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In this paper we present a new approach to rough set approximations that permits to

distinguish between two kinds of “imperfect” knowledge in a joint framework: on one
hand, vagueness, due to imprecise knowledge and uncertainty typical of fuzzy sets, and
on the other hand, ambiguity, due to granularity of knowledge originating from the

coarseness typical of rough sets. The basic idea of our approach is that each concept is
represented by an orthopair, that is, a pair of disjoint sets in the universe of knowledge.

The first set in the pair contains all the objects that are considered as surely belonging to

the concept, while the second set contains all the objects that surely do not belong to the
concept. In this context, following some previous research conducted by us on the algebra

of rough sets, we propose to define as rough approximation of the orthopair representing

the considered concept another orthopair composed of lower approximations of the two
sets in the first orthopair. We shall apply this idea to the classical rough set approach

based on indiscernibility, as well as to the dominance-based rough set approach. We
discuss also a variable precision rough approximation, and a fuzzy rough approximation

of the orthopairs. Some didactic examples illustrate the proposed methodology.
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1. Introduction

Vagueness and ambiguity are concepts that after attracting the interest of philoso-

phers, gain more and more attention from researchers in computational intelligence,
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where they are used to distinguish between two types of imperfect knowledge. In 
computational intelligence, vagueness is dealt by fuzzy set theory, while ambigu-

ity caused by coarseness of information by rough set theory.1, 2 This distinction 
has been acknowledged by the following opinion of Dubois and Prade:3 “Rough sets 
have often been compared to fuzzy sets, sometimes with a view to introduce them as 
competing models of imperfect knowledge. Such a comparison is misfounded. Indis-

cernibility and vagueness are distinct facets of imperfect knowledge. Indiscernibility 
refers to the granularity of knowledge (classes of indiscernible objects). Vagueness 
is due to the fact that terms of natural language are often gradual notions, and 
refer to sets with smooth boundaries. Fuzzy set theory relies on ordering relations 
that express intensity of membership. Rough set theory is based on equivalence re-

lations describing partitions made of classes of indiscernible objects. So, one theory 
is quite distinct from the other, and they display a natural complementarity. And 
it would be nice to use both of them conjointly, since vagueness and coarseness are 
sometimes interacting”.

A conjoint use of fuzzy sets and rough sets has been often discussed and in-

vestigated since the beginning of nineties, taking as a staring point the rough set 
concepts which were then reformulated in a fuzzy context by means of fuzzy logical 
connectives (see, e.g.,4, 5). In this paper, we want to reconsider the distinction be-

tween vagueness and ambiguity, but from a more fundamental point of view, having 
in mind the following meaning of the two types of imperfect knowledge:

• vagueness, related to ‘a priori’ epistemic evaluation of the credibility of one

concept, and

• ambiguity, related to ‘a posteriori’ approximation of the same concept by

means of granules of knowledge.

Our approach is rooted in a general conception of imprecision due to Frege who

expressed the idea of imprecision in the following way:6

“The concept must have a sharp boundary. To the concept without a sharp

boundary there would correspond an area that had not a sharp boundary-line all

around.”

The Frege’s idea of imprecision introducing boundary line cases that can be

assigned neither to the concept nor to its complement was an inspiration for Pawlak

and a philosophical basis of rough set theory (see7,8).

A natural and straightforward way of representing the imprecision is to assign

to each concept C a pair of disjoint sets (X,Y ) of the universe of discourse U ,

technically called orthopairs,9 such that X contains the objects that for sure belong

to C and Y contains all the objects that for sure do not belong to C. This idea

has been considered in many theories related to the handling of uncertainty, such

as three valued logic,10 shadowed sets,11 or quantum logic algebra.12 Another way

to represent uncertainty, consistent with rough set theory, is to use the interval

set13 defined as a pair of sets (W,Z), W ⊆ Z ⊆ U , such that W contains all the

objects that surely belong to C and Z contains the objects that could belong to



C. Of course, there is a clear correspondence between orthopairs and interval sets.

In fact, the objects that could belong to concept C are those that remain in the

universe once the objects that for sure do not belong to C are removed, so that

the orthopair (X,Y ) is equivalent to the interval set (X,U − Y ). Therefore, for the

moment we shall focus our attention on orthopairs, but it is clear that what is said

for orthopairs can be extended to intervals sets. Later in the paper, we shall come

back to interval sets pointing out how the concepts introduced for orthopairs can

be generalized to interval sets.

The idea of representing imprecision using orthopairs has been exploited in the

domain of algebraic theory for imprecise concepts. Among these works a special

place has been taken by an algebraic approach to rough set theory14 where pairs

(X,Y ) of disjoint sets in a universe of discourse U , that is, orthopairs, are considered.

In the orthopair, set X is the lower approximation (interior) of a given set Z ⊆ U ,

and Y is the complement of the upper approximation (exterior) of set Z. Let us

remember that the lower approximationX of a given set Z is the set of all the objects

that not only belong to Z but, moreover, according to the available information, all

objects indiscernible with them also belong to Z. For example, student S belongs

to the lower approximation G of class G of good students not only if he belongs to

G, but also if all students having the same evaluations on all considered subjects

belong to the same class.

In this paper, we propose a different model of rough set theory. We take into

account a pair of disjoint sets to represent an a priori vagueness such that, given

concept C, the pair (X,Y ) is composed of set X being the necessity kernel of the

objects that for sure belong to concept C, and set Y being the non-possibility ker-

nel of the objects that for sure do not belong to concept C. To take into account

an a posteriori ambiguity related to the granularity of knowledge about concept C,
we assign the pair (X,Y ) to the pair (X,Y ). This permits to distinguish between

vagueness understood as imprecise or uncertain knowledge represented typically by

fuzzy sets of the original pair (X,Y ), on one hand, and ambiguity, caused by in-

discernibility and coarseness of the granular information, represented typically by

rough sets of the derived pair (X,Y ), on the other hand.

For example, as the concept ‘good’ students is vague, instead of considering a

precise class of good students, one can consider a pair (GP , GN ) of sets of students,

where

• GP contains the students that are considered ‘good’, and

• GN contains the students that are considered ‘not good’.

After, taking into account the evaluations of students on the subjects considered

relevant for assessing their quality, one can assign the pair (GP , GN ) to the pair

(GP , GN ), such that

• GP contains the students that, taking into account the available informa-



tion, are considered ‘good’ without any doubt, and

• GN contains the students that, taking into account the available informa-

tion, are considered ‘not good’ without any doubt.

Let us observe that in the example of students, when defining the lower approx-

imations, we have not taken into account the ordinal properties of the assignment

to the sets of ‘good’ and ‘not good’ students, and of the evaluations on the subjects

considered relevant. Thus, we considered the set qualifiers ‘good’ and ‘not good’,

as well as different evaluations on the subjects, e.g., ‘medium’ or ‘bad’, as different

labels. Therefore, student S belonging to the set of ‘good’ students GP cannot be

assigned to the lower approximation GP of the same set when another student S′

not belonging to GP has the same evaluations on all the subjects considered rel-

evant. Indeed, the indiscerniblity principle adopted to define (GP , GN ) says that

all objects (students) having the same evaluations on all the relevant attributes

(subjects) should have been assigned to the same class and, if this did not happen,

there is an ambiguity, and the corresponding objects (students) cannot be assigned

to the lower approximations of their classes.

If we would take into account the ordinal properties of the above set qualifiers

and evaluations, then ‘good’ should be considered as better than ‘not good’, as well

as ‘medium’ should be considered as better than ‘bad’. In fact, one could have two

objects (students), S and S′, such that S has been assigned to a better class than S′

(for example, S assigned to the class of ‘good’ students and S′ assigned to the class

of ‘not good’ students), while having different evaluations on the relevant attributes

(subjects). As they are discernible with respect to the available information they are

assigned to the lower approximations of their respective classes and this assignment

does not violate the indiscernibility principle. However, it could happen that S, even

if assigned to a better class, has not better evaluations than S′ on all the relevant

attributes, so that, despite their discernibility, the assignment of S and S′ to the

lower approximations of their respective classes would appear ambiguous. In fact,

in this case, one would expect to apply the dominance principle according to which

if an object (student) has not worse evaluations than another object (student) on

all the relevant attributes (subjects), then the first object (student) should belong

to a class not worse than that of the second object (student), and, if this does not

happen, there is an ambiguity and the corresponding objects (students) cannot be

assigned to the lower approximations of their classes.

This example leads to a conclusion that when the ordinal properties of set quali-

fiers (classes) and evaluations are taken into account, the classical rough set approx-

imations, considered within the Indiscernibility-based Rough Set Approach (IRSA),

have to be redefined by replacing the indiscernibility relation with the dominance

relation. The latter relates two objects (students) S and S′ when S has not worse

evaluations than S′ on all the relevant attributes (subjects). This is the perspective

of the Dominance-based Rough Set Approach (DRSA15–17) which associates the

pair (X↑, Y ↓) to the pair (X,Y ), such that



• X↑ is the upward lower approximation of X, that is, the set of all the

objects that not only belong to X but, moreover, according to available

information, all objects dominating them also belong to X,

• Y ↓ is the downward lower approximation of Y , that is, the set of all the

objects that not only belong to Y , but, moreover, according to available

information, all objects dominated by them also belong to Y .

Returning to our example with the students, let us observe that, taking into account

the available information about evaluations of students on the subjects considered

relevant, one can assign the pair (GP↑, GN↓) to the pair (GP , GN ), such that

• GP↑ contains the students that are considered ‘good’ without any doubt, in

the sense that not only they belong to GP , but also all the students having

not worse evaluation than them on all the subjects, i.e., dominating them,

belong to GP , and

• GN↓ the students that are considered ‘not good’ without any doubt, in the

sense that not only they belong to GN , but also all the students having not

better evaluation than them on all the subjects, i.e., dominated by them,

belong to GN .

The operator assigning the pair (X,Y ) to the pair (X,Y ) has been called Pawlak

operator in,18 where it has been proposed and investigated as a new algebraic model

for rough set theory (for a survey on algebraic structures for rough set theory

see chapter 8 in19). The Pawlak operator assigning the pair (X↑, Y ↓) to the pair

(X,Y ) has been later considered in20 as an abstract algebraic model for DRSA.

In this paper, we come back to the above considerations, defining a new rough set

approach that permits to distinguish vagueness of the evaluations, represented by

(X,Y ), from the ambiguity due to coarseness of available knowledge, represented

by (X,Y ) and (X↑, Y ↓). Our aim is to redefine these fundamental concepts of

imperfect knowledge within the framework of rough set theory, and to investigate

basic properties of rough approximations in this context.

The paper is organized as follows. Next section recalls the basic concepts of the

rough set approach based on indiscernibility. Section 3 presents the rough approx-

imations (X,Y ) of orthopairs (X,Y ) in terms of indiscernibility relations. Section

4 recalls Dominance-based Rough Set Approach, and section 5 introduces rough

approximations (X↑, Y ↓) of orthopairs (X,Y ) based on dominance relations. In

section 6, some extensions related to generalizations of rough sets, such as fuzzy

rough approximations and variable precision rough approximations, are discussed.

Section 7 collects conclusions and outlines future developments.

2. Basic concepts of rough set approximations

An information table IT stores data on objects of a universe of discourse U de-

scribed by some attributes of interest. Rows of IT refer to distinct objects, while



columns refer to different attributes, so that that each cell of the table indicates an 
evaluation (quantitative or qualitative) of the object placed in the corresponding 
row by means of the attribute from the corresponding column. In general, an infor-

mation table is the 4-tuple IT =< U, Q, V, v >, where U is a finite non-empty set

of objects, called universe, Q = {q1, ..., qn} is a finite set of attributes, Vq is a value

set of the attribute q, V =
⋃
q∈Q Vq, and v : U × Q → V is a total function such

that v(x, q) ∈ Vq for each q ∈ Q, x ∈ U , called information function.

To every (non-empty) subset of attributes P ⊆ Q there is associated an indis-

cernibility relation on U , denoted by IP :

IP = {(x, y) ∈ U × U : v(x, q) = v(y, q), for all q ∈ P}.

Very often we shall write xIP y instead of (x, y) ∈ IP . If (x, y) ∈ IP , it is said

that the objects x and y are P -indiscernible. In the sequel we will simply write

the objects x and y are indiscernible, unless this causes an ambiguity. Clearly, the

indiscernibility relation thus defined is an equivalence relation (reflexive, symmetric

and transitive).

The equivalence class of any x ∈ U with respect to indiscernibility relation IP ,

∅ ⊂ P ⊆ Q,

IP (x) = {y ∈ U : yIPx}

is called P -elementary set.

Given P ⊆ Q and X ⊆ U , using the P -elementary sets, the P -lower and the

P -upper approximation of X are defined, respectively, as follows:

IP (X) =
⋃

IP (x)⊆X

IP (x),

IP (X) =
⋃

IP (x)∩X 6=∅

IP (x).

The P -lower and the P -upper approximation of X, IP (X) and IP (X), can be

also formulated as follows:

IP (X) = {x ∈ U : IP (x) ⊆ X} ,

IP (X) = {x ∈ U : IP (x) ∩X 6= ∅} .

Set BnP (X) = IP (X) − IP (X) is called the P -boundary of X. Taking into

account the information provided by attributes from P only, the set IP (X) is the

set of objects from U which can be certainly classified as elements of X, and the

set IP (X) is the set of objects from U which can be possibly classified as elements

of X. The set BnP (X) contains objects from U which cannot be classified with

certainty as belonging either to X or to its complement, taking into account the

information provided by attributes from P only. The objects from BnP (X) are said

to be P -inconsistent with respect to X, while other objects from U are said to be



P -consistent with respect to X. The ratio of the number of objects included in the

P -lower approximation of X to the number of objects assigned to X is called quality

of approximation of set X by attributes from P :

γP (X) =
|IP (X)|
|X|

.

Given X ⊆ U , using the information provided by attributes from P ⊆ Q, we

are able to define two regions of certainty, called P -positive region and P -negative

region, respectively:

PosP (X) = IP (X),

NegP (X) = U − IP (X).

In fact, using information provided by attributes from P , objects from PosP (X)

can be classified with complete certainty as belonging to X, while objects from

NegP (X) can be classified with complete certainty as not belonging to X.

For a particular object x ∈ U , it is interesting to use the available information

to assess the degree of its membership in a subset X of U . In this perspective, given

P ⊆ Q and X ⊆ U , the degree of membership of x in X can be defined as

µPX(x) =
|X ∩ IP (x)|
|IP (x)|

.

µPX (x) is called rough membership function.

The value of µPX (x) may be interpreted as a conditional probability of the mem-

bership in X given the membership in IP (x). µPX (x) may also be understood as the

degree of certainty (credibility) to which x belongs to X. Observe that the value of

the membership function is calculated from the available data, and not subjectively

assumed, as it is often the case of membership functions of fuzzy sets.

The lower and upper approximations satisfy the following properties.

Theorem 1.1,2 For any X,Y ⊆ U and for any P ⊆ Q,

(1) IP (X) ⊆ X ⊆ IP (X),

(2) IP (∅) = IP (∅) = ∅, IP (U) = IP (U) = U ,

(3) IP (X ∪ Y ) = IP (X) ∪ IP (Y ),

(4) IP (X ∩ Y ) = IP (X) ∩ IP (Y ),

(5) X ⊆ Y ⇒ IP (X) ⊆ IP (Y ),

(6) X ⊆ Y ⇒ IP (X) ⊆ IP (Y ),

(7) IP (X ∪ Y ) ⊇ IP (X) ∪ IP (Y ),

(8) IP (X ∩ Y ) ⊆ IP (X) ∩ IP (Y ),

(9) IP (U −X) = U − IP (X),

(10) IP (U −X) = U − IP (X),

(11) IP [IP (X)] = IP [IP (X)] = IP (X),

(12) IP [IP (X)] = IP [IP (X)] = IP (Y ).



An issue of great practical importance is the reduction of “superfluous” at-

tributes in an information table. Superfluous attributes can be eliminated without 
deteriorating the information contained in the original table.

Let P ⊆ Q and p ∈ P . It is said that attribute p is superfluous in P with respect 
to approximation of X ⊆ U if IP (X) = IP −{p}(X); otherwise, p is indispensable in

P . The subset of Q containing all the indispensable attributes is known as the core. 
Any minimal (with respect to inclusion) subset P ⊆ Q, such that P (X) = Q(X), is 
called reduct with respect to the approximation of X. It specifies a minimal subset 
P of Q which keeps the quality of approximation of set X at the same level as the 
whole set of attributes, i.e., γP (X) = γQ (X). In other words, the attributes that 
do not belong to the reduct are superfluous with respect to the approximation of 
X. More than one reduct may exist in an information table and their intersection 
gives the core.

Functional dependencies between evaluations v(x, q) given by attributes 
q ∈ Q to objects x ∈ U on one hand, and the membership of these objects to 
a target set X ⊆ U on the other hand, can be usefully described in terms of de-

cision rules. These are logical statements of the type “if..., then...”, where the 
premise (condition part) specifies values v(x, q) assumed by attributes from P ⊆ Q 
(description of P -elementary sets) and the conclusion (decision part) specifies an 
assignment to a concept C represented by set X ⊆ U . More formally, for X ⊆ U 
the syntax of a rule is:

“if v(x, q1) = rq1 and v(x, q2) = rq2 and ... v(x, qp) = rqp,
then x ∈ X”,

where {q1, q2, ..., qp} ⊆ Q, (rq1, rq2, ..., rqp) ∈ Vq1 × Vq2 × ... × Vqp.
The rough approximations IP (X) and IP (X) are very useful to induce decision

rules. Indeed, procedures for generation of decision rules use an inductive learning

principle. The objects are considered as examples of classification. The decision

rules suggest a certain assignment to X if they are induced under a hypothesis that

objects belonging to IQ(X) are positive examples, and all the others are negative.

Instead, the decision rules suggest a possible assignment to X if they are induced

under a hypothesis that objects belonging to IQ(X) are positive examples, and all

the others are negative. Therefore, the following two types of decision rules can be

considered:

1) certain decision rules, providing profile descriptions for objects belonging to

IP (X):

if fq1(x) = rq1 and . . . and fqp(x) = rqp , then x ∈ X,

{q1, . . . , qp} ⊆ Q, rq1 , . . . , rqp ∈ <;

2) possible decision rules, providing profile descriptions for objects belonging to

IP (X):

if fq1(x) = rq1 and . . . and fqp(x) = rqp , then x possibly belongs to X,



{q1, . . . , qp} ⊆ Q, rq1 , . . . , rqp ∈ <.

For the sake of simplicity, in all the following illustrative examples we consider

certain decision rules only.

An object x ∈ U supports decision rule r if its description is matching both the

condition part and the decision part of the rule. We also say that decision rule r

covers object x if it matches the condition part of the rule. Each decision rule is

characterized by its strength, defined as the number of objects supporting the rule.

A decision rule is called minimal if removing any attribute from the condition

part gives a rule covering also negative examples. A minimal set of rules is a family

R of rules covering all positive examples, and such that removing a rule from R
makes some positive example not covered.

The existing induction algorithms use one of the following strategies:21

(a) generation of a minimal representation, i.e., minimal set of rules covering all

positive examples,

(b) generation of an exhaustive representation, i.e., all rules covering the set of

positive examples,

(c) generation of a characteristic representation, i.e., a set of rules covering rela-

tively many positive examples, however, not necessarily all of them.

2.1. A didactic example

The committee of an engineering school has to decide which candidates to accept

or reject from among students applying for admission. The committee takes into

consideration high school grades in Mathematics, Physics, Literature and Philoso-

phy. The committee would like to make decisions on the basis of some requirements

expressed in terms of “if ..., then ...” rules. To define these rules the committee

supplies first some examples of classification decisions shown in Table 1. The eval-

uations of students on Mathematics, Physics, Literature and Philosophy form an

information table. It is a base for approximation of the sets of accepted and rejected

students.

With respect to approximation of the set of accepted students, there are two

reducts:

• Red1 = {Mathematics, Physics, Philosophy},
• Red2 = {Physics, Literature, Philosophy}.

Indeed, considering all the attributes, as well as the attributes from Red1 or from

Red2, there is no case of ambiguity, that is, no set of students indiscernible with

respect to one of these sets of attributes, i.e., students having the same evalua-

tions on the subjects from the complete set or on the subjects from any reduct,

have mixed and, consequently, ambiguous admission decisions. This means that the

attributes “Mathematics” and “Literature” are dispensable, because each of them

can be removed from the complete set of attributes (obtaining Red2 and Red1,



Table 1. Exemples of classification decisions about admission of candidate students

Student Mathematics Physics Literature Philosophy Acceptance/rejection

S1 good good bad good accepted

S2 good good good medium accepted

S3 medium good medium good accepted

S4 medium medium medium bad accepted

S5 bad medium medium good rejected

S6 medium medium medium good rejected

S7 bad medium good good rejected

S8 good medium bad good accepted

S9 medium medium medium good rejeced

S10 medium medium medium medium accepted

S11 bad medium good medium rejected

S12 medium good bad bad rejected

S13 good bad medium medium rejected

S14 bad good medium medium rejected

S15 bad bad good medium rejected

respectively), while keeping the same lower approximation of the set of accepted

students. No other attribute can be further removed from Red1 and Red2 because

then some case of ambiguity appears. For example, removing “Mathematics” from

Red1, students S2 and S15 become indiscernible (both of them have an evaluation

“medium” in “Literature” and “good” in “Philosophy”), but S2 is accepted and S15

is rejected. Therefore, Red1 and Red2 are minimal sets of attributes keeping the

same lower approximation of the set of accepted students and so they are reducts.

Removing instead the attribute “Physics” from the complete set, i.e., considering

the set of attributes {Mathematics, Literature, Philosophy}, students S3, S6 and S9

are indiscernible because all of them have evaluation “medium” in “Mathematics”

and “Literature” and “good” in “Philosophy”. However, student S3 is accepted,

while students S6 and S9 are rejected. Consequently, the attribute “Physics” is

indispensable and the set of attributes {Mathematics, Literature, Philosophy} is

not a reduct. Analogously, removing the attribute “Philosophy”, students S4, S9

and S10 are indiscernible because all of them have evaluation “medium” in “Math-

ematics”, “Physics” and “Literature”. However, student S4 and S10 are accepted,

while student S9 is rejected. Consequently, the attribute “Philosophy” is indispens-

able and the set of attributes {Mathematics, Physics, Literature} is not a reduct.

The two indispensable attributes “Physics” and “Philosophy” constitute the core.

Notice that {Physics, Philosophy} is also the intersection of the two reducts Red1
and Red2.



The following certain decision rules have been induced from Table 1 (between

braces there are id’s of students supporting the corresponding rule):

rule 1) if the evaluation on Mathematics is good, and the evaluation on Physics is

good, then the student is accepted, {S1, S2},
rule 2) if the evaluation on Mathematics is good, and the evaluation on Physics is

medium, then the student is accepted, {S8},
rule 3) if the evaluation on Mathematics is good, and the evaluation on Literature

is bad, then the student is accepted, {S1, S8},
rule 4) if the evaluation on Mathematics is good, and the evaluation on Literature

is good, then the student is accepted, {S2},
rule 5) if the evaluation on Physics is good, and the evaluation on Literature is

good, then the student is accepted, {S2},
rule 6) if the evaluation on Physics is medium, and the evaluation on Literature

is bad, then the student is accepted, {S8},
rule 7) if the evaluation on Mathematics is medium, and the evaluation on Physics

is good, and the evaluation on Literature is medium, then the student is ac-

cepted, {S3},
rule 8) if the evaluation on Mathematics is good, and the evaluation on Philosophy

is good, then the student is accepted, {S1, S8},
rule 9) if the evaluation on Mathematics is medium, and the evaluation on Phi-

losophy is medium, then the student is accepted, {S10},
rule 10) if the evaluation on Physics is good, and the evaluation on Philosophy is

good, then the student is accepted, {S1, S3},
rule 11) if the evaluation on Physics is medium, and the evaluation on Philosophy

is bad, then the student is accepted, {S4},
rule 12) if the evaluation on Literature is bad, and the evaluation on Philosophy

is good, then the student is accepted, {S1, S8},
rule 13) if the evaluation on Literature is medium, and the evaluation on Philos-

ophy is bad, then the student is accepted, {S4},
rule 14) if the evaluation on Physics is medium, and the evaluation on Literature

is medium, and the evaluation on Philosophy is medium, then the student is

accepted, {S10},
rule 15) if the evaluation on Mathematics is bad, then the student is rejected,

{S5, S7, S11, S14, S15},
rule 16) if the evaluation on Physics is bad, then the student is rejected,

{S13, S15},
rule 17) if the evaluation on Mathematics is medium, and the evaluation on Lit-



erature is bad, then the student is rejected, {S12},
rule 18) if the evaluation on Mathematics is good, and the evaluation on Literature

is medium, then the student is rejected, {S13},
rule 19) if the evaluation on Physics is medium, and the evaluation on 

Literature

is good, then the student is rejected, {S7, S11},
rule 20) if the evaluation on Physics is good, and the evaluation on Philosophy is

bad, then the student is rejected, {S12},
rule 21) if the evaluation on Mathematics is medium, and the evaluation on

Physics is medium, and the evaluation on Philosophy is good, then the stu-

dent is rejected, {S6, S9},
rule 22) if the evaluation on Literature is good, and the evaluation on Philosophy

is good, then the student is rejected, {S7},
rule 23) if the evaluation on Literature is bad, and the evaluation on Philosophy

is bad, then the student is rejected, {S12},
rule 24) if the evaluation on Physics is medium, and the evaluation on Literature is

medium, and the evaluation on Philosophy is good, then the student is rejected,

{S5, S6, S9},
rule 25) if the evaluation on Physics is good, and the evaluation on Literature

is medium, and the evaluation on Philosophy is medium, then the student is

rejected, {S14}.

These are all possible rules, however, there are several minimal subsets of deci-

sion rules. For example, one of them is constituted by the following nine rules: rule

1), rule 3), rule 9), rule 10, rule 11), rule 15), rule 16), rule 17) and rule 21).

3. Indiscernibility-based rough approximation of orthopairs

Given the universe U , any pair (X,Y ), such that X,Y ⊆ U,X ∩ Y = ∅, is an

orthopair.9 Let us denote by 3U the set of all the orthopairs, that is,

3U = {(X,Y ) : X,Y ⊆ U,X ∩ Y = ∅}.

Any orthopair (X,Y ) can be interpreted as representation of a concept C(X,Y ) for

which X contains the elements from U that for sure belong to C(X,Y ) and Y all

the objects that for sure do not belong to C(X,Y ). Observe that the information

contained in an orthopair, that is the distinction between the positive part X, the

negative part Y and the uncertain part U − X − Y of concept C(X,Y ), can be

represented also in terms of an interval set. In general, an interval set is a pair

(W,Z), W ⊆ Z ⊆ U , where W represents the positive part of a concept and Z the

possible part of a concept, that is the union of the positive and the doubtful part.

Therefore, any orthopair (X,Y ) is equivalent to the interval set (X,U − Y ), while

vice versa, any interval set (W,Z) is equivalent to the orthopair (W,U−Z). In more



formal terms, considering the family U int of all the interval sets on the universe U ,

that is,

U int = {(W,Z) : W ⊆ Z ⊆ U}

we can consider the function T : 3U → U int that assigns the corresponding interval

set (W,Z) to the orthopair (X,Y ), that is T (X,Y ) = (X,U−Y ). We shall consider

also the inverse function of T , that is, the function T −1 : U int → 3U that to each

interval set (W,Z) ∈ U int assigns the corresponding orthopair (X,Y ) ∈ 3U , such

that T (X,Y ) = (W,Z). We have T −1(W,Z) = (W,Z −W ).

Given any set of attributes P ⊆ Q, we can define the lower and the upper rough

approximation of the orthopair (X,Y ), denoted by IorthoP (X,Y ) and I
ortho

P (X,Y ),

respectively, as follows:

IorthoP (X,Y ) = (IP (X), IP (Y )),

I
ortho

P (X,Y ) = (IP (X), IP (Y )).

Observe that IorthoP (X,Y ) is an orthopair. Indeed, IP (X) ⊆ X as well as IP (Y ) ⊆ Y
and, consequently, X ∩ Y = ∅, imply IP (X) ∩ IP (Y ) = ∅. This is, however, not

the case for I
ortho

P (X,Y ) because, in general, X ∩ Y = ∅ does not imply IP (X) ∩
IP (Y ) = ∅. It is interesting to discuss the interpretation of orthopairs IorthoP (X,Y )

and I
ortho

P (X,Y ) with respect to the concept C(X,Y ). For this it is important to

distinguish between:

• vagueness, related to the uncertainty ‘a priori’, concerning the assignment of

objects to the concept C(X,Y ) at hand, and

• ambiguity, related to the granularity of knowledge, which requires that the ‘a

priori’ assignment of objects is revised ‘a posteriori’ using rough approximations

IorthoP (X,Y ) and I
ortho

P (X,Y ).

In this perspective, we can say that:

• IP (X) is the set of objects from U for which, on the basis of the available

knowledge, there is no doubt that these objects for sure belong to the concept

C(X,Y ),

• IP (Y ) is the set of objects from U for which, on the basis of the available

knowledge there is no doubt that these objects for sure do not belong to the

concept C(X,Y ),

• IP (X) is the set of objects from U for which, on the basis of the available

knowledge, there possibly is some doubt that these objects for sure belong to

the concept C(X,Y ),

• IP (Y ) is the set of objects from U for which, on the basis of the available

knowledge there possibly is some doubt that these objects for sure do not belong

to the concept C(X,Y ).



The basic properties of rough set approximations are inherited by the rough 
approximations of orthopairs. To show them, let us consider the family U (2) of all 
pairs (X, Y ) of subsets in U , that is

U (2) = 2U × 2U = {(X, Y ) : X ⊆ U, Y ⊆ U}.

Let us now introduce the following operations on U (2):

for all (X1, Y1), (X2, Y2) ∈ U (2),

• union

(X1, Y1) ∪(2) (X2, Y2) = (X1 ∪X2, Y1 ∪ Y2),

• intersection

(X1, Y1) ∩(2) (X2, Y2) = (X1 ∩X2, Y1 ∩ Y2),

• difference

(X1, Y1)−(2) (X2, Y2) = (X1 −X2, Y1 − Y2).

Let us also define the inclusion ⊆(2) in U (2) as follows:

for all (X1, Y1), (X2, Y2) ∈ U (2),

(X1, Y1) ⊆(2) (X2, Y2) iff X1 ⊆ X2 and Y1 ⊆ Y2.

Using the operations on U (2) defined above, we can present the properties of the

lower and upper approximations IorthoP (X,Y ) and I
ortho

P (X,Y ) as follows.

For any (X,Y ), (X1, Y1), (X2, Y2) ∈ U (2) and for any P ⊆ Q,

(1) IorthoP (X,Y ) ⊆(2) (X,Y ) ⊆(2) I
ortho

P (X,Y ),

(2) IorthoP (∅, ∅) = I
ortho

P (∅, ∅) = (∅, ∅),
(3) IP (U,U)ortho = I

ortho

P (U,U) = (U,U),

(4) I
ortho

P [(X1, Y1) ∪(2) (X2, Y2)] = I
ortho

P (X1, Y1) ∪(2) IorthoP (X2, Y2),

(5) IorthoP [(X1, Y1) ∩(2) (X2, Y2)] = IorthoP (X1, Y1) ∩(2) IorthoP (X2, Y2),

(6) (X1, Y1) ⊆(2) (X2, Y2)⇒ IorthoP (X1, Y1) ⊆(2) IorthoP (X2, Y2),

(7) (X1, Y1) ⊆(2) (X2, Y2)⇒ I
ortho

P (X1, Y1) ⊆(2) I
ortho

P (X2, Y2),

(8) IorthoP [(X1, Y1) ∪(2) (X2, Y2)] ⊇(2) IorthoP (X1, Y1) ∪(2) IorthoP (X2, Y2),

(9) I
ortho

P [(X1, Y1) ∩(2) (X2, Y2)] ⊆(2) I
ortho

P (X1, Y1) ∩(2) IorthoP (X2, Y2),

(10) IorthoP [(U,U)−(2) (X,Y )] = (U,U)−(2) I
ortho

P (X,Y ),

(11) I
ortho

P [(U,U)−(2) (X,Y )] = (U,U)−(2) IorthoP (X,Y ),

(12) IorthoP [IorthoP (X,Y )] = I
ortho

P [IorthoP (X,Y )] = IorthoP (X,Y ),

(13) I
ortho

P [I
ortho

P (X,Y )] = IorthoP [I
ortho

P (X,Y )] = I
ortho

P (X,Y ).

With respect to property (10), observe that (U,U)−(2)(X,Y ) is not an orthopair

because

(U,U)−(2) (X,Y ) = (U −X,U − Y )



and, unless X ∪ Y = U ,

(U −X) ∩ (U − Y ) = U − (X ∪ Y ) 6= ∅.

Therefore, there is a small abuse of notation because the operators IorthoP and I
ortho

P

are applied to the pair (U,U)−(2)(X,Y ) = (U−X,U−Y ) which is not an orthopair.

Nevertheless, accepting this abuse of notation, property (10) holds in the sense that

IorthoP [(U,U)−(2) (X,Y )] = IorthoP [(U −X,U − Y )] =

(IP (U −X), IP (U − Y )) = (U − IP (X), U − IP (Y )) = (U,U)−(2) I
ortho

P (X,Y ).

Clearly, an analogous caveat holds for property (11). Observe that there is an abuse

of notation of the same type in property (13) where operators IorthoP and I
ortho

P are

applied to I
ortho

P (X,Y ) which, as already observed, is not always an orthopair.

Similarly to the orthopairs, for any interval set (W,Z), we can define the lower

rough approximation IintP (W,Z) and the upper rough approximation I
int

P (W,Z), as

follows:

IintP (W,Z) = (IP (W ), IP (Z)),

I
int

P (W,Z) = (IP (W ), IP (Z)).

Observe that the definition of the rough approximation of interval sets is coherent

with the rough approximation of orthopairs, because for any (W,Z) ∈ U int,

IintP (W,Z) = T (IorthoP (T −1(W,Z))),

I
int

P (W,Z) = T (I
ortho

P (T −1(W,Z))).

This means that we can obtain the rough approximation IintP (W,Z) and I
int

P (W,Z)

of the interval set (W,Z) ∈ U int, as transformation through T of the rough ap-

proximation IorthoP (T −1(W,Z)) and I
ortho

P (T −1(W,Z)) of the orthopair T −1(W,Z)

corresponding to the interval set (W,Z).

We can also define binary operations ∪int and ∩int on U (2) permitting to repre-

sent properties of rough approximations of interval sets corresponding to the anol-

ogous operations ∪(2) and ∩(2) introduced above for the orthopairs, that is, for

(W1, Z1), (W2, Z2) ∈ U (2) we have:

• union

(W1, Z1)∪int(W2, Z2) = T (T −1(W1, Z1)∪orthoT −1(W2, Z2)) = (W1∪W2, Z1∩Z2),

• intersection

(W1, Z1)∩int(W2, Z2) = T (T −1(W1, Z1)∩orthoT −1(W2, Z2)) = (W1∩W2, Z1∪Z2).



Moreover, the inclusion ⊆int on U (2), useful to present properties of rough approxi-

mations of interval sets can be defined as follows: for all (W1, Z1), (W2, Z2) ⊆ U (2),

(W1, Z1) ⊆int (W2, Z2)

iff

T −1(W1, Z1) ⊆(2) T −1(W2, Z2)

iff

W1 ⊆ W2 and Z1 ⊇ Z2.

Using the operations ∪int, ∩int and −(2), and the inclusion ⊆int, we can present the

properties of the lower and upper approximations IorthoP (X,Y ) and I
ortho

P (X,Y ) as

follows.

For any (W,Z) ∈ U int and for any P ⊆ Q,

(1) IintP (W,Z) ⊆int (W,Z) ⊆int IintP (W,Z),

(2) IintP (∅, ∅) = I
int

P (∅, ∅) = (∅, ∅),
(3) IintP (U,U) = I

int

P (U,U) = (U,U),

(4) I
int

P [(W1, Z1) ∪int (W2, Z2)] = I
int

P (W1, Z1) ∪int IintP (W2, Z2),

(5) IintP [(W1, Z1) ∩int (W2, Z2)] = IintP (W1, Z1) ∩int IintP (W2, Z2),

(6) (W1, Z1) ⊆int (W2, Z2)⇒ IintP (W1, Z1) ⊆int IintP (W2, Z2),

(7) (W1, Z1)int ⊆int (W2, Z2)⇒ I
int

P (W1, Z1) ⊆int IintP (W2, Z2),

(8) IintP [(W1, Z1) ∪int (W2, Z2)] ⊇int IintP (W1, Z1) ∪int IintP (W2, Z2),

(9) I
int

P [(W1, Z1) ∩int (W2, Z2)] ⊆int IintP (W1, Z1) ∩int IintP (W2, Z2),

(10) IintP [(U,U)−(2) (W,Z)] = (U,U)−(2) I
int

P (W,Z),

(11) I
int

P [(U,U)−(2) (W,Z)] = (U,U)−(2) IintP (W,Z),

(12) IintP [IP (W,Z)] = IP [IintP (W,Z)] = IintP (W,Z),

(13) I
int

P [I
int

P (W,Z)] = IintP [I
int

P (W,Z)] = I
int

P (W,Z).

Observe that analogous remarks related to abuse of notation provided for prop-

erties (10), (11) and (13) of rough approximation operators IorthoP and I
ortho

P on

orthopairs hold for properties (10), (11) and (13) of rough approximation operators

IintP and I
int

P on interval sets.

Generalizing the analogous definition given for the classical Indiscernibility-

based Rough Set Approach (IRSA), taking P ⊆ Q and p ∈ P , it is said that

attribute p is superfluous in P with respect to approximation of the orthopair

(X,Y ) ∈ 3U if IP (X,Y ) = IP−{p}(X,Y ); otherwise, p is indispensable in P . Also

for the rough approximation of orthopairs, the subset of Q containing all the in-

dispensable attributes constitutes the core, as well as any minimal (with respect to



inclusion) subset P ⊆ Q, such that P (X,Y ) = Q(X,Y ), is called a reduct of Q with

respect to the approximation of (X,Y ).

Taking into account the vague concept (X,Y ) ∈ 3U , one can induce the following

decision rules:

• certain decision rules, providing profile descriptions for objects belonging to

IQ(X),

• certain decision rules, providing profile descriptions for objects belonging to

IQ(Y ),

• certain decision rules, providing profile descriptions for objects belonging to

IQ(U − Y ),

• certain decision rules, providing profile descriptions for objects belonging to

IQ(U −X),

• possible decision rules, providing profile descriptions for objects belonging to

IQ(X),

• possible decision rules, providing profile descriptions for objects belonging to

IQ(Y ),

• possible decision rules, providing profile descriptions for objects belonging to

IQ(U − Y ),

• possible decision rules, providing profile descriptions for objects belonging to

IQ(U −X).

3.1. Didactic example

Continuing the example introduced in subsection 2.1, after looking at results sup-

plied by the rough approximation based on indiscernibility, the committee decided

to distinguish more finely between students that should be accepted for sure (“ac-

cepted”), students that should be rejected for sure (“rejected”) and other students

for whom the decision is doubtful (“?”), as shown in Table 2.

Observe that student S6 and student S9 constitute a case of ambiguity: indeed

they are indiscernible (because they have the same evaluations on all subjects), but

for S6 the acceptance is doubtful while for S9 there is a sure rejection. Notice also

that they became ambiguous when the committee passed from Table 1, distinguish-

ing between acceptance and rejection only, to the finer information of Table 2 which

distinguishes between sure acceptance, sure rejection and doubtful situations.

There is only one reduct that is also the core:

Redortho = {Mathematics, Physics, Philosophy}.

The following certain decision rules can been induced (between braces there are id’s

of students supporting the corresponding rule):

rule 1’) if the evaluation on Mathematics is good, and the evaluation on Physics

is good, then the student is accepted, {S1, S2},



Table 2. Exemplary decisions on admission of candidate students

Student Mathematics Physics Literature Philosophy Admission/rejection

S1 good good bad good accepted

S2 good good good medium accepted

S3 medium good medium good ?

S4 medium medium medium bad ?

S5 bad medium medium good rejected

S6 medium medium medium good ?

S7 bad medium good good rejected

S8 good medium bad good ?

S9 medium medium medium good rejeced

S10 medium medium medium medium ?

S11 bad medium good medium rejected

S12 medium good bad bad ?

S13 good bad medium medium rejected

S14 bad good medium medium rejected

S15 bad bad good medium rejected

rule 2’) if the evaluation on Mathematics is good, and the evaluation on Literature

is good, then the student is accepted, {S2},
rule 3’) if the evaluation on Physics is good, and the evaluation on Literature is

good, then the student is accepted, {S2},
rule 4’) if the evaluation on Physics is good, and the evaluation on Literature is

bad, and the evaluation on Philosophy is good, then the student is accepted,

{S1},
rule 5’) if the evaluation on Mathematics is medium, and the evaluation on Physics

is good, then the acceptance of the student is doubtful, {S3, S12},
rule 6’) if the evaluation on Mathematics is good, and the evaluation on Physics

is medium, then the acceptance of the student is doubtful, {S8},
rule 7’) if the evaluation on Mathematics is medium, and the evaluation on Liter-

ature is bad, then the acceptance of the student is doubtful, {S12},
rule 8’) if the evaluation on Physics is medium, and the evaluation on Literature

is bad, then the acceptance of the student is doubtful, {S8},
rule 9’) if the evaluation on Philosophy is bad, then the acceptance of the student

is doubtful, {S4, S12},
rule 10’) if the evaluation on Mathematics is medium, and the evaluation on Phi-

losophy is bad, then the acceptance of the student is doubtful, {S4, S12},



rule 11’) if the evaluation on Physics is good, and the evaluation on Literature is

medium, and the evaluation on Philosophy is good, then the acceptance of the

student is doubtful, {S3},
rule 12’) if the evaluation on Physics is medium, and the evaluation on Literature

is medium, and the evaluation on Philosophy is medium, then the acceptance

of the student is doubtful, {S10},
rule 13’) if the evaluation on Mathematics is bad, then the student is rejected,

{S5, S7, S11, S14, S15},
rule 14’) if the evaluation on Physics is bad, then the student is rejected,

{S13, S15},
rule 15’) if the evaluation on Mathematics is good, and the evaluation on Litera-

ture is medium, then the student is rejected, {S13},
rule 16’) if the evaluation on Physics is medium, and the evaluation on Literature

is good, then the student is rejected, {S7, S11},
rule 17’) if the evaluation on Literature is good, and the evaluation on Philosophy

is good, then the student is rejected, {S7},
rule 18’) if the evaluation on Physics is good, and the evaluation on Literature

is medium, and the evaluation on Philosophy is medium, then the student is

rejected, {S14},

There are several minimal sets of decision rules. One of them is composed by

the following decision rules: rule1’), rule5’), rule 9’), rule 10’), rule 13’), rule 14’).

4. Dominance-based Rough Set Approach

In this section, we recall the Dominance-based Rough Set Approach (DRSA).15 Let

us consider an information table IT =< U,Q, V, v >. Without loss of generality

suppose that Vq ⊆ < such that v(x, q) ∈ < for each q = 1, . . . , n, and, for all objects

x, y ∈ U , v(x, q) ≥ v(y, q) means that “x is at least as good as y with respect to

attribute (criterion) q”, which is denoted by x �q y. Therefore, we suppose that

�q is a complete preorder, i.e., a strongly complete and transitive binary relation,

defined on U on the basis of evaluations v(·, q).
The key idea of DRSA is upward and downward approximation of sets of objects

by granules of knowledge generated by criteria. These granules are dominance cones

in the space of criteria values.

We say that x dominates y with respect to set of criteria P ⊆ Q (shortly, x

P-dominates y), denoted by xDP y, if for every criterion q ∈ P , v(x, q) ≥ v(y, q).

The relation of P -dominance is reflexive and transitive, i.e., it is a partial preorder.

Given a set of criteria P ⊆ Q and x ∈ U , the granules of knowledge used for

approximation in DRSA are:



• a set of objects dominating x, called P -dominating set,

D+
P (x)={y ∈ U : yDPx},

• a set of objects dominated by x, called P -dominated set,

D−P (x)={y ∈ U : xDP y}.

Given P ⊆ Q and X ⊆ U , the P -upward-lower and the P -upward-upper ap-

proximation of X are defined in terms of unions of P -dominating sets D+
P (x), as

follows:

D+
P (X) =

⋃
x∈U :D+

P (x)⊆X

D+
P (x),

D
+

P (X) =
⋃

x∈U :D−
P (x)∩X 6=∅

D+
P (x).

Analogously, the P -downward-lower and the P -downward-upper approximation of

X are defined in terms of unions of P -dominated sets D−P (x), as follows:

D−P (X) =
⋃

x∈U :D−
P (x)⊆X

D−P (x),

D
−
P (X) =

⋃
x∈U :D+

P (x)∩X 6=∅

D−P (x).

The rough approximations D+
P (X), D

+

P (X), D−P (X) and D
−
P (X) can also be

formulated as follows:

D+
P (X) =

{
x ∈ U : D+

P (x) ⊆ X
}
,

D
+

P (X) =
{
x ∈ U : D−P (x) ∩X 6= ∅

}
,

D−P (X) =
{
x ∈ U : D−P (x) ⊆ X

}
,

D
−
P (X) =

{
x ∈ U : D+

P (x) ∩X 6= ∅
}
.

The lower and upper approximations D+
P (X), D

+

P (X), D−P (X) and D
−
P (X) sat-

isfy the following properties.

Theorem 2.15,22 For any X,Y ⊆ U and for any P ⊆ Q,

(1) D+
P (X) ⊆ X ⊆ D +

P (X), D−P (X) ⊆ X ⊆ D −P (X),

(2) D+
P (∅) = D

+

P (∅) = ∅, D−P (∅) = D
−
P (∅) = ∅,

(3) D+
P (U) = D

+

P (U) = U , D−P (U) = D
−
P (U) = U ,

(4) D
+

P (X ∪ Y ) = D
+

P (X) ∪D +

P (Y ), D
−
P (X ∪ Y ) = D

−
P (X) ∪D −P (Y ),

(5) D+
P (X ∩ Y ) = D+

P (X) ∩D+
P (Y ),D−P (X ∩ Y ) = D−P (X) ∩D−P (Y ),



(6) X ⊆ Y ⇒ D+
P (X) ⊆ D+

P (Y ) and D−P (X) ⊆ D−P (Y ),

(7) X ⊆ Y ⇒ DP (X) ⊆ DP (Y ) and D
−
P (X) ⊆ D −P (Y ),

(8) D+
P (X ∪ Y ) ⊇ D+

P (X) ∪D+
P (Y ), D−P (X ∪ Y ) ⊇ D−P (X) ∪D−P (Y ),

(9) D
+

P (X ∩ Y ) ⊆ D +

P (X) ∩D +

P (Y ), D
−
P (X ∩ Y ) ⊆ D −P (X) ∩D −P (Y ),

(10) D+
P (U −X) = U −D −P (X), D−P (U −X) = U −D +

P (X),

(11) D
+

P (U −X) = U −D−P (X), D
−
P (U −X) = U −D+

P (X),

(12) D+
P [D+

P (X)] = D
+

P [D+
P (X)] = D+

P (X),

D−P [D−P (X)] = D
−
P [D−P (X)] = D−P (X),

(13) D
+

P [D
+

P (X)] = D+
P [D

+

P (X)] = D
+

P (Y ),

D
−
P [D

−
P (X)] = D−P [D

−
P (X)] = D

−
P (Y ).

In the context of DRSA, the reduct has a definition analogous to that one in

the context of IRSA. More precisely, given P ⊆ Q and p ∈ P , attribute p is

• superfluous in P with respect to upward approximation of X ⊆ U if D+
P (X) =

D+
P−{p}(X), which is equivalent to D−P (U −X) = D−P−{p}(U −X); otherwise,

p is upward indispensable in P ;

• superfluous in P with respect to downward approximation of X ⊆ U if

D−P (X) = D−P−{p}(X), which is equivalent to D+
P (U −X) = D+

P−{p}(U −X);

otherwise, p is downward indispensable in P .

The subset of Q containing all the upward indispensable attributes with respect to

X is known as the upward core. Analogously, the set composed fo all the downward

indispensable attributes with respect to X is the downward core. Any minimal (with

respect to inclusion) subset P ⊆ Q, such that D+
P (X) = D+

Q(X), is called an upward

reduct with respect to the approximation of X. In the same way, a minimal subset

P ⊆ Q, such that D−P (X) = D−Q(X), is called a downward reduct with respect to

the approximation of X.

The dominance-based rough approximations D+
P (X), D−P (X), D

+

P (X) and

D
−
P (X) can serve to induce a generalized description of objects related to the set

X in terms of “if . . . , then . . . ” decision rules (see, e.g.,23). If X ⊆ U is a concept

positively correlated with the evaluations supplied by the attribute in the informa-

tion table, that is, the larger v(x, q), q ∈ Q, the more credible the membership of

x ∈ U to X, the decision rules induced under a hypothesis that objects belonging

to D+
P (X) are positive examples, and all the others are negative, suggest a certain

assignment to X. Instead, if X ⊆ U is a concept negatively correlated with the

evaluations supplied by the attribute in the information table, that is, the smaller

v(x, q) the more credible the membership to X, the decision rules suggesting a cer-

tain assignment to X have to be induced under a hypothesis that objects belonging

to D−P (X) are positive examples, and all the others are negative. On the other hand,

the decision rules induced under a hypothesis that objects belonging to D
+

P (X), in

case X ⊆ U is positively correlated with the evaluations v(x, q), q ∈ Q, or D
−
P (X),

in case X ⊆ U is negatively correlated with the evaluations v(x, q), q ∈ Q, are pos-



itive examples, and all the others are negative, suggest a possible assignment to X. 
Therefore, the following four types of decision rules can be considered:

1) certain D≥-decision rules, providing lower profile descriptions for objects be-

longing to D+
P (X), in case membership to X is positively correlated with

evaluations v(x, q), q ∈ Q:

if v(x, q1) ≥ rq1 and . . . and v(x, qp) ≥ rqp , then x ∈ X,

{q1, . . . , qp} ⊆ Q, rq1 , . . . , rqp ∈ <;

2) possible D≥-decision rules, providing lower profile descriptions for objects be-

longing to D
+

P (X):

if v(x, q1) ≥ rq1 and . . . and v(x, qp) ≥ rqp , then x possibly belongs to X,

{q1, . . . , qp} ⊆ Q, rq1 , . . . , rqp ∈ <;

3) certain D≤-decision rules, providing upper profile descriptions for objects be-

longing to D−P (X):

if v(x, q1) ≤ rq1 and . . . and v(x, q1) ≤ rqp , then x ∈ X,

{q1, . . . , qp} ⊆ Q, rq1 , . . . , rqp ∈ <;

4) possible D≤-decision rules, providing upper profile descriptions for objects

belonging to D
−
P (X):

if v(x, q1) ≤ rq1 and . . . and v(x, qp) ≤ rqp , then x possibly belongs to X,

{q1, . . . , qp} ⊆ Q, rq1 , . . . , rqp ∈ <.

4.1. Didactic example

Let us consider again the example introduced in subsection 2.1 and continued in

subsection 3.1. After looking at results supplied by rough approximations based

on indiscernibility, both for the precise (acceptance/rejection) and the imprecise

(acceptance/rejection/?) assignments shown in Table 1 and Table 2, respectively,

the committee decided to consider the ordinal nature of the data related to ac-

ceptance and rejection of candidate students. Indeed, an evaluation “good” is not

only different from an evaluation “medium”, because, clearly, “good” is better than

“medium”. In the same way, “medium” is better than “bad”. Moreover, a candidate

“accepted” has an overall evaluation better than a candidate “rejected”. Therefore,

DRSA was applied on Table 1 and a single reduct that is also the core was discov-

ered. It is composed of all the four subjects. The following certain decision rules

were induced:

rule 1”) if the evaluation on Mathematics is (at least) good, and the evaluation

on Physics is at least medium, then the student is accepted, {S1, S2, S8},
rule 2”) if the evaluation on Mathematics is (at least) good, and the evaluation

on Literature is (at least) good, then the student is accepted, {S2},
rule 3”) if the evaluation on Physics is (at least) good, and the evaluation on

Literature is (at least) good, then the student is accepted, {S2},



rule 4”) if the evaluation on Mathematics is at least medium, and the evaluation

on Physics is (at least) good, and the evaluation on Literature is (at least)

good, then the student is accepted, {S2, S3},
rule 5”) if the evaluation on Mathematics is (at least) good, and the evaluation

on Philosophy is (at least) good, then the student is accepted, {S1, S8},
rule 6”) if the evaluation on Physics is (at least) good, and the evaluation on

Philosophy is (at least) good, then the student is accepted, {S1, S3},
rule 7”) if the evaluation on Mathematics is (at most) bad, then the student is

rejected, {S5, S7, S11, S14, S15},
rule 8”) if the evaluation on Physics is (at most) bad, then the student is rejected,

{S13, S15},
rule 9”) if the evaluation on Mathematics is at most medium, and the evaluation

on Literature is (at most) bad, then the student is rejected, {S12},
rule 10”) if the evaluation on Literature is (at most) bad, and the evaluation on

Philosophy is (at most) bad, then the student is rejected, {S12}.

5. Dominance-based rough approximations of orthopairs and

interval sets

Given any set of attributes P ⊂ Q, we can define the lower and the upper

dominance-based rough approximations of the orthopair (X,Y ) ∈ U (2) as follows:

D+
P (X,Y ) = (D+

P (X), D−P (Y )),

D−P (X,Y ) = (D−P (X), D+
P (Y )),

D
+

P (X,Y ) = (D
+

P (X), D
−
P (Y )),

D
−
P (X,Y ) = (D

−
P (X), D

+

P (Y )).

Also in case of dominance-based rough approximations, D+
P (X,Y ) and D−P (X,Y )

are orthopairs, while, in general, this is not the case for D
+

P (X,Y ) and D
−
P (X,Y ).

By means of operations ∪(2),∩(2),−(2) and the inclusion ⊆(2), we can express the

properties of the dominance-based rough approximations of orthopairs as follows.

For any (X,Y ), (X1, Y1), (X2, Y2) ∈ 3U and for any P ⊆ Q,

(1) D+
P (X,Y ) ⊆(2) (X,Y ) ⊆(2) D

+

P (X,Y ),

D−P (X,Y ) ⊆(2) (X,Y ) ⊆(2) D
−
P (X,Y ),

(2) D+
P (∅, ∅) = D

+

P (∅, ∅) = (∅, ∅), D−P (∅, ∅) = D
−
P (∅, ∅) = (∅, ∅),

(3) D+
P (U,U) = D

+

P (U,U) = (U,U), D−P (U,U) = D
−
P (U,U) = (U,U),

(4) D
+

P [(X1, Y1) ∪(2) (X2, Y2)] = D
+

P (X1, Y1) ∪(2) D+

P (X2, Y2),

D
−
P [(X1, Y1) ∪(2) (X2, Y2)] = D

−
P (X1, Y1) ∪(2) D−P (X2, Y2),



(5) D+
P [(X1, Y1) ∩(2) (X2, Y2)] = D+

P (X1, Y1) ∩(2) D+
P (X2, Y2),

D−P [(X1, Y1) ∩(2) (X2, Y2)] = D−P (X1, Y1) ∩(2) D−P (X2, Y2),

(6) (X1, Y1) ⊆(2) (X2, Y2) ⇒ D+
P (X1, Y1) ⊆(2) D+

P (X2, Y2) and

D−P (X1, Y1) ⊆(2) D−P (X2, Y2) ,

(7) (X1, Y1) ⊆(2) (X2, Y2) ⇒ D
−
P (X1, Y1) ⊆(2) D

−
P (X2, Y2) and

D
+

P (X1, Y1) ⊆(2) D
+

P (X2, Y2),

(8) D+
P [(X1, Y1) ∪(2) (X2, Y2)] ⊇(2) D+

P (X1, Y1) ∪(2) D+
P (X2, Y2),

D−P [(X1, Y1) ∪(2) (X2, Y2)] ⊇(2) D−P (X1, Y1) ∪(2) D−P (X2, Y2),

(9) D
+

P [(X1, Y1) ∩(2) (X2, Y2)] ⊆(2) D
+

P (X1, Y1) ∩(2) D +

P (X2, Y2),

D
−
P [(X1, Y1) ∩(2) (X2, Y2)] ⊆(2) D

−
P (X1, Y1) ∩(2) D −P (X2, Y2),

(10) D+
P [(U,U)−(2) (X,Y )] = (U,U)−(2) D

−
P (X,Y ),

D−P [(U,U)−(2) (X,Y )] = (U,U)−(2) D
+

P (X,Y ),

(11) D
+

P [(U,U)−(2) (X,Y )] = (U,U)−(2) D−P (X,Y ),

D
−
P [(U,U)−(2) (X,Y )] = (U,U)−(2) D+

P (X,Y ),

(12) D+
P [D+

P (X,Y )] = D
+

P [D+
P (X,Y )] = D+

P (X,Y ),

D−P [D−P (X,Y )] = D
−
P [D−P (X,Y )] = D−P (X,Y ),

(13) D
+

P [D
+

P (X,Y )] = D+
P [D

+

P (X,Y )] = D
+

P (X,Y ),

D
−
P [D

−
P (X,Y )] = D−P [D

−
P (X,Y )] = D

−
P (X,Y ).

With respect to properties (10), (11) and (13), for operators D+
P , D

+

P , D−P and

D
−
P hold caveats related to abuse of notation analogous to the ones expressed for

the corresponding properties of operators IorthoP and I
ortho

P , and IintP and I
int

P .

With respect to interval set (W,Z) ∈ U int, the dominance-based rough approxima-

tions can be defined as follows:

D+int
P (W,Z) = (D+

P (W ), D
+

P (Z),

D−intP (W,Z) = (D−P (W ), D
−
P (Z),

D
+int

P (W,Z) = (D
+

P (W ), D+
P (Z),

D
−int
P (W,Z) = (D

−
P (W ), D−P (Z).

Taking into consideration the transformation function T converting orthopairs into

equivalent interval sets, we have

D+int
P (W,Z)) = T (D+

P (T −1(W,Z))), D−intP (W,Z)) = T (D−P (T −1(W,Z))),

D
+int

P (W,Z)) = T (D
+

P (T −1(W,Z))), D
−int
P (W,Z)) = T (D

−
P (T −1(W,Z))).

Using operations ∪int,∩int,−(2) and inclusion ⊆int on interval sets, we can express

the properties of the dominance-based rough approximations of interval sets as

follows.



For any (W,Z), (W1, Z1), (W2, Z2) ∈ U int and for any P ⊆ Q,

(1) D+int
P (W,Z) ⊆int (W,Z) ⊆int D +int

P (W,Z),

D−intP (W,Z) ⊆int (W,Z) ⊆int D −intP (W,Z),

(2) D+int
P (∅, ∅) = D

+int

P (∅, ∅) = (∅, ∅), D−intP (∅, ∅) = D
−int
P (∅, ∅) = (∅, ∅),

(3) D+int
P (U,U) = D

+int

P (U,U) = (U,U), D−intP (U,U) = D
−int
P (U,U) = (U,U),

(4) D
+int

P [(W1, Z1) ∪int (W2, Z2)] = D
+int

P (W1, Z1) ∪int D +int

P (W2, Z2),

D
−int
P [(W1, Z1) ∪int (W2, Z2)] = D

−int
P (W1, Z1) ∪int D −intP (W2, Z2),

(5) D+int
P [(W1, Z1) ∩int (W2, Z2)] = D+int

P (W1, Z1) ∩int D+int
P (W2, Z2),

D−intP [(W1, Z1) ∩int (W2, Z2)] = D−intP (W1, Z1) ∩int D−intP (W2, Z2),

(6) (W1, Z1) ⊆int (W2, Z2)⇒ D+int
P (W1, Z1) ⊆int D+int

P (W2, Z2) and

D−intP (W1, Z1) ⊆int D−intP (W2, Z2),

(7) (W1, Z1) ⊆int (W2, Z2)⇒ D
−int
P (W1, Z1) ⊆int D −intP (W2, Z2) and

D
+int

P (W1, Z1) ⊆int D +int

P (W2, Z2),

(8) D+int
P [(W1, Z1) ∪int (W2, Z2)] ⊇int D+int

P (W1, Z1) ∪int D+int
P (W2, Z2),

D−intP [(W1, Z1) ∪int (W2, Z2)] ⊇int D−intP (W1, Z1) ∪int D−intP (W2, Z2),

(9) D
+int

P [(W1, Z1) ∩int (W2, Z2) ⊆int D +int

P (W1, Z1) ∩int D +int

P (W2, Z2),

D
−int
P [(W1, Z1) ∩int (W2, Z2) ⊆int D −intP (W1, Z1) ∩int D−intP (W2, Z2),

(10) D +int
P [(U,U)−(2) (W,Z)] = (U,U)−D −intP (W,Z),

D−intP [(U,U)−(2) (W,Z)] = (U,U)−(2) D
+int

P (W,Z),

(11) D
+int

P [(U,U)−(2) (W,Z)] = (U,U)−D−intP (W,Z),

D
−int
P [(U,U)−(2) (W,Z)] = (U,U)−D+int

P (W,Z),

(12) D+int
P [D+int

P (W,Z)] = D
+int

P [D+int
P (W,Z)] = D+int

P (W,Z),

D−intP [D−intP (W,Z)] = D
−int
P [D−intP (W,Z)] = D−intP (W,Z),

(13) D
+int

P [D
+int

P (W,Z)] = D+int
P [D

+int

P (W,Z)] = D
+int

P (W,Z),

D
−int
P [D

−int
P (W,Z)] = D −intP [D

−int
P (W,Z)] = D

−int
P (W,Z).

Again, in properties (10), (11) and (13) of rough approximation operators D+int
P ,

D
+int

P , D −intP and D
−int
P , there are abuses of notation analogous to the ones ex-

pressed for the corresponding properties of the other rough approximation operators

of orthopairs and interval sets considered previously.

In the context of the dominance-based approximations of the orthopairs, the

reducts and the core can be defined as follows. Given P ⊆ Q and p ∈ P , attribute

p is:

• superfluous in P with respect to upward approximation of X ⊆ U

if D+
P (X,Y ) = D+

P−{p}(X,Y ), which is equivalent to D−P (Y,X) =

D−P−{p}(Y,X); otherwise, p is upward indispensable in P ;

• superfluous in P with respect to downward approximation of X ⊆
U if D−P (X,Y ) = D−P−{p}(X,Y ), which is equivalent to D+

P (Y,X) =

D+
P−{p}(Y,X); otherwise, p is downward indispensable in P .



As in the other cases we have considered, with respect to the approximation of the 
orthopair (X, Y ) ∈ 3U ,

• the set of all the upward indispensable attributes is the upward core, as well

as the set of all the downward indispensable attributes is the downward core,

• any minimal subset P ⊆ Q, such that D+
P (X,Y ) = D+

Q(X,Y ), is an upward

reduct, as well as any minimal subset P ⊆ Q, such thatD−P (X,Y ) = D−Q(X,Y ),

is called a downward reduct with respect to the approximation of X.

Taking into account the vague concept (X,Y ) ∈ 3U , we have to distinguish two

cases:

• X is positively correlated and Y is negatively correlated with evaluations

v(x, q), q ∈ Q: in this case one can induce:

– certain D≥-decision rules, providing lower profile descriptions for objects

belonging to D+
Q(X),

– certain D≤-decision rules, providing upper profile descriptions for objects

belonging to D−Q(Y ),

– certain D≥-decision rules, providing lower profile descriptions for objects

belonging to D+
Q(U − Y ),

– certain D≤-decision rules, providing upper profile descriptions for objects

belonging to D−Q(U −X),

– possible D≥-decision rules, providing lower profile descriptions for objects

belonging to D
+

Q (X),

– possible D≤-decision rules, providing upper profile descriptions for objects

belonging to D
−
Q (Y ),

– possible D≥-decision rules, providing lower profile descriptions for objects

belonging to D
+

Q (U − Y ),

– possible D≤-decision rules, providing upper profile descriptions for objects

belonging to D
−
Q (U −X).

• X is negatively correlated and Y is positively correlated with evaluations

v(x, q), q ∈ Q: in this case one can induce:

– certain D≤-decision rules, providing upper profile descriptions for objects

belonging to D−Q(X),

– certain D≥-decision rules, providing lower profile descriptions for objects

belonging to D+
Q(Y ),

– certain D≤-decision rules, providing upper profile descriptions for objects

belonging to D−Q(U − Y ),

– certain D≥-decision rules, providing lower profile descriptions for objects

belonging to D+
Q(U −X),

– possible D≤-decision rules, providing upper profile descriptions for objects

belonging to D
−
Q (X),



– possible D≥-decision rules, providing lower profile descriptions for objects

belonging to D
+

Q (Y ),

– possible D≤-decision rules, providing upper profile descriptions for objects

belonging to D
−
Q (U − Y ),

– possible D≥-decision rules, providing lower profile descriptions for objects

belonging to D
+

Q (U −X).

5.1. Didactic example

Returning to the example introduced in subsection 2.1 and continued in subsections

3.1 and 4.1, the committee decided to apply DRSA on Table 2, so that imprecise

information could be represented in terms of the rough approximations based on

dominance. There is only one reduct that is also the core and it is composed of all

the four subjects. The following certain decision rules were obtained:

rule 1”’) if the evaluation on Mathematics is (at least) good, and the evaluation

on Physics is at least (good), then the student is accepted, {S1, S2},
rule 2”’) if the evaluation on Mathematics is (at least) good, and the evaluation

on Literature is at least (good), then the student is accepted, {S2},
rule 3”’) if the evaluation on Physics is (at least) good, and the evaluation on

Literature is at least (good), then the student is accepted, {S2},
rule 4”’) if the evaluation on Mathematics is at least medium, and the evaluation

on Physics is (at least) good, then the acceptance of the student is doubtful

or the student is accepted, {S1, S2, S3, S12},
rule 5”’) if the evaluation on Mathematics is (at least) good, and the evaluation

on Physics is at least medium, then the acceptance of the student is doubtful

or the student is accepted, {S1, S2, S8},
rule 6”’) if the evaluation on Mathematics is (at least) good, and the evaluation

on Literature is (at least) good, then the acceptance of the student is doubtful

or the student is accepted, {S2},
rule 7”’) if the evaluation on Physics is (at least) good, and the evaluation on

Literature is (at least) good, then the acceptance of the student is doubtful or

the student is accepted, {S2},
rule 8”’) if the evaluation on Mathematics is (at least) good, and the evaluation

on Philosophy is (at least) good, then the acceptance of the student is doubtful

or the student is accepted, {S1, S8},
rule 9”’) if the evaluation on Physics is (at least) good, and the evaluation on

Philosophy is (at least) good, then the acceptance of the student is doubtful

or the student is accepted, {S1, S3},
rule 10”’) if the evaluation on Mathematics is at most medium, then the accep-

tance of the student is doubtful or the student is rejected,



{S3, S4, S5, S6, S7, S9, S10, S11, S12, S14, S15},
rule 11”’) if the evaluation on Physics is at most medium, then the acceptance of

the student is doubtful or the student is rejected,

{S4, S5, S6, S7, S8, S9, S10, S11, S13, S15},
rule 12”’) if the evaluation on Philosophy is (at most) bad, then the acceptance

of the student is doubtful or the student is rejected, {S4, S12},
rule 13”’) if the evaluation on Literature is at most medium, and the evaluation on

Philosophy is at most medium, then the acceptance of the student is doubtful

or the student is rejected, {S4, S10, S12, S13, S14},
rule 14”’) if the evaluation on Mathematics is (at most) bad, then the student is

rejected, {S5, S7, S11, S14, S15},
rule 15”’) if the evaluation on Physics is (at most) bad, then the student is re-

jected, {S13, S15},

6. Some extensions

In this section we discuss some extensions of the rough approximation of the or-

thopairs we discussed in the previous sections. Let us start by considering the ex-

tension of the variable precision rough set approach.24

Given P ⊆ Q and X ⊆ U , using the P -elementary sets, the α variable precision

P -lower approximation and the β P -upper approximation of X, 0 ≤ β < α ≤ 1, are

defined, respectively, as follows:

IαP (X) =
⋃

x∈U :µP
X(x)≥α

IP (x),

I
β

P (X) =
⋃

x∈U :µP
X(x)>β

IP (x).

Given subset P ⊆ Q and orthopair (X,Y ) ∈ 3U , using the P -elementary sets,

the (αPOS , αNEG, βPOS , βNEG) variable precision P -lower and the P -upper approx-

imations of (X,Y ), with

0 ≤ βPOS < αPOS ≤ 1, 0 ≤ βNEG < αNEG ≤ 1,

are defined, respectively, as follows:

IαPOS ,αNEG

P (X,Y ) = (IαPOS

P (X), IαNEG

P (Y )),

I
βPOS ,βNEG

P (X,Y ) = (I
βPOS

P (X), I
βNEG

P (Y )).

Analogous definition can be given within the dominance-based rough set ap-

proach25 (see also26). Given P ⊆ Q and X ⊆ U , let us define first the upward rough

membership µP+
X (x) and the downward rough membership µP−X (x):

µP+
X (x) =

|D+
P (x) ∩X|
|D+

P (x)|
,



and

µP−X (x) =
|D−P (x) ∩X|
|D−P (x)|

.

Using the dominance-based rough memberships µP+
X (x) and µP−X (x), and fixing

0 ≤ β < α ≤ 1,

the dominance-based rough set approximations of X ⊆ U with respect to P ⊆ Q

can be defined as follows:

• the upward α variable precision P -lower approximation Dα+
P (X) and the up-

ward β variable precision P -upper approximation D
β+

P (X),

Dα+
P (X) =

⋃
x∈U :µP+

X (x)≥α

D+
P (x),

D
β+

P (X) =
⋃

x∈U :µP+
X (x)>β

D+
P (x).

• the downward α variable precision P -lower approximation Dα−
P (X) and the

downward β variable precision P -upper approximation D
β−
P (X),

Dα−
P (X) =

⋃
x∈U :µP−

X (x)≥α

D−P (x),

D
β−
P (X) =

⋃
x∈U :µP−

X (x)>β

D−P (x).

Given P ⊆ Q and αPOS , αNEG, βPOS and βNEG such that

0 ≤ βPOS < αPOS ≤ 1, 0 ≤ βNEG < αNEG ≤ 1,

variable precision dominance-based rough approximations of (X,Y ) ∈ 3U can be

defined as follows:

• upward (αPOS , αNEG) variable precision P -lower approximation

DαPOS ,αNEG+
P (X,Y ) = (DαPOS+

P (X), DαNEG−
P (Y )),

• upward (βPOS , βNEG) variable precision P -upper approximation

D
βPOS ,βNEG+

P (X,Y ) = (D
βPOS+

P (X), D
βNEG−
P (Y )),

• downward (αPOS , αNEG) variable precision P -lower approximation

DαPOS ,αNEG−
P (X,Y ) = (DαPOS−

P (X), DαNEG+
P (Y )),

• downward (βPOS , βNEG) variable precision P -upper approximation

D
βPOS ,βNEG−
P (X,Y ) = (D

βPOS−
P (X), D

βNEG+

P (Y )).



Fuzzy set theory permits to extend in a natural way the idea of rough approx-

imations of the orthopairs. Let us remember that a fuzzy set X in a universe of 
discourse U is identified by its membership function µX : U → [0, 1], such that, for 
each y ∈ U , µX(y) represents the credibility with which y belongs to the set X. 
To extend rough approximations to the context of fuzzy set theory, we need some 
concepts and operators of fuzzy logic. For each proposition p, we consider its truth 
value v(p), ranging from v(p) = 0 (p is definitely false) to v(p) = 1 (p is definitely 
true), and for all intermediate values, the greater v(p), the more credible is the 
truth of p. The following fuzzy logic connectives can be considered

• the negation, being a non-increasing function N : [0, 1] → [0, 1] for which

N(0) = 1 and N(1) = 0, such that, given proposition p, N(v(p)) states the

credibility of the negation of p;

• the t-norm T and the t-conorm T ∗, being two

functions T : [0, 1]× [0, 1]→ [0, 1] and T ∗ : [0, 1] × [0, 1] → [0, 1], such that,

given two propositions, p and q, T (v(p), v(q)) represents the credibility of the

conjunction of p and q, and T ∗(v(p), v(q)) represents the credibility of the

disjunction of p and q. t-norm T and t-conorm T ∗ must satisfy the following

properties:

T (α, β) = T (β, α) and T ∗(α, β) = T ∗(β, α), for all α, β ∈ [0, 1],

T (α, β) ≤ T (γ, δ) and T ∗(α, β) ≤ T ∗(γ, δ), for all α, β, γ, δ ∈ [0, 1]

such that α ≤ γ and β ≤ δ,

T (α, T (β, γ)) = T (T (α, β), γ) and T ∗(α, T ∗(β, γ)) = T ∗(T ∗(α, β), γ),

for all α, β, γ ∈ [0, 1],

T (1, α) = α and T ∗(0, α) = α, for all α ∈ [0, 1].

• the fuzzy implication, being a function I : [0, 1] × [0, 1] → [0, 1], such that,

given two propositions, p and q, I(v(p), v(q)) represents the credibility of the

implication of q by p. A fuzzy implication must satisfy the following proper-

ties:27

I(α, β) ≥ I(γ, β) for all α, β, γ ∈ [0, 1], such that α ≤ γ,

I(α, β) ≥ I(α, γ) for all α, β, γ ∈ [0, 1], such that β ≥ γ,

I(0, α) = 1, I(α, 1) = 1 for all α ∈ [0, 1],

I(1, 0) = 0.

Typical fuzzy connectives are:



• negation: N(x) = 1− x;

• t-norm: T (x, y) = min(x, y);

• t-conorm: T ∗(x, y) = max(x, y)

• implication: I(x, y) = max(1− x, y).

A fuzzy binary relation R is a function R : U × U → [0, 1] such that for all x, y ∈
U , R(x, y) represents the fuzzy membership of (x, y) to the relations R. Several

properties can be considered for fuzzy binary relations. In the following, we shall

consider only two:

• reflexivity: a fuzzy binary relation R is reflexive if for all x ∈ U , R(x, x) = 1;

• t-transitivity: a fuzzy binary relation R is transitive with respect to the t-norm

T if, for all x, y, z ∈ U , T (R(x, y), R(y, z)) ≤ R(x, z).

A definition of fuzzy rough approximation has been proposed by Radzikowska

and Kerre5 on a previous idea of Dubois and Prade,4 that, considering a reflexive

fuzzy binary relation R, defined the lower approximation R(X,x) and the upper

approximation R(X,x)) of X as follows:

R(X,x)) = infy∈U (I(R(x, y), µX(y))) ,

R(X,x)) = supy∈U (T (R(x, y), µX(y))) .

Greco, Matarazzo and S lowiński28–30 proposed a slightly more general definition:

R′(X,x) = Ty∈U (I(R(x, y), µX(y))) ,

R
′
(X,x) = T ∗y∈U (T (R(x, y), µX(y))) .

Observe that

R(X,x) = R′(X,x)

in case T (x, y) = min(x, y), as well as,

R(X,x) = R
′
(X,x)

in case T ∗(x, y) = max(x, y).

Intuitionistic fuzzy sets31 can be considered as a fuzzy counterpart of the or-

thopairs (see, e.g.,32). An intuitionistic fuzzy set X in a universe of discourse U is

identified by a fuzzy membership µX : U → [0, 1] and a fuzzy non-membership func-

tion νX : U → [0, 1], µX(y) + νX(y) ≤ 1 for all y ∈ U , with µX(y) being the degree

of membership and νX(y) being the degree of non-membership of y to X. Given

a fuzzy similarity relation R in U , the lower approximation R(X) and the upper

approximation R(X) of the intuitionistic fuzzy set X can be defined by assigning

fuzzy rough approximation of membership µX(x) and fuzzy rough approximation of

non-membership νX(x) to each x ∈ U , so that, taking into account the Radzikowska

and Kerre’s rough approximations, we get



• the lower approximation of the membership of x to X

R+(X,x) = infy∈U (I(R(x, y), µX(y))) ,

• the upper approximation of the membership of x to X

R
+

(X,x) = supy∈U (T (R(x, y), µX(y))) ,

• the lower approximation of the non-membership of x to X

R−(X,x) = infy∈U (I(R(x, y), νX(y))) ,

• the upper approximation of the non-membership of x to X

R
−

(X,x) = supy∈U (T (R(x, y), νX(y))) .

On the other hand, taking into account the rough approximations proposed by

Greco, Matarazzo and S lowiński, we get

• the lower approximation of the membership of x to X

R+(X,x) = Ty∈U (I(R(x, y), µX(y))) ,

• the upper approximation of the membership of x to X

R
+

(X,x) = T ∗y∈U (T (R(x, y), µX(y))) ,

• the lower approximation of the non-membership of x to X

R−(X,x) = Ty∈U (I(R(x, y), νX(y))) ,

• the upper approximation of the non-membership of x to X

R
−

(X,x) = T ∗y∈U (T (R(x, y), νX(y))) .

The rough approximation of an intuitionistic fuzzy set according to the Radzikowska

and Kerre’s definition has been proposed in.33 The rough approximation of an

intuitionistic fuzzy set according to the Greco, Matarazzo and S lowiński’s definition

is new.

One can also consider a fuzzy DRSA approximation of an intuitionistic fuzzy set.

With this aim, let us recall the DRSA fuzzy approximations. In this case, since the

dominance relations with which we we want to approximate fuzzy sets are preorders,

we have to consider a fuzzy binary relation R on U , being a fuzzy preorder, that

is, R has to be reflexive and transitive.27 Also in this case, there exist two main

definitions:

• the fuzzy dominance-based approximation proposed by Greco, Inuiguchi and

S lowiński,34 in the following referred to as GIS DRSA approximation, which

assigns to each x ∈ U
– the upward lower approximation membership

R↑(X,x)) = infy∈U (I(R(y, x), µX(y))) ,



– the upward upper approximation membership

R
↑
(X,x)) = supy∈U (T (R(x, y), µX(y))) ,

– the downward lower approximation membership

R↓(X,x)) = infy∈U (I(R(x, y), µX(y))) ,

– the downward upper approximation membership

R
↓
(X,x)) = supy∈U (T (R(y, x), µX(y))) ;

• the fuzzy dominance-based approximation proposed by Greco, Matarazzo and

S lowiński,29,35 in the following referred to as GMS DRSA approximation,

which assigns to each x ∈ U
– the upward lower approximation membership

R↑′(X,x)) = Ty∈U (I(R(y, x), µX(y))) ,

– the upward upper approximation membership

R
↑′

(X,x)) = T ∗y∈U (T (R(x, y), µX(y))) ,

– the downward lower approximation membership

R↓′(X,x)) = Ty∈U (I(R(x, y), µX(y))) ,

– the downward upper approximation membership

R
↓′

(X,x)) = T ∗y∈U (T (R(y, x), µX(y))) .

Taking into account the above fuzzy dominance-based rough approximations

we can define the following fuzzy dominance-based rough approximations of an

intuitionistic fuzzy set X on U , identified by the membership function µX and the

non-membership function νX :

• adopting the GIS DRSA approximation, we have

– the upward lower approximation of the membership of x to X

R↑(X,x)) = infy∈U (I(R(y, x), µX(y))) ,

– the upward upper approximation of the membership of x to X

R
↑
(X,x)) = supy∈U (T (R(x, y), µX(y))) ,

– the downward lower approximation of the non-membership of x to X

R↓(X,x)) = infy∈U (I(R(x, y), νX(y))) ,

– the downward upper approximation of the non-membership of x to X

R
↓
(X,x)) = supy∈U (T (R(y, x), νX(y))) ;

• adopting the GIS DRSA approximation we have



– the upward lower approximation of the membership of x to X

R↑′(X,x)) = Ty∈U (I(R(y, x), µX(y))) ,

– the upward upper approximation of the membership of x to X

R
↑′

(X,x)) = T ∗y∈U (T (R(x, y), µX(y))) ,

– the downward lower approximation of the non-membership of x to X

R↓′(X,x)) = Ty∈U (I(R(x, y), νX(y))) ,

– the downward upper approximation of the non-membership of x to X

R
↓′

(X,x)) = T ∗y∈U (T (R(y, x), νX(y))) .

The GIS DRSA approximation, as well as the GMS DRSA approximation, are

new and different from the DRSA rough approximation of an intuitionistic fuzzy

set proposed on another basis in.36

7. Conclusions

We proposed a new rough set approach to representation of imperfect knowledge

that permits to distinguish between vagueness, due to ‘a priori’ imprecise knowledge,

and ambiguity, due to ‘a posteriori’ approximation based on granular information.

This approach consists in the rough approximation of imprecise knowledge repre-

sented by an orthopair which assigns to a given concept two sets of objects in the

universe of discourse: the set of positive objects that for sure belong to the con-

sidered concept, and the set of negative objects that for sure do not belong to the

considered concept. To each orthopair we associate, moreover, other two pairs of

sets of objects:

• the pair composed of the lower approximations of the positive set and the

negative set,

• the pair composed of the upper approximations of the positive set and the

negative set.

We considered several types of rough approximations:

• rough approximations based on indiscernibility relation,

• rough approximations based on dominance relation,

• rough approximations of fuzzy orthopairs (identical with intuitionistic fuzzy

sets) based on fuzzy relation,

• variable precision rough approximations accepting some tolerance for positive

and negative sets.

We believe that the proposed distinction between vagueness and ambiguity in

view of handling these two faces of imperfect knowledge in a joint framework has a

great potential in real life applications. Moreover, our approach is based on a new



algebraic model of rough set theory that extends the Brouwer-Zadeh lattice14 by

introducing a new operator called Pawlak operator.18,20 In this way, we obtain an

algebraic model which permits a joint consideration of vagueness and uncertainty,

typical of fuzzy set theory, with ambiguity related to indiscernibility and coarseness,

typical of rough set theory. We plan to investigate more in detail the properties of

this new algebraic model and we are confident that practical applications will also

benefit from these studies.
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