a central point/server. The

modem is powered by the vehicle’s 12v power supply, it is located under the vehicle’s dashboard and it is hard wired

to the vehicle display unit. It has a magnetic dashboard mounted antenna unit, which used by the receiver for the GPS

signals and by the transmitter to transmit tyre information and position via the mobile telephone network.

Figure 6: Monitoring system architecture
Source: http://www.siretta.co.uk/family.php?id=91

A data flow schematic for the system is shown in Figure 7. The sensors measure the tyre temperature and pressure

readings; this information can be monitored by the driver through the display unit. These data, including the tyre’s

information and location, are sent to a central control centre through a mobile network for further processing.

The decision rules have been used to construct the system classifier. The classifier takes as input the pressure (P ) and

temperature (T ) measures, and it generates two decision variables: (1) HP , which indicates the tyre health as specified

by the pressure-based decision rules; and, (2) HT , which indicates the tyre health as specified by the temperature-based

decision rules. Both HP and HT can take one of three values: (i) 0 (tyre is under normal situation); (ii) 1 (tyre is

under-inflated); or, (iii) 2 (tyre is over-inflated).

The classifier can be implemented as a collection of plugins and incorporated both at the level of the server and at

the level of the vehicle. The version installed at the vehicle level will permit continuous monitoring even when there is

communication problems between the vehicle and the central server.

1More information on the system architecture is available at http://www.siretta.co.uk/family.php?id=91.
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Figure 7: Data flow schematic

4.2. Designing of monitoring meta-rules

Using the rules obtained from the pressure-oriented analysis alone or those generated from the temperature-oriented

analysis alone is sufficient to monitor the tyre health. However, it is better to include both rules from the temperature

and pressure analysis levels to improve the trustworthiness of the system. The inputs of the monitoring system are

the measured pressure P and temperature T . However, in cases of data transition problems or a failure in the sensors,

one or both of the input parameters P and T will be unknown (unk). There are four possible situations: (1) P=unk

and T=unk; (2) P ̸=unk and T=unk; (3) P=unk and T ̸=unk; and, (4) P ̸=unk and T ̸=unk. The meta-rules that are

associated with each of these situations will be explained in the rest of this section, as illustrated graphically in Figure

8. For situations (1) to (3), the measured pressure and/or temperature measures are unknown. In these situations, the

monitoring system should send a message alerting the driver and control centre of the failed readings.

In the fourth case (P ̸=unk andT ̸=unk) both pressure and temperature measures are available. Two subcases can be

distinguished here. The first subcase holds when the temperature-based health (HT ) and the pressure-based health (HP )

are equal. Three exclusive actions are possible here: (i) if HT = HT = 0, then send a ‘Tyre Temperature and Pressure

are fine’ info message; (ii) if HT = HT = 1, then send a ‘Tyre Under-inflated’ alert; or, (iii) if HT = HT = 2,

then send a ‘Tyre Over-inflated’ alert. The second subcase holds when the temperature-based health (HT ) and the

pressure-based health (HP ) are different. In this situation, if both HT > 0 and HP > 0, then the monitoring system

should send a ‘Tyre Temperature and Pressure are not fine’ alert to the driver; otherwise, the monitoring system should

send ‘Tyre Temperature or Pressure are not fine’ info message to driver.

5. Case study

This section presents a description of the company that we considered (Section 5.1), the dataset and how they were

collected (Section 5.2) and it also discusses the application of the proposed approach (Section 5.3).
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Figure 8: Working principles of meta-rules

5.1. Company

The proposed approach has been applied to data collected from one of the leading coach travel operators in the South

of England. They operate several routes in the South of England on behalf of a leading national franchise passenger

carrying operation. They run different prestigious and busy services from Gatwick Airport to London Victoria, and

from Brighton to London. They also run three other services: from Portsmouth to Heathrow and Victoria, and from

Southsea to Bristol route.

In this application, three of the group’s coaches were used. They were fitted with three separate stages of tyre wear

(all within legal requirements). The first coach was fitted with new tyres, the second was fitted with half worn tyres

while the third was fitted with two thirds worn tyres. Each coach has an approximate run time of 18 hours a day, they

only stop briefly to pick up passengers or change drivers. The data from the coaches are sent to a central database for

further processing.

5.2. Dataset

The dataset was collected over a period of 6 months. For the purposes of this paper, only a subset of data has been

used, which consists of tyre pressure, temperature, reading date/time and wheel position because these are the important

components. Table 1 presents an extract from the dataset. The data were classified into three classes, as explained in

Section 3.2. Each coach has six wheels, two at the front (1A,1D) and four at the rear (3A,3B,3C and 3D). A wireless

sensor with a unique sensor ID is attached to each wheel, which measures the temperature and pressure of the tyre and

then sends the data to a collection box (modem) located on the coach. This is explained in detail in section 4.1.

5.3. Application and results

The input to the DRSA is a decision table that contains a subset of readings concerning tyre pressure and temperature

criteria. A description of these two criteria is given in Table 2. As shown in this table, both criteria are continuous.
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Table 1: Extract form collected raw data
Tyre Pressure Tyre Temperature Reading Data/Time Wheel position

116 30 13:00.0 1A
112 23 15:00.0 1A
113 23 13:00.0 1A
113 24 36:00.0 1A
113 24 40:00.0 1A
113 24 44:00.0 1A
113 24 47:00.0 1A
122 30 13:00.0 1D
119 24 15:00.0 1D
118 24 13:00.0 1D
120 25 36:00.0 1D
118 24 03:00.0 1D
118 24 09:00.0 1D
119 25 12:00.0 1D
111 31 13:00.0 3A
107 22 15:00.0 3A
108 22 13:00.0 3A
108 22 36:00.0 3A
108 23 56:00.0 3A
108 23 08:00.0 3A
108 24 11:00.0 3A
108 23 14:00.0 3A
108 23 16:00.0 3A
112 31 13:00.0 3B
109 21 15:00.0 3B
108 22 13:00.0 3B
109 23 36:00.0 3B
109 23 53:00.0 3B
110 24 08:00.0 3B
110 23 14:00.0 3B
111 31 13:00.0 3C
108 22 36:00.0 3C
108 23 56:00.0 3C
108 23 08:00.0 3C
108 23 11:00.0 3C
108 23 58:00.0 3C
108 24 03:00.0 3C
110 30 13:00.0 3D

The Pressure criterion values ranges from 100 to 169 while the Temperature criterion values ranges from 0 to 100. The

preferences of the criteria will vary according to analysis levels in Figure 4.

Table 2: Characteristics of used condition and decision attributes
Analysis Name Description Preference direction Data type Possible values Type

Level Pressure oriented analysis Temperature oriented analysis
Level 1 & Level 3 Pressure Pressure of the tyre Cost Cost Continuous 100 to 169 Condition

in Figure 4 Temperature Temperature of the tyre Gain Gain Continuous 0 to 100 Condition
Health Health of the tyre Gain Gain Ordinal 0,1 Decision

Level 2 & Level 4 Pressure Pressure of the tyre Gain Gain Continuous 100 to 169 Condition
in Figure 4 Temperature Temperature of the tyre Gain Cost Continuous 0 to 100 Condition

Health Health of the tyre Gain Gain Ordinal 0, 2 Decision

The values of the discretisation factors α and β introduced in Section 3.2 depend on the sensors used for data

collection. The Piezoresistive sensors used in this particular application have an operating temperature range of −40◦C

to 85◦C (−40◦F to 185◦F), a pressure accuracy of ±0.25Bar/±3.6PSI (at 0◦C∼50◦C) and a temperature accuracy of

±3◦C/±5◦F (at 0◦C∼ 50◦C). Hence, the discretisation factors for pressure and temperature have been set to α = 3

and β = 2, respectively. These values have been specified to be slightly less than the sensor accuracy ranges, namely

±3.6PSI for pressure and ±3◦C for temperature). A series of preliminary tests confirm the validity of these values.

In this case study, and as discussed in Section 3.2, two levels of analysis have been distinguished: (i) pressure-

oriented analysis; and, (ii) temperature-oriented analysis. The result of the application of the DRSA in the first and

second analyses is detailed in Section 5.3.1 and Section 5.3.2, respectively. We used the 4eMka2 (Greco et al., 1999)
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software, which implements the DRSA, in this case study.

5.3.1. Pressure-oriented analysis

The pressure-oriented analysis is based on a discretisation of the temperature criterion and then for each temperature

value we define a decision table composed of two criteria corresponding to Pressure and Temperature and one decision

attribute corresponding to the tyre’s health. The values of Temperature criterion vary in the range [0, 100]. Hence,

a collection of 19 initial decision tables have been constructed. Table 3 provides the decision tables corresponding

to temperature in the range T9 which covers the temperature values in [9, 11] and the range T30 which covers the

temperature values in [30, 33].

Two different analyses have been conducted for each range: one uses the classes Cl0 and Cl1, and the other uses

the classes Cl0 and Cl2. The first analysis corresponds to Level 1 in Figure 4. As indicated in Table 2 (in the fourth

column), the criteria Pressure and Temperature are specified as cost-type and gain-type, respectively. In addition, the

domain of the decision attribute Health is equal to {0, 1}. The decision attribute Health divides the set decision objects

(i.e. readings) into two preference-ordered classes: Cl0 = {0} and Cl1 = {1}. Thus, the unions of classes that should

be approximated are:

• Cl≤0 ; i.e., the objects belonging to (at most) class Cl0,

• Cl≥1 ; i.e., the objects belonging to (at least) class Cl1.

The second analysis corresponds to Level 2 in Figure 4. In this case, both the criteria Pressure and Temperature are

specified as gain-type. The domain of the decision attribute Health is now equal to {0, 2}. The decision attribute Health

divides the set decision objects into two preference-ordered classes: Cl0 = {0} and Cl2 = {2}. Thus, the unions of

classes that should be approximated are:

• Cl≤0 ; i.e., the objects belonging to (at most) class Cl0,

• Cl≥2 ; i.e., the objects belonging to (at least) class Cl2.

These unions of classes have been approximated using the decision tables and the equations given in Section 3.1.

The result of approximation of decision tables relative to the 9th range T9 and the 30th range T30 along with the

corresponding quality of the approximation and accuracy of the rough-set representation of classes of input data are

summarised in Appendix B.

Table 4 shows the decision rules inferred from the decision tables relative ranges T9 and T30. This table indicates

also the: (i) supporting objects (readings in this application case), which are the objects having a description that matches

both the condition and the decision parts of the decision rules; and (ii) the relative strength, which is the number of

positive examples covered (i.e. objects with a description that matches at least the condition part of the rule) by the

rule divided by the number of all positive examples in the class. As shown in Table 4, all of the decision rules show a

relative strength of 100%.
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Table 3: Decision tables for ranges T9 (a) and T30 (b)
# Temperature Pressure Health
1 9 100 1
2 9 103 1
3 9 106 1
4 9 109 1
5 9 112 1
6 9 115 0
7 9 118 0
8 9 121 0
9 9 124 2

10 9 127 2
11 9 130 2
12 9 133 2
13 9 136 2
14 9 139 2
15 9 142 2
16 9 145 2
17 9 148 2
18 9 151 2
19 9 154 2
20 9 157 2
21 9 160 2
22 9 163 2
23 9 166 2
24 9 169 2

# Temperature Pressure Health
25 30 100 1
26 30 103 1
27 30 106 1
28 30 109 1
29 30 112 1
30 30 115 1
31 30 118 1
32 30 121 1
33 30 124 0
34 30 127 0
35 30 130 0
36 30 133 2
37 30 136 2
38 30 139 2
39 30 142 2
40 30 145 2
41 30 148 2
42 30 151 2
43 30 154 2
44 30 157 2
45 30 160 2
46 30 163 2
47 30 166 2
48 30 169 2

(a) (b)

Table 4: Initial decision rules for pressure-oriented analysis for ranges T9 and T30

Range Analysis Rule Rule Supporting Relative
level # description objects strength (%)

T9 Level 1 1 If (Pressure≥115) then (Health=At most 0); 6,7,8 100
2 If (Pressure≤112) then (Health=At least 1); 1,2,3,4,5 100

Level 2 3 If (Pressure≤121) then (Health=At most 0); 6,7,8 100
4 If (Pressure≥124) then (Health=At least 2); 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 100

T30 Level 1 5 If(Pressure≥124) then (Health=At most 0); 33, 34, 35 100
6 If (Pressure≤121) then (Health=At least 1); 25, 26, 27, 28, 29, 30, 31, 32 100

Level 2 7 If (Pressure≤130) then (Health=At most 0); 33, 34, 35 100
8 If (Pressure≥133) then (Health=At least 2); 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48 100

The generated decision rules are first validated through the reclassification strategy. The result of reclassification

can be summarised through an n×n confusion matrix where n is the number of decision classes. The intersection of

a row and column indicates the number of original and possible assignments for the decision classes corresponding to

the considered row and column. The confusion matrices relative to the range T9 for analysis level 1 and analysis level

2 are shown in Table 5(a) and Table 5(b), respectively; and those relative to the range T30 are shown in Table 5(c) (for

analysis level 1) and Table 5(d) (for analysis level 2). All confusion matrices show a perfect match between the original

assignments and those proposed by the system.

Table 5: Confusion matrices relative to initial decision rules for pressure-oriented analysis for ranges T9 and T30

Proposed
Original Cl0 Cl1
Cl0 3/3 0/0
Cl1 0/0 5/5

Proposed
Original Cl0 Cl1
Cl0 3/3 0/0
Cl1 0/0 16/16

(a) (b)

Proposed
Original Cl0 Cl1
Cl0 3/3 0/0
Cl1 0/0 8/8

Proposed
Original Cl0 Cl1
Cl0 3/3 0/0
Cl1 0/0 13/13

(c) (d)

Based on the discussion in Section 3.3, the initial set of decision rules need to be refined by: (i) removing redundant

rules; and, (ii) adding the ‘implicit’ condition about the fixed criterion. The rules #1 to #4 in Table 4 are first replaced
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by the following three decision rules:

• If (Pressure> 115) and (Pressure< 124) then (Health=At most 0);

• If (Pressure≤ 115) then (Health=At least 1);

• If (Pressure≥ 124) then (Health=At least 2).

Then, by adding the implicit condition about the fixed criterion, we obtain the following three decision rules for

range T9:

• If (Temperature≥9) and (Temperature<12) and (Pressure>115) and (Pressure<124) then (Health=At most 0);

• If (Temperature≥9) and (Temperature<12) and (Pressure≤115) then (Health=At least 1);

• If (Temperature≥9) and (Temperature<12) and (Pressure≥124) then (Health=At least 2).

The application of the same transformation operations on the decision rules obtained from decision table relative

to the range T30 leads to the following decision rules:

• If (Temperature≥30) and (Temperature<33) and (Pressure>124) and (Pressure<130) then (Health=At most 0);

• If (Temperature≥30) and (Temperature<33) and (Pressure≤124) then (Health=At least 1);

• If (Temperature≥30) and (Temperature<33) and (Pressure≥130) then (Health=At least 2).

5.3.2. Temperature-oriented analysis

The temperature-oriented analysis is based on a discretisation of the pressure criterion and then for each pressure

value we define a decision table composed of two criteria corresponding to Temperature and Pressure, and one decision

attribute corresponding to the tyre health. Because the values of Pressure criterion vary in the range [100, 169], a

collection of 35 initial decision tables have been constructed. Table 6 provides the decision tables corresponding to

pressure in the ranges P20 which covers the pressure values in [120, 121] and P22 which covers the pressure values in

[122, 123].

Two different analyses was conducted for each range: one uses the classes Cl0 and Cl1, and the other uses the

classesCl0 andCl2. The first analysis corresponds to Level 3 in Figure 4. As indicated in Table 3 (in the fourth column),

the criteria Pressure and Temperature are specified as cost-type and gain-type, respectively. In addition, the domain

of the decision attribute Health is equal to {0, 1}. The decision attribute Health divides the set decision objects (i.e.

readings) into two preference-ordered classes: Cl0 = {0} and Cl1 = {1}. Thus, the unions of classes that should be

approximated are:

• Cl≤0 , i.e., the objects belonging to (at most) class Cl0,

• Cl≥1 , i.e., the objects belonging to (at least) class Cl1.
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The second analysis corresponds to Level 4 in Figure 4. In this case, both the criteria Pressure and Temperature are

specified as gain-type and cost-type, respectively. The domain of the decision attribute Health is now equal to {0, 2}.

The decision attribute Health divides the set decision objects into two preference-ordered classes: Cl0 = {0} and

Cl2 = {2}. Thus, the unions of classes that should be approximated are:

• Cl≤0 , i.e., the objects belonging to (at most) class Cl0,

• Cl≥2 , i.e., the objects belonging to (at least) class Cl2.

These unions of classes have been approximated using the decision tables and the equations given in Section 3.1.

The result of approximation of the decision tables relative to ranges P20 and P22 along with the corresponding quality

of the approximation and accuracy of the rough-set representation of classes of input data are summarised in Appendix

B.

Table 7 (which has the same description as Table 4 as presented in Section 5.3.1) shows the decision rules inferred

from decision tables relative to ranges P20 and P22. As shown in Table 7, all of the decision rules show a relative

strength of 100%. The generated decision rules were validated through the reclassification strategy. The confusion

matrices relative to the range P20 for analysis levels 3 and 4 are shown in Tables 8(a) and 8(b), respectively; and those

relative to the range P22 are shown in Tables 8(c) and 8(d), respectively. All of the confusion matrices show a perfect

match between the original assignments and those proposed by the system.

Using the same transformation operations that we introduced in Section 3.3, decision rules #9 to #12 in Table 7

lead to the following three decision rules:

• If (Pressure≥20) and (Pressure<22) and (Temperature>8) and (Temperature<22) then (Health=At most 0);

• If (Pressure≥20) and (Pressure<22) and (Temperature≥22) then (Health=At least 1);

• If (Pressure≥20) and (Pressure<22) and (Temperature≥8) then (Health=At least 2).

Similarly, decision rules #13 to #16 in Table 7 lead to the following three decision rules:

• If (Pressure≥22) and (Pressure<24) and (Temperature>10) and (Temperature<28) then (Health=At most 0);

• If (Pressure≥20) and (Pressure<24) and (Temperature≥28) then (Health=At least 1);

• If (Pressure≥22) and (Pressure<24) and (Temperature≤10) then (Health=At least 2).

6. Comparison and validation with large datasets

This section presents a comparative study of the monitoring rules of DRSA, the threshold-based system and decision

tree (Section 6.1). It also contains the evaluation of the proposed approach as compared to the threshold-based approach

and decision tree (Section 6.2). Finally, a summary of the analysis is also presented (Section 6.3).
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Table 6: Decision tables for ranges P20 (a) or P22 (b)
# Pressure Temperature Health
1 120 0 2
2 120 2 2
3 120 4 2
4 120 6 2
5 120 8 0
6 120 10 0
7 120 12 0
8 120 14 0
9 120 16 0
10 120 18 0
11 120 20 0
12 120 22 0
13 120 24 1
14 120 26 1
15 120 28 1
16 120 30 1
17 120 32 1
18 120 34 1
19 120 36 1
20 120 38 1
21 120 40 1
22 120 42 1
23 120 44 1
24 120 46 1
25 120 48 1
26 120 50 1
27 120 52 1
28 120 54 1
29 120 56 1
30 120 58 1
31 120 60 1
32 120 62 1
33 120 64 1
34 120 66 1
35 120 68 1
36 120 70 1
37 120 72 1
38 120 74 1
39 120 76 1
40 120 78 1
41 120 80 1
42 120 82 1
43 120 84 1
44 120 86 1
45 120 88 1
46 120 90 1
47 120 92 1
48 120 94 1
49 120 96 1
50 120 98 1
51 120 100 1

# Pressure Temperature Health
52 122 0 2
53 122 2 2
54 122 4 2
55 122 6 2
56 122 8 2
57 122 10 2
58 122 12 0
59 122 14 0
60 122 16 0
61 122 18 0
62 122 20 0
63 122 22 0
64 122 24 0
65 122 26 0
66 122 28 1
67 122 30 1
68 122 32 1
69 122 34 1
70 122 36 1
71 122 38 1
72 122 40 1
73 122 42 1
74 122 44 1
75 122 46 1
76 122 48 1
77 122 50 1
78 122 52 1
79 122 54 1
80 122 56 1
81 122 58 1
82 122 60 1
83 122 62 1
84 122 64 1
85 122 66 1
86 122 68 1
87 122 70 1
88 122 72 1
89 122 74 1
90 122 76 1
91 122 78 1
92 122 80 1
93 122 82 1
94 122 84 1
95 122 86 1
96 122 88 1
97 122 90 1
98 122 92 1
99 122 94 1

100 122 96 1
101 122 98 1
102 122 100 1

(a) (b)

Table 7: Initial decision rules for pressure-oriented analysis for ranges P20 and P22

Range Analysis Rule Rule Supporting Relative
level # description objects strength (%)

P20 Level 3 9 If (Temperature≤22) then (Health=At most 0); 5, 6, 7, 8, 9, 10, 11, 12 100
10 If (Temperature≥24) then (Health=At least 1); 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,

29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51

100

Level 4 11 If (Temperature≥8) then (Health=At most 0); 5, 6, 7, 8, 9, 10, 11, 12 100
12 If (Temperature≤6) then (Health=At least 2); 1, 2, 3, 4 100

P22 Level 3 13 If (Temperature≤26) then (Health=At most 0); 58, 59, 60, 61, 62, 63, 64, 65 100
14 If (Temperature≥28) then (Health=At least 1); 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,

82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
98, 99, 100, 101, 102

100

Level 4 15 If (Temperature≥12) then (Health=At most 0); 58, 59, 60, 61, 62, 63, 64, 65 100
16 If (Temperature≤10) then (Health=At least 2); 52, 53, 54, 55, 56, 57 100
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Table 8: Confusion matrices relative to initial decision rules for pressure-oriented analysis for ranges P20 and P22

Proposed
Original Cl0 Cl1
Cl0 8/8 0/0
Cl1 0/0 39/39

Proposed
Original Cl0 Cl1
Cl0 8/8 0/0
Cl1 0/0 4/4

(a) (b)

Proposed
Original Cl0 Cl1
Cl0 8/8 0/0
Cl1 0/0 37/37

Proposed
Original Cl0 Cl1
Cl0 8/8 0/0
Cl1 0/0 6/6

(c) (d)

6.1. Comparative study

We compared the monitoring rules obtained through DRSA with the threshold-based monitoring system initially

adopted by the company. In the current system, the baseline for pressure is 120PSI and for temperature is 18◦C.

Concerning pressure, the threshold-based monitoring rules are as follows:

1. If the pressure decreases by 20% below the baseline, then this will lead to low pressure, i.e., under-inflation.

2. If the pressure increases by 30% above the baseline, then this will lead to high pressure, i.e., over-inflation.

3. Anything within the above range is considered as a normal situation unless the temperature is above 85◦C.

The current system will detect a high-temperature fault when the temperature exceeds 85◦C. The above threshold-

based monitoring rules have been applied to the data in Tables 3 and 6. The results of this application are summarised

in Table 9. This table indicates the accuracy of the threshold-based monitoring rules. As this table shows, the accuracy

of the pressure-oriented analysis levels is 30% and 50% while the accuracy for temperature-oriented analysis levels is

40% and 70%.

Table 9: Accuracy values for threshold-based monitoring rules
Analysis level Decision table Accuracy (%)

Pressure-oriented T9 30
T30 50

Temperature oriented P20 40
P22 70

We also compared the proposed system with decision tree-based monitoring. The obtained decision trees for the

data in Tables 3 and 6 are given in Figure 9. We note that the labels A, B and C in Figure 9 correspond to labels 0, 1

and 2 of the decision classes. This is because the software KNIME that has been used to construct the decision trees

accepts only nominal values for the decision classes. These decision trees have been used to reclassify the input data.

The results of this application are summarised in Table 10. As shown in this table, the decision tree achieved a perfect

reclassification for all input data. However, as discussed in the next subsection, the application of the decision tree to

large datasets leads to insufficient results.

Table 10: Accuracy values for decision tree-based monitoring rules
Analysis level Decision table Accuracy (%)

Pressure-oriented T9 100
T30 100

Temperature oriented P20 100
P22 100
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(a) (b)

(c) (d)

Figure 9: Decision trees relative to decision tables corresponding to ranges: P20 (a), P22 (b), T9 (c) and T30 (d)

6.2. Validation with large datasets

The decision rules that were obtained have been validated using datasets from two separate coaches. The description

of these datasets is given in Table 11. The health of the considered observations in this table is based on the information

reported by the drivers. These observations have been classified by all decision rules. As shown in the confusion matrices

in Table 12, there is a close agreement between the health of the tyres as reported by the drivers and the health of the

tyres as computed by the decision rules.

For comparison purposes, we applied the threshold-based and decision tree-based monitoring rules to the two large

datasets given in Table 11. The results of this additional comparative study are summarised in Table 13. The latter
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Table 11: Large testing datasets
Dataset Health Reading

# 1 0 2 errors Total
1 4393 6303 1328 20 12044
2 1693 6231 4580 15 12519

Table 12: Confusion matrices relative to large testing datasets
Proposed

Original Cl1 Cl0 Cl2
Cl1 4393/4393 0/0 0/0
Cl0 0/0 6303/6303 0/0
Cl2 0/0 0/0 1328/1328

Proposed
Original Cl1 Cl0 Cl2
Cl1 1693/1693 0/0 0/0
Cl0 0/0 6231/6231 0/0
Cl2 0/0 0/0 4580/4580

Dataset #1 Dataset #2

shows that threshold-based monitoring achieves low accuracy. The decision tree performed better than threshold-based

system; however, it under performed the proposed DRSA approach.

Table 13: Accuracy values for threshold-based and decision tree-based monitoring
Monitoring rules Dataset Accuracy (%)

Thresholds #1 19
#2 22

Decision tree #1 62
#2 57

To further validate the obtained results, a series of well-known non-parametric statistics are used to compare the

initial and computed tyre health values. The statistics considered are Kendall’s tau, Spearman’s rho, and the Unweighted

and Weighted Cohen’s kappa. The result of this statistical comparison is given in Table 14. The figures in Table 14

indicate close agreement levels between the real tyre health values and those computed by the generated monitoring

rules. In fact, the values for Kendall’s tau and Spearman’s rho are higher than 80%, which indicates a high agreement

level. This result is also confirmed by unweighted and weighted Cohen’s kappa where the agreement levels are higher

than 60%. This means there is a strong agreement level between real and computed tyre health values. The low values

for the MAE further confirm the previous results.

Likewise, the figures in Table 14 show that the threshold-based or decision tree-based monitoring rules have a low

to very low agreement levels between real health values and those computed by these methods.

Table 14: Statistical analysis
Method DRSA Thresholds Decision tree
Statistics Dataset 1 Dataset 2 Dataset 1 Dataset 2 Dataset 1 Dataset 2
Kendall’s tau 0.8712 0.8236 0.2395 0.3427 0.5734 0.4679
Spearman’s rho 0.8534 0.892 0.3193 0.3591 0.6224 0.5064
Unweighted Cohen’s kappa 0.7616 0.7938 0.1902 0.2472 0.2869 0.3381
Weighted Cohen’s kappa 0.8361 0.7777 0.2014 0.1598 0.3499 0.4609

6.3. Summary of the comparative analysis

In this comparative study, the proposed monitoring approach achieved better results than the threshold or decision

tree-based approaches. This can be explained by the fact that these approaches fail to take into account the complex

relationship between pressure and temperature variables. Also, neither threshold nor decision tree-based monitoring

approach takes into account the ordinal relationship between the different decision classes. Although the decision
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tree-based monitoring system leads to perfect re-classification with the learning datasets, it fails when applied to large

datasets. This is because the decision tree ignores the preference direction that characterises the criteria pressure and

temperature.

Finally, it is important to mention that the proposed approach achieves 100% accuracy with no false positives or

false negatives (as indicated in Table 12). Although that in the considered application learning and testings datasets have

been randomly collected, one should pay attention to the possible overfitting of the proposed model. Some additional

analysis have confirmed the results reported in this paper but a more intensive analysis (using other datasets from other

coaches) should considered in the future.

7. Conclusion and future research

In this paper, an innovative decision rule-based approach for tyre monitoring is proposed. This approach relies on

the DRSA, which is a well-known multicriteria classification and preference learning method. The proposed approach

resolves the problem of false alarms that characterise the existing threshold-based tyre monitoring systems. This problem

is caused by the complex relationship between tyre pressure and temperature, and is also due to sensors measurement.

The problem of complex pressure/temperature relationship was resolved by fixing one of the parameters and generating

the decision rules based on the other parameter combined with a discretisation of the values of the fixed parameter. Based

on these solutions, an analysis strategy composed of two parallel analysis levels, namely pressure-oriented analysis and

temperature-oriented analysis, was developed. The working principle of these analysis levels is to discretise the fixed

parameter values into set of ordered ranges and to construct a decision table for each range, and then use the DRSA to

infer a collection of decision rules.

The generated decision rules need to be validated and refined by adding the ‘implicit’ condition relative to the

fixed parameter. The use of reclassification validation technique showed a very high degree of accuracy. The validated

decision rules are used to develop and implement a classifier to monitor the health of the tyres. The classifier has been

enhanced with several meta-rules, which enable the system to function even when one of the sensors is down, to detect

the divergence between pressure-based and temperature-based decision rules, and to alert the driver when the sensors

are broken.

The proposed approach has been validated and implemented within an important travelling company that operates

in the South of England. Real-world tests show that the proposed approach considerably improved the tyre monitoring

system and led to a substantial reduction of false alarms. At this point, it is important to mention that the proposed

approach is generic enough, and can be used with other transport companies and different tyres type.

An advanced test phase is required. This intends intensive and large scale real-world tests of the developed system.

There is also a need to design appropriate algorithms to exploit the large historical data to predict the tyres’ health.

The use of other monitoring criteria—such as speed, ambient temperature, road texture, road condition and load of the

vehicle—should also be investigated.
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Blaszczyński, J., Greco, S., & Slowiński, R. (2007). Multi-criteria classification - a new scheme for application of

dominance-based decision rules. European Journal of Operational Research, 181, 1030–44.
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Błaszczyński, J., Słowiński, R., & Szeląg, M. M. (2011). Sequential covering rule induction algorithm for variable

consistency rough set approaches. Information Sciences, 181, 987–1002.

Chai, J., Liu, J., & Xu, Z. (2013). A rule-based group decision model for warehouse evaluation under interval-valued

intuitionistic fuzzy environments. Expert Systems with Applications, 40, 1959–70.

Chakhar, S., Ishizaka, A., Labib, A., & Saad, I. (2016). Dominance-based rough set approach for group decisions.

European Journal of Operational Research, 251, 206–24.

Chakhar, S., & Saad, I. (2012). Dominance-based rough set approach for groups in multicriteria classification. Decision

Support Systems, 54, 372–80.

Coppo, F., Pepe, G., Roveri, N., & Carcaterra, A. (2017). A multisensing setup for the intelligent tire monitoring.

Sensors, 17. Article #576.

Garcia-Pozuelo, D., Olatunbosun, O., Yunta, J., Yang, X., & Diaz, V. (2017). A novel strain-based method to estimate

tire conditions using fuzzy logic for intelligent tires. Sensors, 17. Article #874.
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AppendixA. Overview of the Dominance-based Rough Set Approach

The DRSA has been proposed in (Greco et al., 2001, 2002; Słowiński et al., 2002, 2012) to overcome the short-

comings of the conventional Rough Sets Theory (RST) (Pawlak, 1982, 1991) in multicriteria classification by allowing

preference-oriented attributes and is intended for use where decision classes are defined in an ordinal way. The basic

idea of DRSA is to replace the indiscernibility relation used in the classical RST with the dominance relation, which is

more appropriate for multicriteria classification. The DRSA has been successfully applied in different real-world deci-

sion problems, including risk assessment (Chakhar & Saad, 2012), knowledge management (Saad & Chakhar, 2012),

service improvement (Liou et al., 2011), bankruptcy risk evaluation (Greco et al., 2002), supply chain management

(Chai et al., 2013), supplier selection, airport service quality (Liou et al., 2011), product mix (Greco et al., 2008), per-

formance of cooperations and business values (Peters & Poon, 2011) and spare parts management (Hu et al., 2017). A

brief overview of the DRSA is presented in this appendix.

AppendixA.1. Basic definitions

The information regarding the decision objects is often structured in a 4-tuple information table S = ⟨U,Q, V, f⟩,

where U is a non-empty finite set of objects and Q is a non-empty finite set of attributes such that q : U → Vq for

every q ∈ Q. The Vq is the domain of attribute q, V =
∩

q∈Q Vq , and f : U × Q → V is the information function
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defined such that f(x, q) ∈ Vq for each attribute q and object x ∈ U . The set Q is often divided into a subset F ̸= ∅ of

condition attributes and a subset D ̸= ∅ of decision attributes, such that F ∪D = Q and F ∩D = ∅. In this case, S is

called a decision table. The domains of the condition attributes are supposed to be ordered according to a decreasing

or increasing preference. These attributes are called criteria. The proponents of the DRSA assume that the preference

is increasing with f(·, q) for every q ∈ F . They also assume that the set of decision attributes D = {E} is a singleton.

The unique decision attribute E makes a partition of U into a finite number of preference-ordered decision classes

Cl = {Clt, t ∈ T}, T = {0, · · · , n}, such that each x ∈ U belongs to one and only one class.

AppendixA.2. Approximation

In DRSA the represented knowledge is a collection of upward unions Cl≥t and downward unions Cl≤t of classes,

defined as follows:

Cl≥t =
∪
s≥t

Cls, Cl≤t =
∪
s≤t

Cls.

The assertion “x ∈ Cl≥t ” means that “x belongs to at least class Clt” while assertion “x ∈ Cl≤t ” means that “x belongs

to at most class Clt”. The basic idea of DRSA is to replace the indiscernibility relation used in the conventional RST

with a dominance relation. Let P ⊆ C be a subset of condition criteria. The dominance relation ∆P associated with

P is defined for each pair of objects x and y, as follows: x∆P y ⇔ f(x, q) ≽ f(y, q),∀q ∈ P . In this definition, the

symbol “≽” should be replaced with “≼” for criteria that are ordered according to decreasing preferences. To each

object x ∈ U , we associate two sets: (i) the P -dominating set ∆+
P (x) = {y ∈ U : y∆Px} containing the objects that

dominate x; and, (ii) the P -dominated set ∆−
P (x) = {y ∈ U : x∆P y} containing the objects dominated by x.

Then, the P -lower and P -upper approximations of Cl≥t with respect to P are defined as follows:

• P (Cl≥t ) = {x ∈ U : ∆+
P (x) ⊆ Cl≥t },

• P̄ (Cl≥t ) = {x ∈ U : ∆−
P (x) ∩ Cl≥t ̸= ∅}.

Analogously, the P -lower and P -upper approximations of Cl≤t with respect to P are defined as follows:

• P (Cl≤t ) = {x ∈ U : ∆−
P (x) ⊆ Cl≤t },

• P̄ (Cl≤t ) = {x ∈ U : ∆+
P (x) ∩ Cl≤t ̸= ∅}.

The lower approximations group the objects that certainly belong to class unions Cl≥t (resp. Cl≤t ). The upper

approximations group the objects that could belong to Cl≥t (resp. Cl≤t ).

The P -boundaries of Cl≥t and Cl≤t are defined as follows:

• BnP (Cl≥t ) = P̄ (Cl≥t )− P (Cl≥t ),

• BnP (Cl≤t ) = P̄ (Cl≤t )− P (Cl≤t ).

The boundaries group objects that can neither be ruled in nor out as members of class Clt.

The quality of approximation of a partition Cl by means of a set of criteria P is defined as the ratio of all P-

correctly classified objects to all objects in the system. The accuracy of the rough-set representation of unions of
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classes is computed as the ratio between the number of objects in the lower approximation and the number of objects

in the upper approximation. In addition to these measures, the authors in Błaszczyński et al. (2010) introduce two

additional measures to estimate the attainable predictive accuracy of a rough-set-based classifier. The first measure,

called λ, estimates the attainable percentage of correctly classified objects of a classifier. The second measure, called

δ, estimates the attainable mean absolute error (MEA) of a classifier, which is defined as the mean absolute difference

between the index of the class to which an object is assigned by a classifier and the index of the class to which the object

belongs. The λ and δ measures are only useful if the quality of approximation is low or even equal to zero. However,

these measures have not been considered in the case study given in Section 5 because the quality of approximation on

the learning dataset is equal to 1.

The DRSA defines two concepts that may indicate some information about the importance of the criteria: the reduct

and the core. A reduct is a minimal subset of criteria which can, by itself, fully characterise the knowledge in the

decision table. The reduct of the decision table is not unique: there may be many subsets of criteria which preserve

the equivalence classes. The set of attributes which is common to all reducts is called the core. Therefore, they are the

criteria that cannot be removed from the decision table without causing the collapse of the equivalence classes. More

information on these concepts is available in Greco et al. (2001) and Greco et al. (2002).

AppendixA.3. Induction of decision rules

A decision table may be seen as a set of ’if–then’ decision rules. The condition part specifies the values assumed by

one or more criteria, and the decision part specifies an assignment to one or more decision classes. The most popular rule

induction algorithm for the DRSA is DOMLEM Greco et al. (2002), which generates a minimal set of rules. We also

note the existence of a more recent rule induction algorithm, namely VC-DomLEM, proposed by Błaszczyński et al.

(2011) and supersedes DOMLEM algorithm. Both algorithms follow a classical greedy scheme which produces a local

covering of each decision concept, i.e., it covers all examples from the given approximation using a minimal set of

rules.

Three types of decision rules may be considered in DRSA: (i) certain rules generated from the lower approximations;

(ii) possible rules generated from the upper approximations; and (iii) approximate rules generated from the boundary

regions. The general structures of certain decision rules are as follows:

IF condition(s), THEN At Most Clt

IF condition(s), THEN At Least Clt

The decision part of a certain rule takes the form of an assignment to at most class unions or at least class unions.

The general structures of possible decision rules are as follows:

IF condition(s), THEN Possibly At Most Clt

IF condition(s), THEN Possibly At Least Clt

In this case, the decision part specifies a possible assignment to at most class unions or at least class unions. Finally,

the general structure of approximate rules is as follows:
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IF conditions on criteria values, THEN Belongs to Cls ∪ Cls+1 ∪ · · · ∪ Clt

Here, the decision part is defined as the union of several decision classes.

Decision rules are judged by their quality on the basis of the learning (or training) set, and by how they classify new

unseen objects (Polkowski & Artiemjew, 2015). Several measures have been proposed to evaluate the performance of

decision rules. An object supports a decision rule if the description of the object matches both the condition and the

decision parts of this rule. The support of a rule is the number of objects supporting the rule. A decision rule covers

an object if the description of the object matches at least the condition part of the rule. The coverage is the number

of the objects covered by the rule. The strength of a rule is the number of positive examples covered by the rule. The

relative strength is the number of positive examples covered by the rule divided by the number of all positive examples

in the union of classes. The confidence level (some authors call it consistency, or the certainty factor, or the precision)

is defined as the number of positive examples covered by the rule, divided by the number of examples covered by the

rule. For more information and for the formal definitions of all these concepts, see Polkowski & Artiemjew (2015) and

Stefanowski & Vanderpooten (2001). Note that if the consequence is univocal (i.e. contains only one decision), then

the rule is exact, otherwise it is approximate.

Finally, we should note that a given decision object may be covered by one or more decision rules, or may not be

covered by any rule, in other situations. This issue has been discussed in detail in Blaszczyński et al. (2007), where the

authors proposed different solutions to classify an objects using decision rules in one of three possible situations: it is

covered by (i) no rule, (ii) exactly one rule, (iii) several rules.
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AppendixB. Result of approximation

Table B.15: Result of approximation for pressure-oriented analysis with respect to ranges P20 and P22

Range Analysis Class Lower approximation Upper approximation Boundary
level union

P20 Level 1 At most0 5,6,7,8,9,10,11,12 5,6,7,8,9,10,11,12 ∅
At least 1 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,

29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51

∅

Level 2 At most 0 5,6,7,8,9,10,11,12 5,6,7,8,9,10,11,12 ∅
At least 2 1,2,3,4 1,2,3,4 ∅

P22 Level 1 At most 0 58, 59, 60, 61, 62, 63, 64, 65 58, 59, 60, 61, 62, 63, 64, 65 ∅
At least 1 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,

82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
98, 99, 100, 101, 102

66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
98, 99, 100, 101,102

∅

Level 2 At most 0 58,59,60,61,62,63,64,65 58,59,60,61,62,63,64,65 ∅
At least 2 2,53,54,55,56,57 2,53,54,55,56,57 ∅

Table B.16: Quality of approximation and accuracy for pressure-oriented analysis with respect to ranges P20 and P22

Range Analysis Level 1 Analysis Level 2
Quality of Accuracy Quality of Accuracy

approximation At most 0 At least 1 approximation At most 0 At least 2
P20 1 1 1 1 1 1
P22 1 1 1 1 1 1

Table B.17: Result of approximation for temperature-oriented analysis with respect to ranges T9 and T30

Range Analysis Class Lower approximation Upper approximation Boundary
level union

T9 Level 1 At most 0 6,7,8 6,7,8 ∅
At least 1 1,2,3,4,5 1,2,3,4,5 ∅

Level 2 At most 0 6,7,8 6,7,8 ∅
At least 2 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 ∅

T30 Level 1 At most 0 33,34,35 33,34,35 ∅
At least 1 25,26,27,28,29,30,31,32 25,26,27,28,29,30,31,32 ∅

Level 2 At most 0 33,34,35 33,34,35 ∅
At least 2 36,37,38,40,41,42,43,44,45,46,47,48 36,37,38,40,41,42,43,44,45, 46,47,48 ∅

Table B.18: Quality of approximation and accuracy for temperature-oriented analysis with respect to ranges T9 and T30

Range Analysis Level 1 Analysis Level 2
Quality of Accuracy Quality of Accuracy

approximation At most 0 At least 1 approximation At most 0 At least 2
T9 1 1 1 1 1 1
T30 1 1 1 1 1 1
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