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ABSTRACT
Redshift space distortions within voids provide a unique method to test for environmental depen-
dence of the growth rate of structures in low density regions, where effects of modified gravity
theories might be important. We derive a linear theory model for the redshift space void-galaxy
correlation that is valid at all pair separations, including deep within the void, and use this to
obtain expressions for the monopole ξs0 and quadrupole ξs2 contributions. Our derivation highlights
terms that have previously been neglected but are important within the void interior. As a result
our model differs from previous works and predicts new physical effects, including a change in the
sign of the quadrupole term within the void radius. We show how the model can be generalised to
include a velocity dispersion. We compare our model predictions to measurements of the correlation
function using mock void and galaxy catalogues modelled after the BOSS CMASS galaxy sample
using the Big MultiDark N -body simulation, and show that the linear model with dispersion pro-
vides an excellent fit to the data at all scales, 0 ≤ s ≤ 120 h−1Mpc. While the RSD model matches
simulations, the linear bias approximation does not hold within voids, and care is needed in fitting
for the growth rate. We show that fits to the redshift space correlation recover the growth rate
f(z = 0.52) to a precision of 2.7% using the simulation volume of (2.5 h−1Gpc)3.

Key words: gravitation – large-scale structure of Universe –cosmology: observations
– methods: data analysis – methods: analytical

1 INTRODUCTION

Galaxy redshift surveys provide a map of the large-scale
structure of the Universe containing anisotropic distortions
of the clustering caused by gravitationally-induced peculiar
velocities that contribute to the galaxy redshifts, as first pre-
dicted by Kaiser (1987). Measurement of these redshift space
distortions (RSD) (e.g. Peacock et al. 2001; Guzzo et al.
2008; Beutler et al. 2012; Samushia et al. 2012; Reid et al.
2012; Howlett et al. 2015; Beutler et al. 2017) can be used
to determine the growth rate of structure, which can provide
strong tests of General Relativity (GR). The theory of RSD
in the galaxy clustering is however complicated by significant
non-linear contributions which are important even at quite
large pair separation scales, requiring sophisticated mod-
elling (e.g. Scoccimarro 2004; Matsubara 2008; Taruya et al.
2010; Reid & White 2011; Jennings et al. 2011).

The RSD modelling could in principle be simplified in
underdense regions where the dynamics is closer to linear,
such as in cosmic voids. Voids are large underdensities in the
galaxy distribution which trace stationary points of the grav-
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itational potential (Nadathur et al. 2017), where velocities
are dominated by coherent bulk flows. Voids have been much
studied recently in other contexts, including their action as
weak gravitational lenses (Krause et al. 2013; Melchior et al.
2014; Clampitt & Jain 2015; Sánchez et al. 2017), the
secondary CMB anisotropies they generate through
the integrated Sachs-Wolfe effect (e.g. Granett et al.
2008; Hotchkiss et al. 2015; Nadathur & Crittenden 2016;
Cai et al. 2017; Kovács et al. 2017) and the thermal
Sunyaev-Zeldovich effect (Alonso et al. 2018), and the
Baryon Acoustic Oscillation (BAO) peak in their cluster-
ing (Kitaura et al. 2016). Velocity dynamics around voids
have been studied using RSD in the void-galaxy cross-
correlation (Paz et al. 2013; Hamaus et al. 2015; Cai et al.
2016; Hamaus et al. 2017; Achitouv et al. 2017) and that of
the void positions themselves (Chuang et al. 2017).

In addition to possible simplifications in the lin-
ear modelling, an important advantage of studying RSD
around voids is that it presents an opportunity to study
the growth of density perturbations specifically in low-
density regions. Several popular alternatives to GR, such
as chameleon f(R) gravity (Hu & Sawicki 2007), Dvali-
Gabadadze-Porrati (DGP) (Dvali et al. 2000), and Galileon
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(Nicolis et al. 2009; Deffayet et al. 2009) gravity models,
among others, make use of screening mechanisms in order
to suppress fifth force effects in high density regions such
as the Solar System; theories with such screening effects
therefore predict environment-dependent differences in the
growth rate f , which could be probed by the RSD effects
within voids.

In this paper we study the void-galaxy cross-correlation
function ξvg in redshift space. Cai et al. (2016) have previ-
ously studied the same problem and provided a linear model
for ξvg, which was subsequently also used by Hamaus et al.
(2017). However, this model correctly described simulation
results only for void-galaxy pair separations greater than
the void size, r > Rv, i.e. outside the low-density region of
greatest interest. By extending the model using a form of the
quasi-linear streaming model, Cai et al. (2016) were able to
extend the region of validity slightly to r > 0.5Rv, though it
was still not correct in the void centres. In fact in the void
centre region the model can lead to unphysical predictions
of ξvg < −1.

We revisit the derivation of the void-galaxy RSD model
from first principles and identify linear-order terms that were
neglected in the expression obtained by Cai et al. (2016) but
are important in the void centre regions. These terms do not
have counterparts in the linear Kaiser model for RSD in the
galaxy correlation, and arise because of the restriction to
void regions. They have important physical effects, in partic-
ular causing a change in sign of the quadrupole term within
void regions. These terms become unimportant outside the
void radius, where our expression matches that of Cai et al.
(2016).

We show how the model can be extended to include
a velocity dispersion without changing the linear nature of
the theory. This is not the same as the form of the Gaussian
streaming model used in several other studies of the void-
galaxy correlation (e.g Paz et al. 2013; Hamaus et al. 2015;
Achitouv et al. 2017; Achitouv 2017). We show why it is not
correct to use the standard streaming model result for the
galaxy correlation in the void-galaxy case.

We then compare our theoretical results to data from
mock void and galaxy catalogues from a large N -body sim-
ulation and show that our linear dispersion model provides
an excellent fit to the data at all scales and performs sig-
nificantly better than alternatives. We highlight the fact
that the approximation of a linear galaxy bias does not hold
within voids. We discuss the consequences of these results
for obtaining an unbiased estimate of the growth rate within
void environments.

The layout of the paper is as follows. Section 2 describes
the simulation data we use and the creation of galaxy and
void mocks. In Section 3 we derive the linear theory model
for the void-galaxy correlation and its multipoles, and dis-
cuss differences with previous works. In Section 4 we com-
pare theoretical predictions to simulation data and in Sec-
tion 5 we discuss strategies for measurement of the growth
rate based on these results. We sum up and draw conclusions
in Section 6.

2 DATA

2.1 Simulation and galaxy mocks

We use data from the z = 0.52 redshift snapshot from the
Big MultiDark (BigMD) N -body simulation (Klypin et al.
2016) from the MultiDark simulation project (Prada et al.
2012). This simulation follows the evolution of 38403 par-
ticles in a box of side L = 2500 h−1Mpc using the
GADGET-2 (Springel 2005) and Adaptive Refinement Tree
(Kravtsov et al. 1997; Gottloeber & Klypin 2008) codes,
with cosmological parameters ΩM = 0.307, ΩB = 0.048,
ΩΛ = 0.693, ns = 0.95, σ8 = 0.825 and h = 69.3. Initial
conditions for the simulation were set using the Zeldovich
approximation at starting redshift zi = 100.

A halo catalogue was created for the given snap-
shot using the Bound Density Maximum algorithm
(Klypin & Holtzman 1997; Riebe et al. 2013). We populated
these halos with mock galaxies using the Halo Occupation
Distribution (HOD) model of Zheng et al. (2007), assigning
central and satellite galaxies to halos according to a distri-
bution based on the halo mass. Details of the algorithm and
HOD model parameters used are described more fully in
Nadathur et al. (2017), who used the same mock catalogue:
these parameters were taken from Manera et al. (2013) and
are designed to approximately reproduce the clustering and
mean number density for galaxies in the Baryon Oscillation
Spectroscopic Survey (BOSS) CMASS galaxy sample.

To measure dark matter (DM) densities in the simula-
tion, we used a cloud-in-cell interpolation scheme to deter-
mine the DM density on a 23503 grid using the full particle
output of the simulation. We used this grid density field to
determine the dark matter power spectrum P (k). We then
measured the galaxy power spectrum Pgg(k) for the mocks;
by fitting for the ratio Pgg(k)/P (k) = b2 at large scales,
k . 0.05 hMpc−1, we determine the linear bias value for the
galaxy mocks, b = 1.88.

Using the real space galaxy positions x and velocities
v, we determine their redshift space positions in the plane-
parallel approximation assuming the line of sight direction
to be along the z-axis of the simulation box,

s = x +
v · ẑ
aH

, (1)

where a is the scale factor and H is the Hubble rate.

2.2 Void finding

We identify voids in the real space galaxy mocks using the
ZOBOV watershed void-finding algorithm (Neyrinck 2008).
The ZOBOV algorithm uses a Voronoi tessellation field esti-
mator (VTFE) technique to reconstruct the galaxy density
field from the discrete distribution, and then identifies lo-
cal minima in this field and the watershed basins around
them, to form a non-overlapping set of voids corresponding
to local density depressions. As in previous works (Nadathur
2016; Nadathur et al. 2017), we define each individual den-
sity basin as a distinct void, without any additional merging
of neighbouring regions. A fuller description of the algorithm
and void properties can be found in Nadathur (2016) and
Nadathur et al. (2017).

Although voids are of arbitrary shape and are in gen-
eral far from spherically symmetric, it is convenient to de-
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fine an effective spherical radius, Rv = (3V/4π)1/3, where
V is the total volume of the void. We determine the centre
of each void to be the centre of the largest sphere com-
pletely empty of galaxies that can be inscribed within the
void (Nadathur & Hotchkiss 2015b; Nadathur et al. 2017).
In Appendix A we consider the effect of defining the void
centre as the volume-weighted barycentre of void member
galaxies, as is also popular in the literature. Such a redefini-
tion does not alter any of the qualitative conclusions in the
following sections, but it decreases the available signal-to-
noise for the RSD measurement and worsens the agreement
with linear dynamics due to bulk velocity flows.

It is important to stress that we apply the void-finding
algorithm to the real space galaxy mocks and not to the
shifted version in redshift space. As we discuss in the next
section, this is crucial because all of the theoretical models
for RSD in the void-galaxy cross-correlation discussed in this
paper and elsewhere in the literature are based on assump-
tions that do not hold unless the real space void positions
are known. Nadathur et al. (2019) show how this practical
difficulty can be overcome when using survey data where the
real space galaxy positions are not available.

Approximately 33000 voids are identified in the sim-
ulation box. As the void-finding algorithm is space-filling,
these voids cover the entire box volume, and undoubtedly
include some spurious identifications that do not correspond
to genuine matter underdensities. We also do not expect a
linear model of coherent velocity outflow from a void to suc-
cessfully describe the RSD around very small voids, where
the local environment of structures outside the void is im-
portant in determining the velocity field. Indeed Cai et al.
(2016) find that RSD models for the void-galaxy correlation
do not work for small voids. However, the distinction be-
tween ‘large’ and ‘small’ voids is somewhat ambiguous, and
the numerical value of the cut on void size depends both
on the bias and number density of the galaxies in question
(Nadathur & Hotchkiss 2015b,a) as well as on the particular
features of the voidfinder.

We therefore restrict our void sample to the half of
all voids with effective radius greater than the median
radius. This is an easily reproducible criterion. For the
mocks and voids used in this work, this means selecting
Rv ≥ 43 h−1Mpc, which leaves 16 421 voids. Through-
out the rest of this paper, we exclusively use this sample
of voids. The mean effective void radius for this sample is
Rv = 55.6 h−1Mpc.

In some figures in later sections we show distances from
the void centre in units of this mean radius, for context.
However, we do not rescale distances in units of individual
void sizes. Rescaling by individual void radii could improve
the signal if the same features in the cross-correlation ap-
pear at the same rescaled distances for all voids, i.e. if the
void size uniquely determines the void profile. The results
of Nadathur & Hotchkiss (2015a,b); Nadathur et al. (2017)
show that in general this is not the case, so we do not ex-
pect significant benefit from rescaling. On the other hand,
rescaling effectively weights void-galaxy pair counts differ-
ently depending on the size of the void in the pair. This
strongly up-weights the contribution of small voids relative
to large ones in the average cross-correlation, which is un-
desirable, as the model is expected to work better for larger

voids. It also significantly complicates the error determina-
tion.

Note that restricting our sample to the largest 50% of
voids need not necessarily be the optimal choice to ensure
validity of linear theory. Nadathur et al. (2017) show that
environmental effects around voids are more strongly corre-
lated with a combination of void size and density than with
void size alone, so this may provide a better selection cri-
terion. However, the median size cut implemented here has
the advantage of simplicity, and as we show later, is suffi-
cient that a purely linear RSD model already provides an
excellent fit to the data.

2.3 Measuring correlation functions

Given the discrete void and galaxy populations in our simu-
lation, measurement of the void-galaxy correlation is simply
a matter of counting void-galaxy pairs as a function of the
separation between them, which we do using a version of the
CUTE correlation function code (Alonso 2012).1 . That is,
we measure the cross-correlation

ξ =
DvDg
NvngV

− 1, (2)

where DvDg is the total number of void-galaxy pairs within
a given separation bin of volume V , Nv is the total number
of voids, and ng is the mean number density of galaxies,
Ng/Vbox. Note that as we do not rescale distances based on
individual void radii, for a given separation bin the volume
V is the same for all voids, which means we weight each void-
galaxy pair equally. As the distribution of voids and galaxies
is uniform throughout the simulation box, Eq. 2 is equivalent
to the use of the Landy-Szalay estimator (Landy & Szalay
1993) in the limit of using infinitely many random points.

All correlation functions ξ are measured in the same
way. By using purely radial bins in the separation r we ob-
tain the monopoles ξ(r), and by binning also with respect
to angle we obtain ξ(r, µ), where µ is the cosine of the an-
gle to the line of sight direction. For all correlation func-
tion measurements we use 50 equally-spaced radial bins of
width ∆r = 2.4 h−1Mpc out to a maximum separation of
120 h−1Mpc. For angular measurements we use 100 angular
bins in the range 0 ≤ µ ≤ 1. Quadrupoles of the correlation
function are obtained from ξ(r, µ) by

ξ2(r) = 5

∫ 1

0

ξ(r, µ)P2(µ)dµ , (3)

where P2(µ) = 1
2
(3µ2 − 1) is the Legendre polynomial of

order 2.
We also require the stacked DM density profile δ(r)

around voids, which is equivalent to the void-matter cross-
correlation. As the direct computation of pair counts for
voids and DM particles is too computationally expensive
given the size of the simulation, we instead interpolate the
DM particle output on to a 23503 density grid using a CIC
interpolation scheme, and use the grid values to determine
the stacked average void density profile.

1 http://members.ift.uam-csic.es/dmonge/CUTE.html
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3 THEORY

3.1 The void-galaxy cross-correlation in redshift
space

Let X denote the comoving location of a void centre, and x
the location of a galaxy in its vicinity. The real-space sepa-
ration vector for the void-galaxy pair, r = x −X, is trans-
formed to s in redshift space. Assuming that the total num-
ber of void-galaxy pairs is unchanged by the shift to redshift
space, we require that(
1 + ξsvg(s)

)
d3s =

(
1 + ξrvg(r)

)
d3r , (4)

where ξvg denotes the void-galaxy cross-correlation (in what
follows we will suppress the subscript where there is no risk
of confusion), and the supersripts s and r denote redshift and
real space respectively. ξvg may also be viewed as the galaxy
number density profile around the void, and is sometimes
denoted δg in this context.

In the distant-observer approximation, the void-galaxy
separation vector transforms in redshift space as

s = r +
(v −V) · X̂

aH
X̂ , (5)

where v denotes the peculiar velocity of the galaxy and V
the effective velocity of the void centre. The appearance
of V in this equation reflects the fact that in general the
void centre positions will also shift under the RSD mapping
(Chuang et al. 2017).

However, modelling V is complicated, for reasons dis-
cussed below. In common with previous works, we therefore
further assume that the void centre position is invariant un-
der the RSD mapping. This allows the simplification

s = r +
v · X̂
aH

X̂ , (6)

which now depends only on the galaxy peculiar velocity
rather than the pairwise velocity.

Note that both the assumptions made here are known
to fail if voids are identified directly using the redshift space
galaxy field! Zhao et al. (2016), Chuang et al. (2017) and
Nadathur et al. (2019) show that void numbers are not con-
served in redshift space. Chuang et al. (2017) showed that
the autocorrelation of the positions of redshift-space voids
themselves shows an RSD pattern, which means that the
mapping from real to redshift space does not preserve void
positions. Thus for such voids the coordinate transformation
r → s cannot depend only on the galaxy peculiar velocities
v as assumed in Eq. 6. As a result, any model for the void-
galaxy RSD which is derived from the assumption inherent
in Eqs. 4 and 6 cannot be consistently applied to redshift-
space voids.

As pointed out by Chuang et al. (2017), at small to in-
termediate scales void-finding constitutes a non-linear trans-
formation of the density field, and therefore necessarily leads
to a void velocity bias different from unity (Seljak 2012). To
model V it would be necessary to determine this velocity
bias accurately. However, the action of the void-finder algo-
rithm cannot be described by a simple mathematical model.
This means the non-linear transformation and the void ve-
locity bias would need to be determined empirically.

Nadathur et al. (2019) show that the violation of these
two assumptions for redshift-space voids leads to strong ad-
ditional contributions to the observed RSD pattern well

within the scale of the mean void radius, meaning that it af-
fects even the 1-void term in the cross-correlation (Cai et al.
2016). Accounting for these effects in the modelling by mod-
ifying Eqs. 4 and 6 appears challenging. On the other hand,
if only real-space void positions are used for the cross-
correlation, both assumptions are satisfied by construction:
void numbers are necessarily conserved and their positions
are by definition unchanged by the RSD mapping. There-
fore, for real space voids both Eqs. 4 and 6 are valid.

In this paper we are interested in developing the cor-
rect theoretical model for this more manageable case. We
therefore apply the following algorithm:

(i) we identify voids using the real space galaxy field,
(ii) we cross-correlate the real space void and galaxy po-

sitions to determine ξr(r),
(iii) we cross-correlate the real space void positions with

the redshift space galaxies to determine ξs(s).

This procedure is simple to apply for the simulation we con-
sider, since real space galaxy positions are known. For sur-
vey data this will not be the case. However, Nadathur et al.
(2019) show how in this case the real-space void positions
can be effectively recovered using a Zeldovich reconstruc-
tion technique, allowing fair comparison of the data with
the model derived here. The reconstruction procedure will
be applicable for any galaxy surveys designed for BAO de-
tection.

We therefore proceed with the derivation from Eqs. 4
and 6. From Eq. 6, the line-of-sight component of the sepa-
ration vector is

s|| = r|| +
v||
aH

. (7)

The restriction to real-space voids means that from sym-
metry arguments, the average coherent velocity flow must
be spherically symmetric and directed along the radial di-
rection, v = vr(r)r̂. (Note that this is also not the case
for redshift-space voids, Nadathur et al. 2019.). The deter-
minant of the Jacobian for the coordinate transformation is
therefore∣∣∣J ( s

r

)∣∣∣ = 1 +
vr
raH

+
(v′r − vr/r)

aH
µ2 , (8)

where ′ denotes the derivative with respect to the radial
distance r, and µ is the cosine of the angle between the line-
of-sight direction and the separation vector,

µ ≡ X · r
|X||r| = cos θ. (9)

Eq. 4 can therefore be rewritten as

1+ξs(s) = (1 + ξr(r))

[
1 +

vr
raH

+
(v′r − vr/r)

aH
µ2

]−1

. (10)

We will assume that the peculiar velocity field is coupled
to the density as in linear dynamics, and is determined by
the void alone, so that

v(r) = −1

3
faH∆(r)r , (11)

where ∆(r) is the average mass density contrast within ra-
dius r of the void centre,

∆(r) ≡ 3

r3

∫ r

0

δ(y)y2dy , (12)
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Figure 1. Left : The stacked average real space void-galaxy cross-correlation ξrvg (thick solid, blue) and void density contrast δ (thin

solid, red) as functions of the distance from the centre of the void, for voids in our simulation sample. The dashed and dot-dashed
lines show the products ξδ and ξ∆. Note the kink in ξr(r) around r ∼ 0.5Rv . A similar though less pronounced kink is present in δ(r)

at the same location. Right : The residual between the linear bias approximated value ξrvg(r)/b, where bias b is determined from the

large-scale clustering (see text), and the true mass density contrast δ(r) in the simulation (blue solid line). The red dashed curve shows
the corresponding residual ξrvg(r)/b−∆(r) for the integrated quantities.

where δ(r) is the mass density profile of the void, and
f = d lnD/d ln a, with D the growth factor and a the scale
factor, is the linear growth rate of density perturbations.

Note that the assumption of linear dynamics in Eq. 11 is
not crucial to the development of the model. Achitouv (2017)
assumed a specific non-linear coupling between density and
velocity, obtaining a different expression for vr(r). So long
as the radial velocity field is spherically symmetric, as is
the case for real-space voids, Eq. 10 must hold for any form
of the velocity profile vr(r). In Section 4 we examine the
validity of the assumption in Eq. 11.

Combining Eqs. 10 and 11, and using the fact that
∆′(r) = 3/r (δ(r)−∆(r)), we obtain

1+ξs(s) = (1 + ξr(r))

[
1− f

3
∆(r)− fµ2 (δ(r)−∆(r))

]−1

.

(13)

The expansion of the second term on the RHS must be per-
formed with care. For the voids in highly biased galaxy trac-
ers that we consider in this paper, the mass density contrast
is small enough that we can safely drop terms of second or-
der or higher in δ and ∆. Note that this is separate from
the assumption of the validity of linear dynamics, Eq. 11,
and may not hold for other void populations, even if the
dynamics is close to linear.

However, independent of assumptions about the size of
δ and ∆, terms of order ξrδ and ξr∆ cannot be assumed to
be small. The very fact that voids are identified by selecting
regions with very few or no galaxies ensures that in the void
interior ξ ∼ −1, and thus that terms proportional to ξδ and
ξ∆ are comparable to δ and ∆ and thus must be retained
to linear order. The left panel of Figure 1 demonstrates this
explicitly for the voids in our simulation. In fact for void
centre definition used here, ξr(r) is exactly −1 for small r,
since the centres of voids contain no galaxies. Thus ξrδ =
−δ and it is obvious these terms are not negligible. This
conclusion is however independent of the void centre choice.
In Appendix A we consider a different definition of the void

centre, using which ξr(r) ≥ −0.8 at all r, and show that the
terms ξδ and ξ∆ are still comparable in size to δ, ∆.

Retaining these terms in the expansion, Eq. 13 therefore
reduces to

ξs (s, µ) = ξr(r) +
f

3
∆(r) (1 + ξr(r))

+ fµ2 [δ(r)−∆(r)] (1 + ξr(r)) , (14)

where the difference between real space and redshift space
coordinates r and s is

r = s

(
1 +

f

3
∆(s)µ2

)
, (15)

to the same linear order in ∆. The effect of this coordinate
shift is neglected in the linear Kaiser theory for RSD in
the galaxy correlation (Kaiser 1987) because it only appears
at second order in that derivation (see, e.g., Section 4.2 of
Hamilton 1998). However, in our case, the coordinate shift
appears in ξ at linear order, via the Taylor expansion

ξ(r) = ξ(s) + ξ′(s)
f

3
s∆(s)µ2 + . . . . (16)

The effect of the terms in the model above can be under-
stood as follows. The velocity outflow from voids introduces
a mapping between the real space correlation ξr at sepa-
ration r and the redshift space correlation ξs at separation
s, where r < s along the line of sight, for ∆ < 0. Since ξ
decreases towards the centre, this results in a ‘stretching’
of the void along the line of sight direction, in accordance
with naive intuition for the RSD effect around underdensi-
ties. This effect is most important where the gradient of ξr

is steepest.
On the other hand, as noted and explained by Cai et al.

(2016), the terms f∆/3+fµ2 (δ −∆), arising from the Jaco-
bian of the transformation, give rise instead to a ‘squashing’
along the line of sight.2 This effect is suppressed by a factor

2 In principle it is possible for these terms to also lead to a stretch-
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6 S. Nadathur & W. J. Percival

of (1 + ξr) and is therefore most important around the void
edges and outside the void. The competing effects of the
stretching and squashing terms can be seen in Figure 4. The
combination results in a change in the sign of the quadrupole
term within the void, going from negative to positive with
increasing s, as will be shown in Section 4.

3.2 Linear bias approximation

Eqs. 14 and 15 together provide the correct expression for
the void-galaxy cross-correlation in redshift space assum-
ing linear dynamics and at linear order in δ, ∆. They form
the base model that we will use to explain the simulation
data. However, their use requires knowledge of the true
mass density contrast δ(r) and its integral version ∆(r),
which cannot be directly determined for voids in survey
data. An approximation that is often made (Cai et al. 2016;
Hamaus et al. 2017) is to assume that a simple linear bias re-
lationship holds within the voids, so that ξr(r) = bδ(r) and
ξr(r) ≡ 3/r3

∫ r
0
ξr(y)y2dy = b∆(r), where b is the large-

scale linear bias factor determined from the galaxy cluster-
ing.

Under this approximation, the full model of Eqs. 14 and
15 can be rewritten as

ξs (s, µ) = ξr(r) +
β

3
ξr(r) (1 + ξr(r))

+ βµ2 [ξr(r)− ξr(r)] (1 + ξr(r)) , (17)

where

r = s

(
1 +

β

3
ξr(s)µ2

)
, (18)

and β ≡ f/b.
To explore the validity of this linear bias approximation

within voids, we determine the linear bias factor for our
mock galaxies by computing the (real space) galaxy power
spectrum Pgg(k) and the full matter power spectrum P (k)
for the simulation box, and fitting Pgg(k) = b2P (k) at large
scales, k . 0.05h−1Mpc. For this value of b, the residuals
ξr(r)/b − δ(r) and ξr(r)/b − ∆(r) compared to the linear
bias approximation are shown in the right panel of Figure 1.
Importantly, the deviations are (i) scale dependent, and (ii)
large. For the void centre definition we use, the linear bias
assumption leads to fractional differences of ∼ 25% from the
true value within the void radius. In Appendix A, we show
that residuals remain large and scale-dependent irrespective
of the void centre choice.

It is important to emphasise that the deviation from
the linear bias relationship seen can arise purely due to a
statistical selection effect caused by the void-finding pro-
cess, independent of non-linear or environment-dependent
bias models (which we do not consider here). Where a lin-
ear bias b characterises the galaxy clustering as above, the
relationship between the local galaxy overdensity δg and the
matter overdensity δ is still δg = bδ + ε, where ε repre-
sents a stochastic term. If the stochastic term is unbiased,

ing for pathological choices of δ(r), but in such a case it is unlikely

that a linear model based on Eq. 11 would be viable anyway. In
practice, we do not observe such behaviour for any subset of the
voids in our simulation.

the conditional expectation value over the entire universe or
simulation box is indeed

〈δg|δ〉 = bδ . (19)

However, voids are by construction selected as relatively rare
regions with a small galaxy density. The cross-correlation
within void regions is thus equivalent to a constrained 1-
point function. This necessarily introduces a selection effect
in 〈δ|δg ≡ ξrvg〉: regions with negative fluctuations in ε are
more likely to be selected as voids than those with positive ε,
thus biasing the mean relationship such that ξr/b systemati-
cally overestimates the depth of the void where ξr < 0. Con-
versely, ξr/b overestimates the height of the wall around the
void edge where ξr > 0. This will be true even when b = 1,
i.e. when the tracers used to identify the voids and deter-
mine ξ are a random subset of the DM particles in the simu-
lation3 as explicitly demonstrated in Nadathur & Hotchkiss
(2015b). The selection effect will however be much reduced
if the tracer profile ξr is measured using a different set of
tracers to those used to select void locations, such as an over-
lapping galaxy sample with higher mean number density, or
the set of all halos in the simulation from which the mock
galaxy hosts are drawn.

For our purposes, the consequences of this failure of the
linear bias relationship within voids are two-fold:

(i) if the same galaxy tracers are used to identify the voids
and to measure the RSD pattern, Eqs. 17 and 18 are neces-
sarily always inaccurate with respect to the true model in
Eqs. 14 and 15 in the void interiors, but

(ii) the extent of the discrepancy is somewhat mitigated
by the fact that the discrepancy from the linear bias value
is largest in the regions where the (1 + ξr(r)) term in Eq. 17
is small.

For the mocks we have both the matter and galaxy
density fields, so we can contrast results for the real to red-
shift space mapping using the directly measured density field
within voids as well as that inferred from the linear bias as-
sumption, as done in Section 4. This allows us to isolate the
effect of this assumption on the RSD model.

3.3 Multipole expansion

It is convenient to expand ξs in terms of its multipoles,

ξs` (s) =

∫ 1

0

ξs(s, µ) (1 + 2`)P`(µ)dµ (20)

where P`(µ) are the Legendre polynomials of order `. At
linear order in δ and ∆, only the monopole and quadrupole
terms are non-zero. Using P0(µ) = 1 and P2(µ) = (3µ2 −
1)/2, these can be calculated by direct integration for the
model using either Eqs. 14 and 15 or Eqs. 17 and 18. For all
numerical calculation of model multipoles presented in this
paper, we use this approach.

3 Under certain simplifying assumptions about the nature of the
stochastic term, this selection effect can be modelled analytically;

see, e.g., Gruen et al. (2016), Sec. 3.1. In general, the void selec-
tion condition will introduce correlations between the stochastic
terms at different radial distances, complicating the modelling.

We will not pursue this further in the current work.
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Accurate void-galaxy RSD 7

However, approximate analytical forms can also be ob-
tained by using the first two terms of the expansion in Eq. 16,
to rewrite Eq. 14 as

ξs (s, µ) ' ξr(s) +
f

3
∆(s) (1 + ξr(s))

+ fµ2 [δ(s)−∆(s)] (1 + ξr(s)) +
fµ2

3
sξr′(s)∆(s) , (21)

to linear order in δ, ∆. Substituting this into Eq. 20 gives
monopole

ξs0(s) = ξr(s) +
f

9
s ξr′(s)∆(s) +

f

3
δ(s) [1 + ξr(s)] , (22)

and quadrupole

ξs2(s) =
2f

9
s ξr′(s)∆(s) +

2f

3
[δ(s)−∆(s)] [1 + ξr(s)] . (23)

Corresponding versions of these equations can be obtained
when also including the linear bias approximation.

A consequence that follows from these expressions is
that the quadrupole-to-monopole ratio does not factorize
conveniently as in the model of Cai et al. (2016) and so can-
not be used as an estimator for the growth rate.

3.4 Velocity dispersion and the streaming model

So far we have used a pure Kaiser model to describe ξs:
that is, we assumed that velocities around void centres ex-
actly follow the coherent outflow described by the linear re-
lationship in Eq. 11. In Section 4 we will show that this is
a surprisingly good approximation for the mean outflow ve-
locity on all scales, so the model of Eq. 14 provides a good
qualitative description of the void-galaxy correlation seen in
simulation.

However, to enable a quantitative fit to the data, a more
realistic model must account for the dispersion of galaxy ve-
locities around this mean. To do this, we introduce a disper-
sion in the line-of-sight galaxy velocities, such that

v = vr r̂ + v||X̂ , (24)

where vr is the coherent radial component given by Eq. 11,
and v|| is a zero-mean random variable with probability dis-
tribution function P (v||). This results in an integral for ξs:

1 + ξs,d(σ, π) =

∫
dv||P (v||)

(
1 + ξs

(
σ, π − v||/aH

))
,

=

∫
dv||P (v||)(1 + ξr (r))

∣∣∣J ( s

r

)∣∣∣−1

,(25)

where σ and π are respectively distances transverse to and
along the line of sight, r =

√
r2
σ + r2

π, with rσ = σ and rπ =
π − (v|| + vrµ)/aH, and

∣∣J ( s
r

)∣∣ is as in Eq. 8. The effect of
the dispersion in v|| is primarily through shuffling the radial
and transverse distances contributing to ξr in the integral.
The dispersion has a negligible effect on the Jacobian, as the
contribution to the radial outflow averages to zero.

We will take the probability distribution function P (v)
to have a Gaussian form,

P (v) =
1√

2πσv
exp

(
− v2

2σ2
v

)
. (26)

The dispersion is most generally a function of the radial
separation scale, σv = σv(r). The validity of the Gaussian

assumption for P (v) may also vary with r. We consider these
questions in more detail in Section 4.

Note that Eq. 25 is not quite the same as an adaptation
of the streaming model (e.g., Fisher 1995; Scoccimarro 2004;
Reid & White 2011) to the void-galaxy case. In particular,
as the coherence of density and velocity fields is accounted
for by the inverse Jacobian, this is still fundamentally a lin-
ear model in all senses. We still assume the coherent outflow
vr is determined by linear dynamics as before; in evaluating
the Jacobian we still drop terms higher than linear order in
δ and ∆; and the convolution with P (v) merely broadens
the coordinate shift effect already present at linear order
in Eqs. 14 and 15. In the limit of zero dispersion, where
P (v||) → δD(v||), this model reduces to Eq. 14. Eq. 25 is
thus similar to the dispersion model used for the galaxy cor-
relation (Hamilton 1998) before the development of the full
streaming model, except that the width of the velocity dis-
tribution is allowed to depend on scale.

Unlike in the case for the galaxy correlation, this linear
dispersion model is already sufficient to provide an excellent
fit to the data at all scales, as we show in Section 4.3. We may
therefore safely leave the development of a full streaming
model for the void-galaxy case to future work.

3.5 Comparison with previous results in the
literature

The basic linear model we have presented above differs in
several key respects to other models for the void-galaxy
correlation in the literature (e.g. Paz et al. 2013; Cai et al.
2016; Hamaus et al. 2017; Achitouv et al. 2017; Achitouv
2017). In Section 4 we will compare these models to ξs

measured in the simulation data and show that our model
provides a significantly better description of the true void-
galaxy correlation. Before doing that, however, it is instruc-
tive to examine the reasons for the difference in the deriva-
tions.

Cai et al. (2016) (and subsequently Hamaus et al. 2017)
follow a derivation similar to that described in Section 3.1,
with three important differences: (1) they do not include
terms of order ξδ and ξ∆ in the expansion of Eq. 13, (2)
they approximate s = r contrary to Eq. 15, and (3) they
assume the linear bias approximation (Section 3.2) holds
within voids.4 The first two assumptions alone give rise to

ξs(s, µ) = ξr(s) +
f

3
∆(s) + fµ2 [δ(s)−∆(s)] , (27)

which can be compared to Eq. 14, and the addition of the
linear bias assumption gives

ξs(s, µ) = ξr(s) +
β

3
ξr(s) + βµ2 [ξr(s)− ξr(s)] , (28)

which can be compared to Eq. 17.
It is worth emphasising that this model is derived from

exactly the same assumptions as those described in Section
3.1, i.e., void conservation (Eq. 4), invariance of void posi-
tions (Eq. 6), the spherical symmetry of the velocity outflow,
and linear dynamics for the velocity field (Eq. 11). The only

4 Cai et al. (2016) actually provide expressions assuming ξr = δ
and ξr = ∆, which is equivalent to using the linear bias assump-

tion with b = 1.
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8 S. Nadathur & W. J. Percival

differences arise from the truncation of the series expansion
of the square brackets in Eq. 10 to exclude terms of order
ξδ and ξ∆. In this sense, the model of Cai et al. (2016) is
an approximation to the more complete model in Eq. 14. If
the terms of order ξδ and ξ∆ were truly small, both models
would lead to the same predictions. However, since they are
not, neglecting these terms leads to large differences in the
final model predictions, as we show.

The model for ξs in Eq. 28 can be decomposed into a
monopole term

ξs0(s) =

(
1 +

β

3

)
ξr(s) , (29)

and a quadrupole

ξs2(s) =
2β

3

[
ξr(s)− ξr(s)

]
. (30)

A simple heuristic way to see that these expressions
cannot be correct within the void interior is to consider the
limiting case where ξr ∼ −1 close to the void centre, at
s ∼ 0. Here Eq. 29 predicts a redshift space monopole ξs0 <
−1, which is unphysical. This is a simple consequence of
the premature truncation of the series expansion, dropping
terms that are not small. More generally, Eq. 28 is a poor
description of ξs(s) everywhere that (1 + ξr) is small, which
in practice for the voids considered here means at least for all
radial separations within the mean void radius. In Appendix
A we show that this statement is independent of the choice
of void centres.

In addition, because of the assumption that s = r,
Eq. 28 qualitatively misses the important stretching effect
along the line of sight due to the mapping of void-galaxy sep-
arations from real to redshift space. As we show in the next
section, this causes a change in the sign of the quadrupole
term within the void radius which is not captured by Eq.
30. In fact this change of sign was already seen in simulation
data by Cai et al. (2016) (see Figures 1-3 in their paper), al-
though not satisfactorily explained. This shortcoming of the
model is the primary reason why the growth rate estimator
proposed in that paper does not work for s < Rv, leading
to negative reconstructed values of the growth rate within
voids (see the discussion in Cai et al. 2016).

On the other hand, in contrast to both our results and
those of Cai et al. (2016), Hamaus et al. (2017) do not ob-
serve any change of sign in the quadrupole ξs2 measured in
BOSS galaxy data and associated galaxy mocks. This is be-
cause they use voids identified using the galaxy positions in
redshift space – when this is done, neither of the fundamen-
tal assumptions used to obtain Eqs. 4 and 6 are valid, and
so neither our model nor that of Cai et al. (2016) – nor any
of the other theoretical models for ξs elsewhere in the lit-
erature – will satisfactorily describe the data. In particular,
the application of such models to the cross-correlation with
redshift-space voids leads to a strongly biased reconstruc-
tion of the fiducial growth rate (see the demonstration in
Appendix A of Nadathur et al. 2019).

In a separate work, we discuss a solution to this prob-
lem via the use of a Zeldovich reconstruction technique to
identify real-space void positions (Nadathur et al. 2019).

Finally, a number of different authors (e.g. Paz et al.
2013; Hamaus et al. 2015, 2016; Cai et al. 2016;
Achitouv et al. 2017; Achitouv 2017) have used an

analogy with the Gaussian streaming model for the galaxy
autocorrelation to model ξs:

1 + ξs(σ, π) =

∫
(1 + ξr(r))√

2πσv
exp

(
−

(v|| − vr(r)µ)2

2σ2
v

)
dv||,

(31)

with r =
√
σ2 +

(
π − v||/aH

)2
. Comparison with Eq. 25

shows that this expression differs from our dispersion model.
Unlike our dispersion model, it does not reduce to the linear
expression, Eq. 14, in the limit of zero dispersion when v =
vr r̂.5 Also unlike our dispersion model, it provides a poor fit
to the data, as we will show in Section 4.

The reason for this is simple: the streaming model in
Eq. 31 has been derived for the case of linear, Gaussian
fluctuations in the galaxy or matter autocorrelation (Fisher
1995; Scoccimarro 2004), and cannot simply be extended
by analogy to the void-galaxy cross-correlation. Not only is
the moment generating function Z(λ, r) (see Scoccimarro
2004) different for the void-galaxy case, the derivation of
the Gaussian streaming model explicitly assumes that the
only non-zero cumulant of the density field is the second.
However, the void-galaxy case involves constrained averages
of the fields at specially selected locations rather than over
all space, so that by definition the expectation value 〈δ〉 6= 0
within the void. As a result the analogy is invalid and Eq. 31
does not describe the correct streaming model for the void-
galaxy cross-correlation.

4 SIMULATION RESULTS

4.1 Void density profiles

The angle-averaged stacked void density profiles δ(r) and
ξr(r) are equivalent to the monopoles of the real-space void-
DM and void-galaxy cross-correlations, which are measured
as described in Section 2.3. To determine ∆(r) and ξr(r)
we interpolate δ(r) and ξr(r) respectively and numerically
evaluate the corresponding integrals.

The profiles obtained for our void population are shown
in the let panel of Figure 1. Here for context we show ra-
dial separations in units of the mean radius of all voids in
the stack, Rv = 55.6 h−1Mpc. As discussed in Section 3,
in the interior region of voids the terms ξδ and ξ∆ are of
comparable magnitude to δ and ∆, meaning that they must
be included in the expansion of Eq. 10. The right panel of
Figure 1 shows the residuals between the true void matter
density profiles and those inferred from applying the linear
bias approximation to ξr(r), as discussed in Section 3.2.

4.2 Velocity profiles and dispersion

We measure the average (stacked) galaxy velocity profile
around the void centres in the simulation as

vgal
r (r) =

1

Nvg

∑
i,j

vj · r̂ij , (32)

5 This model does approximately match Eqs. 14 and 25 when
the conditions |ξr|, |δ| , |∆| � 1 are satisfied and the dispersion
is small, σv � raH (Cai et al. 2016). In practice this holds only
outside the void boundary, s & 1.5Rv .
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Figure 2. Top: Stacked average galaxy radial velocity profiles

around void centres for voids in our simulation (data points
with error bars), compared to the correct linear theory prediction

(thick solid line), and the linear theory prediction if the constant

linear galaxy bias assumption is also used (dashed line). The red
(thin, solid) curve shows the measured average radial velocity pro-

file of dark matter halos around the same voids. The error bars

on this curve are much smaller than those for galaxies, so are
omitted for clarity. Bottom: The measured dispersion of galaxy

line-of-sight velocities σgal
v|| (r).

where rij is the real space separation vector between the
ith void and jth galaxy and vj the velocity of that galaxy,
and the sum runs over all Nvg void-galaxy pairs with |rij |
in the range (r − dr, r + dr). As before, we use 50 equally-
spaced bins out to a maximum separation of 120 h−1Mpc.
We also measure the dispersion in the line-of-sight velocity
component, σgal

v|| , defined by

σgal
v|| (r) =

[
1

Nvg

∑
i,j

(
vj · X̂j − v||(r)

)2
]1/2

, (33)

where X̂j is the line of sight direction, which is the same for
all galaxies in the plane-parallel approximation and taken to
be along the z-axis of the simulation box, v||(r) is the mean
line of sight velocity component at r, and the sum is over all
void-galaxy pairs in the given separation bin as before.

Note that Eqs. 32 and 33 weight each void-galaxy pair
equally. An alternative way to define these quantities, which
has sometimes been used in the literature, is to calculate
the average and dispersion separately for each void, and
then average the results over all voids. This is equivalent to
weighting each void equally: this procedure leads to smaller
measured values of vgal

r and σgal
v|| at small separations, since

most voids do not have any galaxies in interior bins and thus
contribute zero to the average. At large r both methods will
largely agree. However, for comparison with the void-galaxy
cross-correlation, which also weights each void-galaxy pair
equally, our method is the more appropriate.

Finally, to control for possible statistical effects due to
the void selection criterion as seen in the relationship be-

tween ξr(r) and δ(r), we also measure the average DM ve-
locity profile around void centres. To do this we use the
same procedure as for measuring δ(r): the Cartesian com-
ponents vx, vy and vz of the DM particle velocities are inter-
polated onto 23503 grids using a CIC interpolation scheme,
and the resulting gridded velocity fields are used to evaluate
the stacked average radial DM velocity profiles around void
centres, vDM

r (r).

Figure 2 plots the results as a function of distance from
the void centre, together with the linear velocity model for
vr(r) obtained from Eq. 11 (solid black line). The linear
model is calculated using the fiducial value of the growth
rate for the given simulation and redshift, f = 0.761. The
first conclusion that can be drawn from this is that linear
dynamics gives an extremely good description for the mean
vDM
r (r), with deviations at . 10% over the entire range of

scales tested (see also Hamaus et al. 2014). It is also a good
model for the mean galaxy radial velocity profile vgal

r (r) at
distances r & 30 h−1Mpc, where vDM

r (r) and vgal
r (r) coin-

cide.

Closer to the void centres, r < Rv, vgal
r (r) starts to de-

viate from both the linear model and vDM
r (r). While some

scatter is expected where the errors in vgal
r (r) become large

due to the small number of void-galaxy pairs (note that the
two interior-most bins have no galaxies at all), in the range
10 . r . 30 h−1Mpc the difference is statistically signifi-
cant. This coincides with the ‘kink’ visible in the ξr(r) profile
in Figure 1, which arises due to the fact that the void centre
definition means that for each void, there are 4 galaxies at
the same distance from the void centre. A similar, though
less pronounced, kink is also present at the same distance in
δ(r). This suggests that the velocity shortfall at this distance
is a physical consequence of some aspect of the void selec-
tion algorithm. We leave a fuller explanation of this effect
for future work.

Recently, Achitouv (2017) proposed a semi-empirical
non-linear correction term to modify the linear velocity re-
lationship of Eq. 11, which effectively reduces the predicted
outflow term vr(r) within voids. Figure 2 shows that such
a correction term is disfavoured in our data, since vDM

r (r)
is very close to the linear prediction and never less than it.
However, note that incorrectly assuming a linear bias for the
density profiles, ∆ = ξr/b in Eq. 11 (shown by the dashed
line in Figure 2) does indeed consistently overestimate the
true velocity outflow. This can be understood by reference
to Figure 1, which shows that assuming a linear bias over-
estimates the true matter deficit within the void.

The lower panel of Figure 2 shows the velocity disper-
sion σgal

v|| as a function of radial distance. Errors are esti-
mated assuming velocities follow a normal distribution. The
dispersion is approximately constant outside the void radius
but decreases in the interior region, with a sharp drop in
the same region as the measured radial velocity starts to
deviate from the linear prediction. In the interiormost bins,
the small number of void-galaxy pairs means the dispersion
cannot be reliably estimated, so these points are excluded.

Where the dispersion σgal
v|| can be measured, it is always

significantly larger than the mean radial velocity. This is in
agreement with Achitouv (2017) but differs from the results
of Hamaus et al. (2015) and Cai et al. (2016), who report a
much smaller dispersion within the mean void radius. It is
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Figure 3. Normalised histograms (blue) for the line-of-sight velocity component for galaxies in four bins of the radial void-galaxy

separation distance, as indicated in the text insets. The black solid curves represent Gaussian distributions with widths equal to the

corresponding values of σgal
v|| (r) in Figure 2.
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Figure 4. Left : The 2D void-galaxy cross-correlation function ξs(σ, π) in redshift space measured for voids in the simulation. Dashed

curves indicate contour lines for ξs = −0.9, −0.6 and −0.3, the solid curve is the contour ξs = 0. Centre: The corresponding theoretical

prediction for our linear model. Eq. 14. Right : The model prediction for the model of Cai et al. (2016), Eq. 28. Note that in this case the
colour scale is saturated at the centre, as the model predicts ξs < −1.

possible this is due to the use of equal weighting for each void
rather than each void-galaxy pair in the latter two papers.

Figure 3 shows the measured probability distribution
function for line of sight velocities in four different bins of
r, compared to the Gaussian distribution assumed in Eq. 26
with σv set to the corresponding value of σgal

v|| . The distri-
bution is symmetric around zero at all scales, and close to
Gaussian at small scales, although at large separation scales
exponential wings are seen which deviate from Gaussianity.
At these large scales the impact of dispersion itself is small.
Therefore the Gaussian assumption, while not strictly cor-

rect, still provides a good fit—as we show later. Note that
this is quite different from the case for the distribution of
pairwise velocities for galaxies, which is highly skewed at
small scales and far from Gaussian at all scales (Scoccimarro
2004).

4.3 Redshift space correlation function

Figure 4 shows the measured redshift space cross-correlation
ξs(σ, π) as a function of the transverse and line-of-sight dis-
tances, compared to the prediction from our model, Eq. 14,
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Figure 6. Cross-correlation coefficients of the covariance matrix

for multipoles of ξs, Cij , defined in Eq. 34. The dashed black lines

divide the monopole (lower left block) and quadrupole (upper
right) contributions.

and that of the model of Cai et al. (2016), Eq. 28. The qual-
itative features visible in the data can be understood on the
basis of the equations derived in Section 3.1 above. Close to
the void centre, the measured ξs shows approximate spher-
ical symmetry. At intermediate distances, the effect of the
coordinate shift discussed in Section 3.1 causes an elonga-
tion effect, stretching the contours of equal ξs along the line
of sight direction. At large distances, s ' Rv = 55 h−1Mpc,
this effect is reversed, with a relative squashing of the con-
tours of ξs(σ, π) along the line of sight direction.

To better understand the relative merits of the two the-
oretical models, Figure 5 shows the residual difference be-
tween the measured ξs(σ, π) and the predicted correlation
functions in the two cases. It is clear that the model of
Cai et al. (2016) is a very poor fit to the data at all radial
separations within the mean void radius Rv, and particu-
larly so very close to the centre, where Eq. 28 predicts un-
physical values of ξs < −1. By contrast, the inclusion of the

(1 + ξr(r)) factors in Eq. 14 correctly ensures that the theory
prediction matches the measured value at the void centre—
where in fact RSD effects are absent, ξs(s) ' ξr(s)—and
also produces a much better fit to the data at all distances
within the void interior.

Nevertheless, Figure 5 shows that even for the improved
model, when the velocity dispersion term is not included the
theory residuals are still potentially significant. To perform a
quantitative analysis, we instead perform a multipole expan-
sion of the angular correlation function ξs(s, µ) from the sim-
ulation data to extract the monopole and quadrupole terms
using Eq. 20 for comparison with theory. The multipoles are
measured in 50 radial bins in the range 0 ≤ s ≤ 120 h−1Mpc,
and we use 100 bins in µ. Note that we do not rescale radial
distances by the void radius, thus using the same bin sizes
for each void. Such a rescaling would constitute a strong as-
sumption of self-similarity in void profiles, which is not justi-
fied (Nadathur & Hotchkiss 2015b,a; Nadathur et al. 2017).

To estimate the error in this measurement we use a jack-
knife resampling technique. We divide our simulation box
into Ns = 512 non-overlapping cubic sub-boxes, each mea-
suring 312.5 h−1Mpc on a side, and determine the correla-
tion function and multipoles excluding each sub-box in turn,
which we combine into the data vector y(k) = (ξ

(k)
0 , ξ

(k)
2 ), for

k = 1, . . . , Ns. The covariance matrix is then determined as

Cij =
Ns − 1

Ns

Ns∑
k=1

(
y

(k)
i − yi

)(
y

(k)
j − yj

)
. (34)

Figure 6 shows the resulting matrix of cross-correlation coef-
ficients. For the monopole, this matrix is far from diagonal,
showing strong correlation between bins even at large sepa-
rations. For the quadrupole it is closer to diagonal, although
correlations between neighbouring bins are still significant,
especially at large separations s. The χ2 values for the fit of
a given theoretical model to the data are calculated as

χ2 =
∑
ij

(
yth
i − yi

)
C−1
ij

(
yth
j − yj

)
. (35)

Figure 7 shows the measured values of the monopole
ξs0(s) and quadrupole ξs2(s) from the simulation data, com-
pared to theory predictions derived in the previous section
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Figure 7. Measured multipoles of the redshift space void-galaxy cross-correlation ξs as a function of the radial void-galaxy separation

s (data points). Error bars are derived from diagonal elements of the estimated covariance matrix. Left : The monopole ξs0(s). For visual
clarity, this is plotted as the difference ξs0 − ξr compared to the real space monopole, shown in Figure 1. Right : The quadrupole ξs2(s).

In both panels, the solid curve shows the theoretical prediction for our full linear model including velocity dispersion, using Eq. 25;
the dashed curve is the prediction for the linear model without the velocity dispersion term, using Eq. 14; and the dotted curve is the

prediction for the incomplete model of Eq. 28.

evaluated using the fiducial growth rate f = 0.761. For vi-
sual clarity, the monopole values are shown as the difference
with respect to the real space version, ξs0−ξr. Two important
features are immediately apparent: the quadrupole changes
sign within the void interior, with a negative dip at inter-
mediate values of s changing to a broad ξs2(s) > 0 feature
at s ' Rv = 55 h−1Mpc; and the redshift space monopole
differs from the real space version only at intermediate s,
with ξs0 − ξr ' 0 both at the very centre (where ξr ' −1)
and around the mean void radius.

The dashed curves in each panel show the predictions of
the basic linear model derived from Eq. 14 without account-
ing for velocity dispersion: these capture the main qualita-
tive features above but do not provide a good fit to the data,
as expected from visual inspection of the residuals in Fig-
ure 5. The solid curves show the prediction for the linear
dispersion model of Eqs. 25 and 26, where we have used
the radial dependence of the dispersion σv(r) measured in
the data, shown in Figure 2. This model provides an excel-
lent fit to the data at all scales: the χ2/d.o.f. values for this
model are 41.1/48 for the monopole alone, 54.3/48 for the
quadrupole alone, and 121.3/98 for both combined.

Finally, the dotted curves in Figure 7 show the pre-
dictions for ξs0 and ξs2 according to the model presented by
Cai et al. (2016); Hamaus et al. (2017), Eqs. 29 and 30. Un-
surprisingly, this model does not successfully describe the
data at any point within the void interior. Outside the mean
void radiusRv = 55 h−1Mpc, the multipoles from this model
approach the correct expression: this explains the observa-
tion of Cai et al. (2016) that the linear growth rate estimator
proposed in that paper works only in the region s > Rv.

Table 1 compares the goodness of fit for the various
models discussed: here ‘lin.+dispersion’ refers to the full lin-
ear dispersion model above, ‘lin.+dispersion+bias’ to this
model with the additional simplifying linear bias assump-
tion ξr(r)/b = δ(r), ‘lin. only’ to the model without disper-
sion, Eq. 14, and ‘lin.+bias’ to this model with the addition
of the bias assumption, Eq. 17. The fit for the streaming

Table 1. χ2/d.o.f. values for fit to data with different models,
using the fiducial growth rate for the simulation. See text for

details.

Model χ2/d.o.f
monopole quadrupole combined

lin.+dispersion 0.90 1.17 1.18

lin.+dispersion+bias 1.44 1.61 1.72

lin. only 5.75 5.86 7.39
lin.+bias 8.63 8.50 10.75

streaming model, Eq. 31 5.61 3.19 5.02
Cai et al. (2016), Eq. 28 2.4× 104 37.1 1.3× 104

model of Eq. 31 uses δ(r) (without the linear bias assump-
tion) to obtain vr(r), and σv(r) measured from simulation,
so can be directly compared to the dispersion model without
bias. The fit for the Cai et al. (2016) model includes the bias
assumption, as in Eq. 28.

5 MEASURING THE GROWTH RATE

We have seen that the fiducial linear dispersion model for
the RSD in the void-galaxy correlation provides an excellent
description of the multipoles measured from simulation at all
scales. An interesting question is how this model might be
used to determine the value of growth rate f within voids
from fits to data.

As discussed in Section 3.3, it is not possible to con-
struct an estimator for f from the ratio of measured redshift
space multipoles. Therefore to fully specify the model and
calculate the multipoles for a given value of f in principle re-
quires knowledge of three functions: ξr(r), δ(r), and σgal

v|| (r).
All three depend strongly on the void-finding algorithm and
the choice of centre for stacking, as well as potentially having
a smaller cosmological dependence.
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Figure 8. Likelihood for the growth rate f , obtained from fits

of Eq. 25 to the measured multipoles of the void-galaxy cross-
correlation, corresponding to a recovered value f = 0.78 ± 0.02,

a 2.7% constraint. The dashed and dotted curves show the like-

lihoods for fits to the monopole and quadrupole separately. The
functions δ(r) and σv|| (r) are calibrated from the simulation. The

vertical line indicates the fiducial value of the growth rate.

Of these, the most important input to the model
is the real space correlation function ξr(r), which can-
not be measured directly. A plausible procedure would
be to calibrate ξr using fits to the real space void pro-
file in simulated mocks before use in the RSD model.
This is the procedure followed by Hamaus et al. (2015,
2016); Achitouv et al. (2017); Achitouv (2017). Vari-
ous fitting formulae have been described in the litera-
ture, e.g. Hamaus et al. (2014); Ricciardelli et al. (2014);
Nadathur et al. (2015); Nadathur & Hotchkiss (2015b,a);
Barreira et al. (2015); Cautun et al. (2016). However, there
is no consensus on any particular fitting form, and in any
case the fit will strongly depend on the void-finding and
stacking algorithms as well as on the properties of the galaxy
sample in question (Nadathur & Hotchkiss 2015a), so the
calibration needs to be performed on a case-by-case basis.
Alternative methods to obtain ξr are by deprojecting the
redshift space monopole ξs0 (Pisani et al. 2014) or by using
reconstruction techniques (Nadathur et al. 2019).

In principle the matter overdensity profile δr(r) can
be determined independently of ξr(r) through void lens-
ing measurements (Krause et al. 2013; Melchior et al. 2014;
Clampitt & Jain 2015; Sánchez et al. 2017). Alternatively,
it could also be calibrated from simulations as for ξr. Use
of the linear bias assumption δ(r) = ξr(r)/b is however not
a good approximation if the void-galaxy correlation is to
be determined for the same galaxy tracers used to identify
the voids. This is because of the selection effect described
in Section 3.2, that introduces a systematic scale-dependent
shift to the inferred relationship between ξr(r) and δ(r). For
instance, using the linear bias approximation for our simu-
lation data leads to errors in the predicted quadrupole ξs2 of
up to 20%.

The other piece of information required to perform a fit
for f is the dispersion relation σv||(r). It is possible that fu-
ture work on a complete streaming model for the void-galaxy
case may allow this function to be determined theoretically
from ξr(r) and δ(r), or it could be calibrated from simula-

Table 2. Constraints on f obtained from fits to data in dif-

ferent separation ranges relative to the mean void radius Rv =

55.6 h−1Mpc.

Data range f

s < 0.5Rv 0.79± 0.03

s < Rv 0.77± 0.02

all s < 120 h−1Mpc 0.78± 0.02

tion in the same way as δ(r). At present we take its value
directly from the simulation measurements. This leaves only
a single free parameter in our model: the growth rate f .

Allowing f to vary and fitting to the measured multipole
data using Eq. 25, we obtain the posterior likelihoods shown
in Figure 8. This gives a recovered value of f = 0.78± 0.02
(68% c.l.), consistent with fiducial value f = 0.761 for the
simulation, and corresponding to a 2.7% precision for our
simulation volume of (2.5 h−1Gpc)3. The constraints ob-
tained from the monopole and quadrupole taken individu-
ally are also shown, and are consistent with each other and
with the combined result.

Table 2 shows how the constraints on f change when
only data within different separation ranges are used for the
fits. In all cases the constraints obtained are consistent with
each other and the final value. It is also clear that almost all
of the constraining power of the data comes from the contri-
bution to ξs from galaxies within the void interiors, s < Rv,
which is the region where our model performs significantly
better than the alternatives.

Finally, we tested the effect on the measurement of
the growth rate of using the linear bias assumption δ(r) =
ξr(r)/b. Due to the failures described above, this leads to a
strongly biased estimator of β, with the reconstructed value
being more than 3σ smaller than the fiducial for fits to both
the quadrupole and monopole.

A popular alternative methodology (e.g. Hamaus et al.
2015; Cai et al. 2016; Achitouv 2017) is not to fix σv||(r)
from simulation but to parametrise it using some functional
form with one or more free parameters, which are to be
marginalised over. The simplest possible such parametrisa-
tion is to take it to be a constant,

σv||(r) = σ0. (36)

Figure 2 suggests that this might be a reasonable approxi-
mation separately in the void interior and exterior regions.
As sensitivity to the dispersion also decreases in the void
exterior, where σv � raH, it might be hoped that this ap-
proximation is sufficient to reconstruct f .

To test this, we fit the model to the measured multipoles
from the simulation data with f and σ0 as two free parame-
ters. ξr(r) and δ(r) are taken from the fits to the simulation
data as before. Figure 9 shows the resulting 1 and 2σ confi-
dence level contours determined from fitting the quadrupole
(blue) and monopole (red) separately. It is clear that the
addition of the additional parameter loosens the constraints
obtained considerably. The fit to the quadrupole provides
an unbiased reconstruction of the fiducial growth rate, with
the reconstructed value f = 0.72 ± 0.04 at 68% c.l. after
marginalizing over σ0, corresponding to a 5.3% constraint
lower than but consistent with the fiducial value f = 0.761.
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Figure 9. 68% and 95% confidence limit contours on the two
free parameters (f, σ0), where σ0 is a constant velocity dispersion,

from fits to the quadrupole (blue contours) and monopole (red)
from simulation data. The vertical line shows the fiducial value of

f for the simulation. Introducing σ0 as a free parameter weakens

the constraints on f . The quadrupole still provides an unbiased
estimate of f , with 5.3% precision, but the monopole estimator

is biased.

However, fitting to the monopole ξs0 gives a biased recon-
struction of the growth rate which is more than 3σ from
the fiducial value. This indicates a failure of the constant
dispersion model and limits the amount of information that
can be extracted from measurement of ξs if a constant σ0 is
assumed.

6 CONCLUSIONS

Measurement of redshift space distortions in the void-galaxy
correlation function ξs(s) is an important tool that can be
used to test for possible environmental dependence of the
growth rate of structures. In particular, the growth rate in
the lowest density regions close to void centres might contain
information about possible non-standard theories of gravity.
However, reconstructing the growth rate in voids requires a
model for ξs which can be trusted in these regions.

We have derived a configuration-space model for the
void-galaxy correlation in redshift space using linear theory,
which we characterise in terms of the multipole moments
of the correlation. Our model accounts for several terms
that are important within voids but have previously been
neglected. As a result we are able to account for important
physical effects that had not been appreciated, including the
change in sign of the quadrupole term within the void, indi-
cating a turnover point between stretching and squashing of
the contours of the correlation function along the line of sight
direction. The model can be broadened to include a disper-
sion in galaxy velocities along the line of sight; the dispersion
model thus obtained differs from the streaming model used
in previous studies, which was based on an inappropriate ap-
plication of the formula for the Gaussian streaming model
derived for the galaxy autocorrelation.

Comparing our model predictions to measurements of
ξs using void and galaxy catalogues at redshift z = 0.52
in the Big MultiDark simulation shows that the linear dis-
persion model provides an excellent fit to the data for all

values of the void-galaxy separation down to the minimum
bin width used, 2.4 h−1Mpc. This is an important contrast
to the modelling of RSD in the galaxy correlation, where
non-linear effects are very important at small pair separa-
tions and complicate the use of small-scale data. Compari-
son with the data shows that our linear model for the void-
galaxy correlation performs significantly better than others
in the literature, especially within the low density region of
interest.

A consequence of our results is that the ratio of the
redshift space monopole and quadrupole does not factorize
to give an estimator for the growth rate as for the model
of Eq. 28. However, as discussed above, this model does
not fit the data within the void interior, at s < Rv. The
quadrupole-to-monopole ratio has previously been used in
other works (Cai et al. 2016; Hamaus et al. 2017); however,
Nadathur et al. (2019) show that if used outside its regime
of validity it can lead to strongly biased estimates of the
growth rate.

Determination of the growth rate using the correct ex-
pression we provide requires knowledge of the real space cor-
relation function ξr(r), which can be taken from fits to sim-
ulations or possibly reconstructed from redshift space data.
Using functional forms for δ(r) and σv||(r) determined from
the simulation data, we show that fitting for the growth rate
yields f = 0.78± 0.02, a 2.7% constraint in good agreement
with the fiducial value f = 0.761. Assuming a constant dis-
persion with amplitude σv||(r) = σ0 taken as a free param-
eter, fits to the quadrupole alone still provide an unbiased
estimate of the true growth rate f after marginalising over
σ0, though with a reduced precision of 5.3%. However, the
assumption of a constant dispersion leads to a biased recon-
struction of the true f from the monopole data.

Our results also highlight two very important points
which have relevance to practical applications of this method
to measure RSD effects within voids. Firstly, if the galaxy
tracers used to measure the RSD effects are the same as
those used to identify the voids, an assumption of linear
galaxy bias within the void interior is not appropriate due
to statistical selection effects on the void size scale. Assum-
ing a constant linear bias leads to incorrect predictions from
the model, which possibly require the addition of empirical
non-linear correction terms (Achitouv 2017), even though
in reality linear theory continues to provide a good descrip-
tion of the dynamics. In order to overcome this problem,
in practical terms it would be better to use two differently
biased galaxy tracers covering the same volume to identify
void regions and to measure the RSD effects.

Secondly, we highlighted the assumptions inherent in
the derivation – in particular, the conservation of void num-
bers and the invariance of void positions under the redshift
space mapping – that are required to hold for consistent
comparison with the data. These assumptions are not unique
to the model of the void-galaxy RSD presented in this paper,
but are key features of all models in the literature (Paz et al.
2013; Cai et al. 2016; Achitouv et al. 2017; Achitouv 2017).
They hold by construction in our simulation data, because
we identify voids in the real space galaxy field. In general
if the voids are identified using galaxies in redshift space,
these assumptions fail (Zhao et al. 2016; Chuang et al. 2017;
Nadathur et al. 2019).

In survey data, where only redshift space information is
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available, a practical method to reconstruct the real space
void positions in order to allow fair comparison of theory and
data for ξs has been described by Nadathur et al. (2019).
This method is based on using a reconstruction algorithm
similar to that used for BAO detection in order to undo
RSD effects and approximately recover the real-space galaxy
distribution before performing void-finding. Nadathur et al.
(2019) show that the voids thus obtained match the true
real-space void population closely, thus satisfying the re-
quirements for the modelling presented in this work. This
demonstration is for the same galaxy mocks as used in this
work, which are designed to match those in the SDSS BOSS
data releases. The success of reconstruction depends on the
galaxy density, and is not expected to work in the limit of
poor sampling; however, note that successful reconstruction
is only required at galaxy locations as the shifts are ap-
plied to galaxy positions. Reconstruction is also expected
to fail in very high density regions due to multistreaming,
but for voids we are generally not interested in such regions.
These considerations mean that the reconstruction method
of Nadathur et al. (2019) is expected to be applicable for
all large-volume spectroscopic galaxy redshift surveys such
as BOSS, eBOSS, DESI or Euclid, where the same tech-
nique is also used for BAO detection. That is, these surveys
are designed to allow reconstruction to improve BAO mea-
surements, and where this is possible the same process can
always be used to obtain unbiased estimates of the growth
rate from void-galaxy RSD, as described by Nadathur et al.
(2019).

Finally, a comment on the relative merits of using the
void-galaxy correlation and the galaxy autocorrelation to
measure RSD is in order. It is true that unlike for the galaxy
RSD case, the model presented in this work is based only
on linear theory, and fits the simulation data extremely well
at all pair separations. It is particularly noteworthy that
dispersion effects can be easily accommodated within a lin-
ear model. These appear to be significant advantages over
the galaxy RSD case, for which quasi-linear modelling is
required and small-scale data is excluded when performing
fits. However, since most of the information in the void-
galaxy correlation comes from those galaxies in the void
interiors, this method also discards some of the available
data. One therefore should not necessarily expect it to out-
perform the standard analysis, as has sometimes been sug-
gested (Hamaus et al. 2017). Instead an advantage of the
void-galaxy RSD measurement is specifically to constrain
possible environmental dependence of the growth rate in
low-density regions. It also provides a complementary mea-
surement technique that is sensitive to different systematics.

The model presented in this work depends only on the
growth rate f , with functions δ(r) and σv||(r) calibrated
directly from simulation for a single cosmological model. In
practical application of this technique to analysis of data
from redshift surveys, a number of additional parameters
would be introduced, which could be treated as nuisance
parameters and marginalised over. These include σ8 (which
would modulate the calibrated amplitude of δ(r)), bias b
(which is required for reconstruction; Nadathur et al. 2019),
and σv|| .
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APPENDIX A: EFFECTS OF VOID CENTRE
DEFINITION

Throughout this work, we have used the void centre defi-
nition introduced by Nadathur & Hotchkiss (2015b), which
places the void centre at the point furthest removed from the
galaxy positions, i.e. the point of minimum galaxy density
within the void. The choice of void centre is however not un-
ambiguous, and alternative definitions have previously been
used in the literature. In particular, Hamaus et al. (2017)
define the void centre to be the volume-weighted barycen-
tre of the positions of galaxies within the void. The choice of
centre for stacking can affect details of the measured ξvg val-
ues in both real and redshift space. However the derivation

of the theoretical model makes no assumptions about the
choice of centre. The purpose of this appendix is to explic-
itly demonstrate that that the primary conclusions of this
work, viz.:

(i) the terms proportional to ξδ and ξ∆ are comparable
to δ and ∆, and must be retained in the expansion of Eq. 13;

(ii) the linear bias relationship ξr(r) = bδ(r) does not
apply within voids;

(iii) in the void interior regions, the model proposed in
this paper, Eq. 25, performs significantly better than that
of Eq. 28,

are independent of the choice of void centre.
The first two of these statements are illustrated by Fig-

ure A1, which shows the same profiles and residuals as in
Figure 1 except with distances measured relative to the
void barycentres. The left panel shows that the measured
ξr(r) and δ(r) profiles differ somewhat from those in Fig-
ure 1, in particular showing lower density contrasts at the
void centres. This is expected, because the barycentre po-
sition is known to be a worse tracer of the region of un-
derdensity within a void (Nadathur & Hotchkiss 2015b,a;
Nadathur et al. 2017). In particular, ξr(r) shows a charac-
teristic increase at small r as noted in several previous works.
However, the terms δ(r)ξr(r) and ∆(r)ξr(r) are still clearly
of the same order as δ(r) within the void interior. The right
panel shows that the linear bias approximation also does
not apply for barycentre stacks, with a similar pattern of
large and scale-dependent residuals from the bias relation-
ship being observed. Neglecting both these effects, as done
by Cai et al. (2016) and Hamaus et al. (2017) in deriving
Eq. 28, therefore still results in an incomplete model inde-
pendent of the choice of centre.

To demonstrate this explicitly, Figure A2 shows the
multipoles ξs0(s) and ξs2(s) measured from the simulation for
the same voids as in Figure 7, but for stacks based around
the void barycentres. The curves shown on the plot corre-
spond to the same theoretical models as before, i.e. Eq. 25
(solid line), Eq. 14 (dashed), and Eq. 28 (dotted). The the-
oretical curves differ from those shown in Figure 7 because
the input ξr(r), δ(r) etc. differ for barycentre stacks.

Comparison of theory and data shows the same qualita-
tive conclusions hold as before: i.e., Eq. 28 does not correctly
describe the measured multipoles, whereas Eq. 25 provides
a much better description. However, Figures 7 and A2 also
reveal import differences. Firstly, for both the monopole and
the quadrupole, the amplitude of the RSD effect is smaller
for the barycentre stacks, and the data is significantly nois-
ier, with much larger error bars, as we have also checked by
comparison of the full covariance matrices. This means that
stacking around the void barycentre is sub-optimal for void
RSD measurements. Secondly, the linear dispersion model
of Eq. 25, while qualitatively still correctly capturing the
physics, now provides a significantly worse quantitative fit
to the data: the reduced χ2 values are now 1.63, 1.37 and
1.76 for fits to monopole, quadrupole, and both combined.
These should be compared to the first line of Table 1.

The reason for this deterioration of the model fit can
be understood by reference to Figure A3. This shows that
for barycentre stacks, the measured velocity profiles vgal

r (r)
(data points) and vDM

r (r) (thin solid curve) both differ much
more strongly from the linear theory prediction based on
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Figure A1. Same as Figure 1, and for the same void and galaxy data, but with distances from the void centres defined relative to the

void barycentres.
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Figure A2. Same as Figure 7, but for stacks centred on the void barycentre positions.

Eq. 11 (thick solid curve) at small r than for the stacks
around the minimum density centre (Figure 2). This means
that the assumption of the validity of the linear dynamics
governed by the void density profile ∆(r) alone is less valid
for stacks around the barycentre. A likely reason for this is
that since void barycentre positions do not trace the position
of the true minimum density within the void, they also are
worse tracers of the stationary points of the velocity field;
that is, large-scale velocity gradients across the void lead-
ing to deviations from Eq. 11 are more significant for stacks
centred at the void barycentre positions. This explanation
is consistent with the results of Nadathur et al. (2017), who
show that void barycentre positions are worse tracers of
maxima of the gravitational potential, where ∇Φ = 0 and
thus the linear velocity outflow is locally spherically sym-
metric.
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Figure A3. Same as Figure 2, but for stacks centred on the void

barycentre positions.
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