
Optimizing a linear function over the nondominated set of
multiobjective integer programs

Banu Lokman∗

Portsmouth Business School, University of Portsmouth, Richmond Building, Portland Street, Portsmouth PO1 3DE, United
Kingdom

E-mail: banulokman@gmail.com

Abstract

In this paper, we develop two algorithms to optimize a linear function over the nondominated set of multi-objective
integer programs. The algorithms iteratively generate nondominated points and converge to the optimal solution
reducing the feasible set. The first algorithm proposes improvements to an existing algorithm employing a de-
composition and search procedure in finding a new point. Differently, the second algorithm maximizes one of the
criteria throughout the algorithm and generates new points by setting bounds on the linear function value. The
decomposition and search procedure in the algorithms is accompanied by problem-specific mechanisms in order
to explore the objective function space efficiently. The algorithms are designed to produce solutions that meet a
prespecified accuracy level. We conduct experiments on multi-objective combinatorial optimization problems and
show that the algorithms work well.

Keywords: multiple objective programming; integer programming; nondominated set; combinatorial optimization.

1. Introduction

Integer programming is used to model decision problems in several branches of industry and society.
Since many of these problems involve multiple criteria of conflicting nature, Multi-objective Integer Pro-
grams (MOIPs) have applications in a wide variety of areas including production planning and schedul-
ing, logistics and capital budgeting (see Ehrgott and Gandibleux, 2002, 2004). In MOIPs, there does not
exist a single solution that simultaneously optimizes all objective functions, and hence the aim is to gen-
erate nondominated points. For each such point, an improvement in one of the objectives is not possible
without sacrificing from at least one other objective. There exist studies that try to generate all nondom-
inated points for MOIPs but the generation of the whole set of nondominated points is computationally
very demanding in general and not useful from practical point of view (see Özlen and Azizoğlu, 2009;

∗Corresponding author (e-mail: banulokman@gmail.com).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/195277171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Lokman and Köksalan, 2013; Kirlik and Sayın, 2014; Zhang and Reimann, 2014; Dächert and Klamroth,
2015; Boland et al., 2016). Ehrgott et al. (2016) review exact methods for multi-objective combinatorial
optimization (MOCO) problems that are special MOIPs.

MOIPs have typically many nondominated points that cannot be considered superior to each other
without the preference input of a decision maker (DM). Recently, algorithms are developed to generate
a compromise solution that is preferred to all other solutions in the nondominated set. Optimizing a
linear function over the nondominated set of a MOIP is one approach to articulating preferences of the
DM. Based on a reference point and direction specified by the DM, a compromise solution can be found
without generating the whole set of nondominated points. By changing the direction, it is also possible
to generate or approximate the nondominated points that lie on the boundary of the convex hull of the
nondominated set. These extreme points could be used not only to improve computational efficiency
of other algorithms but also to estimate the locations of the nondominated points and characterize the
nondominated set.

The problem of optimizing a linear function over the nondominated set of a multi-objective linear pro-
gram (MOLP) has been widely studied (see Benson, 1984; Ecker and Song, 1994; White, 1996; Benson
and Sayin, 1994; Jorge, 2005) while the studies for MOIPs are limited. As discussed in Benson (1984)
and Ecker and Song (1994), the problem is even difficult for MOLPs because the efficient set may be
nonconvex. As an application of this problem to MOIPs, Nguyen (1992) proposes an upper bound for
the optimal objective function value. Abbas and Chaabane (2006) develop a method for optimizing a
linear function over the efficient set without finding all nondominated points. The method is based on
the works of Benson (1984) and Ecker and Song (1994) that are developed for MOLPs. The method
of Abbas and Chaabane (2006) iteratively reduces the feasible region and guarantees to obtain an im-
provement in the objective value by introducing different types of cuts at each iteration. It stops when
the reduced feasible region contains no integer feasible solution. However, Abbas and Chaabane (2006)
do not present a computational study.

Jorge (2009) develops an exact algorithm to optimize a linear function over the efficient set of a MOIP.
The algorithm solves a sequence of progressively more constrained single-objective integer problems
that eliminate the dominated points from further consideration. The performance of the algorithm is
tested on randomly generated instances of MOIPs. Boland et al. (2017) modify the algorithm of Jorge
(2009) employing a decomposition and search procedure and the computational study shows that the
new algorithm outperforms the algorithm of Jorge (2009). The algorithm is also applied to find the
nadir point that is composed of the worst values of each criterion over the nondominated set. Köksalan
and Lokman (2015) and Kirlik and Sayın (2015) also develop exact algorithms to find the nadir point.
Although the problem of finding the nadir value for a criterion is equivalent to minimizing that criterion
over the nondominated set, these algorithms employ the special characteristics of the nadir point and
need extensions to optimize a linear function.

In this paper, we present two algorithms that optimize any given linear function over the nondominated
set of a MOIP. The algorithms iteratively generate nondominated points and reduce the feasible set by
excluding not only the dominated regions but also the inferior regions with respect to the linear function.
At each iteration, the reduced feasible set is decomposed into subsets and a search is conducted over
all these subsets to find a new point. While the first algorithm searches for the point that maximizes
the linear function as in the algorithms of Jorge (2009) and Boland et al. (2017), the second algorithm
chooses one of the criteria based on the linear function and finds the point maximizing that criterion. In

3

contrast with the literature, the decomposition and search procedure is accompanied by problem-specific
mechanisms in order to explore the objective function space efficiently. Furthermore, the algorithms are
designed as approximation algorithms with performance guarantee on the quality of the solution.

The organization of the paper is as follows. In Section 2, we give definitions and provide background
information. We develop the requisite theory and the algorithms in Section 3 and present the results of
our computational experiments in Section 4. Lastly, we make conclusions in Section 5.

2. Background

A multi-objective integer program with p objectives is defined as:

[MOIP] :

“Max” z(x) = (z1(x), z2(x), . . . , zp(x))

subject to
x ∈ X

In [MOIP], x ∈ Zn is the integer decision vector, and X denotes the feasible space. Point z(x) ∈ Z is
the image of x in the objective function space where Z denotes the feasible set in the objective function
space. The quotation marks are used since there does not exist a unique solution that simultaneously
maximizes all objective functions.

Definition 1. Let x1,x2 ∈ X. z(x1) dominates z(x2) if zi(x1) ≥ zi(x
2) for all i = 1, . . . , p and

zj(x
1) > zj(x

2) for at least one j ∈ {1, . . . , p}.

Definition 2. A point x ∈ X is efficient if there does not exist any x′ ∈ X such that z(x′) dominates
z(x). Then, z(x) ∈ Z is said to be nondominated.

The set of all nondominated points for a MOIP is called the nondominated set and denoted as ZN .
The problem of optimizing a linear function over ZN is formulated as follows:

[MOIP (v)] :

Max v(z) =

p∑
i=1

vizi(x)

subject to

x ∈ X

z(x) ∈ ZN

In [MOIP (v)], v is a linear function of the objectives. We denote the optimal objective function value
and the corresponding nondominated point by v∗ and z∗, respectively. Since ZN is implicitly defined
and not known a priori, it is not straightforward to find v ∗, when v (z) i s not a s trictly positive linear
combination of the objectives, vi ≤ 0 for some i ∈ {1, . . . , p}.

4

3. Development of Algorithms

The algorithm proposed by Jorge (2009) optimizes a linear function over the efficient set of a MOIP and
is also applicable to solving [MOIP (v)]. The algorithm starts with solving problem Maxz(x)∈Z v(z)
that may yield an inefficient solution. If this is the case, a new solution dominating the optimal solution
is found. In the succeeding iterations n > 1, the algorithm solves a model, [Pn], where previously-
generated nondominated points, Zn = {z1, z2, . . . , zn−1}, are excluded from the feasible set in order to
generate a new point.

[Pn] :

Max v(z) =

p∑
i=1

vizi(x)

subject to

zi(x) ≥ (zti + ε)yti +Mi(1− yti) i = 1, . . . , p, t = 1, . . . , n− 1
p∑

i=1

yti = 1 t = 1, . . . , n− 1

yti ∈ {0, 1} i = 1, . . . , p, t = 1, . . . , n− 1

x ∈ X

In [Pn], Mi is a lower bound for criterion i and ε is sufficiently small positive constant. Let z′n =
(z′n1 , z

′n
2 , ..., z

′n
p) be the point corresponding to the optimal solution of [Pn]. For each previously-

generated nondominated point zt, yti is a binary variable enforced to take the value of 1 for some criterion
i, zi(x) ≥ (zti + ε). Therefore, [Pn] guarantees to generate a new point that is not dominated by any of
zt, t = 1, . . . , n− 1. The algorithm next solves a model, [En], to check whether z′n is nondominated or
not.

[En] :

Max
p∑

i=1

si

subject to
zi(x)− si = z′ni i = 1, . . . , p

x ∈ X

[En] generates a nondominated point, zn, that is either equal to z′n or dominates z′n. Since z′n, zn ∈ Z
and zn ∈ ZN , v(zn) ≤ v∗ ≤ v(z′n). Thus, the algorithm stops when v(zn) = v(z′n). Otherwise, the
algorithm defines Zn+1 = Zn ∪ {zn} and solves [Pn+1].

5

3.1. DSA

The algorithm of Jorge (2009) solves progressively more constrained models in order to generate new
points that are not dominated by the existing nondominated points. To reduce the computational burden,
we develop a Decomposition and Search Algorithm (DSA) that partitions the feasible set of [Pn] into
subsets and searches for an optimal solution over all these subsets. We also develop mechanisms and
introduce cuts in order to increase the computational efficiency. We next discuss these mechanisms and
then present the algorithm.

3.1.1. Decomposition Scheme of DSA
At each iteration n > 1, [Pn] generates the point that maximizes function v and is not dominated by
previously-generated points in Zn. In DSA, we partition the feasible criterion space into subsets that are
formed by imposing bounds on each criterion. In each subset, we find the nondominated point (if any)
that maximizes function v. After considering all subsets, we choose the point with maximum function v
value and show that it corresponds to the optimal point of [Pn].

We characterize each subset using a vector k = (k1, . . . , kp) where 0 ≤ ki ≤ n−1 for all i = 1, . . . , p.
If ki = 0, there is no additional lower bound for criterion i and hence we define the lower bound
as Mi. Otherwise, we use ith criterion value of zki ∈ Zn to impose a lower bound for criterion i. If
bk = (bk1 , . . . , b

k
p) denotes the lower bound vector characterized by k, then we define the submodel as

follows:

[Pk] :

Max v(z) =

p∑
i=1

vizi(x)

subject to

zi(x) ≥ bki i = 1, . . . , p

x ∈ X

where

bki =

{
Mi ki = 0

zki

i + ε ki 6= 0

We do not enumerate all combinations of such ki values since many of these combinations imply the
regions containing the existing nondominated points or regions that are already included in the subsets
defined by other combinations. We identify a set of k vectors, Kn, at each iteration so that union of
the feasible sets of the corresponding submodels, Z[Pk], will be equivalent to the feasible set of [Pn],
Z[Pn], i.e., Z[Pn] =

⋃
k∈Kn

Z[Pk]. Figure 1 shows the feasible set of an example problem whose three

nondominated points are available and Figure 2 shows its decomposition on the objective function space.

In order to generate all k ∈ Kn, we use the decomposition scheme of Lokman and Köksalan (2013).

6

Starting from the first criterion, the procedure iteratively sets the value of ki and define bki as in [Pk].
For the following criterion 1 < j < p, it either does not impose a lower bound (i.e. kj = 0) or uses jth

criterion value of zkj ∈ Rj where Rj = {zt ∈ Zn : zti ≥ bki ∀i < j ≤ p}. That is, the procedure
does not consider the nondominated points that have already been excluded from the feasible set by the
current bounds. We repeat this procedure until the last criterion, p, and then set the value of kp so that all
nondominated points that are still feasible under the current bounds will be excluded. That is, if Rp 6= ∅,
we set kp = arg max

zt∈Rp

ztp. Otherwise, kp = 0. Lokman and Köksalan (2013) show that this procedure gen-

erates a set of k vectors, Kn, satisfying Z[Pn] =
⋃

k∈Kn

Z[Pk]. We denote the optimal point to [Pk] by zk if

Z[Pk] 6= ∅. We next show that the optimal solution to [Pn] could be found by solving [Pk] for all k ∈ Kn.

Theorem 1. Let [Pn] be feasible and Kn be such that Z[Pn] =
⋃

k∈Kn

Z[Pk]. If k∗ = arg max
k∈Kn, Z[Pk] 6=∅

v(zk),

then z′n = zk
∗
.

Proof. Since Z[Pn] =
⋃

k∈Kn

Z[Pk], max
k∈Kn, Z[Pk] 6=∅

v(zk) = max
z∈Z[Pn]

v(z). Then z′n = zk
∗
.

Lemma 1. Let Kn be such that Z[Pn] =
⋃

k∈Kn

Z[Pk]. [Pn] is infeasible if and only if [Pk] is infeasible

for all k ∈ Kn.

Proof. Since Z[Pn] =
⋃

k∈Kn

Z[Pk], Z[Pn] = ∅ if and only if Z[Pk] = ∅ for all k ∈ Kn.

3.1.2. Bounding Mechanism of DSA
Different than the existing algorithms, DSA is designed in a way that it is capable of approximating v∗

with a prespecified level accuracy, g∗ ≥ 0. To do this, it keeps a lower bound and an upper bound for
v∗ during the algorithm and stops when g = |vu−vl|

|vl| ≤ g∗. Different than the existing algorithms, DSA
incorporates this information into the solution process and revises [Pk] for each k ∈ Kn as follows:

[Sk] :

Max v(z) =

p∑
i=1

vizi(x)

subject to

zi(x) ≥ bki i = 1, . . . , p
p∑

i=1

vizi(x) ≥ vl + g∗|vl|

p∑
vizi(x) ≤ vu

i=1

x ∈ X

7

In [Sk], vl and vu denote the lower and upper bounds, respectively of v∗. At any iteration n, the best
nondominated point found so far is called the incumbent, denoted by zinc and the optimal point to [Pn]
is denoted by z′n. Theorem 2 shows that vl = v(zinc) and vu = v(z′n).

Theorem 2. Given Zn = {z1, . . . , zn−1} at iteration n > 1, let zinc be the incumbent point, v(zinc) =
max

t=1,...,n−1
v(zt), and z′n be the optimal point to [Pn]. If v(z∗) = max

z∈ZN
v(z) and z∗ 6= zinc, then v(zinc) ≤

v(z∗) ≤ v(z′n).

Proof. Since zinc ∈ ZN and v(z∗) = max
z∈ZN

v(z), we have v(zinc) ≤ v(z∗). In addition, ZN ⊆ Z

and v(z′1) = Maxz∈Z v(z) , thus v(z∗) ≤ v(z′1). By construction, we have Z[Pn] ⊆ Z[Pn−1] that
implies v(z′n) ≤ v(z′n−1) for any n > 1 . Since we also have z∗ 6= zinc, then z∗ ∈ Z[Pn] and
v(z∗) ≤ v(z′n).

Instead of using the true lower bound, vl = v(zinc), in submodels, DSA sets a lower bound of
vl + g∗|vl| on the objective function value of [Sk] since any point having an objective function value
in between is “close” to the incumbent point in terms of the desired level of accuracy. Therefore, we
rebuild each submodel in a way that it turns out to be infeasible if there does not exist a new point that is
“far enough” from the incumbent point. We next formalize it in Theorem 3 and show that DSA provides
performance guarantee on the quality of the resulting solution.

Theorem 3. Given Zn = {z1, . . . , zn−1} at iteration n > 1, let Kn be such that Z[Pn] =
⋃

k∈Kn

Z[Pk]

and v(zinc) = max
t=1,...,n−1

v(zt). If v(z∗) = max
z∈ZN

v(z), v(z∗) 6= v(zinc), and [Sk] is infeasible for all

k ∈ Kn, then |v(z
∗)−v(zinc)|
|v(zinc)| ≤ g∗.

Proof. If [Sk] is infeasible for all k ∈ Kn but v(z∗) 6= v(zinc), then there should exist k ∈ Kn for
which z∗ ∈ Z[Pk] but vl ≤ v(z∗) < vl + g∗|vl|. Since v(zinc) ≤ v(z∗) and vl = v(zinc) by Theorem 2,
|v(z∗)−v(zinc)|
|v(zinc)| ≤ g∗.

3.1.3. Nondominance Check in DSA
Another mechanism to improve the existing algorithms applies to the nondominance check. DSA checks
whether a point z′n is dominated or not by solving:

[En
w] :

Max
p∑

i=1

wizi(x)

subject to
zi(x) ≥ z′ni i = 1, . . . , p

x ∈ X

8

where w = (w1, . . . , wp) denotes a weight vector satisfying wi > 0 for all i = 1, . . . , p. If z′n is a
dominated solution, [En

w] generates a nondominated point, zn, that dominates z′n. If v(zn) > vl, zinc

and vl are updated for the next iteration. In addition to the region that is dominated by zinc, the inferior
regions with respect to the value function and desired level of accuracy are excluded from the feasible
set. Instead of equally weighing each criterion as in the algorithm of Jorge (2009) or arbitrarily choosing
a positive w, DSA applies a heuristic method in order to generate efficient cuts. Since there may exist
more than one nondominated point dominating z′n, DSA aims to favor the one with a better function v
value and sets wi = vi− min

i=1,...,p
vi + 1 for each i = 1, . . . , p in [En

w] that also satisfy wi > 0 for all i. By

this way, DSA aims to obtain a tighter lower bound on v∗ at each iteration which helps to converge fast
to the optimal solution. In Section 4, we discuss the computational contribution of this mechanism and
show that it significantly improves the solution times of DSA.

3.1.4. The algorithm: DSA
We next present the steps of DSA and demonstrate it on an example problem.

Algorithm 1 DSA
Step 1: Initialization
n = 1, wi = vi − min

i=1,...,p
vi + 1 i = 1, . . . , p and z′1 = Maxz(x)∈Z v(z).

Step 2: Nondominance Check
Solve [En

w] and denote the optimal point as zn. If zn = z′n, then set vu = vl = v(zn), zinc = zn and
go to Step 5. Otherwise, go to Step 3.
Step 3: Bound Update
Set vu = v(z′n). If v(zn) ≥ vl, then set vl = v(zn) and zinc = zn. If g = |vu−vl|

|vl| ≤ g
∗, go to Step 5.

Otherwise, go to Step 4.
Step 4: New Point Generation
Set n = n+1 and update Kn. Solve [Sk] corresponding to each k ∈ Kn and denote the optimal point
as zk. If [Sk] is infeasible for all k ∈ Kn, then go to Step 5. Otherwise, find k∗ = arg max

k∈Kn, Z[Sk] 6=∅
v(zk)

and z′n = zk
∗
. Go to Step 2.

Step 5: Termination
Stop. z∗ = zinc maximizes (approximates) function v over the nondominated set, v∗ = v(z∗) (with a
desired level of accuracy, g∗) .

In Step 4, we store the optimal point of [Sk] corresponding to each bk in an archive. In the succeeding
iterations, before solving a new model, we check whether the optimal solution will be identical to that
of a previously-solved model. Furthermore, we detect the infeasibilities by utilizing the information
stored. With those mechanisms, the number of submodels decreases substantially. We refer the reader to
Lokman and Köksalan (2013) for the details. We next show that DSA will terminate in a finite number
of iterations.

Theorem 4. Let ZN be the set of all nondominated points. If ZN is a bounded set, DSA will find the

9

optimal point of problem [MOIP (v)] in at most |ZN |+ 1 number of iterations.

Proof. At any iteration n, DSA finds exactly one nondominated point that is distinct from the nondom-
inated points in Zn that are generated in previous iterations. If ZN is bounded, DSA will iteratively
generate all these nondominated points in |ZN | iterations until Z[Pn] becomes empty in the worst case.
Then, it will terminate at iteration n = |ZN |+ 1 when [Pn] is to be detected as infeasible.

Table 1: Demonstration of DSA on problem in Example 1

Iteration (n) z′n v(z′n) zn v(zn) zinc v(zinc)

1 (1030, 1387, 534) 33,144 (1942, 1791, 1471) -26,780 z1 -26,780

2 (1434, 1796, 985) 14,968 (1891, 1824, 1466) -25,278 z2 -25,278

3 (1506, 1827, 1063) 9,788 (1875, 1831, 1549) -33,438 z2 -25,278

4 (1502, 1835, 1090) 7,448 (1847, 1847, 1412) -19,298 z4 -19,298

5 (1470, 1849, 1127) 4,028 (1828, 1858, 1539) -31,692 z4 -19,298

6 (1528, 1861, 1163) 1,864 (1800, 1867, 1480) -25,716 z4 -19,298

7 (1542, 1868, 1178) 924 (1772, 1872, 1536) -31,448 z4 -19,298

8 (1415, 1874, 1199) -2,642 (1757, 1876, 1440) -21,850 z4 -19,298

9 (1570, 1877, 1232) -3,616 (1729, 1879, 1525) -30,586 z4 -19,298

10 (1536, 1885, 1249) -5,376 (1706, 1886, 1546) -32,644 z4 -19,298

11 (1944, 1651, 1218) -8,732 (1947, 1785, 1418) -21,722 z4 -19,298

12 (1949, 1642, 1217) -9,030 (1976, 1757, 1488) -29,772 z4 -19,298

13 (1491, 1887, 1294) -10,402 (1696, 1890, 1386) -16,576 z13 -16,576

14 (1519, 1892, 1319) -12,250 (1641, 1899, 1392) -17,478 z13 -16,576

15 (1852, 1841, 1359) -14,240 (1852, 1843, 1486) -26,836 z13 -16,576

16 (1675, 1891, 1375) -15,718 (1675, 1891, 1375) -15,718 z16 -15,718

Example 1. For demonstrating purposes, we present an example three-objective 50-item knapsack
problem that has 540 nondominated points. Table 1 shows the progress of the algorithm, DSA, for the
value function of v(z) = 14z1 + 52z2 − 100z3. If we consider the iteration, n = 5, at which four
points are already generated, Z5 = {z1, z2, z3, z4}, z4 is the incumbent point, vl = v(z4) = −19, 298

and vu = v(z′4) = 7, 448. In order to generate z5, DSA forms the subsets as in Table 2 and
finds optimal solution to [Sk] for each k in K5. Since k∗ = arg max

k∈K5

v(zk) = (0, 4, 0), we define

z′5 = zk
∗

= (1470, 1849, 1127) as also shown in Table 1. Since v is not a positive linear combination of
the criteria, the algorithm solves (E5

w) using w = (115, 153, 1) (wi = vi − min
i=1,...,p

vi + 1 i = 1, . . . , p)

and finds z 5 = (1828, 1858, 1539) t hat d ominates z ′5. We u pdate v u = v (z′5) = 4, 028 w hile zinc

and vl remain the same. The next iteration of the algorithm starts with the set of nondominated points

10

in Z6 = Z5
⋃
{z5}. DSA proceeds in this way and stops in iteration 16 when z′n = zn. We obtain

z∗ = (1675, 1891, 1375) and v∗ = −15, 718.

Note that we do not consider all combinations of ki = 0, . . . , 4 in Table 2. Furthermore, we solve
[Sk] only when it is not equivalent to the previously-solved submodels. For instance, we do not solve the
submodels corresponding to k ∈ {(0, 1, 3), (0, 2, 3), (4, 0, 3), (4, 1, 3), (4, 2, 3)} since we could detect
that it will be infeasible based on the solution for k = (0, 0, 3). Similarly, we also process the information
obtained from submodels in previous iterations and our results show that DSA requires solving three of
these 15 submodels at this iteration.

Table 2: Generated subsets and corresponding solutions in DSA at n = 5 for problem in Example 1

k bk zk v(zk)

(0, 0, 3) (M1, M2, 1550) infeasible -

(0, 1, 3) (M1, 1792, 1550) infeasible -

(0, 2, 3) (M1, 1825, 1550) infeasible -

(0, 3, 4) (M1, 1832, 1413) infeasible -

(0, 4, 0) (M1, 1848, M3) (1470, 1849, 1127) 4,028

(1, 0, 0) (1943, M2, M3) (1944, 1651, 1218) -8,732

(2, 0, 1) (1892, M2, 1472) infeasible -

(2, 1 ,0) (1892, 1792, M3) (1903, 1808, 1364) -15,742

(3, 0, 1) (1876, M2, 1472) infeasible -

(3, 1, 2) (1876, 1792, 1467) infeasible -

(3, 2, 0) (1876, 1825, M3) infeasible -

(4, 0, 3) (1848, M2, 1550) infeasible -

(4, 1, 3) (1848, 1792, 1550) infeasible -

(4, 2, 3) (1848, 1825, 1550) infeasible -

(4, 3, 0) (1848, 1832, M3) (1852, 1841, 1359) -14,240

3.2. DSA-m

The existing studies as well as DSA maximize v during the solution process until converging to a non-
dominated point. When vi < 0 for some criteria i, dominated points may be found in many iterations
and it will increase the computational difficulty. Based on this observation, we develop a new algorithm
DSA-m that maximizes one of the criteria, m, throughout the algorithm with the aim of decreasing the
number of dominated points generated. Instead of arbitrarily selecting this criterion, we choose m based

11

on the coefficients of the function v: m = arg max
i=1,...,p

vi. We reformulate our problem at iteration at n as

follows:

[Pn
m] :

Max zm(x)

subject to

zi(x) ≥ (zti + ε)yti +Mi(1− yti) i = 1, . . . , p, i 6= m t = 1, . . . , n− 1∑
i=1,...,p
i6=m

yti = 1 t = 1, . . . , n− 1

p∑
i=1

vizi(x) ≥ vl + g∗|vl|

p∑
i=1

vizi(x) ≤ vu

yti ∈ {0, 1} i = 1, . . . , p, i 6= m t = 1, . . . , n− 1

x ∈ X

If [Pn
m] is feasible, the optimal point is denoted by z′n. Since [Pn

m] maximizes mth criterion over the
feasible set in the criterion space and Z(Pn+1

m) ⊆ Z[Pn
m], z′n+1

m ≤ z′nm for all n ≥ 1 that allows us to
decrease the number of constraints and binary variables. Similar to DSA, we partition the feasible
criterion space into subsets that are identified by a k vector:

[Pk
m] :

Max zm(x)

subject to

zi(x) ≥ bki i = 1, . . . , p i 6= m
p∑

i=1

vizi(x) ≥ vl + g∗|vl|

p∑
i=1

vizi(x) ≤ vu

x ∈ X

zk denotes the optimal nondominated point if [Pm
k] is feasible. As described in Section 3.1.1, the bound

for each criterion i is set based on the value of ki. The set of feasible vectors k, denoted by Kn
m, is

obtained as in DSA but with prior information of km = 0 since we do not impose a lower bound for
criterion m in DSA-m.

12

Theorem 5. Let [Pn
m] be feasible and Kn

m be such that Z[Pn
m] =

⋃
k∈Kn

m

Z[Pk
m]. If k∗ = arg max

k∈Kn
m, Z[Pk] 6=∅

zkm,

then z′n = zk
∗
.

Proof. Since Z[Pn
m] =

⋃
k∈Kn

m

Z[Pk
m], max

k∈Kn
m, Z[Pk

m] 6=∅
zkm = max

z∈Z[Pn]

z′nm. Then z′n = zk
∗
.

We next give the outline of DSA-m and illustrate it with the following example.

Algorithm 2 DSA-m
Step 1: Initialization
m = arg max

i=1,...,p
vi and wi = vi − min

i=1,...,p
vi + 1 i = 1, . . . , p.

z′0 = Maxz(x)∈Z v(z) and vu = v(z′0).
Solve [E0

w] and denote the optimal point as z0 and set zinc = z0 and vl = v(zinc).
z′1 = max

x∈X
zm(x) and n = 1.

Step 2: Nondominance Check
Solve [En

w] and denote the optimal point as zn.
Step 3: Bound Update
If v(zn) > v(zinc), then set zinc = zn and vl = v(zinc). If g = |vu−v(zinc)|

|v(zinc)| ≤ g∗, go to Step 5.
Otherwise, go to Step 4.
Step 4: New Point Generation
Set n = n + 1 and update Kn

m. Solve Pk
m corresponding to each k ∈ Kn

m. If Pk
m is infeasible for all

k ∈ Kn
m, go to Step 5. Otherwise, find k∗ = arg max

k∈Kn
m, Z[Pk

m] 6=∅
zkm, assign z′n = zk

∗
, and go to Step 2.

Step 5. Stop. z∗ = zinc maximizes (approximates) function v over the nondominated set (with the
desired level of accuracy, g∗).

Example 2. In order to demonstrate the progress of the algorithm, DSA-m, we consider the problem in
Example 1. As shown in Table 3, the algorithm sets m = 2 and generates the points in nonincreasing
order of the second criterion since v(z) = 14z1 + 52z2− 100z3 and m = arg max

i=1,2,3
vi. If we consider the

iteration n = 5, z3 is the incumbent point, vl = v(z3) = −15, 718 and vu = v(z′0) = 33, 144. In order
to find a new point, DSA-m partitions the feasible set as shown in Table 4 and solves [Pk

2] for each k in
K5

2. DSA-m chooses the subset for which the optimal solution has the maximum second criterion value:
k∗ = arg max

k∈K5
2

zk2 = (4, 0, 0) and z′5 = zk
∗

= (1788, 1863, 1356). Next, DSA-m solves (E5
w) using

w = (115, 153, 1) as in DSA and finds z5 = (1800, 1867, 1480) that dominates z′5. The values of vl, vu

and zinc remain the same and the next iteration starts with Z6 = Z5
⋃
{z5}. The algorithm proceeds in

this way until the reduced feasible set becomes empty. Table 3 shows that DSA-m stops in 11 iterations
with the solution of z∗ = (1675, 1891, 1375) and v∗ = −15, 718.

Since DSA- m also checks whether the solution is identical to that of previously constructed submod-
els, it solves only one submodel at n = 5. While total number of models solved by DSA for this example

13

is 56, DSA-m solves 27 models in total. Furthermore, DSA first finds the optimal solution in iteration
16, DSA-m finds the optimal solution in the third iteration.

Table 3: Demonstration of DSA-m on problem in Example 2 (m = 2)

Iteration (n) z′n v(z′n) zn v(zn) zinc v(zinc)

1 (1580, 1899, 1435) -22,632 (1580, 1899, 1435) -22,632 z1 -22,632

2 (1641, 1899, 1392) -17,478 (1641, 1899, 1392) -17,478 z2 -17,478

3 (1675, 1891, 1375) -15,718 (1675, 1891, 1375) -15,718 z3 -15,718

4 (1677, 1873, 1325) -11,626 (1757, 1876, 1440) -21,850 z3 -15,718

5 (1788, 1863, 1356) -13,692 (1800, 1867, 1480) -25,716 z3 -15,718

6 (1804, 1856, 1372) -15,432 (1828, 1858, 1539) -31,692 z3 -15,718

7 (1852, 1841, 1359) -14,240 (1852, 1843, 1486) -26,836 z3 -15,718

8 (1855, 1816, 1356) -15,198 (1891, 1824, 1466) -25,278 z3 -15,718

9 (1905, 1787, 1344) -14,806 (1942, 1791, 1471) -26,780 z3 -15,718

10 (1948, 1700, 1298) -14,128 (1976, 1757, 1488) -29,772 z3 -15,718

11 infeasible - - - z3 -15,718

Table 4: Generated subsets and corresponding solutions in DSA-m at n = 5 for problem in Example 2
(m = 2)

k bk zk v(zk)

(0, 0, 4) (M1, M2, 1441) infeasible -

(1, 0, 4) (1581, M2, 1441) infeasible -

(2, 0, 4) (1642, M2, 1441) infeasible -

(3, 0, 4) (1676, M2, 1441) infeasible -

(4, 0, 0) (1758, M2, M3) (1788, 1863, 1356) -13,692

4. Computational Experiments

We conduct computational experiments on randomly generated instances of multi-objective assignment
problem (MOAP) and multi-objective knapsack problem (MOKP). For the three-objective case, we con-
sider 25-, 50-, and 100-item knapsack problems and 10x10-, 20x20, and 30x30-sized assignment prob-
lems. For the four-objective case, we test the algorithms on 25-, 50-, and 100-item knapsack problems
and 10x10-, and 20x20-sized assignment problems. Our random generation scheme is the same as that
of Köksalan and Lokman (2015). Since all parameters are generated as positive integers, we set ε = 1

14

and Mi = 0 for all i = 1, . . . p. For each instance, we maximize a linear function, v, whose coeffi-
cients, vi i = 1, . . . p, are randomly generated as uniformly distributed integers between -100 and 100.
We coded the algorithms using Microsoft Visual Studio 2010 by C++ programming language with the
callable library of CPLEX 12.6. The experiments are conducted on 64-bit Microsoft Windows 7 Pro-
fessional installed on an Intel (R) Core (TM) i7-4790 CPU @ 3.60GHz computer with 8.00 GB RAM.
Table 5 presents computational results on the performances of the algorithms. In presenting the results
in Table 5, we list the problem type, the number of models solved by the algorithms Jorge, DSA and
DSA-m as well as the respective solution times (in seconds).

The computational advantage that DSA provides over Jorge (2009) is to reduce the complexity of
the models solved at each iteration at the expense of solving more models. Since the complexity of the
models does not increase substantially throughout the algorithm for small-sized problems, DSA is out-
performed by the algorithm of Jorge (2009) for 10x10-sized MOAPs and 25-item MOKPs with three and
four objectives (3MOAP10x10, 4MOAP10x10, 3MOKP25, and 4MOKP25). However, we should note
that the performance of DSA relative to that of Jorge (2009) in terms of the solution time improves sub-
stantially as the problem size increases. For instance, in three-objective 30x30 MOAPs (3MOAP30x30s)
the algorithm of Jorge (2009) converges to the optimal value in 2233.60 seconds on average whereas the
average solution time is 343.02 seconds for DSA. Similarly, the respective solution times are 7720.44
and 246.47 seconds for four-objective 100-item MOKPs (4MOKP100s). The improvement is not only
due to the decomposition mechanism but also the mechanisms applied in the nondominance check and
bounding.

DSA-m evolves different than these algorithms since it selects a criterion based on the value function
and finds the feasible point that maximizes that criterion at each iteration. The aim is not only to reduce
the number of dominated points generated throughout the algorithm but also reduce the dimension of the
search space. As seen in Table 5, these modifications decrease the solution time as well as the number of
models solved. While the average solution times for 3MOKP25s and 3MOAP30x30s are almost similar
for DSA and DSA-m, DSA-m outperforms DSA in the remaining instances in terms of the number of
models solved and solution time. Our further analysis on 20x20-sized MOAPs shows that the average
number of submodels solved is decreased by 72.69% and 66.84% for three and four objective cases,
respectively when compared to those of DSA. In addition, the ratio of the number of the nondominated
points to total number of points generated throughout the algorithm increases from 15.11% to 21.07%
for the three-objective case and from 12.20% to 19.42% for the four-objective case. Since our bounding
mechanism helps us to introduce cuts based on the nondominated points generated, DSA-m converges
fast. While DSA terminates in 30.10 iterations on average in 3MOAP20x20s, DSA-m stops in 23.00
iterations. Similarly, the number of iterations required by DSA and DSA-m to solve 4MOAP20x20s are
56.10 and 48.40 on average, respectively.

In order to analyze how the performances of the algorithms change with respect to an increase in
the number of the criteria, we compare the results for the three-objective case with those for the four-
objective case. The results in Table 5 show that the average solution time of the algorithm of Jorge
(2009) increases drastically and it becomes prohibitive to solve larger problems. This is because the
nondominated set grows with the number of criteria, it takes more number of iterations to attain the
optimal solution and the algorithm of Jorge (2009) solves progressively more constrained model at each
iteration. Although the dimension of the search space also grows with the number of criteria and the
number of subsets generated to partition the search space increases, the solution times are still quite

15

reasonable for DSA and DSA-m as shown in Table 5. While, out of 10 instances of 4MOAP20x20,
the algorithm of Jorge (2009) could not solve one instance within 48 hours, the solution times required
by DSA and DSA-m to solve this instance are 3.77 and 1.93 minutes, respectively. If we compare
the results for the remaining nine instances, the algorithm of Jorge (2009) requires 93.56 iterations on
average to converge to the optimal solution whereas DSA and DSA-m terminate in 47.64 and 31.67
iterations on average, respectively. Furthermore, the corresponding average solution times are 105.51
and 34.12 seconds while an average of 3.05 hours are required by the algorithm of Jorge (2009) to solve
these instances. The computational efficiency mainly results from accompanying mechanisms for fast
convergence, solving a number of simpler models of constant size at each iteration, and progressively
processing the information obtained from these models.

Table 5: The performance resultsa on the test instances with p = 3 and 4

Number of models solved Sol. time (in seconds)

Problem Jorge DSA DSA-m Jorge DSA DSA-m

3MOAP10x10
(N̄ = 189.40) 17.10 35.10 21.90 2.64 4.70 2.75

3MOAP20x20
(N̄ = 1908.50) 130.30 137.40 52.30 90.10 23.41 8.82

3MOAP30x30
(N̄ = 5235.00) 542.20 1100.50 553.90 2233.60 343.02 438.04

3MOKP25
(N̄ = 58.00) 7.20 13.20 12.20 1.15 1.78 1.79

3MOKP50
(N̄ = 524.00) 43.70 95.20 40.60 11.14 14.82 20.83

3MOKP100
(N̄ = 3805.10) 160.00 322.50 86.10 381.85 52.11 27.39

4MOAP10x10
(N̄ = 962.00) 21.60 87.00 73.10 3.76 21.68 11.11

4MOAP20x20
(N̄ = 29324.50) 187.22b 741.80 275.80 10994.59b 149.61 58.47

4MOKP25
(N̄ = 165.20) 17.40 57.00 32.20 3.18 8.84 4.63

4MOKP50
(N̄ = 1576.30) 59.50 234.90 160.30 43.36 42.15 73.23

4MOKP100 181.78b 1099.00 495.20 7720.44b 246.47 125.78
a Average values based on 10 instances are reported per cell. N̄ represents the average number of

nondominated points. N̄ is not known for 4MOKP100.
b Average values based on 9 instances are reported. One instance that could not be solved by the

algorithm of Jorge (2009) within 48 hours are excluded from the statistics.

16

In order to assess the efficiency of the mechanisms developed, different variants of DSA and DSA-
m are built and tested on 3MOAP20x20s. In the first variant of DSA, DSA-equal w, all objectives are
equally weighted in [En

w] as in Jorge (2009). The results in Table 6 show that the number of models
solved by DSA-equal w is greater than that of Jorge (2009) but the first outperforms the latter in terms
of the solution time because of the efficiency of the decomposition mechanism. The comparison between
the results obtained with DSA and DSA-equal w indicates the computational efficiency of our heuristic
method that sets the weights in model [En

w] based on the coefficients of function v. The average number of
models solved decreases from 376.40 to 137.40 that corresponds to 61.61% saving in the solution times
on average. That is, while DSA and the algorithm of Jorge (2009) work in a similar way, DSA converges
to the optimal point much faster than the algorithm of Jorge (2009) by the help of the mechanisms. We
also revised DSA-m and built another variant, DSA-random m, that arbitrarily selects the criterion to
maximize in [Pk

m]. When the results obtained with DSA-random m are compared with those of DSA-m,
the heuristic procedure in DSA-m that chooses the criterion, m, based on the value function provides a
significant improvement by decreasing the average number of models from 170.50 to 52.30 and reducing
the average solution times from 34.23 to 8.82 seconds.

Table 6: Efficiency of the Mechanisms on three-objective 20x20-sized MOAPs*

Number of models solved Sol. time (in seconds)

Method Avg. StDev. Avg. StDev.

Jorge 130.30 111.86 90.10 132.52

DSA-equal w 376.40 328.71 60.98 54.53

DSA-random m 170.50 173.18 34.23 40.79

DSA 137.40 138.16 23.41 25.23

DSA-m 52.30 28.62 8.82 5.62
* Values based on 10 problems are reported per cell

We also compare the performances of DSA and DSA-m under different values of the desired level of
accuracy, g∗. Tables 7 and 8 present the results for three-objective and four-objective cases, respectively.
The results show that the solution time decreases substantially as the value of g∗ increases. Since DSA-
m maximizes one of the criteria while setting bounds on function v value based on the desired level of
accuracy, the savings in the solution times for DSA-m are larger than those of DSA. For instance, when
g∗ = 0.1 for the three-objective case, the solution time for DSA decreases by 31.64% on average while it
improves by 39.98% on average for DSA-mwhen compared to the case of g∗ = 0. In addition, the results
show that a higher saving in the solution time is obtained for the four-criteria case when compared to the
three-criteria case. The savings in the solution times when g∗ = 0.1 increase to 43.41% and 51.53% on
average for DSA and DSA-m, respectively. The results in Tables 7 and 8 also indicate that the resulting
level of accuracy is much smaller than the desired level of accuracy. Even when the desired level of
accuracy is set to 0.15, g∗ = 0.15, the actual gap values turn out to be 0.0368 and 0.0274 on average
for DSA and DSA-m, respectively while corresponding solution times are only 27.26 and 13.37 seconds
on average. The results show that the approximation algorithms are promising for large-scale problems
from practice.

17

We also compare the performances of DSA and DSA-m with that of Boland et al. (2017)’s algorithm
on a 100-item multi-dimensional knapsack problem with three objectives, the instance available in their
public library. We make 10 replications using different linear functions whose coefficients vi, i = 1, . . . p,
are randomly generated as uniformly distributed integers between -100 and 100. While DSA finds the
optimal nondominated point in 363.68 seconds with a standard deviation of 984.76 seconds on average,
DSA-m solves the problem in 285.03 seconds with a standard deviation of 865.78 seconds. Using the
source code of Boland et al. (2017), we also solved the same problems and the average solution time
turns out to be 465.32 seconds with a standard deviation of 654.07 seconds. While DSA-m outperforms
the algorithm of Boland et al. (2017) on the average, the results are analyzed in detail to evaluate the
performances of these algorithms. The results show that the algorithm of Boland et al. (2017) work well
when vi < 0, for all i = 1, . . . p. However, when vi > 0 for at least one criterion i, DSA and DSA-m
outperform the algorithm of Boland et al. (2017). For instance, when v(z) = −61z1 − 32z2 − 74z3,
DSA and DSA-m find the optimal point in 3132.52 seconds, and 2748.93 seconds, respectively while
the algorithm of Boland et al. (2017) has a solution time of 997.15 seconds. However, when v(z) =
73z1 − 5z2 − 98z3, the solution times are 25.41, 16.12 and 1437.92 seconds, for DSA, DSA-m and
the algorithm of Boland et al. (2017), respectively. This is because our algorithms are specialized with
respect to the value function.

5. Conclusions

The problem of optimizing a linear function over the nondominated set of a MOIP has many applications
but the solution may not be straightforward since the nondominated set is not known a priori. In this
paper, we develop two algorithms to maximize a linear function over the nondominated set of any given
MOIP. The first a lgorithm, DSA, proposes modifications to an existing algorithm by employing a set
of improvement mechanisms. In order to decrease the number of models to be solved at one iteration,
we develop another algorithm, DSA-m that maximizes one of the criteria throughout the algorithm.
The algorithms iteratively generate nondominated points reducing the feasible set not only using the
nondominated points generated so far but also introducing bounds on the value of the linear function.
These algorithms, DSA and DSA-m, are both designed to work under a given desired level of accuracy
such that it allows the DM to approximate the optimal solution with a performance guarantee on the
quality of the solution in a reasonable solution time. Therefore, they could be applied to large-sized
MOIPs for which the nondominated set is huge. We test and compare the performances of the algorithms
with the existing studies on different sized multi-objective combinatorial optimization problems, which
are typically hard to solve. The results show that the algorithms converge to the optimal solution in a
reasonable solution time especially on large problems.

DSA is directly applicable to the problem of optimizing a linear function over the efficient sets of
MOIPs. The weights to be used in nondominance check could be selected using a similar mechanism.
However, DSA-m could be applied after a criterion is to be decided by the analyst. As an extension, DSA
and DSA-m could be modified in order to approximate a value function over the nondominated sets of
multi-objective mixed integer programs. For large-sized problems where it is hard to solve even a single
model, problem-specific s olution p rocedures c ould b e u sed t o g enerate t he p oints. A lternatively, the
interactive version of those algorithms could be applied to large problems such that the DM’s preferences

18

Table 7: The performance results of the approximation algorithms on the test instances with p = 3*

Nb. of models solved Sol. time (in seconds) Actual Level of Accuracy

Problem g∗ DSA DSA-m DSA DSA-m DSA DSA-m

3MOAP10x10

0.00 35.10 21.90 4.70 2.75 0.0000 0.0000

0.05 29.40 16.80 3.89 2.12 0.0055 0.0021

0.10 21.90 13.10 2.91 1.61 0.0113 0.0059

0.15 19.20 11.50 2.43 1.49 0.0290 0.0059

3MOAP20x20

0.00 137.40 52.30 23.41 8.82 0.0000 0.0000

0.05 110.90 42.30 17.91 7.43 0.0083 0.0051

0.10 88.60 32.70 14.35 5.38 0.0192 0.0131

0.15 71.00 27.90 10.95 4.90 0.0289 0.0313

3MOAP30x30

0.00 1100.50 553.90 343.02 438.04 0.0000 0.0000

0.05 807.20 335.30 193.99 244.93 0.0176 0.0112

0.10 637.30 224.90 130.00 144.55 0.0314 0.0196

0.15 557.80 147.00 112.88 75.58 0.0407 0.0342

3MOKP25

0.00 13.20 12.20 1.78 1.79 0.0000 0.0000

0.05 7.40 7.70 0.89 1.15 0.0081 0.0052

0.10 6.80 6.90 0.93 0.96 0.0119 0.0057

0.15 5.70 5.90 0.65 0.76 0.0127 0.0264

3MOKP50

0.00 95.20 33.70 14.82 12.20 0.0000 0.0000

0.05 57.90 17.90 7.52 3.31 0.0088 0.0007

0.10 38.00 10.60 4.91 1.76 0.0374 0.0051

0.15 31.40 7.70 4.02 1.18 0.0419 0.0155

3MOKP100

0.00 322.50 86.10 52.11 27.39 0.0000 0.0000

0.05 178.90 42.60 25.11 8.70 0.0174 0.0131

0.10 109.00 21.80 15.08 4.24 0.0387 0.0185

0.15 72.00 11.00 9.88 2.04 0.0521 0.0226
* Average values based on 10 instances are reported per cell. p and g∗ represents the number of criteria and the desired

level of accuracy, respectively.

could be incorporated into the solution process and the algorithm could be stopped when the DM is
satisfied with the incumbent point.

19

Table 8: The performance results of the approximation algorithms on the test instances with p = 4*

Nb. of models solved Sol. time (in seconds) Actual Level of Accuracy

Problem g∗ DSA DSA-m DSA DSA-m DSA DSA-m

4MOAP10x10

0.00 87.00 73.10 21.68 11.11 0.0000 0.0000

0.05 74.00 44.00 15.50 6.01 0.0000 0.0048

0.10 67.50 32.90 13.22 4.43 0.0144 0.0212

0.15 58.40 24.90 10.63 3.34 0.0290 0.0316

4MOAP20x20

0.00 741.80 275.80 149.61 58.47 0.0000 0.0000

0.05 606.90 165.00 118.17 33.84 0.0073 0.0081

0.10 506.10 136.30 96.79 28.46 0.0358 0.0247

0.15 368.60 115.10 69.51 23.93 0.0489 0.0499

4MOKP25

0.00 57.00 32.20 8.84 4.63 0.0000 0.0000

0.05 39.90 22.40 5.88 3.31 0.0082 0.0102

0.10 29.40 16.70 4.06 2.33 0.0252 0.0101

0.15 22.20 11.90 3.10 1.79 0.0383 0.0103

4MOKP50

0.00 234.90 160.30 42.15 73.23 0.0000 0.0000

0.05 122.40 62.70 21.97 11.24 0.0087 0.0129

0.10 69.30 40.40 12.05 6.69 0.0263 0.0187

0.15 49.80 25.60 8.55 4.15 0.0402 0.0377

4MOKP100

0.00 1099.00 495.20 246.47 125.78 0.0000 0.0000

0.05 625.70 181.90 137.29 40.89 0.0122 0.0150

0.10 451.90 128.80 96.81 28.49 0.0246 0.0144

0.15 319.30 119.80 67.31 26.68 0.0426 0.0363
* Average values based on 10 instances are reported per cell. p and g∗ represents the number of criteria and the desired

level of accuracy, respectively.

References

Abbas, M., Chaabane, D., 2006. Optimizing a linear function over an integer efficient set. European Journal of Operational
Research 174, 2, 1140–1161.

Benson, H., Sayin, S., 1994. Optimization over the efficient set: Four special cases. Journal of Optimization Theory and
Applications 80, 1, 3–18.

Benson, H.P., 1984. Optimization over the efficient set. Journal of Mathematical Analysis and Applications 98, 2, 562–580.
Boland, N., Charkhgard, H., Savelsbergh, M., 2016. The l-shape search method for triobjective integer programming. Mathe-

matical Programming Computation 8, 2, 217–251.
Boland, N., Charkhgard, H., Savelsbergh, M., 2017. A new method for optimizing a linear function over the efficient set of a

multiobjective integer program. European journal of operational research 260, 3, 904–919.

20

Dächert, K., Klamroth, K., 2015. A linear bound on the number of scalarizations needed to solve discrete tricriteria optimization
problems. Journal of Global Optimization 61, 4, 643–676.

Ecker, J.G., Song, J.H., 1994. Optimizing a linear function over an efficient set. Journal of Optimization Theory and Applica-
tions 83, 3, 541–563.

Ehrgott, M., Gandibleux, X., 2002. Multiobjective Combinatorial Optimization — Theory, Methodology, and Applications,
Springer US, Boston, MA. pp. 369–444.

Ehrgott, M., Gandibleux, X., 2004. Approximative solution methods for multiobjective combinatorial optimization. Top 12, 1,
1–63.

Ehrgott, M., Gandibleux, X., Przybylski, A., 2016. Exact methods for multi-objective combinatorial optimisation. In Multiple
Criteria Decision Analysis. Springer, pp. 817–850.

Jorge, J.M., 2005. A bilinear algorithm for optimizing a linear function over the efficient set of a multiple objective linear
programming problem. Journal of Global Optimization 31, 1, 1–16.

Jorge, J.M., 2009. An algorithm for optimizing a linear function over an integer efficient set. European Journal of Operational
Research 195, 1, 98–103.

Kirlik, G., Sayın, S., 2014. A new algorithm for generating all nondominated solutions of multiobjective discrete optimization
problems. European Journal of Operational Research 232, 3, 479–488.

Kirlik, G., Sayın, S., 2015. Computing the nadir point for multiobjective discrete optimization problems. Journal of Global
Optimization 62, 1, 79–99.

Köksalan, M., Lokman, B., 2015. Finding nadir points in multi-objective integer programs. Journal of Global Optimization 62,
1, 55–77.

Lokman, B., Köksalan, M., 2013. Finding all nondominated points of multi-objective integer programs. Journal of Global
Optimization 57, 2, 347–365.

Nguyen, N.C., 1992. An algorithm for optimizing a linear function over the integer efficient set. Konrad-Zuse-Zentrum für
Informationstechnik Berlin [ZIB].

Özlen, M., Azizoğlu, M., 2009. Multi-objective integer programming: a general approach for generating all non-dominated
solutions. European Journal of Operational Research 199, 1, 25–35.

White, D.J., 1996. The maximization of a function over the efficient set via a penalty function approach. European Journal of
Operational Research 94, 1, 143–153.

Zhang, W., Reimann, M., 2014. A simple augmented epsilon-constraint method for multi-objective mathematical integer pro-
gramming problems. European Journal of Operational Research 234, 1, 15–24.

21

Fig. 1: The feasible set of [P 4] in the criterion space, Z[P 4] (n = 4, p = 2)

Fig. 2: The feasible sets of submodels [Pk] in the criterion space, Z[Pk](n = 4, p = 2)

