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Abstract. The range to which the Laser Interferometer Gravitational-Wave

Observatory (LIGO) can observe astrophysical systems varies over time, limited by

noise in the instruments and their environments. Identifying and removing the

sources of noise that limit LIGO’s range enables higher signal-to-noise observations

and increases the number of observations. The LIGO observatories are continuously

monitored by hundreds of thousands of auxiliary channels that may contain information

about these noise sources. This paper describes an algorithm that uses linear

regression, namely lasso (least absolute shrinkage and selection operator) regression,

to analyze all of these channels and identify a small subset of them that can be used

to reconstruct variations in LIGO’s astrophysical range. Exemplary results of the

application of this method to three different periods of LIGO Livingston data are

presented, along with computational performance and current limitations.
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1. Introduction

The Laser Interferometer Gravitational-Wave Observatory (LIGO) [1] dramatically

opened the field of gravitational-wave astronomy in 2015 by observing the merging

binary black hole system GW150914 [2]. LIGO and Virgo [3] have since observed several

more black hole mergers [4, 5, 6, 7, 8]. In 2017, LIGO and Virgo debuted gravitational-

wave multi-messenger astronomy with the discovery of the binary neutron star merger

GW170817 [9] and rapidly reported its source’s location, leading to electromagnetic

observation by the astronomical community [10]. These breakthroughs, measurements of

the incredibly minute changes in spacetime caused by astrophysical gravitational waves,

were the direct result of decades of research and development leading to observatories

with unprecedented sensitivity.

LIGO Hanford (H1) and LIGO Livingston (L1) are highly complex kilometer-scale

laser interferometric detectors [1]. Their sensitivity to gravitational waves is limited

by sources of noise in the instruments and their environments. A common benchmark

of this sensitivity is the “binary-neutron-star (BNS) range”, which is defined as the

distance at which a single detector could observe the coalescence of a pair of 1.4 solar

mass neutron stars with a signal-to-noise ratio of 8 [11, 12]. During LIGO’s first two

observing runs, O1 and O2, the range of each detector varied significantly on minute and

hourly timescales, often by tens of percent. Identifying and removing the causes of this

variation to maximize the range would lead to higher signal-to-noise observations and

would dramatically increase the number of observations because the volume of space

accessible is proportional to the cube of the range.

Operating the LIGO detectors at the sensitivity needed for gravitational-wave

detection requires a large number of control loops and sensors to precisely control and

monitor the instrumentation and environment. The channels that continually record

information from these sensors enable investigations into problematic variations in the

sensitivity of the detector. However, due to the complexity of the system, the number of

auxiliary sensor channels is roughly 500,000. Searching through such a large amount of

data to determine which sensors are most highly correlated with variations in the range

is a formidable yet important challenge.

Previous work to address this challenge includes the Non-stationary Noise Analysis

(NonNA) [13, 14], based on ordinary least squares analysis performed in multiple rounds

to select auxiliary channels with large contributions to a primary time series, such as

the BNS range. In brief, that method works by performing linear regression of the

primary time series with a number of auxiliary channels, and the channel whose fit has

the smallest residual is noted and its contribution subtracted away from the main time

series. This process is iterated, resulting in a ranked list of auxiliary channels that are

strongly correlated with the main time series.

This paper describes an algorithm that uses regularized linear regression to analyze

hundreds of thousands of channels over long time periods (typically 24 hours) and

identify a small subset of those channels that can be used to reconstruct the variations
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in the BNS range. Further, it uses correlation analysis to identify groups of channels

with similar behavior to those chosen for the model. This results in a relatively short list

of channels that can be investigated further to help identify the root causes of variations

in the detector’s range.

2. Linear Regression Methods

Regression methods can be employed to discern relationships between the auxiliary

channels and the range, by treating the channel data as input variables to model the

range as the output. Each channel provides a time series vector xi as input, and so we

let X = (Xij) denote the matrix whose j-th column denotes the time series for channel

j. We then seek a linear regression model of the form

f(X) =
∑
j

Xijβj. (1)

Here, β = (βj) is the regression coefficient vector, to be determined by the regression

scheme, where the j-th component is the regression coefficient for channel j. Ordinary

least squares (OLS) regression corresponds to choosing β to minimize the error in the

output of the model, measured by the residual sum of squares [15],

RSS(β) = ||y −Xβ||2 =
∑
i

||yi −
∑
j

Xijβj||2, (2)

where y = (yi) represents the time series for the range.

Am
pl

itu
de

a) underfit 
Time

b) good fit c) overfit 

Figure 1. An example of different levels of fitting, underfit on the left using first order

ordinary least squares, well-fit in the center, and overfit on the right.

A large variety of regression methods exist today, and the selection of an appropriate

method depends on the application. One challenge of choosing a regression technique

is finding the right balance between two competing virtues: variance and bias. On one

hand, a desirable model accurately fits the variations in the data, but on the other hand,

the model is more useful if it is simple and interpretable. Placing too much emphasis

on the variance can lead to overfitting (see Figure 1), in which the model fits random

statistical variations in the output data, rather than the targeted variations. For large

data sets in particular, this may result in a highly complex model that may be difficult

to interpret, or even misleading. To simplify a model, the amount of variation can be
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reduced by introducing a bias toward certain input variables or by eliminating a subset

of the inputs altogether.

In our case, because LIGO is such a complex instrument, the number of auxiliary

channels is so large, and scientists’ time to fix problems is so limited, interpretability of

the model is of primary importance. The goal is to identify the channels that correlate

significantly with the range and eliminate the channels that do not. We expect the

number of important channels to be a very small percentage of the total — more simply

put, we are searching for the proverbial “needle in the haystack”.

The process of determining which input variables to keep in a model is called feature

selection. One approach to feature selection is regularization of the allowed values of

coefficients by introducing a penalty term Pα to the minimization function used in the

regression analysis, in addition to the residual sum of squares (Equation 2):

||y −Xβ||2 + Pα(β), (3)

where α is a tunable parameter that penalizes overfitting by reducing or eliminating

the contributions from unnecessary input variables. Two common and powerful

approaches to regularized regression are ridge regression [16] and lasso regression [17],

which correspond to penalty terms PR
α (β) and PL

α (β) respectively:

PR
α (β) = α

p∑
i=0

β2
i , PL

α (β) = α
p∑
i=0

|βi| (4)

While ridge regression merely reduces the values of the coefficients of the less

desirable explanatory variables, lasso regression tends to shrink coefficients to zero,

thereby completely eliminating those variables from the model. The difference in

behavior between these two regression methods can be understood geometrically in the

vector space defined by the possible values of the coefficients. The regularization terms

constrain the coefficient vector within a neighborhood whose shape varies depending on

the choice of geometry of the vector space, which is determined by the definition of the

norm (or length) of a vector. Ridge regression corresponds to the L2 norm while lasso

regression is defined using the L1 norm. In familiar Euclidean geometry, which uses

the L2 norm, the length of a vector x in two dimensions is
√
x21 + x22. In this geometry,

vectors with equal length trace out a circle around the origin. The L1 norm is the

sum of the absolute values of the components of the vector. Vectors of equal length in

a two-dimensional space in this geometry create a diamond-shaped region around the

origin, with corners on the axes.

Figure 2 illustrates the two-dimensional case of the L1 and L2 neighborhoods created

by the penalty terms in Equation 4, along with contour ellipses representing constant

least squares error values. Minimizing the cost function in Equation 3 is geometrically

equivalent to finding the lowest error ellipse that intersects the neighborhood defined

by the penalty. The point of this intersection determines the regression coefficients.

Intersections are likely to occur at the corners in the L1 case, and since the corners lie

on axes, the result sets one component of β to zero. This feature of lasso regression
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makes it an ideal tool for our case, as it can eliminate many of the auxiliary channels

to create a simple model based on the most important ones.

β

β

β

ˆ

2

1

β

β

β

ˆ

2

1

Figure 2. A geometric illustration of how lasso sets certain auxiliary channel

coefficients to zero (left) compared with ridge regression (right), illustrated in a two-

dimensional coefficient space. The dashed arrow represents the coefficient vector that

would minimize the least squares error, and the ellipses surrounding this point are

contours of equal error. The blue diamond and circle are the constraints placed on

the model by lasso and ridge regression, respectively. By forcing the coefficient vector

to lie within this region, the final coefficients chosen are the red arrows. While the

final coefficients are smaller than ordinary least squares in both cases, the choice of

coefficients in lasso sets β1 equal to zero, eliminating it from the model.

3. Algorithm

We first developed a simple algorithm to identify correlations between the range of each

LIGO detector and thousands of LIGO’s auxiliary channels, based on Spearman and

Pearson correlation coefficients. The inputs to this algorithm are the binary neutron

star range of LIGO, sampled once per minute, and minute trends of all or a subset

of LIGO’s auxiliary channels. It calculates the Spearman and Pearson correlation

coefficient between each auxiliary channel and the range, and then produces a webpage

that ranks the channels by their highest overall correlation coefficient. For each channel,

it also provides graphs such as time series overlays and correlation scatter plots. This

algorithm, though very simple, is capable of identifying groups of channels that are

related to the sensitivity fluctuations of LIGO.

However, this approach does not often lead to easily interpretable results. With

so many auxiliary channels, results with high correlation coefficient are often those

witnessing the same phenomena. Thus, only the set of channels that witness the leading

driver of the range fluctuations are highlighted, and those that may relate to subtler

variations in the range are buried in a long list due to their lower correlation coefficients.
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For these reasons, we chose to use lasso regression to create a model for the range

using a small ranked list of auxiliary channels, rather than an exhaustive list [17]. As

we describe below, lasso regression is able to identify the channels related to the noise

sources driving range variations, and can be tuned to use only about 10 channels to

construct an accurate model of the range, even when provided with thousands of input

auxiliary channels. Furthermore, the Pearson correlation coefficient can be used to

compare each of the small set of channels selected by lasso with all other channels in

order to identify “clusters” of channels that are highly correlated with the channels used

in the model.

A flowchart of the algorithm is shown in Figure 3. The algorithm is implemented

in software using Python and relies on GWpy [18], a package for gravitational-wave

astrophysics, and the machine learning package scikit-learn [19], which contains the

functions used to scale the data and create the lasso model.

3.1. Initialization, data retrieval, and preprocessing

The software is initialized from the command-line or as part of a workflow with input

arguments provided by the user (see Table 1) and a list of the names of auxiliary channels

to consider. See the appendix for brief descriptions of the channels mentioned in this

paper.

Table 1. Primary input arguments for the algorithm.
Argument Description (default)

Interferometer Which interferometer, H1 or L1, to run on

Analysis time Start and end GPS time of analysis

Lasso alpha Alpha parameter for lasso model (0.1)

Cluster threshold Threshold Pearson coefficient for clustering (.85)

Outlier removal sigma The number of standard deviations used for outlier removal (3.0)

After the input arguments have been processed, the time series for the range channel

is retrieved for the time and interferometer requested. LIGO’s range data often has

large downward excursions from the general slowly-varying trends, corresponding to

loud noise transients that affect the range calculation for a short time. Since the causes

of these spikes are better analyzed using transient noise analyses than this tool, which

targets slower variations in the data, outliers beyond a user-specified number of standard

deviations are optionally removed from the range data.

Based on the provided channel list, a time series for each auxiliary channel is also

retrieved. Since many of these channels provide a record of instrumental settings that do

not change during observing periods, channels that have constant values during the time

interval of the analysis are identified (by checking whether the minimum and maximum

values in their time series are equal) and removed. Additionally, channels containing

any NaN values (Not a Number, used to indicate zeros, infinities or other non-numerical

values) are removed. With these channels removed, both the range time series and
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Start

Load time series data

Remove auxiliary channel 
time series that are �at or 

contain NaN

Scale primary and 
remaining auxiliary data

Create lasso model of 
primary channel using 

auxiliary channels

Create sorted list of 
auxiliary channels with 
non-zero coe�cients

Get next non-zero channel Generate HTML webpage

Create plots and perform 
clustering for the channel

More 
non-zero 

channels left 
to process?

Minute trend 
stored data

Primary data

Yes

Auxiliary 
channel list

End

Initialize all coe�cients 
to zero

Minimize cost over
this channel

Update channel coe�cient

ReturnConvergence 
reached?

More 
channels left 
to minimize?

Get next channel

No

Yes

Yes

No

No

Input arguments

Auxiliary data

Figure 3. Flowchart of the primary operations of the algorithm. Inset: Creation of

the lasso model using the scikit-learn lasso method.

the auxiliary channel time series are scaled to have zero mean and unit variance using

scikit-learn’s preprocessing module.
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Figure 4. LIGO range and lasso model comparisons. Top row: individual

contributions of auxiliary channels to the lasso model. Bottom row: Cumulative sum

contributions of auxiliary channels to the lasso model, starting with the channel with

the highest coefficient.

3.2. Lasso model

Using scikit-learn’s lasso method, lasso regression is performed to construct a model

of the range data using the auxiliary data channels. As described in Section 2, the

regularization parameter, alpha, determines how many of the channel coefficients will

be driven to zero. A larger alpha value will result in fewer channels being used in

the model. With an appropriate choice of regularization parameter, the lasso process

drives most of the auxiliary channel coefficients to zero and constructs a model using a

small subset of channels (usually a few to a dozen) with non-zero lasso coefficients. The
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list of channels with non-zero coefficients is ranked by the absolute values of their lasso

coefficients, showing the relative contribution of each channel to the model, independent

of sign. To visualize the model and its relation to the range, several summary plots are

created, as shown in Figure 4.

3.3. Details of relevant channels

0 1 2 3 4 5

Time [hours] from 2017-02-18 05:59:42 UTC (1171432800)

84

86

88

90

92

S
en

si
ti

ve
ra

n
ge

[M
p

c]

L1 BNS Range

L1:HPI-ETMY ISO X OUT16.mean

−1296 −1295 −1294 −1293 −1292 −1291 −1290 −1289

L1:HPI-ETMY ISO X OUT16.mean [Channel units]

84

86

88

90

92

S
en

si
ti

ve
ra

n
ge

[M
p

c]

r = -0.63

Figure 5. Plots comparing fluctuations in an individual channel to those in the range.

Above: Time series plot for the range channel and the auxiliary channel, both scaled.

Below: Scatter plot of the same two channels in their original units, including the line

of best fit and Pearson correlation coefficient found using ordinary linear regression.

For each auxiliary channel used in the lasso model, additional plots and information

are placed into an expandable tab in an accordion on the output webpage. To visualize

how a given channel’s fluctuations relate to the range’s fluctuations, each tab contains

subplots of the channel’s unscaled time series and the range’s unscaled time series, an

overlay of the two time series scaled to Megaparsecs, and a scatter plot of the two

channels’ data (along with an assessment of linear correlation between that channel and

the range), as shown in Figure 5.
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Many of LIGO’s auxiliary channels are themselves highly correlated, and thus a

channel selected by lasso may actually be a representative of a large group of channels.

Knowing which channels belong to this group can be very useful in diagnosing the

physical mechanism driving range fluctuations. For this reason, for each channel in the

lasso model, a cluster of channels whose Pearson linear correlation coefficient is above

a given threshold are identified, listed, and plotted. An example cluster of channels is

shown in Figure 6.
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Figure 6. Relative humidity outside of the LIGO Livingston corner station, and

a group of 12 other channels identified as closely correlated (Pearson coefficient

absolute value greater than 0.9). Related channels include other measures of humidity,

temperatures, fans, and a monitor of radio waves. (See [20] for an analysis of the effects

of temperature and humidity on radio signal sensors.)

3.4. Webpage output

Finally, an HTML webpage is generated containing the input parameters, lasso model

information and plots, text file lists of channels that were found to be flat or contain

NaNs, and an accordion with tabs for all channels used in the model, with their

individual suite of plots. The accordion’s channel containers are ranked and given a

corresponding color determined by the absolute value of their lasso coefficient. The

webpage is published to the LIGO Data Grid and thus made available to all members

of the LIGO Scientific Collaboration.

4. Exemplary Results

To be useful for gravitational-wave science, the algorithm should be able to robustly run

on long stretches (hours to days) of data and identify key sets of auxiliary channels that

relate to variations in the range. To test its performance, we ran the algorithm on data

from three representative situations: i) where a known single instrument malfunctioned,

strongly impacting the range, ii) where a local effect, sensed by a group of channels,
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affected the range, and iii) a typical stretch of data for which the drivers of range are

unknown.

4.1. Range corruption from a single source: The Livingston resistance temperature

detector
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Figure 7. Above: Binary neutron star range for LIGO Livingston for the O1 run [21].

Below: 200 minutes of Livingston BNS range data from December 11, 2015 13:29 UTC

(right axis) and data from the malfunctioning resistance temperature detector (RTD)

at the same time (left axis). The red vertical line in the upper plot indicates the start

time of the lower plot.

LIGO’s first observing run started in September 2015 and ended in January 2016.

Beginning in December 2015, until the end of the run, LIGO Livingston experienced a
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mysterious excess noise that caused its range to decrease significantly (from an average

of 65 Mpc to an average of 60 Mpc) and sometimes exhibit sudden changes [21, 22, 23], as

shown in Figure 7. After the observing run, instrument scientists on site determined that

misbehaving electronics in Livingston’s Y-end station were responsible for the excess

noise. Specifically, the broken sensor was a resistance temperature detector (RTD). This

sensor was used to measure the temperature of equipment in the vacuum enclosures

and was not intended to influence the interferometer in any way. However, during

these times the sensor exhibited excess noise that coupled through nearby equipment to

reduce LIGO Livingston’s range. Once the cause of this noise was discovered, it was, in

retrospect, evident that the RTD sensor’s noise fluctuations at times clearly resembled

the variations in Livingston’s range (right of Figure 7). Based on this experience, a

design goal for our algorithm is that it be able to quickly and automatically identify any

auxiliary channel, such as this one, that strongly correlates with changes in the range.

Figure 8 shows the lasso model results for a (more than three hour) period of time

during which the RTD sensor was malfunctioning. Using the full set of possible minute-

trend data from LIGO Livingston at this time (395,562 auxiliary channels, of which

67,360 were not flat) the algorithm identified the RTD sensor as its most significant

channel and only used six channels in its model. Additionally, clustering identified no

other closely related channels to the RTD sensor. Had this algorithm existed in 2015,

it may have allowed LIGO scientists to identify and fix this source of excess noise one

or two months earlier.

4.2. Range variations driven by a local effect: Livingston’s Y-end station

Early in LIGO’s second observing run, Livingston’s BNS range exhibited a strong

periodic variation, often 5 Mpc peak-to-peak, corresponding to variations of the

amplitude of a rounded bump of noise between 60 and 70 Hz in the detector’s strain

spectrum. Various studies associated the cause of the noise variations to be local to the

Y-end station [24, 25]. Figure 9 shows a 5 hour stretch of LIGO Livingston data from

February 18, 2017, when this noise was particularly apparent. The strong 35-minute

periodicity seen in the range is related to the cycle time of the air handling units used

to stabilize the temperature of the Y-end station.

Figure 9 also shows the lasso model results using 415,490 auxiliary channels (69,583

non-flat channels) that were recorded at this time. The dominant contributor to

the model is motion of the vacuum tank enclosing the Y-end mirror in the direction

transverse to the beam, which is shown in Figure 5. The four channels with the

largest coefficients are all related to seismic motion in the Y-end station. Additionally,

correlation analysis shows that each of these channels is part of a larger cluster of Y-end

station seismic channels exhibiting similar fluctuations.

Because many observables in the Y-end station are similarly driven by the air

handling unit, this model is more complex and less interpretable than the RTD sensor

example above. However, it does correctly identify the general location of the noise
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Figure 8. Model for range data during the resistance temperature detector

malfunction. Above: Binary neutron star range for LIGO Livingston between 2015-

12-11 13:29:43 and 16:59:43 UTC and the lasso model. Below: Individual channel

contributions to the lasso model.

driver. Several other periods in the days around this example exhibited similar range

fluctuations. The lasso models for these days also contained many channels from the

Y-end station, supporting this as a sustained effect.

4.3. Range variations with unknown noise sources: a typical day at Livingston

The previous two examples demonstrate that in situations where the drivers of the range

are strong and understood, our algorithm produces lasso models that identify channels

that are related to the cause. Often, however, the range is driven by multiple unknown

noise sources interacting in subtle ways, presenting a much greater challenge. Figure 10

shows the range from a relatively stable day at LIGO Livingston taken from LIGO’s

second observing run. The BNS range of the detector drifted slowly over the course of

a full day without any of the sharp jumps or obvious periodicity dominating the other

two examples.

The lasso model for this period is also shown in Figure 10. Of the three examples,

the leading coefficient in this model is the lowest. The first four leading contributors to

the model are shown scaled and overlaid with the range in Figure 11. The channel with

the largest coefficient measures the relative humidity outside of the LIGO corner station.

It is highly correlated with several measures of humidity and temperature across the

Livingston site, as shown in Figure 6. The channel with the second highest coefficient
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Figure 9. Model for range data during times with range variations driven by sources

local to the Livingston Y-end station. Above: Binary neutron star range for LIGO

Livingston between 2017-02-18 05:59:42 and 11:42:42 UTC and the lasso model. Below:

Individual channel contributions to the lasso model.

is designed to measure the electronics noise in a displacement sensor on the pendulum

suspending the signal recycling mirror. Other sensors from the same pendulum do not

exhibit the same behavior, so it is likely that this channel is not functioning properly.

This channel exhibits a sharp step that is coincident with a drop in the range, so it helps

the model but is not physically related. Further channels used by the model include the

power of the laser and tidally-driven ground motion, each of which exhibit a quite similar

shape to the range variations, and could, conceivably, be related to noise drivers of the

range, though further follow-up is needed to understand the potential noise coupling

mechanisms.

This example reveals some of the limitations of this algorithm when there is not a

single clear source of noise. Lasso identifies a diverse collection of channels that each

exhibit some of the characteristics of the range fluctuations, but the model is not entirely

convincing. For cases like this, the tool does not provide answers so much as potential

starting points for deeper investigations. One way to identify promising channels to

follow up is to compare the results of the algorithm using different sub-segments of the

same day or different values for the alpha parameter. For this example, dividing the day
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Figure 10. Lasso model for range data during a typical LIGO Livingston day. Above:

Binary neutron star range for LIGO Livingston between 2017-07-23 06:00:00 and 2017-

07-23 06:00:00 UTC and the lasso model. Below: Individual channel contributions to

the lasso model.

into different time segments and varying alpha led to mixed results, with only a subset

of channels appearing consistently.

4.4. Choice of alpha

For the examples above, we adjusted the alpha values to obtain interpretable models.

Figure 12 shows how the number of channels in the model varies with the chosen alpha

value. The RTD model uses fewer channels at all values of alpha and converges to three

channels for alpha greater than 0.15. This behavior is likely due to the fact that the

primary driver of the range variation is one broken sensor, which dominates the model.

The 24-hour model uses many more channels, still using more than 10 channels even

with an alpha value of 0.3. This points to a more intricate combination of potential

sources of noise. The Y-end station model is more complex than the RTD model, but
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Figure 11. BNS range for the day shown in Figure 10 and, overlaid, the time series

of the top four auxiliary channels in the lasso model, each scaled and multiplied by the

sign of their correlation coefficient.
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Figure 12. Number of channels used in the lasso model versus the value of alpha for

the times of the three examples discussed above. The actual alpha values used in the

examples were 0.12, 0.22, and 0.25, for the resistance temperature detector (RTD),

Y-end, and 24-hour cases, respectively. For an alpha of zero (not shown), the lasso

model reduces to ordinary least squares, and all non-flat channels (about 70,000) are

used.

at low alphas requires significantly fewer channels than the much more complicated 24-

hour model. These examples illustrate the variability and complexity of the lasso models

when applied to data with different lengths of time and strengths of noise coupling.

4.5. Computational costs

These results were generated on the LIGO Data Grid. They were each run on the

LIGO Livingston computer cluster’s head node, named ldas-pcdev5, which has 2.2GHz
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Xeon E5-2698v4 processors and 512GB of RAM. With multiprocessing enabled (up to

20 CPUs), the wall clock time for the runs were 0:21:44.9, 0:44:46.6, and 2:25:31.4 for

the RTD (3 hours of data), ETMY (5 hours of data), and 24-hour (24 hours of data)

results, respectively. The limiting factor in each case was data retrieval.

5. Conclusions

In this paper we have described an algorithm that uses lasso regression to construct

interpretable models of variations in LIGO’s range using auxiliary channels and

demonstrated its application to three periods of LIGO data. Work is currently underway

to automate this algorithm for daily running and display on the LIGO Summary

Pages [26, 18], with the goal of using the results to quickly identify and resolve

problematic instrumental couplings. For this purpose, we are investigating ways to

automate the choice of alpha so that the algorithm can reliably produce useful results.

Promising methods for making this choice include cross-validation and information

criteria [27].

As with any correlation method, these results do not imply causality. It is possible,

or even likely, that because of noise in the recording process or frequency-dependent

coupling, that the auxiliary channel with the very highest correlation is not the one

that is most closely related to the noise source. It will always be necessary to follow up

the results of this algorithm with physical calculations or experiments to test for bona

fide couplings. Toward this end, we have begun investigating interesting correlations

identified by this method in past LIGO data, but that work is beyond the scope of this

paper. A closely related tool that will inform future investigation into the physical noise

mechanisms is the noise budget, which measures the estimated spectral amplitude with

which various types of known noise couple to the detector output [21, 28, 29, 14].

This algorithm is a relatively simple application of statistical regression techniques

to LIGO data. It does not, for example, take into account time-dependent coupling,

nonlinearity or phase shifts, issues that are known to play a role in gravitational-wave

detectors. We are exploring other techniques, such as distance correlation [30, 31] and

Fourier methods, that show promise for incorporating more rich couplings.
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Appendix - Channel Information

The LIGO channels shown in this paper have long and complicated names, using a

series of abbreviations to specify the exact location, subsystem, and type of sensors

being recorded, according to a convention described in [32]. We have shown their full

names so this analysis could be reproduced using the same unique channels, and here

give brief descriptions of the channels.

Appendix A.1. Environmental Monitors

• L1:SEI-Y RTD STAGE1 SENSORB Resistance Temperature Detector associated

with the seismic isolation system at the the Y-end station

• L0:FMC-CS OUTSIDE RH Relative humidity outside the corner station

• L0:FMC-CS LVEA OUTSIDE TEMP Temperature outside the corner station

• L1:PEM-CS RADIO ROOF2 BROADBAND DQ Broadband radio signal at the

corner station

• L1:PEM-E{X,Y} TEMP AIR WEATHER DEG{C,F} Air temperature at the X-

or Y-end station in Celsius or Fahrenheit

Appendix A.2. Pre-stabilized laser system (PSL)

• L1:PSL-PWR HPL DC LP OUTPUT Pre-stabilized high-power laser power

• L1:PSL-PWR NPRO {INMON,OUT16} Pre-stabilized laser power out of the non-

planar ring oscillator

• L1:IOP-PSL0 MADC2 EPICS CH29 Pre-stabilized laser power

Appendix A.3. Seismic motion measured at different points in the seismic isolation

systems

Hydraulic external pre-isolation of the vacuum chambers (HPI):

• L1:HPI-ETMY ISO X OUT16 Y-end HPI in the X direction

• L1:HPI-ETMY BLRMS Z 30M Y-end seismic motion in the Z direction band

limited up to 30 mHz

• L1:HPI-ITMX BLRMS RX 10 30 Seismic motion at the input to the X-arm, band

limited 10 to 30 Hz, in the direction rotating around the X axis

Internal Seismic Isolation inside vacuum chambers (ISI):

• L1:ISI-BS ST1 FFB BLRMS RY 10 30 Seismic isolation of the beam splitter, band

limited from 10 to 30 Hz, in the direction rotating around the Y axis

• L1:ISI-ETMY ST2 SCSUM CPS RX IN DQ Capacitive position sensor, second

stage of internal seismic isolation of the Y-end test mass, in the direction rotating

around the X axis
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• L1:ISI-ETMY ST1 GNDSTSINF C Z {INMON,OUTPUT} Y-end seismic isola-

tion in the Z direction

Appendix A.4. Suspension sensors

• L1:SUS-ETMY R0 DAMP Y IN1 DQ Displacement at the top stage of the Y-end

reaction mass suspension in the yaw direction

• L1:SUS-SRM M2 NOISEMON LL OUT DQ Lower left displacement sensor on the

second stage of the signal recycling mirror

• L1:SUS-SR2 M1 RMSIMON LF MON Left front displacement sensor of the first

stage of one of the mirror suspensions in the signal recycling cavity

• L1:SUS-SR3 M1 VOLTMON T2 MON Voltage monitor in one of the actuators on

the top stage of one of the mirror suspensions in the signal recycling cavity

• L1:SUS-MC2 M1 DAMP P IN1 DQ Top stage pitch motion of the top stage of one

of the mirror suspensions in the input mode cleaner cavity

• L1:SUS-RM1 M1 WD OSEMAC LL RMSMON Top stage lower left displacement

sensor of a suspended steering mirror

• L1:SUS-RM1 M1 VOLTMON LL DQ Voltage monitor of the lower left actuator

on a suspended steering mirror

Appendix A.5. Other

• L1:SYS-TIMING Y FO A PORT 9 SLAVE GENERIC PAYLOAD 9 Monitor of

the Y-end timing system

• L1:OAF-CAL DARM DQ Calibrated differential length of the long arm cavities

• L1:IOP-ASC Y TR B DEMOD PIT I OUT DQ Pitch alignment signal sensed on

the transmitted light from the y-arm

• L1:CAL-PCALY TRANSMITTERMODULETEMPERATURE Transmitter mod-

ule temperature in the photon calibrator system in the Y arm
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