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Abstract 

Aerated Constructed Wetlands are a state-of-the-art design that provides a different 

physical and chemical environment (compared to traditional passive wetland designs) 

for the wastewater treatment processes and, thus, may have different pathogen 

removal characteristics. In order to establish the fate of bacterial and viral indicators, 

a field study was carried out at a Sewage Treatment Works (STW) in the UK for a 5-

month period. The STW consists of primary and secondary sedimentation and 

trickling filters (TF) as the biological stage. A large pilot aerated Vertical Flow 

Constructed Wetland (AVFCW) was constructed at the STW as tertiary stage 

receiving ¼ of the total flow rate. Effluent quality of the AVFCW complied with 

national and international standards for environmental discharge and reuse. For the 

first time, two sets of bacterial (Faecal coliforms, E.coli and intestinal enterococci) 
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and viral indicators (Somatic coliphages, F-RNA specific bacteriophages and human-

specific B. fragilis GB124 phages) were simultaneously investigated in an AVFCW. 

High elimination rates were detected (up to 3.7 and 2.2 log reduction for bacteria 

indicators an phages, respectively) and strong correlations between the two sets 

were found. The superior efficiency of the aerated Constructed Wetlands in 

microbiological contamination removal compared to passive wetland systems was 

established for the first time, which may have implications for process selection for 

wastewater reuse. This field study therefore provides new evidence on the fate of 

bacteriophages and a first indication of their potential use for performance evaluation 

in TF and aerated Constructed Wetlands.  

Keywords: aerated constructed wetland; trickling filter; bacteriophages; indicator 

bacteria; wastewater reuse, sewage treatment works . 

 

1. Introduction 

Traditionally, the primary goal of wastewater treatment is to reduce the load of 

pollutants that have an immediate environmental impact on receiving waters such as 

organic matter and nutrients. Wastewater of human origin also contains various 

pathogenic microorganisms that pose a threat to public health, especially when 

discharged to surface waters or reused with inadequate previous treatment. 

Therefore, when wastewater is to be reused or there are concerns of direct public 

exposure (e.g. bathing waters), it is necessary to reduce the numbers of these 

microorganisms below a certain level before the final discharge or reuse of the 

treated effluent (Stefanakis and Akratos, 2016). Sanitary efficiency, i.e., the 

elimination of pathogenic microorganisms from wastewater, is a growing concern 

because of global moves to recycle treated wastewaters where possible. Specifically, 
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the removal of enteric viruses is a major challenge in wastewater treatment, given 

that most viruses are smaller than bacteria and can pass through conventional 

biological treatment processes, e.g., activated sludge systems and trickling filters 

(Shang et al., 2005) and have low minimum infection doses. Thus, an additional 

‘tertiary’ treatment stage is often necessary to further enhance the elimination of 

enteric bacteria and viruses.   

Constructed Wetlands (CW) have been widely used as an efficient, cost-effective and 

sustainable wastewater treatment technology (Stefanakis and Tsihrintzis, 2012a; 

Stefanakis et al., 2014; Wu et al., 2015). Continuous research and optimization 

resulted in a variety of advanced phytoremediation designs, one design being 

promoted is wetlands with artificial aeration, characterized by enhanced efficiency, 

high effluent quality and reduced footprint (Boog et al., 2014). CWs have also been 

applied as a polishing stage, i.e., to upgrade existing conventional treatment plants 

(Butterworth et al., 2013). Trickling filters (TF) are in use for many decades, providing 

good effluent quality along with robust operation and relatively low energy 

consumption (Daigger and Boltz, 2011; Metcalf and Eddy, 2014). The combination of 

TF and CW has been proposed as an integrated system for wastewater management 

(Maheesan et al., 2011; Kim et al., 2014) and has been applied in the UK (Gardner et 

al., 2013).   

The performance of wastewater treatment systems is usually evaluated using 

pollutant indicators that have an impact on the receiving environment, i.e., organic 

matter (BOD5 / COD) and nutrients (nitrogen, phosphorus). However, as more 

stringent standards are continuously adopted for the safe effluent reuse and human 

exposure, more focus is given on the microbiological aspects of wastewater 

treatment. The sanitary quality of wastewater through the treatment path is mainly 
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assessed using traditional indicator microorganisms such as Total and Faecal 

Coliforms. Various physical (sedimentation, filtration, adsorption), chemical (UV 

oxidation, biocides excretion) and biological (predation, biolysis, natural die-off) 

processes have been reported as pathogen removal mechanisms in CW and TFs 

(Stevik et al., 2004; Vacca et al., 2005; Wand et al., 2007; Stefanakis et al., 2014; Wu 

et al., 2015; Stefanakis and Akratos, 2016). Generally, pathogens survive best in 

dark, acidic, anoxic conditions with high concentrations of organic matter with plenty 

of attachment sites for protection. Predation is also believed to play an important role 

in bacterial removal in CWs (Vacca et al., 2005; Wand et al., 2007), but the actual 

role of the different predators (e.g., protozoa, bacteriophages) has not been studied 

in detail.   

Bacteriophages are strain specific viruses that attack and infect bacteria and are 

considered to be the most abundant and diverse biological entity on earth (Withey et 

al., 2005; Shapiro and Kushmaro, 2011). They have been suggested as potential 

indicators of feacal contamination, especially of enteric viruses, in conventional 

treatment systems (IAWPRC, 1991; Montazeri et al., 2015; Purnell et al., 2015; 

Amarasiri et al., 2017; McMinn et al., 2017; Dias et al., 2018), given that human 

pathogenic viruses monitoring on a frequent basis is a challenging, costly and time-

consuming task. There is still limited knowledge and understanding regarding the 

relationships between the removal of bacterial indicators and the enteric viruses’ 

indicators, such as somatic coliphages, F-specific bacteriophages and human-

specific phages, while the removal processes have not yet been fully elucidated.   

Related data from field studies in full-scale CW facilities are limited; only few studies 

report the removal of indigenous phages (e.g., somatic coliphages or F-specific 

phages) in passive wetland systems such as Free Water Surface CW (Yousefi et al., 
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2004) and Subsurface CW of horizontal (Thurston et al., 2000; Reinoso et al., 2008; 

Williams et al., 1995) or vertical flow (Torrens et al., 2009). Aerated CW, which is a 

state-of-the-art design modification, could offer more aerated and air scoured 

conditions within the bed that may in theory promote the removal of enteric 

pathogens compared to the more anoxic and organic matter rich environments found 

particularly in HSF wetlands. To date no published literature on this topic has been 

identified and the elimination rate of pathogens remains largely unexplored in 

Aerated CW, while no studies were found on the fate of bacteriophages. 

Therefore, this field study evaluates the efficiency of a full-scale treatment facility in 

the UK, comprising of Trickling Filters and an experimental Aerated Constructed 

Wetland, where - for the first time - the fate of a set of bacterial indicators and enteric 

phages is simultaneously investigated under real operating conditions. Specific 

objectives are to present the behaviour of each treatment system regarding the 

various parameters (e.g., organics, nutrients, pathogenic bacteria and viral 

indicators), to investigate the potential health impact of the treated effluent to 

evaluate the potential use of bacteriophages as bio-indicators of the treatment and to 

provide better understanding of the removal mechanisms of bacterial pathogens in 

these treatment systems. 

2. Materials and Methods 

2.1. Facility description 

The field study took place at the STW of Petersfield, Hampshire, UK (51°00'00.5"N, 

0°54'19.6"W) for a 5-month period (March to July) and evaluated to fate of various 

physicochemical parameters and microbiological indicators. Petersfield is a rural 

town with a population above 20,000 inhabitants with livestock farms and light 

industry. The STW consists of preliminary treatment (screening and grit removal), 
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iron salt addition (FeSO4) for phosphorus (P) precipitation, primary treatment (two 

sedimentation tanks of diameter 15 m each; PST), secondary treatment (10 trickling 

filters of diameter 24 m each; TF) and two secondary sedimentation tanks (SST) of 

diameter 23 m each (Oliver et al., 2005). The average wastewater inflow through the 

primary and secondary stages was 4,750 ± 1,080 m³/d over the study period. There 

is no final disinfection step before the final discharge to the adjacent River Rother. 

An experimental aerated vertical flow constructed wetland (AVFCW) was built in 

2013 (Fig. 1) and receives only a quarter of the inflow (i.e., 1,250 ± 17 m³/d), resulting 

in a hydraulic load of 1.08 m/d. The pilot AVFCW is used to test the aerated 

constructed wetland technology and represents one of the first aerated constructed 

wetlands in the UK installed to provide effluent polishing, especially for spikes of 

ammonia nitrogen occasionally detected in the STW. The pilot AVFCW is a saturated 

downflow wetland (L = 29 m, W = 40 m, D = 0.9 m), split into two beds for 

maintenance purposes. The SST effluent is applied on top of the pilot AVFCW 

surface through a pipe network with 6 surface distribution points per bed. The treated 

effluent is collected through a network of perforated laterals along the base of the bed 

that connects to a main collection header pipe. Aeration lines (i.e., driplines with 0.5’’ 

diameter) are placed on the base and artificial aeration is continuously provided in a 

uniform grid pattern using a mechanical air compressor (5.5 kW) that provides an 

average air flow of 300 m³/day.  The aeration lines network is connected via a main 

manifold line (2.5’’ diameter) to the air compressor. Treated water flows by gravity 

from the pilot AVFCW through a level control chamber to the final discharge point. 

The pilot AVFCW base is lined with HDPE membrane (1.5 mm) and the bed is filled 

with medium gravel (size 8-15mm, thickness 70 cm) and planted with Typha latifolia. 

Water level is maintained 5 cm above the gravel layer surface.   
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<<Insert Figure 1>> 

2.2 Sampling programme 

Duplicate samples were taken on a bi-weekly basis (8 sampling occasions, each time 

at 10am) over a five-month period (March – July 2015) at five sampling points (Fig. 

1); raw wastewater (RAW), influent (TFI) and effluent (TFO) of the trickling filters and 

influent (CWI) and effluent (CWO) of the pilot AVFCW. Over the last four sampling 

campaigns, samples were also taken from the nearby river that receives the final 

mixed treated effluent, i.e., 75% from CWI and 25% from CWO; one sample 100 m 

upstream (RU) and one 100 m downstream (RD) the discharge point. 

Physicochemical parameters, i.e., temperature, pH and electrical conductivity (EC), 

were measured onsite immediately after sampling. Analyses for BOD5, COD, Total 

Suspended Solids (TSS), ammonia nitrogen (NH4
+-N), nitrate (NO3

--N), phosphate 

(PO4
-3-P) and sulphate (SO4

-2) were carried out immediately after sampling at the 

onsite laboratory (University of Portsmouth). Samples were also kept in dark at 4ºC, 

transported to the University of Brighton laboratory and analyzed within three hours 

of collection for a series of microbiological indicators: indicator bacteria, i.e., 

Escherichia coli (E.coli), Faecal Coliform (FC) and Intestinal Enterococci (IE) and viral 

indicators, i.e., somatic coliphages (SC), F-RNA specific phages and phages capable 

of infecting GB124, a human-specific strain of Bacteroides fragilis.  

2.3. Physicochemical analyses 

Physicochemical parameters (temperature, pH, EC) were measured using WTW 

Inolab series instruments. For BOD5 determination, respirometric bottles were used 

following Standard Methods (APHA, 2012); the other chemical parameters were 

measured colourimetrically using the Palintest™ 7100 photometer and the following 

methods using the Palintest™ supplied reagents; COD, (method 80, 81 or 82 
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depending on concentration), ammonia (method 4), nitrate (method 23), 

orthophosphate (method 28) and sulphate (method 32). 

2.4. Quantification of bacterial and viral indicators 

Faecal coliforms were enumerated by membrane filtration on mFC agar in triplicates 

with different dilutions (ISO, 2000a). For E.coli, TBX medium was used and for 

intestinal enterococcus SB agar (ISO, 2000a;b Caplin et al., 2008; Vergine et al., 

2017). Results for indicator bacteria were expressed as colony forming units per 100 

ml (CFU/100 ml). Somatic coliphages, F-RNA specific phages and human-specific B. 

fragilis GB124 phages were quantified in triplicates by enumerating plaque-forming 

units (expressed as PFU/100 ml) on modified Scholten’s media, tryptone yeast 

glusoce media and Bacteroides phage recovery media, respectively, according to 

standardized double-agar-layer methods (ISO, 2001a-c). Host strain WG5 

(Escherichia coli) was used for somatic coliphage enumeration, WG49 (Salmonella 

typhimurium) for F-specific phages, and GB124 (B. fragilis) was used for the 

detection of phages active against this human-specific gut bacterium. The 

methodology has been previously described (Harwood et al., 2013).  

2.5. Data Interpretation and Statistical Analyses 

All microbiological data were log10 transformed and zero concentration values were 

treated as log10 of 1 (i.e., 0). The log10 transformed microbial data and untransformed 

physicochemical data was tested for normality using the Anderson-Darling (AD) test. 

This showed a complex pattern, with many parameters being normal within treatment 

stages but, assuming a significance level of 0.1, a number of parameters within 

stages and most of the combined stage data were significantly different from 

normality. Out of the microbial groups of the combined stage, only the log10 SC was 

normal. It was therefore decided to use non parametric tests that do not require 
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normality to analyse the data to allow comparison between all groups and stages. 

Central tendency is therefore assessed by the median, variability by the inter quartile 

range (IQR), associations by Spearmans Rank order correlation (-1 ≤ rs ≤ 1) and 

differences between locations by the Krushall Wallis test. All statistical analyses were 

undertaken using Minitab v17. 

 

3. Results and discussion 

3.1. Overall performance 

Fig. 2 presents the variations of the various parameters over the study period in each 

treatment stage, while respective removals are shown in Table 1. Each Box–Whisker 

box shows the inter quartile ranges, the median is shown as the horizontal line 

across the box and the whiskers the 95% confidence limits, while outliers are shown 

by stars. A gradual removal of all parameters is observed along the treatment stages. 

Sedimentation removes most of the suspended solids. Organic matter (BOD5 and 

COD; 99.5% and 97.7%, respectively) and ammonia (99.5%) are almost completely 

removed in the system, with the TF and the pilot AVFCW accounting for the majority 

of NH4
+-N removal. In terms of areal load removal, the STW removed 3.3 g 

BOD5/m²/d, 10.6 g COD/m²/d and 0.33 g NH4
+-N/m²/d. Low effluent nitrate 

concentration (< 6 mg/L) indicates that denitrification takes also place.  

The combined system of the TF and the SST managed to remove 95% of BOD5, 82% 

of COD, 93% of NH4-N and 69% of PO4-P from the primary effluent, figures which are 

in line with what is reported in literature (Naz et al., 2014; Abou-Elela et al., 2017). 

The relatively high rate of nitrification in the TF system could be attributed to the low 

hydraulic load (1.08 m/d) applied in the TF, which allows for enhanced nitrification 
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(Lessard and Le Bihan, 2003). The addition of the pilot tertiary AVFCW in the 

treatment train further improved the secondary effluent quality. The pilot AVFCW 

removed 76% of BOD5, 22% of COD and 89% of NH4-N, providing a final effluent of 

high quality. Especially for ammonia, results confirmed that artificial aeration 

enhances aerobic conditions and, thus, nitrification (Boog et al., 2014; Stefanakis et 

al., 2014).  

P removal reached 91% (or 96 mg PO4
-3-P/m²/d) in the system and most of it took 

place in the PST, mainly due to the upstream addition of FeSO4. It is noticeable that 

the performance of the AVFCW is limited. It is widely known that adsorption and 

precipitation is the main P removal mechanism in CW, directly related to the 

physicochemical characteristics of the substrate media (e.g., Al, Fe, Ca oxides 

content, mineralogical composition etc.), while plant uptake is generally considered 

negligible (Vymazal, 2007; Garcia et al., 2010; Stefanakis et al., 2014; Wu et al., 

2015). The gradual and relatively fast saturation of the filter media is the main reason 

for the overall low P removal rates in CW, while in VF systems the short contact time 

between the wastewater and the media due to the vertical drainage further limits 

these removal mechanisms (Stefanakis and Tsihrintzis, 2012a). For example, Paing 

et al. (2015) studied the efficiency of 169 full-scale VF wetlands and reported a 

gradual decrease in P removal, i.e., 47% in the first operational year, 30% between 

2-6 years and 9% between 6-12 years. This is why a gravity filter filled with a reactive 

media has been proposed as a polishing stage after VF wetlands to enhance P 

removal (Brix and Arias, 2005; Stefanakis and Tsihrintzis, 2012b; Adera et al., 2018). 

In the present study, the inflow P was already low (median 1.2 mg/L) and no special 

filter media was used in the AVFCW, which was already in operation for almost three 

years. These could explain the low efficiency, while the negative performance 
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observed in few sampling campaigns could be attributed to the release of P adsorbed 

onto the media, as also reported elsewhere (Paing et al., 2015).   

<<Insert Figure 2>> 

<<Insert Table 1>> 

Fig. 3 presents the levels of FC, E.coli and IE at different sampling points of the STW 

in the same manner as Fig. 2, while Fig. 4 depicts the cumulative log reduction of 

bacterial and viral indicators based on each treatment stage. High elimination rates of 

bacterial indicators were observed in the system; 3.47 log unit reduction for FC, 3.58 

for E.coli and 3.65 for IE (Table 1). As Fig. 3 shows, the major portion of the 

microbiological indicators was removed in the two biological treatment stages (TF 

and AVFCW), while median effluent values of the pilot AVFCW were 1.61, 1.15 and 

0.48 log for FC, E.coli and IE, respectively (respective concentrations of 78, 17 and 7 

CFU/100 mL). 

The removal of FC (0.39 log or 58%) in the PST is similar to previously reported 

values (Curtis, 2003). The combined system of TF and SST achieved 1.83, 1.95 and 

1.99 log removal (all > 99%) for FC, E.coli and IE, respectively. In general, lower 

removal rates (20-90%) of feacal indicators are reported in literature for traditional TF 

filled with natural rocks (Yahya et al., 2000; Curtis, 2003; Bitton, 2005). As the 

important role of the biofilm support media was gradually realized in promoting 

bacterial removal via filtration, adsorption and desorption (Lucena and Jofre, 2010; 

Stevik et al., 2004), new materials (i.e., plastic- and sponge-based support media) 

instead of the typical rock-based media are used to provide an improved environment 

for biofilm development and enhance the removal of bacteria indicators (Bressani-

Ribeiro, et al., 2018). For example, Naz et al. (2014) reported a higher than 3.5 log 
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removal of FC in TF with polystyrene, plastic, rubber and stone media, while Wasik 

and Chmielowski (2017) report coliform removal rates higher than 98%. 

<<Insert Figure 3>> 

<<Insert Figure 4>> 

Fig. 3 also presents the levels of SC, F-RNA and GB-124 phages at the different 

sampling points, while the cumulative log reduction of all bacteriophage groups 

through the different treatment stages is shown in Fig. 4. SC is the most abundant 

phage group in raw wastewater (1.32 x 106 PFU/100 mL) and throughout the STW 

compared to F-RNA (2.3 x 104 PFU/100 mL) and GB-124 phages (0.74 x 104 

PFU/100 mL). This is also elsewhere reported for activated sludge plants and TF 

plants (Dias et al., 2018). This is a first indication that SC could be a potential useful 

conservative indicator for virus removal assessment in TF and aerated CW, which is 

also proposed in other studies (Dias et al., 2018). Slightly lower SC levels (1.23 x 106 

PFU/100 mL) and slightly higher F-RNA phages (1.88 x 104 PFU/100 mL) are 

reported for raw wastewater treated in MBR unit, but significantly higher GB-124 

phages (2.71 x 104 PFU/100 mL) compared to this study (Purnell et al., 2015).  

Overall, the median log removals in the STW are 1.90, 2.16 and 1.62 for SC, F-RNA 

and GB-124 phages, respectively, which are lower compared to bacterial indicators 

(3.47 and 3.55 for FC and E.coli, respectively), as was also found in other studies for 

activated sludge and TF plants (Dias et al., 2018).  

The primary treatment generally had low removal rates of less than 0.4 log unit 

reductions for all indicators, with the lowest median removal of 0.19 for the phage 

group GB-124. Bacteriophages have the tendency to adsorb on solids surfaces, as 

also elsewhere observed (Zhang and Farahbakhsh, 2007), which could explain this 
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removal. The two bioreactors (i.e., TFs and AVFCW) showed a more or less similar 

efficiency, with the combined system of TF and STT presenting higher log removals 

of indicator bacteria and phages, except for the F-RNA group log for which the 

AVFCW showed a higher removal. The TF combined with the SST as one-unit 

process gave higher removals of bacterial indicators (almost 2 log units; 1.83 to 1.99) 

compared to phage groups (less than 1 log units). The AVFCW gave a further 1.2 to 

1.3 log unit reductions in bacterial indicators, but a varied removal of phage groups 

(0.6 for SC and GB-124 compared to 1 log unit for FRNA). After the treatment, SC 

were the only phages constantly detected, since F-RNA and GB124 phages were 

often undetected in the effluent water. F-RNA phages showed the highest log 

removal among the phages (2.16), possibly due to their greater tendency to adsorb 

onto solids (Zanetti et al., 2010; Purnell et al., 2015). 

As previously mentioned, 25% of the STW hydraulic load was treated through the 

pilot AVFCW. The majority (75%) of the inflow was discharged after the secondary 

sedimentation, i.e., the SST. This means that the final STW effluent is a mixture of 

the SST (i.e., CWI sample) and pilot AVFCW effluents (i.e., CWO sample). Table 2 

presents average values for the tested physicochemical and microbiological 

parameters in the mixed STW effluent and the river receiving it. The water upstream 

the STW discharge point is of very good quality; all parameters measured were 

below the respective values of the AVFCW effluent (CWO). Downstream the STW 

discharge point, all pollutant concentrations are elevated, typically higher than the 

wetland effluent concentrations. Especially for microbiological parameters, FC and E. 

coli are almost 23 and 49 times, respectively, higher than in the upstream water.  

The same was also found for bacteriophages. These elevated pollution levels should 

be attributed to the mixed effluent discharged to the river. It should also be noted that 
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the presence of all three different bacteriophage groups was ascertained in natural 

water (i.e., RU sample), showing that these groups can be found in nature, as it is 

already known (Withey et al., 2005; Shapiro and Kushmaro, 2011), since they co-live 

with their host (bacteria) that are present in most, if not all, water bodies (Clokie et al., 

2011).  It is reported that in most studied natural ecosystems a ratio of ten phages for 

every bacterial cell is detected (Suttle, 2007). They have been suggested as potential 

indicators of feacal contamination, especially of enteric viruses, in conventional 

treatment systems (IAWPRC, 1991; Montazeri et al., 2015; Purnell et al., 2015; 

Amarasiri et al., 2017; McMinn et al., 2017; Dias et al., 2018), Among them, SC were 

the most abundant, a finding also elsewhere reported (McMinn et al., 2017). 

<<Insert Table 2>> 

3.2. STW evaluation 

TF and CW are two low-tech alternatives to treatment methods that require 

mechanical equipment and energy. CW in particular are a near-nature passive 

technology with multiple environmental and economic advantages (Stefanakis et al., 

2014). The combination of TF with an aerated CW bed is a novel design for STW; no 

similar study was found in the literature. However, TF have been combined with 

passive CW systems. Maheesan et al. (2011) tested a combination of TF-passive 

VFCW treating light domestic wastewater (influent BOD5 195 mg/L, COD 570 mg/L, 

TSS 113 mg/L, NH4-N 21.6 mg/L and P 6.3 mg/L) and reported good removal rates 

(89.7% for BOD5, 88.7% for COD, 75.6% for TSS, 97.1% for NH4-N and 72.7% for 

P); however, the system examined in the current study performed better, although it 

received higher pollutant loads. Another setup was tested by Kim et al. (2014); a TF 

followed by two partially saturated passive VFCWs showed comparable results to the 

present study, but the pilot AVFCW bed has much smaller footprint compared to the 
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two VFCWs tested (Kim et al., 2014). Similar results (with the exception of NH4-N) 

were also found for a pilot system comprising TF, FeCl3 injection and a passive 

VFCW for domestic wastewater treatment (Kim et al., 2015a;b); however this pilot 

received approximately 1/3 of the hydraulic load received by the studied STW. A 

combination of TF and horizontal subsurface (HSF) CW was also tested by Vucinic et 

al. (2012), showing comparable results. However, the hydraulic load applied was 

much lower (0.035 - 0.144 m/d) compared to the load applied to the pilot AVFCW in 

the present study (1.08 m/d), while lower effluent concentrations were achieved in the 

present study for BOD5 and ammonia. Again, the footprint of the proposed wetland 

system is higher than that of the present study. In another study, a pilot HSF CW was 

used as tertiary stage receiving secondary effluent from a TF under lower hydraulic 

load (0.36 m/d) (Toscano et al., 2015). This pilot did not reach the same effluent 

quality with the studied AVFCW, especially for NH4-N, while the area demand was 

three times higher compared to the present study. 

Overall, the presence of the aerated CW improved the STW efficiency in terms of the 

physicochemical parameters using a much smaller footprint (3-6 times). This is a very 

important finding, since lower area demand is translated to lower material volumes 

(e.g., earthworks, gravel, HDPE liner etc.), hence lower investment costs and is 

particularly advantageous if there are space constraints for a STW. At the same time, 

the aerated wetland design provides increased performance consistency and can 

reach performance levels that have been unobtainable in passive wetlands with less 

performance variability. The blower and the plastic aeration lines cost is minimal 

compared to the overall costs savings and the operation and maintenance complexity 

does not increase significantly. 
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The major portion of inflow TSS is removed in the two sedimentation stages, with 

respective load removal rates of 2.7 and 0.4 g TSS/m²/d for PST and SST. After the 

addition of iron upstream the PST, the remaining phosphorus is removed in the PST 

and the TFs. The pilot AVFCW bed practically did not remove any phosphorous, 

given the already very low influent concentration and the fact that after few years of 

operation, the adsorption capacity of the substrate media is gradually depleted 

(Stefanakis and Tsihrintzis, 2012b). The effluent quality of the pilot AVFCW indicates 

the good performance and the increased nitrification potential of the AVFCW 

technology, due to the aerobic conditions that enhance both organic matter 

biodegradation and nitrification. Improved performance with artificial aeration of CWs 

is also elsewhere reported (Foladori et al., 2013; Boog et al., 2014; Stefanakis et al., 

2014; Hou et al., 2018), which explains the increasing interest in aerated CW over 

the last few years.  

In general, the proposed treatment scheme of the studied STW proved to be capable 

of providing a high quality effluent. The final effluent (after the pilot AVFCW) had 

pollutants concentrations below the limits of the Urban Wastewater Treatment 

Directive - UWTD (Council Directive, 1991), which has been adopted in the UK 

(Statutory Instrument, 2003), allowing for the final discharge to surface waters. The 

WHO limits are also met for unrestricted irrigation of (WHO, 2006). It should be noted 

that the secondary effluent (CWI sample) did not meet the UWTD standard for Total 

Nitrogen, neither the WHO limit for E.coli. 

3.3. Microbiological dynamics 

Control of pathogens in the STW outflow is a crucial factor for maintaining ecosystem 

good health status and, thus, protect human health. However, it has not yet gained 

the attention it deserves (Wu et al., 2016). Regarding passive wetland systems, 
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summarized information can be found on the removal of bacterial indicators (e.g., 

Vymazal, 2005; Garcia et al., 2010; Stefanakis and Akratos 2016; Wu et al., 2016). 

Nevertheless, typically the efficiency of the examined system in terms of common 

bacterial indicators is only reported. Removal of bacteria is usually not the main target 

in the design of CW systems, although CW have been proved to be efficient in the 

removal of microbiological contamination (Stefanakis and Akratos, 2016). The tested 

experimental STW was found capable of providing a high effluent quality in terms of 

bacteria and phages removal too. Median effluent concentrations of FC, E.coli and IE 

after the tertiary treatment stage (i.e., the pilot aerated wetland) were 41, 14 and 3 

CFU/100 mL, below the WHO guidelines for reusing treated wastewater in agriculture 

(WHO, 2006), which eliminated the need for the final disinfection step. The 

secondary effluent of the STW (i.e., after the secondary sedimentation) did not fulfill 

these criteria. This is an important finding, since the addition of the aerated wetland 

as tertiary treatment stage improved the final effluent quality not only in terms of 

physicochemical parameters but of microbiological indicators too. This means that a 

final chlorination/dechlorination step after the AVFCW is not required, i.e., a chemical 

process can be avoided. Physicochemical methods such as ozonation or UV 

radiation are effective and useful, but can be expensive to install and operate, 

especially at small STW sites, while chlorination is cheap and effective but brings 

concerns about disinfection by-products and health risks associated with chemical 

management and storage (Mezzanotte et al., 2007). Therefore, aerated CW should 

be further investigated regarding their potential as a cheaper and easy-to-handle 

method that can limit the needs and costs for a disinfection stage and is especially 

appropriate for small sites, with additional benefits for the general effluent quality.  

All studies found in published literature on aerated CW (either of horizontal or vertical 

flow) almost exclusively focus on organic matter degradation and nitrification capacity 
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of this wetland type and not on its sanitation efficiency. While more than 30 recent 

publications (published within the last four years) were found in the literature on 

aerated CW, only one reports bacteria and virus removal. It should also be 

mentioned that most of these studies are laboratory experiments or small-size trial 

beds. Moreover, no publication was found reporting the fate of bacteriophages in 

aerated CW systems. This confirms the fundamental knowledge gap in this field and 

highlights the necessity for more research. The lack of data regarding microbiological 

indicators in aerated CW could be explained, considering that these systems are a 

new development in wetland technology and the main interest currently is to optimize 

their performance and operational parameters (e.g., aeration equipment/schedule).  

Only one study was found reporting E.coli removal in aerated CW (Headley et al., 

2013); aerated HSF and VF beds treating primarily treated domestic wastewater 

showed more than double E.coli removal compared to conventional (passive) CW 

systems. Reported log reduction was 3.3 and 2.1 for the aerated HSF and VF beds, 

respectively, lower than the present study (3.6), while the VF bed showed a much 

higher areal load removal rate than the HSF bed (7.2 and 1.0 x 109 MPN/m²/d, 

respectively). The present study also demonstrated the improved removal capacity of 

aerated wetland systems to reduce pathogens. The achieved areal load removal 

rates for FC, E. coli and IE in the pilot AVFCW were 1.0 x 107, 3.3 x 106 and 7.2 x 105 

CFU/m²/d, respectively. These results indicate the ability of artificially aerated CW to 

provide a high effluent quality almost free of pathogens under a smaller footprint 

compared to passive wetland systems.  

The exact mechanism(s) that result in this improved performance are not yet clear 

(Wu et al., 2016; Alufasi et al., 2017). This could be possibly attributed to the added 

air in the bed, since this is the main modification of aerated wetlands compared to 
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passive systems. Few previous studies indicate a correlation between aerobic 

conditions (i.e., which is the case with the artificially aerated wetlands) and bacterial 

removal; for example, a 8-10 fold increase in bacterial die-off rate constant is 

reported for bacterial indicators after a 2-hr aeration was applied (Fernández et al., 

1992). In general, enteric bacteria are either facultative or obligate anaerobs, hence, 

aerobic conditions do not favour their longevity, while anaerobic environments 

prolong coliform survival (Vymazal, 2005). Higher efficiency of VF CWs compared to 

HF CWs is also reported in terms of bacterial removal, which again implies that 

aerobic environment (i.e., oxidation) enhances the removal of bacteria (Winward et 

al., 2008). The effect of aeration conditions is also implied by the enhanced pathogen 

removal rates observed in CWs planted with Phragmites australis than with Typha 

latifolia, considering that common reed is known to provide higher oxygen release 

rates in its rhizosphere (Werker et al., 2002; Wu et al., 2014). Moreover, as also 

indicated by Headley et al. (2013), artificial aeration and the respectively increased 

concentration of dissolved oxygen within the saturated wetland bed probably alters 

the characteristics and the composition of the microbial ecology and the trophic 

structure, which also enhances the development and growth of natural predator 

groups that prey on bacteria (Wand et al., 2007). However, a future detailed 

characterization of the microbial ecology patterns and composition in aerated 

wetlands is required to provide a deeper understanding of the fundamental processes 

leading to increased bacterial removal by artificial aeration. 

3.4. The role of bacteriophages in bacterial removal 

Current knowledge dictates that the removal of pathogenic bacteria in CW takes 

place through a variety of physical, chemical, and biological mechanisms such as 

filtration, UV radiation by sunlight, antimicrobial exudates of plant roots, predation by 
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protozoa, activity of biolytic bacteria, and natural die-off (Stevik et al., 2004; Wand et 

al., 2007; Stefanakis et al., 2014; Wu et al., 2016). However, detailed fundamental 

knowledge on bacterial removal processes is still limited. Particularly, the role of 

biological factors, namely predation by other microorganisms, still remains largely 

unknown. Predation is attracting interest in dealing with bacterial populations, since 

most bacterial pathogens are food for other microorganisms such as protozoa and 

bacteriophages (Vacca et al., 2005; Wand et al. 2007; Stefanakis et al., 2014). The 

grazing activity probably depends on the target bacteria-prey characteristics (e.g., 

concentration), the specific characteristics of the predator (morphology, physiology, 

feeding strategy, etc.), and physicochemical parameters (e.g., temperature, redox 

conditions) (Shapiro et al., 2010); however, their significance and the main principles 

that regulate their activity are not well understood yet.  

Bacteriophages are viruses known for their biolytic activity and the pressure they can 

apply on microbial communities, reducing fecal coliforms and pathogens (Ottova et 

al., 1997; Vacca et al., 2005; Vymazal, 2005; Shapiro and Kushmaro, 2011). They 

get adsorbed onto the host cells and kill the bacterial cell or integrate its genome into 

the host genome. Their entry into the host cell depends on specific receptors present 

on the host cell surface, e.g., proteins, carbohydrates and lipopolysaccharides (Marks 

and Sharp, 2000). Bacteriophages are commonly used as human enteric virus 

removal indicators since the direct detection and enumeration of pathogenic viruses 

is a costly and time consuming process. Bacteriophages are natural predators of 

bacteria, specific and precise in their predation activity and highly specific for feacal 

pollution (Vacca et al., 2005; Stefanakis et al., 2014). The role of phages in 

wastewater treatment processes is considered very important due to their predation 

power, considering also that they are not pathogenic or toxic to humans. Predation is 

known as the main mechanism for pathogen removal in CW, but the exact role of 
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bacteriophages and the competition with other predators (e.g., protozoa) is still under 

discussion (García et al., 2013; Stefanakis et al., 2014). Moreover, still today little is 

known regarding their exact influence on the treatment performance (Shapiro and 

Kushmaro, 2011).  

Existing knowledge on bacteriophages comes from conventional wastewater 

treatment methods, mainly activated sludge systems and MBR (Withey et al., 2005; 

Zhang and Farahbakhsh, 2007; Goldman et al., 2009; Purnell et al., 2015; Dias et al., 

2018). Most of the studies imply their use as indicators of the survival and release of 

pathogenic viruses into the environment. It is reported that in activated sludge the 

number of bacteriophages is the highest compared to any other environment 

(Shapiro and Kushmaro, 2011). In CW, the lytic action of bacteriophages has been 

suggested as a mechanism for bacterial loss (Thurston et al., 2001). They are the 

least investigated group in CW and their use as pollution indicators has been only 

fragmentarily discussed (Thurston et al., 2001; Abdulla et al., 2007), e.g., to estimate 

their role in E.coli removal (Withey et al., 2005). A positive correlation between the 

bacteriophages and the classic bacterial indicators is reported in few studies for 

passive CW (Yousefi et al., 2004; Abdulla et al., 2007).  

Limited information exists in the literature about the fate of bacteriophages in CW and 

it mostly comes from passive horizontal flow systems, while no study was found on 

aerated CW. The study by Torrens et al. (2009) is the only one that examined the 

efficiency of two passive VFCW in terms of microbial indicators removal, including 

bacteriophages. Authors report a 0.5 and 2 log removal of FC and E.coli, 

respectively, and 0.4-1.5 log and 0.2-1 log removal of SC and F-specific 

bacteriophages, respectively. Both figures are lower than the ones found in the 

present study (Fig. 4). The log reduction of bacteriophages was always lower than 
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that of the bacterial indicators, as also found in this study. It is also interesting that 

SC removal was higher than that of F-specific phages, while the opposite was found 

in the examined pilot AVFCW (Fig. 4). O’Luanaigh and Gill (2010) examined two HSF 

CW, operating as secondary and tertiary treatment stages and tested three 

bacteriophages (MS2, ΦX174 and PR772). Total Coliforms (TC) and E.coli removals 

were 1.8 (98.5%) and 1.4 log (96%), respectively, in the secondary HSF bed and 1.3 

log (94.6%) and 1.7 log (97.7%), respectively, in the tertiary HSF bed. A high 

recovery rate was reported for bacteriophages ΦX174 and MS2 in both beds, 

indicating the low efficiency of HSF systems to remove viral microorganisms. 

Thurnston et al. (2001) examined two subsurface flow CW treating secondary 

sewage effluent and potable groundwater. TC removal rates reached 98.8% and FC 

98.2%, while coliphage removal was 95.2%. Detected coliphage and FC effluent 

concentrations were 4.7 PFU/mL and 45 CFU/100 mL, respectively, both higher than 

the present study. Hench et al. (2003) reported 16x10² and 31.6 PFU/mL coliphages 

concentration in the influent and effluent, respectively, of a subsurface flow CW (98% 

removal rate). Significant reductions of FC and enterococci are also mentioned 

(>99%), but the effluent quality had to be post-treated in order to reach FC standards. 

Surface flow (SF) CW for stormwater treatment have been found capable in removing 

SC and F-RNA bacteriophages, but extended survival rates are reported (Yousefi et 

al., 2004). Higher efficiency (41 and 19 times during winter and summer) of SSF CW 

compared to SF CW is also reported by Adhikari et al. (2013) for the removal of 

bacteriophage P22 from livestock drainage. Similar results are reported by Reinoso 

et al. (2008); higher removal rates of coliphages were found in a SSF CW (94%) 

compared to a SF CW, for an influent concentration of 4.86 log. 
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In general, the comparison of the results of the present study with these few existing 

studies previously mentioned, i.e., passive wetland systems of different types, 

provides a good indication of the higher treatment capacity of the tested pilot 

AVFCW. Although operating as tertiary treatment stage, the pilot AVFCW showed 

similar or even higher removal capacity of the SC and F-RNA groups. 

The collected data were analyzed as a pooled data set, i.e., considering 

measurements for all treatment stages for each indicator, to determine the 

correlations between bacterial indicators and bacteriophages across the STW. Table 

3 presents Spearman’s correlation coefficients in wastewater samples. There were 

significant differences in each indicator group counts with location (KW: H>26 and p 

<0.0001) and there were strong correlations (p>0.0001) between all bacterial and 

viral indicators (Table 3). The two strongest correlations between FC and SC and FC 

and GB-124 are shown in Figure 5, with the counts by location (i.e., sampling point) 

shown by the different symbols. There is a clear linear component to this association, 

which suggests a similar log-linear die-off rate for these organisms. 

<<Insert Table 3>> 

<<Insert Figure 5>> 

Strong correlations between bacteriophages and bacterial indicators were found. The 

highest coefficients were found for SC-FC (0.89), SC-E.coli (0.88) and SC-IE (0.84). 

This strong positive correlation is the first indication that SC could be potentially used 

as indicators for the investigated bacteria removal in aerated CW and TF. A positive 

correlation between bacteriophages and classic bacterial indicators (E. coli) is also 

implied for passive wetland systems (Yousefi et al., 2004; Withey et al., 2005; 

Abdulla et al., 2007).  A high correlation rate between coliphages and FC (0.82), 
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Salmonella sp. (0.82), Shigella sp. (0.89), Vibrio sp. (0.83) and Pseudomonas sp. 

(0.97) has also been reported (Abdulla et al., 2007), which again implied the 

possibility to use SC as pollution indicators.  

Moreover, no significant correlations were found between the removal of bacterial 

indicators and bacteriophages and temperature variations. However, considering that 

the study took place in spring and early summer months, it did not focus on the effect 

of temperature (i.e., the temperature range covered was 12.2 – 19.5°C; Fig. 2). The 

effect of temperature on pathogens removal in CW still remains a controversial issue 

in published literature with contradicting results reported by various authors (Reinoso 

et al., 2008; Wu et al., 2016; Alufasi et al., 2017). For example, it has been found that 

increased temperatures enhance the removal of indicator bacteria in HF CW, but had 

no effect on bacteria removal performance in VFCW (Winward et al., 2008). 

Increased temperature enhances the activity of non-pathogenic organisms, such as 

grazing protozoa, thus increasing pathogen removal via grazing (Weber and Legge, 

2008). On the other hand, reduced oxygen solubility to water and natural die-off of 

macrophytes at lower temperatures limit dissolved oxygen concentration in the root 

zone (Rivera et al., 1997). Moreover, it is reported that enteric viruses and coliphages 

have a longer survival time and more frequent occurrence at lower temperatures, 

while they decay faster at higher temperatures (Bertrand et al., 2012). Nevertheless, 

other factors seem to play a more significant role in pathogens removal such as the 

presence/status of plants, the hydraulic regime, the hydraulic retention time, the 

water composition and of course the artificial aeration, which is the case in our study. 

It can be assessed that bacteriophages can be a useful tool for performance 

evaluation in terms of removal of bacteria from municipal wastewater. This is also 

supported by the fact that bacteriophages are more resistant to treatment than the 
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bacterial indicators. SC appear as a good indicator of microbiological quality and 

microbial removal efficiency of aerated CW, considering that this group is always 

detectable and more abundant in both wastewater and surface water (Table 1). 

Similar suggestions have already been formulated for conventional -mechanical 

treatment methods such as activated sludge and membrane bioreactors (Zhang and 

Farahbakhsh, 2007; De Luca et al., 2013; Purnel et al., 2015; Yahya et al., 2015). 

Further research should investigate the effect of phages morphological 

characteristics in their resilience to the examined treatment systems. 

4. Conclusions 

The field study on a full-scale STW with TF and an experimental AVFCW delivered 

an effluent that fulfils the legal criteria for environmental discharge and reuse, even 

without a final disinfection step. For the first time, three bacterial indicators and three 

bacteriophage groups were evaluated in an aerated CW, with respective removals in 

the STW system reaching 3.5log and 2log. Strong correlations were detected 

between bacteria and bacteriophages implying the role of phages as bacteria 

predators and their potential use as microbial removal indicators for TF and aerated 

CW. Finally, the superior efficiency of aerated CW in microbiological contamination 

removal compared to passive wetland systems is demonstrated for the first time. 
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Figure 1. Schematic representation of the treatment train and sampling points at Petersfield 

Sewage Treatment Works in South UK (PST; primary sedimentation tanks, TF; trickling filters, 

SST; secondary sedimentation tanks, AVFCW; aerated vertical flow constructed wetland, RU; 

river upstream, RD; river downstream).  

 

Figure 2. Box–Whisker plots of pollutants and physicochemical parameters during the field 

study period at each sampling point; RAW (raw wastewater), TFI (SST effluent), TFI (TF 

effluent), CWI (SST effluent), and CWO (CW effluent). 

 

Figure 3. Box–Whisker plots of log values for indicator bacteria (FC, E.coli and IE) and viral 

indicators (SC, F-RNA and GB-124 phages) at each sampling point; RAW (raw wastewater), 

TFI (SST effluent), TFI (TF effluent), CWI (SST effluent), and CWO (CW effluent). 

 

Figure 4. Cumulative log10 reduction of bacterial indicators (FC, E.coli and IE; log conversion 

of concentration; CFU/100 mL) and viral indicators (SC, F-RNA and GB-124 phages; log 

conversion of concentration; PFU/100 mL) through the series of PST, TF, SST and the pilot 

AVFCW. 

 

Figure 5. Scatter plots of the associations between SC and GB-124 phage groups and three 

bacterial indicators for the pooled data set of each parameter. 
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LIST OF TABLES 

Table 1. Concentrations and removal of physicochemical and microbiological indicators 

(Median ± Inter Quartile Ranges) in each treatment stage and across the Petersfield STW 

system (PST; primary sedimentation tanks, TF; trickling filters, SST; secondary sedimentation 

tanks, AVFCW; aerated vertical flow constructed wetland). 

Parameter 
Raw 

wastewater 

STW 

Effluent 

Median removal (%) 

PST TF SST AVFCW Total 

BOD5 (mg/L)  379 ± 93 2.1 ± 2.6 59.4 81.2 71.8 75.5 99.5 

COD (mg/L) 1260 ± 610 49.0 ± 18 67.2 55.1 47.0 22.3  96.1 

TSS (mg/L) 294 ± 55 9.2 ± 4.6 64.2 12.6 87.4 5.6 97.0 

NH4
+
-N (mg/L) 47 ± 31 0.22 ± 0.76 45.4 86.0 40.6 89.1 99.6 

PO4
-3

-P (mg/L) 12.9 ± 7.7 1.12 ± 0.65 65.9 58.7 3.8 0.0 91.0 

Microbial group Raw 

wastewater 

STW 

Effluent 

Median removal (Log10) 

Log10FC, CFU/100 mL 5.08 ± 0.14 1.61 ± 0.28 0.39 1.23 0.60 1.25 3.47 

Log10E.Coli, CFU/100 mL 4.73 ± 0.28 1.15 ± 0.25 0.34 1.22 0.73 1.29 3.58 

Log10IE, CFU/100 mL 4.13 ± 0.23 0.48 ± 0.74 0.35 1.19 0.80 1.31 3.65 

Log10SC, PFU/100 mL 5.91 ± 0.67 4.01 ± 0.36 0.33 0.73 0.24 0.60 1.90 

Log10FRNA, PFU/100 mL 4.36 ± 1.01 2.20 ± 1.31 0.32 0.66 0.18 1.00 2.16 

Log10GB124, PFU/100 mL 3.62 ± 0.70 2.00 ± 0.83 0.19 0.69 0.17 0.57 1.62 
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Table 2. Median (± Inter Quartile Ranges) of physicochemical and microbiological parameters measured in the SST effluent (CWI sample location), 

the pilot AVFCW effluent (CWO sample location), the combined effluent (75% of CWI and 25% of CWO) and the RU and RD river sampling points 

(SST; secondary sedimentation tanks, AVFCW; aerated vertical flow constructed wetland, CWI; constructed wetland inflow, CWO; constructed 

wetland outflow, RU; river upstream, RD; river downstream).  

Parameter CWI sample CWO sample Combined effluent RU RD 

pH (-) 7.9 ± 0.2 7.8 ± 0.6 7.9 ± 0.65 7.8 ± 0.3 7.8 ± 0.2 

EC (μS/cm) 842 ± 125 831 ± 99 839 ± 147 515 ± 123 688 ± 94 

SO4
-2

 (mg/L) 74.5 ± 19.0 70.0 ± 16.8 73.3 ± 22.7 31.0 ± 2.8 48.5 ± 13.0 

BOD5 (mg/L)  6.7 ± 4.8 2.1 ± 1.8 5.5 ± 4.3 0.9 ± 0.7 2.5 ± 0.9 

COD (mg/L) 66.5 ± 47.8 49.0 ± 12.8 61.9 ± 35.8 24.0 ± 7.0 578 ± 58 

TSS (mg/L) 9.8 ± 3.1 9.2 ± 4.6 9.6 ± 4.9 9.5 ± 1.4 18.3 ± 9.6 

NH4
+
-N (mg/L) 2.3 ± 3.1 0.2 ± 0.4 1.8 ± 2.3 0.10 ± 0.12 0.4 ± 0.3 

NO3
--
N (mg/L) 5.9 ± 1.5 5.0 ± 1.9 5.7 ± 2.8 3.1 ± 1.4 5.3 ± 1.7 

PO4
-3

-P (mg/L) 1.2 ± 0.3 1.2 ± 0.3 1.2 ± 1.9 0.2 ± 0.1 1.5 ± 0.2 

Log10FC, CFU/100 mL 2.86 ± 0.57 1.61 ± 0.28 2.56 ± 0.41 1.34 ± 1.28 2.75 ± 1.15 

Log10E.Coli, CFU/100 mL 2.44 ± 0.38 1.15 ± 0.25 2.01 ± 0.26 0.83 ± 0.45 2.20 ± 0.72 

Log10IE, CFU/100 mL 1.79 ± 0.80 0.48 ± 0.74 1.42 ± 0.43 0.39 ± 0.79 1.33 ± 0.40 

Log10SC, PFU/100 mL 4.60 ± 0.39 4.01 ± 0.36 4.45 ± 0.43 2.66 ± 1.51 4.23 ± 0.33 
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Log10FRNA, PFU/100 mL 3.20 ± 0.69 2.20 ± 1.31 2.93 ± 0.75 2.00 ± 1.5 2.96 ± 0.51 

Log10GB124, PFU/100 mL 2.57 ± 0.14 2.00 ± 0.83 2.38 ± 0.34 0.00 ± 1.28 2.15 ± 0.79 
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Table 3. Spearmans correlation coefficients (rs) and differences p (i Krushall Wallis test; in 

brackets) between microbiological parameters (log10 values) for pooled data set per 

parameter across the STW. 

 FC E.coli IE SC F-RNA GB-124 

Raw and treated wastewater after the pilot AVFCW 

FC 1      

E.coli 
0.97 

(0.000) 
1     

IE 
0.94 

(0.000) 

0.96 

(0.000) 
1    

SC 
0.91 

(0.000) 

0.89 

(0.000) 

0.86 

(0.000) 
1   

F-RNA 
0.82 

(0.000) 

0.81 

(0.000) 

0.77 

(0.000) 

0.86 

(0.000) 
1  

GB-124 
0.92 

(0.000) 

0.89 

(0.000) 

0.90 

(0.000) 

0.86 

(0.000) 

0.78 

(0.000) 
1 
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Highlights 

 

 Trickling filters and an experimental aerated Constructed Wetland were investigated 

 Effluent quality below discharge legal limits even without a final disinfection step 

 2-3.5log removal efficiency of three bacterial and three bacteriophages indicators 

 Strong correlations imply phages use as performance indicators in aerated wetlands  

 Aerated Wetlands outperform passive systems in microbiological contamination 

removal 
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