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Abstract

We perform observational tests of modified gravity on cosmological scales following model-dependent and model-
independent approaches using the latest astronomical observations, including measurements of the local Hubble
constant, cosmic microwave background, the baryonic acoustic oscillations and redshift space distortions derived
from galaxy surveys including the Sloan Digital Sky Survey BOSS and eBOSS, as well as the weak lensing
observations performed by the CFHTLenS team. Combining all these data sets, we find a deviation from the
prediction of general relativity in both the effective Newton’s constant, μ(a, k), and in the gravitational slip, η(a, k).
The deviation is at a 3.1σ level in the joint {μ(a, k), η(a, k)} space using a two-parameter phenomenological model
for μ and η, and reaches a 3.7σ level if a general parameterization is used. This signal, which may be subject to
unknown observational systematics, or a sign of new physics, is worth further investigating with forthcoming
observations.
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1. Introduction

The physical law governing the accelerating expansion of the
universe, which was discovered by the redshift–luminosity
relation revealed from supernovae observations (Riess et al.
1998; Perlmutter et al. 1999), remains unknown. In principle,
the cosmic acceleration may suggest that approximately two-
thirds of the total energy budget of the current universe is
provided by an unknown energy component with a negative
pressure, dubbed dark energy (DE; Copeland et al. 2006;
Weinberg et al. 2013), or that we need a better understanding of
the law of gravity.

The cosmological constant (CC) or the vacuum energy Λ,
introduced by Einstein a century ago to prevent the universe
from collapsing, has ironically become one of the most popular
candidates of DE to give rise to the cosmic acceleration.
Although the Λ-cold dark matter (ΛCDM) model can fit
observations reasonably well, it suffers from severe theoretical
issues (Weinberg 1989). Dynamical DE models (Copeland
et al. 2006) can alleviate the cosmological constant problem to
some extent, and phenomenological approaches in light of
observations are actively being developed (see Zhao et al. 2017
for an example).

Nevertheless, general relativity (GR) is the most successful
theory of gravity on scales from laboratory to the solar system.
However, the validity of GR on cosmological scales is
postulated, making it subject to scrutiny in theory, and to tests
in observations. In fact, the expansion of the universe can
accelerate without the existence of DE, if the left side of the
Einstein equation gets modified. This essentially alters the
response of the spacetime curvature to the energy-momentum
distribution, and it is dubbed the modified gravity (MG)
scenario (see Jain & Zhang 2008; Clifton et al. 2012; Joyce
et al. 2015; Koyama 2016 for reviews on MG).

Both DE and modified gravity can yield the same expansion
history of the universe after a required tuning of parameters;
however, these two scenarios predict different growth histories
for the cosmic structures. In other words, DE and MG can be

degenerate at the background level, but this “dark degeneracy”
can be broken at the perturbation level (Wang 2008).
Given our ignorance of the nature of DE and gravity, every

possibility is worth exploring. In this regard, a combination of
multiple cosmic probes, which is able to determine the cosmic
expansion and structure growth history simultaneously, plays a
key role for DE and MG studies.
In this work, we focus on observational tests of modified

gravity scenarios on linear scales, on which the linear
perturbation theory is valid. On these scales, MG can change
the effective Newton’s constant and/or the geodesics of
photons (Koyama 2016), which leaves imprints on various
kinds of cosmological observations, including the cosmic
microwave background (CMB) and large-scale structure (LSS)
of the universe. In particular, redshift space distortions (RSDs)
(Kaiser 1987; Peacock et al. 2001) derived from the galaxy
clustering of LSS spectroscopic surveys probe the change in
the effective Newton’s constant. Weak lensing (WL) measured
from the imaging LSS surveys constrains the deviation of a
photon’s trajectory from the geodesic in a flat space, making
RSD and WL highly complementary to each other for gravity
tests (Zhao et al. 2010, 2012b; Song et al. 2011; Simpson et al.
2013; Planck Collaboration et al. 2016b).
In this analysis, we use the latest observations of CMB and

LSS, combined with background cosmology probes, to derive
constraints on modified gravity scenarios in a phenomenolo-
gical way. Those background probes include the local
measurement of the Hubble constant (H0), the Hubble rate
measurements using passive galaxies (OHD), and baryonic
acoustic oscillations (BAOs; Peebles & Yu 1970; Eisenstein
et al. 2005).
The paper is structured as follows. Section 2 describes the

methodology used for this analysis, including the observational
data sets, the rationale and framework of parameterizations of
modified gravity, and details of the parameter estimation
procedure. Our main results are presented in Section 3,
followed by conclusions and discussions in Section 4.
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2. Methodology

In this section, we present the methodology used for this
analysis, including the general framework in which we
parameterize the effect of modified gravity, data sets used,
and details for parameter estimation.

2.1. General Framework of Parameterizing Modified Gravity

In this section, we discuss how we parameterize the universe
in gravity models beyond GR. As we aim to use the growth of
cosmic structure to break the dark degeneracy between MG and
DE, in this work we assume a ΛCDM background cosmology,
and parameterize the modification of gravity at the linear
perturbation level.

In a flat Friedmann–Robertson–Walker universe, the metric
in the conformal-Newtonian gauge reads

t t= - + Y - - F( )[( ) ( ) ] ( )xds a d d1 2 1 2 , 12 2 2 2

where Φ and Ψ are functions depending on time (redshift z) and
scale (wavenumber k). The energy-momentum conservation
yields

d¢ + - F¢ =

¢ + - Y = ( )

k

aH
v

v v
k
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where δ refers to the density contrast, v represents the
irrotational component of peculiar velocity, a and H are the
scale factor and the Hubble rate, respectively, and the prime
denotes derivatives with respect to ln a.

In order to solve for {δ, v, Ψ, Φ}, two additional equations
are required to close the system, and this is where a theory of
gravity is required. Generically, the required equations are as
follows (Zhao et al. 2009b; Pogosian et al. 2010):4

p r mY = - D( ) ( )k G a a k4 , , 32 2

h
F
Y

= ( ) ( )a k, , 4

where Equations (3) and (4) are called the modified Poisson
equation and the gravitational slip equation, respectively. Δ,
which is defined as δ+3aHv/k, denotes the gauge-invariant,
comoving density contrast.

GR predicts that μ(a, k)=η(a, k)=1, and any deviation of
these functions from unity, may be regarded as a smoking gun
for modified gravity. Note that the μ(a, k) function can only be
tested on sub-horizon scales, as it becomes irrelevant on super-
horizon scales, on which only η(a, k) can be tested observa-
tionally. On sub-horizon scales, both μ(a, k) and η(a, k) have
observational effects to be tested.

As Big Bang nucleosynthesis and CMB have been well
explained with theories based on GR, we assume GR at high
redshifts by setting μ(a, k)=η(a, k)=1 at z>50, and test
the deviation of μ and η from unity at lower redshifts.

Before introducing specific MG models to be tested, we
parameterize our universe with the following set of

cosmological parameters:

 tº W W Q( ) ( )P h h n A, , , , , , , , 5s s sb
2

cdm
2

where Ωbh
2 and Ωcdmh

2 denote the physical baryon and cold
dark matter energy density, respectively; Θs is the ratio (×100)
between the sound horizon and the angular diameter distance at
the last scattering surface; τ is the re-ionization optical depth;
and ns and As denote the primordial power spectrum index and
the amplitude of primordial power spectrum, respectively. In
addition,  is used to denote several nuisance parameters that
will be marginalized over when performing the likelihood
analysis, and  denotes parameters to parameterize the μ(a, k)
and η(a, k) functions. As we only test gravity at the
perturbation level, we assume a flat ΛCDM background
cosmology.

2.2. Data Sets

The observational data sets used for this analysis include the
CMB, supernovae (SNe), BAO and RSD, WL, galaxy power
spectrum, and observational H(z) data (OHD).
For CMB, we use the angular power spectra from the

temperature and polarization maps provided by the Planck
mission (Planck Collaboration et al. 2016a). The BAO-alone
measurements we use include the isotropic BAO distance
estimates using the 6dFGS (Beutler et al. 2011) and the Main
Galaxy Sample of Sloan Digital Sky Survey Data Release (DR)
7 (Ross et al. 2015), and the anisotropic BAO measurement
using the Lyα forest in BOSS DR11 (Delubac et al. 2015). For
joint BAO and RSD, we use the following recent
measurements:

• The consensus measurement at three effective redshifts of
z={0.38, 0.51, 0.61} using the BOSS DR12 combined
sample (Alam et al. 2017);

• The tomographic BAO and RSD measurement at nine
effective redshifts in the range of zä[0.2, 0.75] derived
from the same DR12 sample (Wang et al. 2018);5 and

• The tomographic BAO and RSD measurement at four
effective redshifts using the eBOSS (Dawson et al. 2016;
Zhao et al. 2016) DR14 quasar sample based on the
optimal redshift weighting method (Zhao et al. 2019).

Other observational data used for this analysis include the
luminosity measurements from the joint light-curve analysis
SNe sample (Betoule et al. 2014), the recent local H0

measurement (Riess et al. 2016), the WL shear measurement
from the CFHTLenS survey (Heymans et al. 2013), the galaxy
power spectrum measurement from the WiggleZ redshift
survey (Parkinson et al. 2012), and a compilation of H(z)
measurements using the ages of passive galaxies (Moresco
et al. 2016).
To be explicit, we list these data sets and provide acronyms,

meanings, and references in Table 1, and will use the acronyms
shown in this table for later reference when presenting our
results.

2.3. Parameter Estimation

Given a set of parameters in Equation (5), and the functional
forms relating parameters to the μ(a, k) and η(a, k) functions,

4 Alternative frameworks for parameterizing modified gravity have been
proposed, e.g., Baker et al. (2013) and the effective field theory approach
developed in Hu et al. (2014) and Raveri et al. (2014).

5 Note that because (I) and (II) are derived from the same galaxy sample, we
use them separately in our analysis.
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which will be introduced in Section 3, we use MGCAMB (Hojjati
et al. 2011; Zhao et al. 2009b),6 a variant of CAMB (Lewis et al.
2000)7 working for modified gravity theories, to compute the
observables, and use a modified version of CosmoMC (Lewis &
Bridle 2002)8 to sample the parameter space using the Monte
Carlo Markov Chain method.

3. Results

We present our results in this section. To be clear, we present
the “scale-independent” and “scale-dependent” cases sepa-
rately, in which the μ and η functions depend on redshift z only,
and on both redshift z and wavenumber k. For each case, we
explicitly show the parameterization for the μ and η functions,
before presenting the observational constraints. We also
perform a principal component analysis (PCA) in both cases,
to help interpret the result.

3.1. The Scale-independent Case

In this subsection, we consider MG scenarios in which the
growth is scale-independent, i.e., μ and η are only functions of
time, namely,

m m h h= =( ) ( ) ( )a a; . 6

We then parameterize the μ(a) and η(a) functions using the
gravitational growth index, power-law functions, and a more

general parameterization based on piecewise constant bins in
redshift.

3.1.1. A Single-parameter Extension: The Gravitational Growth Index

As one of the minimal extensions to GR, the gravitational
growth index γL (Linder 2005) has been widely used to
search for signs of modified gravity phenomenologically (see
Gil-Marín et al. 2018; Mueller et al. 2018; Wang et al. 2018;
Zhao et al. 2019 for recent observational tests of gravity using
γL). The gravitational growth index is defined as

d
º = Wg( ) ( ) ( )f a

d

d a
a

log

log
, 7M

L

Table 1
List of Data Sets Used for this Analysis, with Acronyms, Meanings, and References

Measurements Meaning References

PLC CMB provided by the Planck collaboration Planck Collaboration et al. (2016a)
6dF BAO using the 6dFGS survey Beutler et al. (2011)
MGS BAO from the SDSS MGS sample Ross et al. (2015)
LyαFB BAO from the SDSS DR11 Lyα-forest sample Delubac et al. (2015)
Alam Consensus BAO + RSD using the BOSS DR12 combined sample Alam et al. (2017)
Wang Tomographic BAO + RSD using the BOSS DR12 combined sample Wang et al. (2018)
eBOSS Tomographic BAO + RSD using the eBOSS DR14 quasar sample Zhao et al. (2019)
SNe Luminosity from the JLA supernovae sample Betoule et al. (2014)
H0 Recent local H0 Riess et al. (2016)
WL Weak lensing shear using the CFHTLenS sample Heymans et al. (2013)
P(k) Power spectrum from WiggleZ Parkinson et al. (2012)
OHD H(z) using the ages of passive galaxies Moresco et al. (2016)

BAORSD 6dF+MGS+LyαFB+Wang
BSH BAORSD+SNe+H0+OHD
ALL17 PLC+BSH+WL+P(k)
ALL18 ALL17+eBOSS

Table 2
Mean and 68% CL Uncertainty for Parameters γL and σ8 Derived from Four

Data Combinations

γL σ8

PLC+Alam 0.478±0.029 0.835±0.015
PLC+Wang 0.506±0.032 0.818±0.013
ALL17 0.509±0.031 0.812±0.013
ALL18 0.485±0.031 0.828±0.014

Figure 1. Contour plots for γL and σ8 at the 68% and 95% confidence levels
(CLs) derived from four data combinations as illustrated in the legend. The
horizontal dashed line shows the GR value of γL=0.545.

6 Available athttp://aliojjati.github.io/MGCAMB/.
7 Available athttps://camb.info/.
8 Available athttps://cosmologist.info/cosmomc/.
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where f (a) denotes the logarithmic growth rate as a function of
scale factor a, δ is the matter overdensity, and ΩM(a) is the
fractional energy density of matter at scale factor a.

In this framework (Pogosian et al. 2010),9

m g g

h

= W W + - + - W

=

g g- ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
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a
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2 3 3
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2
1. 8
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The joint constraints on γL and σ8 (with all other parameters
marginalized over) are shown in Table 2 and Figure 1 for four

data combinations. As shown, the GR prediction of γL=0.545
is generally consistent with the observations within the
95% CL.

3.1.2. A Three-parameter Extension: The Power-law
Parameterization

A more general parameterization for μ(a) and η(a) is to use
power-law functions (Zhao et al. 2010):

m m
h h

= +
= +

( )
( ) ( )
a a

a a

1 ,

1 . 9
s

s

s
s

We consider three cases where s is fixed to 1 (the linear model),
3 (the cubic model), or treated as a free parameter to be
marginalized over.

Figure 2. Upper and middle panels: the 68% and 95% contour plots for μs and ηs, where the upper panels are for the s=1 and the middle panels are for s=3.
Contours for different data combinations are shown in separate panels to avoid confusion. Lower panels: 68% and 95% CL contour plots for μs and s (left) and for ηs
and s (right) derived from ALL18. In all panels, the horizontal and vertical dashed lines denote μs=0 and ηs=0, respectively, and the intersections of the dashed
lines denote the GR model.

9 Here, we omit the variable a for ΩM for brevity. Also note that this formula
is only valid for a constant γL in a ΛCDM background. For general cases, e.g.,
a time-dependent γL in a general cosmology, see Pogosian et al. (2010).
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We constrain the power-law model parameters using various
data combinations, and show the results in Table 3 and
Figure 2. As shown, the results for the cases of s=1 and
s=3 are qualitatively similar, so we present both cases
together. With PLC alone, GR is excluded at the 95% CL,
and adding WL drags the contours toward a direction in which
a large positive ηs and negative μs are favored (note that
μs= ηs= 0 for GR in our notation), which further excludes the
GR model. With BAORSD, WL, SNe, and H0 combined with
PLC, the contours for both the s=1 and s=3 cases shrink
significantly, and GR is excluded beyond the 95% CL level.
Finally, combining all data, denoted as ALL18, yields the
tightest constraint, which excludes the GR model at the 2.2σ
and 3.1σ levels for the cases of s=1 and s=3, respectively.

Finally, we consider the general power-law models in which
s is treated as a free parameter. We use the data set of ALL18 to
constrain this model, and find that the constraints on μs and ηs
get diluted compared with the cases of s=1 or s=3, due to
marginalization over s, namely

m h=-  = 
=  ( )s

0.334 0.186; 2.090 0.904;

2.474 0.770. 10
s s

In this general case, GR is excluded at around the 2σ level.
Figure 3 shows the best-fit fσ8 of the ΛCDM and power-law

models, overplotted with observational data of RSD. As shown,
models with a lower fσ8, which means models predicting a

weaker gravity, are favored by these recent RSD
measurements.
A similar analysis was performed by the Planck collabora-

tion using slightly different power-law functions (Planck
Collaboration et al. 2016b); their conclusion is consistent
with ours, i.e., the deviation from GR can reach a 3σ level
(depending on data combinations see Table7 in Planck
Collaboration et al. 2016b). As discussed therein, besides the
RSD measurements, the signal is to some extent due to tensions
within ΛCDM among data sets (see discussions in MacCrann
et al. 2015; Di Valentino et al. 2016; Raveri 2016; Zhao et al.
2017 as well), which may suggest observational systematics, or
new physics beyond ΛCDM.

3.1.3. The z-binning and PCA

In this section, we consider the most general parameteriza-
tion for scale-independent μ and η functions using piecewise
constant bins as free parameters. Given the sensitivity of
current observations, we choose the redshift binning as
illustrated in Figure 4,10 thus we have 10 MG parameters in
total.
We measure the μ and η bins using the ALL18 data set, and

summarize the results in the left two columns of Table 4 and in
panels (a), (b) of Figure 5. For a comparison with results using
other parameterizations, we overplot a reconstruction of μ(z)
and η(z) with 68% CL uncertainty using the power-law
parameterization shown in Equation (9) with the power index
s marginalized over (the blue bands in Figure 5), which is in
excellent agreement with our binned measurement.
As shown, most of the bins are consistent with the GR

prediction, except for the μ bin at 1.0<z<1.5 (i.e., μ3 shown
in Figure 4) and for the η bin at 0.5<z<1.0 (i.e., η2), both of
which exhibit a deviation from GR at approximately the 1σ

Table 3
Mean and 68% CL Uncertainties of the Power-law Model Parameters Derived from Different Data Combinations

s=1 s=3

μ1 η1 μ3 η3

PLC 0.008±0.280 0.642±0.903 0.008±0.538 1.465±1.477
PLC+WL −0.238±0.194 1.546±0.795 −0.197±0.471 2.218±1.428
PLC+BAORSD −0.111±0.083 0.855±0.303 −0.404±0.189 2.637±0.857
PLC+BAORSD+WL −0.128±0.082 0.955±0.301 −0.429±0.175 2.858±0.827
PLC+BSH −0.110±0.074 0.757±0.277 −0.371±0.195 2.298±0.863
ALL17 −0.131±0.075 0.863±0.286 −0.405±0.184 2.555±0.835
ALL17-WL −0.114±0.074 0.773±0.280 −0.376±0.197 2.327±0.847
ALL18 −0.132±0.075 0.873±0.289 −0.398±0.184 2.516±0.832

Figure 4. Illustration of the binning scheme in redshift z of the μ and η
functions used in this work.

Figure 3. Best-fit fσ8 of three gravity models including ΛCDM (black solid), a
power law with s=1 (green dashed), and a power law with s=3 (blue
dashed–dotted), overplotted with the observational data as illustrated in the
legend.

10 We assume GR outside the z and k ranges shown in Figure 4, i.e., μ=
η=1 if z>50 or k>0.2 h−1 Mpc.
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level. However, as the errors are correlated with each other, it is
difficult to interpret the result in a naïve way.

A natural way to interpret the correlated measurements is to
perform a PCA to decorrelate the covariance matrix of the original
parameters, which allows for the formation of a new set of
parameters with a diagonal covariance matrix. The PCA method
has been extensively used in cosmology, including implications in
power spectrum measurements (Hamilton 2000; Hamilton &
Tegmark 2000), DE equation of state (Huterer & Starkman 2003;
Huterer & Cooray 2005; Crittenden et al. 2009; Zhao &
Zhang 2010; Crittenden et al. 2012; Zhao et al. 2012a, 2017),
and modified gravity parameters (Zhao et al. 2009a; Asaba et al.
2013; Hall et al. 2013; Hojjati et al. 2014, 2016).

The essence of the PCA is to diagonalize the covariance
matrix Cp of the original correlated parameters denoted as p,

= L ( )C W W, 11p
T

where W is the decomposition matrix and L is the covariance
matrix, which is diagonal, for the newly formed uncorrelated
parameters =q Wp. The estimate of q with the associated
uncertainty stored in L can identify which modes, i.e.,
uncorrelated linear combinations of the original parameters,
deviate from the expected value given a theory, and how many
modes can be constrained by data.
To investigate the consistency of the μ or η functions with

unity, we first perform a PCA on the μ or η bins separately. The
PCA result for the μ bins (with η bins marginalized over) and for
the η bins (with μ bins marginalized over) are shown in the third
and fourth columns and panels (c) and (d) of Figure 5. As shown,
there are two modes, with principal component (PC) indices 2
and 3 shown in Figure 5, of μ deviating from the GR value,
which is unity, at more than 1σ, while none of the η modes show
deviation from GR given the uncertainty level. A χ2 analysis
using all the modes shows that the total signal-to-noise ratios

Table 4
Mean and 68% CL Uncertainties on the μi−1 and ηi−1 Bins (First Two Columns on the Left) and Associated PCA Results (the Remaining Four Columns)

μi−1 ηi−1 mqz
hqz

mhqz (PC1-PC5) mhqz (PC6-PC10)

0.110±0.546 0.320±0.658 0.023±0.021 0.059±0.045 −0.021±0.017 −0.175±0.256
−0.074±0.396 0.510±0.613 −0.381±0.314 −0.243±0.449 0.013±0.038 0.041±0.515
0.590±0.706 −0.080±0.653 −0.507±0.468 −0.258±0.611 0.143±0.147 0.459±0.750
0.350±0.711 0.020±0.678 −0.246±0.577 0.491±0.693 −0.299±0.204 −0.550±0.879
−0.025±0.036 0.050±0.048 −0.161±0.899 −0.045±0.799 −0.436±0.237 0.120±1.170

Figure 5. Constraints on scale-independent μ(z) and η(z) functions and the associated PCA result derived from ALL18. Panels (a), (b): reconstructions of μ(z)−1
(panel a) and η(z)−1 (panel (b)) using the redshift bins (data points with 68% CL error bars). The white curves and blue shaded bands show the mean and 68%
uncertainty of μ(z)−1 and η(z)−1 reconstructed using the power-law parameterization with s marginalized over. Panels (c), (d): mean and 68% CL uncertainties on
coefficients of the principal components (PCs) of the μ or η functions with mutual marginalization (see the text for details). Panel (e): mean and 68% CL uncertainties
on coefficients of the PCs of both μ and η functions.
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(S/Ns) of μ and η deviating from GR are 2.0σ and 1.6σ,
respectively, based on the improvement in χ2 only.

To quantify the deviation from GR without distinguishing
between μ and η, we perform a PCA on the μ or η bins jointly,
and show the result in the last two columns in Table 4 and in
panel (e) of Figure 5. As illustrated, there are four joint μ and η
modes, with PC indices 2, 3, 4, and 5, deviating from GR
beyond the uncertainty level, which yields a 3.1σ signal in
total.

The fact that using a large number of bins does not further
improve the fitting compared with the power-law case means
that the important features in the data can well be resolved by
the power-law functions, which is consistent with what we
show in panels (a), (b) in Figure 5. Actually, the PCA result
conveys the same message: only 3 or 4 modes are needed to
reproduce the total variance, which are essentially the degrees
of freedom in the power-law functions.

3.2. The Scale-dependent Case

Now we consider more general cases in which the growth is
scale-dependent, i.e., μ and η are functions of both scale and
time, namely

m m h h= =( ) ( ) ( )k a k a, ; , . 12

We then parameterize the μ(k, a) and η(k, a) functions in the
framework of the scalar-tensor theories, and use a more general
parameterization based on pixelization in both scale and time.

3.2.1. A Single-parameter Extension: The f(R) Model

The f (R) theory (Bean et al. 2007; Hu & Sawicki 2007;
Pogosian & Silvestri 2008; De Felice & Tsujikawa 2010) is
a special case of the scalar-tensor theory with the following
μ and η functions (Bertschinger & Zukin 2008):

m
b l
l

h
b l
l

=
+
+

=
+
+

( )

( ) ( )

a k
k a

k a

a k
k a

k a

,
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1
,

,
1

1
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s

s

s
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1 1
2 2

1
2 2

2 2
2 2
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2 2

where β1 and β2 (denoting the coupling; dimensionless), s (the
power index; dimensionless), and λ1 and λ2 (the length scales;
in units of Mpc) are free parameters.

Table 5
The 95% CL Upper Limit on log10B0 Derived from Four Data Combinations

log10B0 (95% CL Upper Limit)

PLC+Alam −4.276
PLC+Wang −4.913
ALL17 −4.950
ALL18 −4.932

Figure 6. Contour plots for log10B0 and Ωm at the 68% and 95% CLs derived
from four different data combinations illustrated in the legend.

Figure 7. Contour plots for β1 and β2 the 68% and 95% CLs derived from
ALL18 for two choices of flat priors applied on s. The blue solid curve shows
the relation of β2=2/β1−1. The blue dot and the red star denote the ΛCDM
and the f (R) models, respectively.

Figure 8. Illustration of the pixelization scheme in k and z of the μ and η
functions used in this work.

Table 6
The Mean and 68% CL Uncertainty on β1 and β2 Derived from ALL18 with

Two Different Flat Priors on s

Parameter sä[1, 4] sä[0, 10]

β1 0.974±0.033 0.928±0.061
β2 1.349±0.165 1.647±0.296
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In f (R),

b b l l= = = ( )4 3; 1 2; 4 3. 141 2 2
2

1
2

We fix s=4 to closely mimic the ΛCDM model at the
background level (Giannantonio et al. 2010), which leaves only
one free parameter, λ1, to be constrained. In practice, we vary
log10B0 together with other cosmological parameters where

lºB H c20 0
2

1
2 2. The Hubble constant H0 and the speed of

light c in the equation above make B0 dimensionless, and
B0=0 corresponds to the ΛCDM limit.

The constraint on f (R) gravity using four data sets is shown
in Table 5 and Figure 6. First, we note that the constraint
derived from PLC+Wang is much more stringent than that
from PLC+Alam, which demonstrates the improvement on
MG constraints using tomographic BAO and RSD measure-
ments, as claimed in Zheng et al. (2019). Adding more data sets
further improves the constraints, namely, the 95% CL upper
limit of log10B0 gets down to −4.93 using ALL18, which is
tighter than a recent measurement, log10B0<−4.54, derived
in Mueller et al. (2018). This is largely due to the additional
information in the tomographic BAO and RSD measurements
used for our analysis.

3.2.2. A Five-parameter Extension Motivated by the Scalar-tensor
Model

The forms of μ and η for general scalar-tensor models are
shown in Equation (13). Note that for scalar-tensor theories, the
following consistency relation holds (Zhao et al. 2009b; Hojjati
et al. 2011):

b
l
l

b
b

= = - ( );
2

1. 151
1
2

2
2 2

1

However these relations are not applied as a constraint in our
analysis, but used for a direct comparison with our observa-
tional constraint.

It is worth noting that a large s can make other parameters
trivial in the joint parameter estimation, thus a prior on s is
needed. In this work, we make two choices of the flat prior for s.
One is motivated by scalar-tensor theories, which is sä[1, 4]
(Zhao et al. 2009b; Giannantonio et al. 2010), with another one
being more conservative, namely sä[0, 10].

We show the constraints of β1 and β2 derived from ALL18
with all other parameters marginalized over in Figure 7 and
Table 6. As shown in both cases, GR (β1= β2= 1) is consistent
with data at the 68% CL, and the scalar-tensor theory prediction,

Equation (15), is allowed within the 68% CL uncertainty.
However, the f (R) model discussed in Section 3.2.1 with
β1=4/3, β2=1/2 is strongly disfavored by data. This is
understandable, as we have seen from the power-law case in
Section 3.1.2 (see Figure 3) that data favor a weaker gravity,
while in f (R), gravity is always stronger than that in GR.

3.2.3. The k, z-pixelization and PCA

We parameterize the functions of μ and η using pixels in the
(k, z) plane as illustrated in Figure 8, constrain the pixels using
the ALL18 data set, and present the results in Table 7 and
Figure 9 in a similar way as we did for the k-independent case
in Section 3.1.3.
Looking at the constraints on the pixels shown in the left two

columns in Table 7 and in panels (a), (b) in Figure 9, we find
that pixels m h,k k

3 2, and hk
6, as denoted in Figure 8, show a

deviation from GR at more than the 1σ level, and interestingly,
the η function at zä[0.5, 1.0] shows a signal of scale-
dependence at around the 2σ level.
A PCA on the μ and η pixels with the other parameters

marginalized over shows that there are three (two) μ (η) modes
deviating from GR beyond the uncertainty, which corresponds
to 2.6σ and 2.0σ signals, respectively. A PCA on all the μ and
η pixels jointly reveals four modes, with PC indices 3, 5, 6, and
11 deviating from GR noticeably, making a total signal at the
level of 3.7σ. This means that only a small number of degrees
of freedom is required to capture the feature in the data, which
is consistent with the scale-independent case.

4. Conclusion and Discussion

Theoretical and observational approaches are being devel-
oped in order to test the validity of postulating GR on
cosmological scales, which is a significant extrapolation of our
knowledge of gravity from scales within the solar system.
Observational tests of theoretical models thus play a crucial
role in the search for the ultimate theory of gravity governing
the observed cosmic acceleration. As a large number of
modified gravity theories have been proposed (see reviews of
Jain & Zhang 2008; Clifton et al. 2012; Joyce et al. 2015;
Koyama 2016), it is efficient to perform observational gravity
tests following a phenomenological approach.
In this work, we parameterize the effect of modified gravity

using two functions μ and η on linear scales, which are
generically dependent on both time and scale, describing the
effective Newton’s constant and the gravitational slip,

Table 7
The Mean and 68% CL Uncertainties on the Scale-dependent Functions of μ(k, z)−1 and η(k, z)−1 (First Two Columns on the Left) and Associated PCA Results

(the Remaining Four Columns)

m - 1i
k h - 1i

k mqkz
hqkz

mhqkz (PC1-PC10) mhqkz (PC11-PC20)

0.309±0.768 −0.015±0.594 −0.024±0.023 0.036±0.042 −0.017±0.017 −1.212±0.694
−0.177±0.341 0.845±0.656 −0.060±0.199 −0.062±0.324 −0.010±0.038 −0.542±0.740
0.696±0.597 −0.297±0.407 −0.282±0.279 0.328±0.479 0.201±0.119 0.266±0.799
0.175±0.663 0.162±0.701 −0.725±0.400 0.227±0.535 0.098±0.153 −0.317±0.901
−0.330±0.910 −0.619±0.762 0.631±0.694 −0.779±0.675 0.121±0.172 0.409±0.948
−0.679±0.768 −0.700±0.880 0.266±0.762 −0.575±0.757 −0.468±0.243 −0.090±0.970
−0.314±0.971 −0.278±1.072 0.003±0.830 0.042±0.767 0.054±0.250 0.133±1.001
−0.168±1.105 −0.255±1.019 0.349±0.894 0.453±0.885 −0.059±0.437 0.102±1.100
−0.013±0.032 0.034±0.043 0.373±0.995 0.732±1.039 −0.384±0.476 0.645±1.148
−0.035±0.217 −0.001±0.604 0.005±1.060 −0.027±1.116 −0.170±0.557 0.407±1.234
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respectively, and use the latest observational data to constrain
parameters for these two functions.

By assuming that μ and η only depend on time to start with,
we further parameterize them using the gravitational growth
index γL, power-law functions and piecewise constant bins
progressively. We find no signal of modified gravity from
current observations using γL, which is a one-parameter
extension of ΛCDM, but see a significant deviation from GR
(at around the 3σ level) using the power-law parameterization
(a two-parameter extension). Using a more general parameter-
ization with piecewise constants in redshifts (a ten-parameter
extension), we find that the significance stays at the same level,

signaling that the important features in the data, which can be
described by a scale-independent growth, can well be extracted
using power-law functions for μ and η.
We then further explore more general cases in which both

μ and η depend on time and scale. We parameterize these two
functions in frameworks of f (R) gravity (a one-parameter
extension of GR), scalar-tensor theory (a five-parameter
extension), and using pixels (a twenty-parameter extension).
We find no significant deviation from GR in f (R) or in the
scalar-tensor models, but a deviation at a 3.7σ level is revealed
when using pixels. We caution that the S/N quoted here is
computed using the improved χ2 of the fitting, thus is not
sufficient for a model selection. In Table 8, we show the
improvement in the χ2, as well as that normalized by the
number of additional parameters, for the MG models. As
shown, the most “parameter-economic” model, in which
SNR/ΔNp get maximized, is the γL model, which shows no
deviation from GR. The power-law models with s=1 and
s=3 are slightly less parameter-economic, but a significant
deviation from GR is seen in such models. An evaluation of the
Bayesian evidence is needed for a formal model selection,
which is left for a future work.
The signal we find in this work is to some extent due to

tensions among data sets on cosmological scales within the
ΛCDM model, which have been investigated by the commu-
nity. This could be due to contaminations from unknown
systematics in the observations, or a sign of new physics, which
can be further studied by complementary GR tests on nonlinear
scales (Zhang et al. 2007; Reyes et al. 2010; Cabré et al. 2012;

Figure 9. Constraints on scale-dependent μ(k, z) and η(k, z) functions and the associated PCA results derived from ALL18. Panels (a), (b): reconstructions of
μ(k, z)−1 (panel (a)) and η(k, z)−1 (panel b) using the z and k pixels (data points with 68% CL error bars). The black circles with error bars and red diamonds with
error bars represent pixels within kä[0, 0.1] and kä[0.1, 0.2], respectively. Panels (c), (d): the mean and 68% CL uncertainties on coefficients of the PCs of the μ or
η functions with mutual marginalization. Panel (e): the mean and 68% CL uncertainties on coefficients of the principal components (PCs) of both μ and η functions.

Table 8
The Improved χ2 (Δχ2), the S/N Calculated Using the Improved χ2 Alone
( cº D∣ ∣SNR 2 ), the Additional Parameters to the ΛCDM Model (ΔNp), and
the S/N per the Additional Parameter (SNR/ΔNp) for the Constraint on MG

Models Studied in this Work Using the ALL18 Data Set

Model Δχ2 SNR ΔNp SNR/ΔNp

ΛCDM 0 0 0 L
γL −4.8 2.2 1 2.2
Power law, s=1 −12.4 3.5 2 1.7
Power law, s=3 −12.8 3.6 2 1.8
Power law, s floating −12.4 3.5 3 1.2
BZ model, sä[0, 10] −11.2 3.3 5 0.66
BZ model, sä[1, 4] −12.2 3.5 5 0.7
z-binning −10.6 3.3 10 0.33
k, z-pixelization −17.0 4.1 20 0.21
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Jain et al. 2013; Vikram et al. 2013, 2018; Berti et al. 2015;
Wilcox et al. 2015; Liu et al. 2016; Fang et al. 2017; Falck et al.
2018). Forthcoming large astronomical surveys, including the
Dark Energy Spectroscopic Instrument (DESI Collaboration
et al. 2016), Prime Focus Spectrograph (Takada et al. 2014), and
Euclid (Amendola et al. 2018), will provide rich observational
data for GR tests across a large range of scales.
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