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Abstract When assembling a product, assembly sequence is 

subject to the inherent nature of assembly components as well as 

the number of assembly components that may also increase 

complexity of assembly process. Additionally, assembly efficiency 

relies on reduction of assembly time that is partially affected by 

determination of an optimal assembly sequence of a product. A 

study through a literature review shows that the glowworm swarm 

optimisation algorithm (GSOA) can be possibly useful for solving 

assembly sequence optimisation problems. This paper presents an 

investigation into a GSOA used for solving an assembly sequence 

problem of a car engine pump valve. The study demonstrates that 

the GSOA can provide a quick solution in obtaining an optimal or 

near-optimal assembly sequence of the assembled product that is 

manufactured in a small-sized company. 

Keywords Assembly Sequence Optimisation, Glowworm 

Swarm Optimisation Algorithm, Product Design 

I. INTRODUCTION 

If a product has more than one component, it must be 
assembled. Thus, assembly sequence planning (ASP) is one of 
major tasks in product design that needs to be decided at the 
early stage; reduction of assembly time is the key for 
improving assembly efficiency therefore lowering assembly 
cost. One of the issues in ASP is that an expansion in the 
number of components may lead to the assembly process more 
unpredictable Chang et al. [1]. A matrix approach for 
analysing the information derived from a CAD model to 
obtain the assembly sequence for a two-stroke engine aiming 
to reduce both assembly time and cost Ou et al. [2]. Huang and 
Zhou, He et al., Marinakia and Marinakis, Yang et al., and 
Yu and Yang developed the glowworm swarm optimisation 
algorithm (GSOA) aiming to solve engineering optimisation 
problems, GSOA was derived from the courtship behaviour of 
the insect called glowworms who alter the sufficiency of their 
light discharge of bioluminescence gleam for various 
purposes [3-8].  The GSOA is useful for a simultaneous search 
of multiple optimal values usually based on different objective 
functions. To accomplish this objective, a swarm must have a 
capacity to be part into disjoint gatherings. Amid one program 
run, the GSOA is fit for deciding the numerous ideal 
arrangements in parallel. To begin with, the algorithm 
includes a random deployment of a population in a specified 
size n glowworms in an inquiry space at the beginning and 
each conveys a luminescence containing an amount of 
luciferin as physical entity. Area of a glowworm is dictated by 
a target work figuring the quality of luciferin, i.e., the force of 
luciferin is related with the target capacity of a glowworm's 
area. A more noteworthy luciferin force suggests a superior 

area related with a target work esteem. Each individual 
glowworm refreshes its luciferin level in light of the target 
work estimation of its current position. It was accounted for 
that the GSOA was viably utilized for streamlining of multi-
work remote sensors solving a number of analytical problems 
[8, 9]. 

II. THE GLOWWORM SWARM OPTIMISATION 

ALGORITHM 

Fig.1illustrates the mechanism of the GSOA. In this paper, 
a glowworm represents a component and a swarm of 
components is a population that is firstly spread randomly in 
a search space. Like the natural world, each component also 
acts as if it is a luminescent glowworm emitting a light whose 
intensity is proportional to the linked luciferin interacting with 
other glowworms within a defined neighbourhood. The 
neighbourhood area is classified as a local-decision domain 

that has a variable neighbourhood range 𝑟𝑑
𝑖  bounded by a 

radial luciferin sensor range rs (0 < 𝑟𝑑
𝑖 ≤ rs).  

In this work, assuming that component i considers another 
component j of its neighbour, if j is within the neighbourhood 
range of i and the luciferin level (in this instance, it denotes to 
the gap in dimensions between two mating components, i.e., 
mating component i with component j or parts based on the 
time taken to assemble) of j is higher than that of i. Each 
component is attracted by a suitable dimension of another 
glowworn in the neighbourhood. Components in a GSOA 
depend only on information accessible in their neighbourhood 
to make possible decisions. Consequently, each component 
selects a probabilistic neighbour that has a higher appropriate 
dimension and moves toward it. These movements, enable a 
swarm of components to be divided into separate subgroups 
that lead toward and meet with a multiple optima of a given 
multimodal function, whereby the functional integrity of the 
components are not compromised. 
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Fig. 1. Mechanisme of the glowworm swarm optimisation algorithm 

The following variables are used: 

ℓ0 quantity of luciferin 

n  random population of n glowworms (1 ≤  n ≤ 14 in this 

study) 

𝑟𝑑
𝑖   neighbourhood range 

𝑟𝑠 radial sensor range  

𝛾 luciferin enhancement constant 

𝜌 luciferin decay constant 

 

A. The Luciferin level 

At the beginning of the initial iteration, all the glowworms 
start with the equal value of luciferin  ℓ0 and the luciferin 
update is depending on the function value at a glowworm 
location. Through the luciferin-update phase; each glowworm 
adds its previous luciferin level, i.e., a luciferin quantity 
proportional to the fitness of its current location based on the 
objective function. Therefore, the objective function value for 
a glowworm at iteration t is calculated using the luciferin 
update rule as follows: 

 

ℓ𝑖 (𝑡) = (1 − 𝜌)ℓ𝑖(𝑡) + 𝛾𝐽(𝜒𝑖(𝑡))                    (1) 

 
Where ℓ𝑖(𝑡) represents the luciferin level of glowworm i 

at time t; J (xi (t)) indicates the objective function value of 
glowworm i at time t; xi denotes the luciferin’s location of a 
glowworm i; 𝜌 denotes the luciferin decay constant (0 < 𝜌 < 
1), and 𝛾 is enhancement constant of the luciferin 

B. The Movement phase 

Through the movement phase, the probabilty of the 
location of a glowworm moves in the direction of a neighbour 
that has a luciferin value higher than its own value. The 
glowworm tends to get more attraction as its luciferin level 
increases. This is obtained from the fact that glowworms are 

attracted to neighbours that glow brighter. The probability p 
of glowworm i that moves towards j at time t is given below: 

 

𝑃𝑖𝑗(𝑡) =  
ℓ𝑗(𝑡)−ℓ𝑖(𝑡)

∑ ℓ𝑘(𝑡)−ℓ𝑖(𝑡)𝑘𝜖𝑁𝑖(𝑡)
                     (2) 

 

Where,  j ∈ Ni (t) and Ni (t) = {j : dij (t) < 𝑟𝑑
𝑖  (t); ℓ𝑖 (t) < ℓ𝑗 

(t)}, which is a set of neighbour of glowworm i at time t, dij 
(t) denotes the Euclidean space, usually from glowworms i 

and j at time t, and 𝑟𝑑
𝑖  (t) represents the variable neighbourhood 

difference related to glowworms i and at time t. Let glowworm 
i select a glowworm j ∈ Ni (t) with Pij (t) given by Eq. 2. 

The discrete-time of the glowworm movements can be 
represented as: 

 

𝑥𝑖(𝑡) = 𝑥𝑖(𝑡) + (
𝑥𝑗(𝑡)−𝑥𝑖(𝑡)

∥𝑥𝑗(𝑡)−𝑥𝑖(𝑡)∥
)                     (3)                                                        

 

Where, xi (t) denotes glowworm i location at time t, ǁ . ǁ 
represents the norm operator of Euclidean. 

C. The neighbourhood range 

There is a combination between glowworm i and j within 

a neighbourhood range. The term 𝑟𝑑
𝑖  of glowworm i is a 

dynamic radial range at initial iteration, providing  0 < 𝑟𝑑
𝑖  ≤ rs. 

The number of peaks taken is a function in a range of the radial 
sensor. When the glowworms depend only on local 
information to decide their movements, it is predictable that 
the number of peaks captured would be a function of the radial 
sensor range. Actually, if the sensor range of every glowworm 
covers the whole search space, all the glowworms move to the 
global optimum and the local optima are neglected. Since 
assuming a priori information about the objective function 
(e.g., number of peaks and inter-peak distances) is not 
obtainable, it is hard to fix the neighborhood range at a value 
that works well for different function landscapes. For 
example, a selected neighborhood range rd would work 
comparatively better on objective functions where the 
minimum inter-peak distance is more than rd rather than on 
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those where it is less than rd [10].  Consequently, the GSOA 
applies an adaptive neighbourhood range to detect the 
presence of multiple peaks in a multimodal function 
landscape. Thus, the neighbourhood range can be updated as: 

 

𝑟𝑑
𝑖 (𝑡) = 𝑚𝑖𝑛{𝑟𝑠 , 𝑚𝑎𝑥{0, 𝑟𝑑

𝑖 (𝑡) + 𝛽(𝑛𝑡 − |𝑁𝑖(𝑡)|)}}    (4) 

 
Besides that, there are constant values including 

parameters one used in this study: 

𝜌 = 0.4, 𝛾 = 0.6, 𝛽 = 0.08 and ℓ0 = 5 
 

III. CASE STUDY 

Table 1 displays the components used for assembly of a 

car engine pump valve as a case study of this work. Table 2 

displays the liaisons between two possible assembly 

components. The binary numbers 0 and 1 indicate the 

impossibility and possibility, individually. Table 3 shows the 

average time taken for assembly between two possible 

components, which is calculated in seconds. 

TABLE I.  ASSEMBLY COMPONENTS OF THE CAR ENGINE PUMP 

VALVE 

 

 

TABLE II.  THE PRIORITY MATRIX IN LIAISONS BETWEEN TWO POSSIBLE ASSEMBLY COMPONENTS OF THE CAR ENGINE PUMP VALVE 

Comp. Sleeve  

(11) 

Plate 

(8) 

Nut-

Shaft 

(6) 

Bolt-

Shaft 

(4) 

Washer-

Shaft (13) 

Shaft 

(10) 

Body 

(2) 

Arm 

(1) 

Sleeve  

(12) 

Retainer 

(9) 

Bolt 

(3) 

Key 

(5) 

Washer  

(14) 

Nut 

(7) 

Sleeve (11) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Plate (8) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Nut-Shaft 

(6) 

1 1 0 0 0 1 0 0 0 0 0 0 0 0 

Bolt-Shaft 

(4) 

1 1 0 0 0 1 0 0 0 0 0 0 0 0 

Washer-

Shaft (13) 

1 1 0 0 0 1 0 0 0 0 0 0 0 0 

Shaft (10) 1 1 0 1 0 0 0 0 0 0 0 0 0 0 

Body (2) 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

Arm (1) 1 1 1 1 1 1 1 0 0 0 0 0 0 0 

Sleeve (12) 1 1 1 1 1 1 1 1 0 0 0 0 0 0 

Retainer (9) 1 1 1 1 1 1 1 1 0 0 0 0 0 0 

Bolt (3) 1 1 1 1 1 1 1 1 0 0 0 0 0 0 

Key (5) 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

Washer (14) 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

Nut (7) 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

TABLE III.  AVERAGE ASSEMBLY TIME (SECOND) BETWEEN TWO POSSIBLE COMPONENTS OF THE CAR ENGINE PUMP VALVE 

Comp. Sleeve  

(11) 

Plate 

(8) 

Nut-

Shaft 

(6) 

Bolt-

Shaft 

(4) 

Washer-

Shaft (13) 

Shaft 

(10) 

Body 

(2) 

Arm 

(1) 

Sleeve  

(12) 

Retainer 

(9) 

Bolt 

(3) 

Key 

(5) 

Washer  

(14) 

Nut 

(7) 

Sleeve (11) 0 2 2 1 1 3 4 2 3 1 4 5 5 4 

Plate (8) 2 0 5 2 2 6 6 3 10 3 2 2 5 2 

Nut-Shaft 
(6) 

3 3 0 2 2 3 3 1 3 4 5 3 4 5 

Bolt-Shaft 
(4) 

2 5 5 0 11 15 4 4 4 4 4 5 8 2 

Washer-

Shaft (13) 

4 4 10 10 0 7 13 2 5 6 5 4 6 3 

Shaft (10) 3 5 2 7 7 0 2 13 7 8 6 6 4 5 

Body (2) 4 8 1 3 3 4 0 3 18 7 7 7 6 8 

Arm (1) 6 7 2 8 8 5 6 0 6 6 4 3 5 6 

Sleeve (12) 8 6 4 5 5 8 7 17 0 52 2 4 7 4 

Retainer (9) 9 8 6 2 2 7 18 7 4 0 42 2 8 7 

Bolt (3) 7 6 8 8 8 13 6 5 3 3 0 5 5 5 

Key (5) 4 14 18 7 7 4 4 3 6 4 5 0 4 4 

Washer (14) 2 6 6 2 9 6 2 4 1 5 6 4 0 1 

Nut (7) 4 3 5 4 4 5 3 4 8 7 3 4 1 0 

Number of 

Component 

Component 

 Names 

1 Arm 

2 Body 

3 Bolt 

4 Bolt-Shaft 

5 Key 

6 Nut-Shaft 

7 Nut3 

8 Plate 

9 Retainer 

10 Shaft 

11 Sleeve1 

12 Sleeve2 

13 Washer-shaft 

14 Washer3 



IV. RESULTS 

Fig.2 shows the results of assembly time gained from 5 
generations using the GSOA method. Each result shows the 
assembly time in response to each assembly sequence of the 
car engine valve. As shown in Fig.2, generation 1 has the 
highest assembly time which is 520 seconds. The assembly 
time decreases in generation 2 to be 510 seconds. The result 
from generation 3 to generation 5 remains the same towards a 
steady assembly time of 500 seconds for all the assembly 
sequences. 

 

Fig. 2. Assembly time obtained using the GSOA in response to the 

glowworms number 

Fig.3 shows the comparison in assembly time between the 
calculated numerical result and the computerised result, which 
relate to the generation number from 1 to 5. The assembly time 
gained from generation 1 is 520 seconds from the 
computerised result, which is higher than 504 seconds gained 
from the numerical result. In generation 2, the gap in assembly 
time gained from both results is comparatively smaller.  In 
generation 3, the assembly time has the same value of 500 
seconds obtained from both the numerical result and the 
computerised result. Afterward, the assembly time from the 
computerised result is 500 seconds, compared to 497 seconds 
obtained from the calculated numerical result. Therefore, the 
minimal assembly time can be seen in generations 4 and 5. 

 

Fig. 3. Comparison in assembly time between the numerical result and 

computerised result of GSOA in response to generation number 

 

V. CONCLUSIONS  

This paper presented a study into feasibility and 
applicability using the GSOA approach for resolving the 
assembly sequence optimisation problem of a car engine 
pump valve. The GSOA was developed using Java for 
determining an optimal assembly sequence with the minimal 
assembly time. The generated result shows that the GSOA can 
be a useful decision-making tool in obtaining an optimal or 
near-optimal assembly sequence for product designers, 
although the assembly time can vary if the assembly is 
performance by human workers as the human performance is 
also a major human factor that may affect the assembly time. 
Thus, the computer modelling simulation approach may need 
to be applied.  
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