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Abstract

The collapse of supermassive primordial stars in hot, atomically cooled halos may have given birth to the first
quasars at z∼15–20. Recent numerical simulations of these rapidly accreting stars reveal that they are cool, red
hypergiants shrouded by dense envelopes of pristine atomically cooled gas at 6000–8000 K, with luminosities
L1010 Le. Could such luminous but cool objects be detected as the first stage of quasar formation in future near-
infrared (NIR) surveys? We have now calculated the spectra of supermassive primordial stars in their birth
envelopes with the Cloudy code. We find that some of these stars will be visible to the James Webb Space
Telescope at z20 and that with modest gravitational lensing, Euclid and the Wide-Field Infrared Space
Telescope could detect them out to z∼10–12. Rather than obscuring the star, its accretion envelope enhances its
visibility in the NIR today by reprocessing its short-wavelength flux into photons that are just redward of the
Lyman limit in the rest frame of the star.
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1. Introduction

Supermassive primordial stars (SMSs) may have been the
origin of the first quasars, a few of which have now been
discovered at z>7 (e.g., Mortlock et al. 2011; Bañados et al.
2018). These stars are thought to form in primordial halos
exposed to either unusually strong Lyman–Werner (LW) UV
fluxes (Agarwal et al. 2016) or highly supersonic baryon
streaming motions (Hirano et al. 2017; Schauer et al. 2017).
Either one can prevent primordial halos from forming stars
until they reach masses of 107–108Me and virial temperatures
of ∼104 K that trigger rapid atomic cooling and catastrophic
baryon collapse at central infall rates of up to ∼1Me yr−1

(Bromm & Loeb 2003; Lodato & Natarajan 2006; Wise et al.
2008; Regan & Haehnelt 2009; Latif et al. 2013).

Stellar evolution models show that Population III stars
growing at these rates can reach masses of a few 105Me. Most
then collapse to black holes (direct collapse black holes, or
DCBHs; Umeda et al. 2016; Woods et al. 2017; Haemmerlé
et al. 2018a) via the general relativistic (GR) instability;
although, a few non-accreting stars have been found to explode
as highly energetic thermonuclear transients (Johnson et al.
2013a; Chen et al. 2014; Whalen et al. 2013a, 2013b, 2014).
Population III SMSs are currently the leading contenders for
the seeds of the earliest supermassive black holes (SMBHs)
because the environments of ordinary Population III star BHs
are less conducive to their rapid growth (Whalen et al. 2004;
Alvarez et al. 2009; Whalen & Fryer 2012; Smith et al. 2018).
DCBHs are born with large masses in high densities in host

galaxies that can retain their fuel supply, even when they are
heated by X-rays (Johnson et al. 2013b).
What are the prospects for detecting SMSs at high redshifts?

Hartwig et al. (2018) found that the relics of such stars would
be uniquely identifiable with the gravitational wave detector
LISA at z>15 if they form in binaries. Johnson et al. (2012)
examined some spectral features of hot, blue, rapidly accreting
SMSs and found that they would be characterized by strong
Balmer emission and the conspicuous absence of Lyα lines due
to absorption by their envelopes. The source of this flux was
not the star but its hypercompact H II region, whose ionizing
radiation was trapped close to its surface by the density and
ram pressure of the inflow (which was also found to be true in
cosmological simulations of highly resolved atomically cooled
halos; Becerra et al. 2018). Freese et al. (2010), Zackrisson
et al. (2010a, 2010b) calculated the spectral signatures of hot,
blue Population III “dark stars”, supermassive primordial stars
powered by the self-annihilation of weakly interacting dark
matter rather than by nuclear fusion. They found that such
objects might be visible even to 8–10 m telescopes on the
ground today, primarily because of their high surface
temperatures (20000–30000 K), larger masses (up to 107Me),
and longer lives (up to 107 yr).
But several studies have now shown that rapidly accreting

Population III stars generally evolve as cool, red hypergiants
along the Hayashi limit with surface temperatures of
5000–10000 K (Hosokawa et al. 2013). Haemmerlé et al.
(2018b) found that such stars can reach luminosities 1010 Le
and could in principle be visible to James Webb Space
Telescope (JWST; Kalirai 2018), Euclid, WFIRST, and
extremely large telescopes (ELTs) on the ground. However,
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they are shrouded by dense accretion flows that reprocess
radiation from the star, perhaps suppressing its flux in the NIR
today. Detecting SMSs at high redshift would capture
primordial quasars at the earliest stages of their development
and reveal one of their channels of formation. Here, we
calculate NIR luminosities for Population III SMSs in their
accretion envelopes whose structures are taken from a high-
resolution cosmological simulation. We describe our models in
Section 2, calculate SMS spectra and NIR magnitudes in
Section 3, and conclude in Section 4.

2. Numerical Method

Rest frame spectra for the star in its envelope are calculated
with Cloudy (Ferland et al. 2017) with envelope profiles taken
from a simulation of the collapse of an atomically cooled halo
done with Enzo (Bryan et al. 2014). The spectra are then
redshifted, dimmed, and convolved with a variety of filter
functions to obtain AB magnitudes in the NIR as a function of
SMS redshift. We consider stars accreting at 0.1 and
1.0Me yr−1 whose properties are listed in Tables A3 and A2
of Haemmerlé et al. (2018b), respectively. Bolometric
luminosities, Lbol, and effective temperatures, Teff, for both
stars are shown in Figure 1.

2.1. Enzo Envelope Model

The halo in which the SMS is assumed to form was evolved
in a 1.5 h−1 Mpc box in Enzo from z=200 down to z=17.8,
when it reaches a mass of 2.7×107Me and begins to
atomically cool and collapse. It is centered in three nested grids
for an initial effective resolution of 20483, and we allow up to
15 levels of refinement for a maximum resolution of 0.014 pc.
The grid is initialized at z=200 with cosmological parameters
taken from the second-year Planck release: ΩM=0.308,
ΩΛ=0.691, Ωb=0.0223, h=0.677, σ8=0.816, and n=
0.968 (Planck Collaboration et al. 2016). To approximate the
presence of a strong LW background, we evolve the halo
without H2, just H, H

+, e−, He, He+, and He++ (Smith et al.
2017b). Cooling by collisional ionization and excitation of H
and He, bremsstrahlung, and inverse Compton scattering are all
included in the energy equation.

As shown in the upper left panel of Figure 2, a large
atomically cooled disk forms at the center of the halo that is
∼2 pc in diameter and at 4000–6000 K at 0.625Myr after the
onset of collapse. A bar instability in the disk efficiently
transports angular momentum out of its center, producing the
large sustained accretion rates onto the star shown in the upper
right panel of Figure 2. After a brief burst due to initial collapse
and the formation of the disk, infall proceeds at rates of
0.4–0.6Me yr−1. Spherically averaged density and temperature
profiles of the halo are shown in the bottom two panels of
Figure 2 at 0.238, 0.506, 1.012, and 1.786Myr.

2.2. Cloudy Spectra

We treat both stars as blackbodies (BBs) because they are
relatively cool and have no absorption lines due to metals.
Cloudy fits BB spectra to each star from Lbol and Teff, which we
take to be 1.26×109 Le and 6653 K for the 0.1Me yr−1 star
and 3.92×109 Le and 8241 K for the 1.0Me yr−1 star. These
values correspond to 3.49×105 yr and 1.089×105 yr for the
two stars, about halfway through their respective lifetimes.
Ideally, one would surround the star with the accretion
envelope that created it in a cosmological simulation for self-
consistency. But stellar evolution models of Population III
SMSs in time-dependent cosmological flows are not yet
available, so we instead use density and temperature profiles
from the Enzo simulation at 1.786Myr as the envelope of each
star. This choice is reasonable because the accretion rates
associated with these profiles are intermediate to those in which
our stars were evolved.
The density and temperature profiles of the envelope that are

input to Cloudy are tabulated in 70 bins that are uniformly
partitioned in log radius, with inner and outer boundaries at
0.015 pc and 927 pc. Cloudy solves the equations of radiative
transfer, statistical and thermal equilibrium, ionization and
recombination, and heating and cooling to calculate the
excitation and ionization state of the gas surrounding the star
and compute its emergent spectrum. The temperatures of the
gas falling onto the star are set by the virialization of cosmic
flows well above it, not by radiation from the star. Since they
determine to what degree the envelope is collisionally excited,
and thus how it reprocesses photons from the star, we required
Cloudy to use the temperatures Enzo calculates for the

Figure 1. Evolution of red supergiant (RSG) stars accreting at 1.0 and 0.1 Me yr−1 in the GENEVA stellar evolution code. Left panel: luminosities. Right panel:
surface temperatures.
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envelope instead of inferring them from the spectrum of the
SMS because they would have been too low.

3. Observing Supermassive Stars

3.1. SMS Spectra

We show spectra for the 1.0Me yr−1 star at 1.089×105 yr
before and after attenuation by its envelope in Figure 3. As
expected, the stellar spectrum peaks at 0.352 μm and absorp-
tion by the envelope at the Lyman limit of H is clearly visible at
0.0912 μm. The continuum absorption below 0.0912 μm is
punctuated by several prominent He emission lines. There is a
Lyα emission line at 0.1216 μm, and strong Hα and Paschen
series lines are visible at 0.656, 1.28, and 1.88 μm. There is

continuum absorption half a decade in wavelength above and
below 1.65 μm due to H− bound–bound and bound-free
opacity, respectively.
Photons from the star that are blueward of the Lyman limit

are reprocessed by its envelope into the Lyα and two-photon
continuum emission visible at 0.1216–0.16 μm. This latter flux
is greater than that emitted by the star itself and can enhance its
visibility in the NIR today. The effect varies with Teff and
source redshift but is at most 0.5–1 AB mag. The Lyα will not
aid in the detection of the star because it will be scattered into a
halo of low surface brightness in the neutral IGM. We note that
at the velocities and densities of the infall onto the surface of
the star, the luminosity of its accretion shock is at most
∼104 Le and does not produce a significant contribution to the
visibility of the SMS.

Figure 2. Top left: accretion disk at 0.625 Myr. Top right: central accretion rates. Bottom left: spherically averaged gas densities in the halo. Bottom right: spherically
averaged temperatures.
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3.2. NIR Magnitudes

We show AB magnitudes for both stars in JWST NIRCam
bands at 2.5–4.6 μm in the top right panel of Figure 4. The
1.0Me yr−1 SMS is consistently 1–2 mag brighter than the
0.1Me yr−1 SMS except at high redshifts at 2.50 μm, where
both luminosities abruptly fall off because of absorption of flux
blueward of Lyα in the source frame of the star by the neutral
intergalactic medium (IGM) at z6. At z∼6–8, the two stars
are brightest in the 3.56 μm filter, but at z>10, they are
brighter in the 4.44 and 4.60 μm bands, with magnitudes that
vary from 28.5–31.5 at z=6–20 for the 1.0Me yr−1 SMS and
29.5–33.5 for the 0.1Me yr−1 SMS.

SMS magnitudes are much more uniform in redshift in the
mid infrared, as we show for several JWST MIRI bands in the
top right panel of Figure 4. They exhibit the greatest variation
at 5.6 μm, which is closest to the NIR, but largely level off at
7.7–25.5 μm. This behavior is primarily due to the flattening of
the spectrum at wavelengths above 1.5 μm in the source frame
due to reprocessing of flux from the star by its envelope. The
two stars are brightest from z=6–20 at 5.6–10.0 μm, with
magnitudes 31 and could therefore provide important
additional spectral confirmation of SMS candidates in
NIRCam.

We show SMS magnitudes for Euclid and WFIRST in the
lower two panels of Figure 4. Absorption by the neutral IGM at
z6 quenches Y, J, and H band fluxes at z7, 10, and 14,
respectively, limiting detections of these stars to these redshifts
in these filters. Magnitudes for the 1.0Me yr−1 star vary from
29.5–31.8 in Euclid and 29–32.5 in WFIRST at z=6. For the
0.1Me yr−1 star, they vary from 31.5–32.5 in Euclid and from
31–32.5 in WFIRST at the same redshift. They drop off more
rapidly with redshift than in the NIRCam bands because
spectral luminosities in the source frame fall with decreasing
wavelength below ∼0.3 μm.

3.3. SMS Formation/Detection Rates

Since the lifetime of an SMS is much smaller than the
Hubble time, even at the high redshifts at which it is likely to
form, the number of SMSs per unit redshift per unit solid angle
at a redshift z can be written as

dN

dzd
n t r

dr

dz
, 1SMS SMS

2

W
= ˙ ( )

where nSMS˙ is the SMS formation rate per unit comoving
volume, tSMS is the characteristic lifetime of an SMS, and r(z)
is the comoving distance to redshift z,
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c

H
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Unfortunately, nSMS˙ is poorly constrained, with theoretical
models predicting number densities that vary by up to eight
orders of magnitude (see, e.g., the recent review of Woods et al.
2018). These models also predict different evolutions in nSMS˙
with redshift. Habouzit et al. (2016) predict a steady increase in
the comoving number density of SMSs with decreasing z,
while Valiante et al. (2017) predict that most form in the
narrow range z∼16–18. We therefore consider two toy
models that bracket this range of nSMS˙ .
In the first, our “optimistic” model, we assume that most SMSs

form at z∼10–12 and that the final comoving number density is
around 10−1Mpc−3, as in the Habouzit et al. (2016) model with
a low value for Jcrit. In the other, our “pessimistic” model,
we assume that most SMSs form at redshifts z∼16–18, as
in Valiante et al. (2017), with a final comoving number density
of around 10−8Mpc−3. The optimistic model yields approxi-
mately 4×107 potentially observable SMSs per steradian per
unit redshift, or around 30 per NIRCam field of view. On the
other hand, the pessimistic model predicts only ∼10 SMSs per
steradian per unit redshift, meaning that any given NIRCam
pointing with the appropriate limiting magnitude would have a
probability of only around 10−5 of detecting an SMS.
The chances of detecting an SMS are highly dependent on

the model assumed for their formation. However, since some
models predict number counts high enough for one or more
SMSs to be found in any sufficiently deep NIRCam image,
JWST will begin to place observational constraints on these
models, even if it cannot rule out extreme ones such as our
pessimistic model. We note that no SMSs have been found in
the Hubble Ultra Deep Field to date because of its AB mag
limit of 29 at 1.38 μm in the H band, which is well below that
expected of either star even at z∼6.

4. Conclusion

At NIRCam AB magnitude limits of 31.5, JWST could detect
the 1.0Me yr−1 SMS at z20 and the 0.1Me yr−1 SMS at
z13. But the prospects for discovering such stars would be
better if they could also be found by Euclid and WFIRST
because their wide fields would enclose far more SMSs at high
redshifts. Once flagged, SMS candidates could then be studied
with JWST in greater detail. However, as shown in Figure 4, the
H band magnitudes of both stars at z=6–20 are above current
Euclid and WFIRST detection limits (26 and 28, respectively).
But this does not mean Euclid and WFIRST will not find these

stars, because only modest gravitational lensing is required to
boost their fluxes above the detection limits. The fields of view of

Figure 3. 1.0 Me yr−1 SMS spectra at 100,000 yr. Blue: spectrum of the star
itself; red: spectrum after reprocessing by the envelope.
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both missions will enclose thousands of galaxy clusters and
massive galaxies, and at z∼6–10 magnification factors of only
10–100 would be required to reveal either star. It is likely that a
sufficient fraction of their survey areas will be lensed to such
factors (Rydberg et al. 2018). Even higher magnifications may be
possible in future surveys of individual cluster lenses by JWST but
at the cost of smaller lensing volumes (Whalen et al. 2013c;
Windhorst et al. 2018).

In our Enzo and Cloudy calculations, we have neglected the
effect of radiation pressure due to flux from the star on the flows
that create it. Modeling these effects in cosmological simulations
is challenging in part because they must resolve photospheres on
very small scales that preclude the codes from evolving them for

long times. Smith et al. (2017a) post-processed simulations of
highly resolved atomically cooling halos with Lyα photon
transport and found it could exert mechanical feedback on flows
in the vicinity of the star. Radiation hydrodynamical simulations
by Luo et al. (2018) and Ardaneh et al. (2018) that neglect
resonant Lyα scattering found that radiation from the protostar in
its early stages did not significantly alter flows in its vicinity but
did suppress fragmentation, thus promoting the rapid growth of a
single supermassive object. In principle, radiation from the SMS
could blow out gas and partially expose it to the IGM, but this will
have little effect on the AB magnitudes of the star today because
all that would be lost is the mild enhancement of UV flux redward
of the Lyman limit by the envelope discussed in Section 3.1.

Figure 4. NIR AB magnitudes for the 1.0 Me yr−1 (solid) and 0.1 Me yr−1 (dashed) SMSs in JWST, Euclid, and WFIRST bands. Top left: JWST NIRCam bands. Top
right: JWST MIRI bands. Bottom left: Euclid. Bottom right: WFIRST.
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While we have only considered cool red supergiant stars,
hotter SMSs could be easier to detect because they would
produce more flux in the NIR today. Low accretion rates
(0.005Me yr−1; Haemmerlé et al. 2018b) or clumpy accretion
due to fragmentation (Sakurai et al. 2015) or turbulence in the
disk can produce such stars. However, blue SMS spectra require
corrections due to absorption by their atmospheres before the
flux that exits the accretion envelope can be calculated. SMSs
could also be found at higher redshifts if they exhibit pulsations
that temporarily boost their fluxes above the detection limits of
the wide-field surveys. Although current stellar evolution codes
use implicit solvers and large time steps that do not resolve these
oscillations, they can cause the star to periodically brighten and
dim by an order of magnitude on timescales of a few weeks in
the rest frame. Such variations might also facilitate their
detection because their regularity would differentiate them from
dusty, red high-z quasars or low-z impostors such as exoplanets.
Periodic dimming and brightening could also flag these objects
as high-z SMSs in transient surveys proposed for JWST such as
FLARE (Wang et al. 2017).

DCBH birth may be the next stage of primordial quasar
evolution, and a number of studies have considered their
prospects for detection in future NIR surveys. These are also
deeply embedded objects in dense, atomically cooled flows and
radiative transfer techniques similar to those we have used here
are required to model their spectra. One-dimensional radiation
hydrodynamics simulations of DCBH emission post-processed
with Cloudy have shown that they could be detected by JWST
out to z∼20 (Becerra et al. 2015; Natarajan et al. 2017). We are
now post-processing radiation hydrodynamical simulations of
the H II region of an SMBH from z=6–20 (Smidt et al. 2018)
with Cloudy to determine out to what redshifts it could be found
by Euclid, WFIRST, and JWST.
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