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1.1 Introduction1

Demography is often thought of in terms of human populations. The word’s2

origin is a combination of the ancient Greek words demos, meaning “the peo-3

ple”, and “graphy”, which refers to the “the writing or recording or study of”.4

One definition of demography is “the science of vital and social statistics, as5

of births, deaths, diseases, marriages, etc, of populations” (Companies, 2005).6

The focus here is on ecology and ecological populations, and demography will7

be defined similarly but without the human social science component, e.g., the8

notion of marriage is not relevant. In particular demography will be defined9

as the scientific study and characterization of biological populations’ struc-10

ture and dynamics. In the case of a single population, structure can include11

total abundance at arbitrary points in time. Structure can also refer to how12

the population might be partitioned into different categories such as sex, age,13

or spatial location. Dynamics refers both the changes in structure and abun-14

dances over time as well as the collection of processes that cause these changes.15

These processes, sometimes referred to as “vital rates” include reproduction,16

growth, maturity, movement, and mortality.17

Demography is of central importance to scientists and natural resource18

managers (not that these are mutually exclusive groups) for a variety of rea-19

sons. There is of course inherent curiosity, pure scientific interest, about the20

abundances and dynamics of many species. Why do the numbers of wolves21

(Canis lupus) on Isle Royale (in Lake Superior) fluctuate the way that they22

do? What effect will decreased snowpack levels have on the geographic range23

of American pika (Ochotona princeps) in Yosemite National Park? Answers24

to such questions require not only estimates of abundances of the species but25

also understanding of the factors that affect the abundances and dynamics.26

For species that are harvested commercially, for sport, or for subsistence,27

e.g., salmon (Oncorhynchus spp.), red deer (Cervus elaphus), morel mush-28

rooms (Morchella spp.), and black duck (Anas rubripes), there is interest in29
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the effect of harvest on the population abundances and dynamics. Comparison30

of alternative harvest regulations is facilitated by predictions of the magni-31

tude and sustainability of harvest levels.. To have some idea as to the effects of32

setting harvest regulations, e.g., a bag limit of 10 black ducks for a one month33

hunting season, requires some understanding of how this mortality might in-34

teract with other sources of mortality and other processes, like reproduction35

or movement. Estimates of the degree to which harvest mortality will be com-36

pensatory (removes individuals that will die anyway from other factors during37

that time period) and additive (the number of animals that will be removed38

over and above those that would have died from other factors) can be useful.39

In the case of species declared threatened or endangered by a government40

agency there is often a legal mandate for actions to be taken, or avoided, by the41

owners or managers of land or water regions inhabited by the species. Those42

actions can pertain directly to the population, such as to not take actions that43

could kill, harm, or harass the species, or pertain to actions which could harm44

or reduce the species’ habitat. More positively, managers wanting to recover45

the population would like to identify actions that could increase the species46

abundance by making habitat restoration efforts or eliminating habitat loss.47

For example, the United States Fish and Wildlife Service (USFWS) has a48

mandate to develop “Conservation Management Plans” for species listed as49

threatened or endangered under the US Endangered Species Act. Such plans50

must include (a) specification of management actions to conserve the species,51

(b) measurable criteria which would lead to a determination that the species52

can be “delisted”, no longer declared threatened, and (c) estimates of the53

time and cost to carry out such actions. Demographics models are central to54

identifying such actions, to predicting the effects of actions, and to prioritizing55

multiple actions.56

Questions about demographics can be coarsely divided into questions57

about abundances and about processes. How many individuals, or what volume58

or mass, have there been in the past and how many are there currently? As59

noted previously questions about population abundances over time can be fur-60

ther refined by partitioning the population into subgroups or subpopulations,61

e.g., sex, location, age, genotype, etc. Answering the how many question alone62

can be a challenging problem depending on the magnitude of the abundances,63

geographic location and range, physical size, mobility, degree of elusiveness,64

and/or ability to see or to detect individuals. A variety of statistical sampling65

methods, e.g., mark-recapture, and technological tools and devices, e.g., radio66

tracking, have been developed to help provide answers to the how many ques-67

tion. Answering the how many question is the primary focus of other chapters68

in this volume, and further discussion here is limited.69

Even if population abundances, however partitioned, were known with cer-70

tainty, questions about population processes remain. Why were the numbers71

what they were last year and why are they what they are now? What are the72

relative effects of each process on abundances at specific points in time? For73

example, how do adult female fecundity rates of salmon, egg hatching success74
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rates, and larval to juvenile survival combine to affect the abundance of ju-75

veniles? How do environmental conditions, both natural and anthropogenic,76

affect these processes?77

The primary focus of this chapter is on mathematical and statistical ap-78

proaches to answering such process questions. Answering these questions in-79

volves a quantification of the relationship between past abundance and current80

abundances. In other words, a population dynamics model (PDM) is needed.81

The more complete and accurate the PDM, the better the understanding of82

how changes in environmental and anthropogenic factors influence population83

processes, and how changes in these processes translate into changes in popula-84

tion abundances. Measures of the degree of uncertainty as to the consequences85

are critical as well. For threatened or endangered species, in particular, PDMs86

are also central to population viability analysis (PVA, Morris et al., 2002).87

PVAs use PDMs to make predictions about population trajectories, typically88

via computer simulation. They are a means of estimating the probability of89

the species surviving, or not, as a function of environmental conditions and an-90

thropogenic factors, including accidental actions, like oil spills, and deliberate91

actions, like habitat restoration.92

While attention here will be centered largely on general notions about fac-93

tors influencing population dynamics and some popular quantitative models,94

it is worth pointing out how answers to initial what, why, and how questions95

typically lead to deeper investigation and potentially a chain of subsequent96

what, why, and how questions. Answers at the end of the chain can lead to97

ideas about management actions to take, assuming some actions are desired,98

and implementation of a particular action may then be justified by reversing99

the direction to yield a so-called results chain (Margoluis et al., 2013). For100

example, a proposed management action is to plant riparian vegetation along101

a stream where juvenile salmon rear. The results chain is the vegetation grows102

and provides increasing shade along the stream, the shade causes reductions in103

water temperatures, which leads to an increase in juvenile survival during the104

month of May, resulting in an increase in the population abundance. Having105

such a conceptual understanding in place can then both guide data collection,106

such as long term biological monitoring programs (Reynolds et al., view), and107

guide further model development. For example, to assess the effects of planting108

riparian vegetation, one might collect a time series of measurements of veg-109

etation biomass, hours of shade, stream temperatures, juvenile abundances110

before and after the month of May (to estimate survival) at both treatment111

sites and control sites where no planting is done (Before-After-Control-Impact112

BACI designs, Smith, 2002).113

The organization of the remainder of this chapter is the following. Section114

1.2 is an overview of components of demography, including the definition of115

multiple subpopulations and multiple processes. Section 1.3 presents a pro-116

gression of mathematical models more or less corresponding to the components117

in section 1.2. Section 1.4 discusses matrix population models (MPMs) and is118

followed by Section 1.5 on integral projection models (IPMs). Individual based119
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TABLE 1.1
Listing of frequently used acronyms and their meaning.

Acronym Meaning
PDM Population Dynamics Model
MPM Matrix Projection Model
IPM Integral Projection Model
IBM Individual-Based Model
SSM State-Space Model
PVA Population Viability Analysis

models (IBMs) are discussed in Section 1.6 and are contrasted with popula-120

tion based models. Section 1.7 is on state-space models (SSMs). Section 1.8121

concludes the chapter with pointers to further literature on MPMs, IPMs,122

IBMs, and SSMs, comments on topics of demography that were minimally or123

not at all discussed, and thoughts about the future of biological demography.124

There are a number of acronyms used repeatedly and for convenience some125

of the more frequently used ones are shown in Table 1.1.126

1.2 Components of demography127

At a very simple level, demography can be understood as a time series of128

the abundance of individuals in the population. To reduce notation the time129

series indexing is a sequence of integers at discrete evenly spaced points in130

time, t=1,2,. . .,T . Abundances are denoted n1, n2, . . ., nT . A correspondingly131

simple mathematical model for the population dynamics relates abundance at132

time t to abundance at time t− 1 is the following133

nt = λtnt−1 (1.1)

where λt is the population growth rate, a multiplier which if less than 1 indi-134

cates a decline in abundance and if greater than 1 an increase in abundance.135

If the population abundance is small enough and easy enough to enumerate136

without error, not elusive or secretive or difficult to detect, then a succinct137

and completely accurate characterization of the population and its dynamics138

is trivial. For example, on July 1, over the period 2011-2015, in a 500 liter tank139

aquarium populated by angelfish (Pterophyllum spp), which did not receive140

any introduced fish, there were n2011 = 70, n2012 = 61, n2013 = 82, n2014 =141

53, and n2015 = 63 fish. The annual population growth rates were λ2012 =142
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0.87 (61/70), λ2013 = 1.34 (82/61), λ2014 = 0.65 (53/82), and λ2015 = 1.19143

(63/53).144

Such instances of exact enumeration are relatively rare or uninteresting in145

isolation. Complexity and more interesting aspects of demographic studies or146

population dynamics arise in several general ways:147

1. Multiple subpopulations of nt: The population abundance at time t can148

be partitioned or subdivided into two or more groups or subpopulations.149

2. Multiple processes underly λt: The mechanisms underlying the population150

growth rate λt include a multitude of processes, including survival and151

reproduction.152

3. Stochasticity: Environmental and demographic variability add uncertainty153

to projections of population dynamics.154

4. Density dependence: The effect of processes can be affected by population155

size.156

5. Competition and predation: The population dynamics of one population157

can be affected by other populations, of the same species or different158

species, can be affected in these two ways.159

6. Manipulation of the dynamics: Related to the multiple components of λt,160

humans sometimes want to control or manipulate processes and thus affect161

the population dynamics.162

7. Partial observability (Nichols et al., 1995) of nt: The population abun-163

dances cannot be enumerated exactly and at best subsets, or samples, of164

the population are observed.165

Each of these complications are addressed individually below in Sections 1.2.1166

- 1.2.7.167

1.2.1 Multiple subpopulations168

Finer characterization of the abundance involve partitioning the total num-169

ber into numbers in subsets, or subpopulations, where the subsets are distin-170

guished by one or more attributes. Some common distinguishing attributes171

are listed below.172

• sex: female, male, or indeterminate.173

• age: 0,1,2,3,. . ., max age.174

• maturity level: young, immature but developing, mature (capable of re-175

production), post-reproduction.176

• size or size class: distinguished by weight, height, length, etc.177
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• spatial location: exact location in space (e.g., in two dimensions, latitude178

and longitude; in three dimensions, depth or height added).179

• genotype: hereditary components that can be characterized at a variety of180

levels, e.g., allele combinations for a single gene or for two or more genes.181

• phenotype: external characters that are a consequence of genotype and182

environment, e.g., color or color pattern (includes some of the above cat-183

egories such as size class).184

The general term structured population, or in specific cases age-structured or185

stage-structured populations, is commonly used in ecological literature. When186

the partitioning is in terms of some other factors, like sex or spatial location,187

however, the term structured population is less common. Spatially distinction188

populations are sometimes labeled metapopulations (Levins, 1969). Here the189

term multiple subpopulations will be used to include any partitioning of a190

population.191

The degree and nature of the partitioning of a population may be a subjec-192

tive determination, as it depends on who is studying the population and the193

objectives of analysis. For plentiful non-commercial species, the population194

partitioning might be coarse for all but scientists studying a particular aspect195

of the population. The partitioning might be fine for harvested populations196

distinguished by sex, age, and spatial locations, as well as for closely studied197

rare populations. Limitations on the available data about the population can198

limit the degree of partitioning, and restrict the type of population dynamics199

modeling that can be done.200

Arbitrariness of partitioning may also occur when the distinguishing at-201

tributes are continuous variables, such as measures of individual size like202

weight, height, length. For example, if the variable is weight, the number203

of partitions can vary as can the labeling of the partitions; e.g., small = < 10204

kg, 10 ≤ medium < 20kg, and large ≥ 20kg. The partitioning of continuous205

attributes is an important distinction between MPMs (Section 1.4) and IPMs206

(Section 1.5).207

The finest partitioning of a population is at the individual entity level. For208

example, each animal is unique in its sex, date of birth (age), size, maturity209

level, number of offspring, location, and so on, and the values of the individ-210

ual’s characteristics throughout its entire existence, at any given point in time,211

are the most complete description possible. This is often at least conceptually212

possible (though not necessarily so for large subterranean vegetative popula-213

tions), but usually not practically possible. A notable exception is the Soay214

sheep population on St Kilda Archipelago, off the coast of western Scotland,215

where near complete individual animal identification and labeling is done. As216

a mathematical exercise, however, the modeling of individuals in a popula-217

tion can be useful for elucidating population level dynamics and this will be218

discussed in Section 1.6 on IBMs.219
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1.2.2 Multiple processes220

The population growth rate λt in eq’n (1.1) can be a function on multiple221

processes, including survival, reproduction, immigration, emigration, growth,222

maturation, and movement between regions. If the population is defined for a223

specific geographic area, and other individuals located outside that area can224

move into the area, then immigration is a factor, and conversely, if individuals225

can move outside the area, then emigration is a factor.226

The partitioning of the population affects the complexity of λt with each227

additional partition adding at least one additional demographic parameter.228

For example, if the population is partitioned into 3 age classes, ages 0, 1, and229

2+, where 2+ is age 2 and older, there could be three age-specific survival230

probabilities, contributions to reproduction, and different propensities to emi-231

grate and immigrate. The reproduction process could be further distinguished232

on the basis of sex, or maturation class, or size. For some species, the num-233

ber of females are more critical to reproductive success than the number of234

males, when a single male can mate with multiple females (are polygynous),235

e.g., elk (Cervus elaphus), and reproductive output might be viewed entirely236

as a function of female abundances. Maturation classifications can distinguish237

sexually immature and sexually mature individuals. Size of the animal can238

affect reproductive contribution; e.g., larger female fish will have more eggs239

than smaller fish.240

Spatial partitioning of the population into metapopulations leads to the241

addition of a movement process. The probabilities of moving from one region242

to another region within the overall defined population boundaries can be243

affected by other categorizations of the population, e.g., age or sex or maturity244

level.245

If size is a distinguishing characteristic, defined ordinally (e.g., small,246

medium, and large) or continuously (e.g., length in cm), then growth is a247

process affecting dynamics. In particular, the individual growth dynamics are248

quantified in terms of the probability of moving from one size class to another249

(as in MPMs, section 1.4) or by a conditional probability density function for250

size z′t+1 given previous size zt (as in IPMs, section 1.5).251

Whether or not processes occur sequentially, partially overlap, or are si-252

multaneous affects the modeling of processes and the temporal partitioning253

of abundances. In the simplest case where processes occur sequentially and254

do not overlap, abundances for points in time immediately following the oc-255

currence of a process need to be considered. For example, the life history of256

coho salmon starts with egg fertilization in freshwater, egg hatching and larval257

emergence, fry and then smolt stages while rearing in freshwater, migration to258

the ocean, and a period of time in the ocean followed by migration back to the259

freshwater, spawning, and death. Within for a single cohort, and letting t be260

the time of egg fertilization, abundances that could be acknowledged include261

the number of eggs fertilized, nt1 , the number of smolts two months later, nt2 ,262

the number of immature adults in the ocean just prior to return migration,263
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nt3 , and the number of adults surviving to spawn, nt4 . The life cycle of the264

species is thus guiding the temporal indexing of the abundance vector. When265

multiple cohorts overlap in time, the abundance vector becomes even more266

complicated as multiple cohorts will be at different life stages at a single point267

in time.268

1.2.3 Stochasticity269

Population dynamics are complicated by two types of stochasticity, environ-270

mental and demographic. Environmental stochasticity refers to between year271

(or any time period) variation in underlying vital rates, such as survival, repro-272

duction, or the overall population growth rate. Such between year variation273

is typically due to variation in environmental conditions, e.g., precipitation274

and air temperature. For example, the underlying average probability that a275

juvenile salmon in a given stream will survive from 1 May to 1 June is 0.7 in276

one year, and 0.6 in the following year.277

Demographic stochasticity, on the other hand, reflects inherent between-278

individual variability conditional on a specific vital rate. For example, in 2016,279

the underlying average May to June survival probability for the juvenile Chi-280

nook salmon is 0.7 and there are 1000 salmon present on 1 May. While the281

expected number surviving to 1 June is 700, assuming independence between282

the fish which means the number surviving is a binomial random variable,283

the observed number surviving will with high probability (0.972) not equal284

700, with 95% probability the observed numbers will lie between 671 and 728.285

That variation around 700 reflects demographic stochasticity.286

Unless population numbers are relatively low, as for a severely endangered287

species, the influence of demographic stochasticity on population dynamics288

will be minor relative to the influence of environmental stochasticity. As pop-289

ulation size increases, the deviation of the observed value from the expected290

value will be relatively small. For a survival probability of 0.7, if n=50, the291

95% interval is (28,41) a relative range of 37%, (41-28)/35, but with n=10,000,292

the 95% interval is (6910, 7090) with a relative range of 2.6%. The inherent293

survival probability for a group of animals is unlikely to be the same, however,294

even within a year. Kendall and Fox (2002) examined the effect of between295

individual variation in the survival probability within a year and showed that296

a binomial distribution based measure of demographic stochasticity can be297

an overestimate of true demographic stochasticity. A rule of thumb regarding298

whether or not to account demographic variation when doing PVA, provided299

by Morris et al. (2002), is that demographic variation can be ignored when300

just a single population is of interest and there are at least 100 individuals,301

and for PVA with multiple subpopulations, or life stages, there are at least 20302

individuals in the most important subpopulations.303
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1.2.4 Density dependence304

Consider a simple univariate population model similar to eq’n (1.1) but where305

a constant value of λ is substituted for the λts. If λ > 1, the population will306

grow exponentially, and if λ < 1 the population will go extinct. While expo-307

nential decline is possible, exponential growth cannot continue indefinitely as308

resources available for survival and reproduction, e.g., food, water, and space,309

are finite. For example, a population of plants introduced to a burned over310

acre of land may initially grow at a near exponential rate. As there is a limited311

amount of space for the plant to take root and grow, the population size will312

eventually reach an upper bound, and this bound is sometimes referred to a313

carrying capacity.314

Limits on population growth can be viewed as limits on population pro-315

cesses like survival, reproduction, growth, and movement with these vital rates316

generally decreasing as population abundance increases. In other words these317

vital rates are abundance dependent; equivalently, scaling abundance by the318

available area or volume, the vital rates are density dependent.319

Conversely as population abundance decreases, survival and reproduction320

rates typically increase, due to less competition for finite resources. However,321

there are situations where decreases beyond a certain lower bound can lead322

to decreases in vital rates. For example, if the numbers of animal population323

get so low that individuals have difficulty finding mates, reproductive rate will324

decline. This is known as an Allee effect, and can be a concern for critically325

endangered species.326

1.2.5 Competition and predation327

Denote a population and species of primary interest as species A, and popula-328

tions of two different species as species B and C. If species B uses some of the329

same finite resources as species A, i.e., it is a competitor for those resources,330

and, similar to intra-specific density dependence, increases in the population331

size of species B can reduce survival, reproduction, growth, etc, of species A.332

If individuals in the population of species C consumes members of species333

A, i.e., A is prey for C, then the abundance of species C affects the vital rates334

of species B, most obviously survival. Conversely, if individuals of species C335

are consumed by species A, namely A is a predator of C, and species C is336

a primary food source for A, a decline in the abundance of C can lead to337

decreases in vital rates of A.338

1.2.6 Manipulation of dynamics339

There are various motivations for manipulating the dynamics of a population.340

One is that the population is being used by humans. For example, portions341

of the population are being removed by fishing, hunting, or otherwise har-342

vesting. In managed populations there are questions about the number that343
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can be removed from the population without causing irreparable damage, i.e.,344

a sustainable harvest, or the harvest rate that yields the maximum sustain-345

able harvest. The harvesting of a population can be quite selective and based346

on particular attributes, i.e., subpopulations. For example, only mature male347

moose (Alces alces) can be harvested during a summer time period, or only348

white sturgeon (Acipenser transmontanus) between 100 and 150cm in length349

can be caught and kept, or morels (Morchella esculenta) can only be harvested350

in a designated area of a state park. In terms of characterizing population dy-351

namics such removals are in effect components of the survival process for a352

specific subpopulation.353

For endangered populations, manipulation of dynamics is done by regu-354

lating human activities and carrying out actions to increase the quality and355

quantity of the habitat of the population. In the case of populations harvested356

by humans, reductions in allowable harvest, including complete harvest bans,357

are often mandated by regulatory agencies. Such actions translate into effects358

on survival probabilities for potentially different subpopulations. Habitat al-359

terations can affect survival, reproduction, growth, maturation, and move-360

ment. Projections of the effects of such manipulations, and those of factors361

that are not manipulable, on processes and subsequent population dynamics362

is central to PVA.363

1.2.7 The role of data: Partial observability364

In most cases abundances of a population or subpopulations are unknown.365

Some sort of sampling is required and many methods have been developed366

since the early 1900s to produce estimates of abundance, as well as estimates367

of process related parameters like survival, reproductive success, and move-368

ment. For abundance estimation, the simplest methods are based on classic369

sample survey designs and related estimators (Thompson, 2012). These can370

be used when the area occupied by the population can be subdivided into a371

set of sampling units, thus constructing a sample frame. Largely non-mobile372

populations, such as plants, are more amenable to such methods; e.g., the373

population of interest is an invasive non-native grass on a wildlife refuge and374

the refuge can be subdivided into 100,000 square meter plots, a simple random375

sample of 50 plots is drawn, and appropriate measures of grass biomass, say,376

are made on the selected plots. For more mobile populations, abundances can377

be estimated using mark-recapture methods (Williams et al., 2002), line tran-378

sect and point transect (Buckland et al., 2001) and presence/absence sampling379

(occupancy modeling, MacKenzie et al., 2005). See Chapters X, Y, and Z for380

further discussion of abundance estimation procedures.381

The fact that only estimates of abundance are available has two effects on382

the modeling of population dynamics. One obvious effect is that additional383

uncertainties about abundances and processes are introduced. Suppose abun-384

dances are estimated annually at the same time of the year. Population growth385

rate, λt, can be estimated by λ̂t = n̂t/n̂t−1, and uncertainty in the estimate386
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is a function of uncertainty in the abundance estimates. A second, and less387

obvious, effect is that mathematical model formulation can be affected by the388

time at which the estimates are made. Rees et al. (2014) give an example of a389

sequence of processes, beginning with reproduction, then mortality, and then390

growth. If abundance estimates are made just before reproduction, λt includes391

a term for the probability of the previous year’s reproduction (recruits) living392

an entire year. If abundance estimates are made just after reproduction, the λt393

does not reflect the survival of this year’s reproduction as the estimates were394

made before subsequent mortality, and the survival of the previous year’s re-395

production is entangled with the survival of the previous year’s abundance of396

old entities (non-recruits). Inserting additional sampling or estimation points397

in the year, say, is one means of disentangling the effects of multiple processes,398

but partial observability remains a factor.399

1.3 General mathematical features of PDMs400

Demographic models can be classified by the factors given in Section 1.2 such401

as the number and types of subpopulations, the number and types of pro-402

cesses, type of stochasticity, and degree of density dependence. In this section403

we present various mathematical and probabilistic formulations of such de-404

mographic models. We begin with the simplest demographic models, a single405

population, a single process, deterministic, and density independent. Viewing406

the growth rate parameter in eq’n (1.1) as deterministic means that λt is by407

definition nt/nt−1. For convenience this model is shown again.408

nt = λtnt−1

If λt=λ, nt = λtn0. As noted previously, if λ > 1, population will grow expo-409

nentially.410

1.3.1 Multiple subpopulations411

Partitioning a single population into two or more populations extends the412

scalar nt to a vector nt. For example, if a population of deer is distinguished413

by three life stages, young, immature, and mature, then the abundance vector414

is415  ny,t

ni,t

nm,t


The length of the abundance vector over time need not remain fixed. The ef-416

fects of a sequence of processes may cause the vector to expand, e.g., following417
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reproduction, or to shrink, following an aggregation of age classes (Buckland418

et al., 2007).419

1.3.2 Multiple processess420

Survival and reproduction.421

Simple single population growth models can be modified by partitioning the422

population growth rate into survival and reproduction processes. One way of423

doing so is a balance equation with additions and subtractions.424

nt = nt−1 +Rt −Mt (1.2)

where Rt is the number of (surviving) young produced between t − 1 and t425

and Mt is the number of mortalities from the number nt−1. Such additive426

formulations do not make clear the relationship between the previous abun-427

dance, nt−1, and reproduction and mortality, however. The effect of previous428

abundance on reproduction and mortality can be made clearer with a multi-429

plicative model which extends eq’n (1.1). Assume that the survival, a fraction430

ϕt, precedes reproduction rate, ρt, and there is no mortality of the young431

between the time of reproduction and time t.432

nt = (1 + ρt)ϕtnt−1 (1.3)

Implicit to this formulation is that the survival rates for the young and adult433

components which made up nt−1 was the same, ϕt. Given this assumption434

about survival, the model remains the same even if the abundance denotes435

the number just prior to reproduction.436

A more realistic model has different survival fractions for just born young437

and the older individuals, ϕy,t and ϕa,t, and the model should have subpopu-438

lations for young and adult. The subpopulations for young will be those just439

born if the time period is just after reproduction, denoted n0,t, while, if the440

time period is just before reproduction, the young will be nearly age 1 (if the441

time interval is one year), denoted n1,t.442

t just after reproduction

[
na,t = ϕa,tnt−1 + ϕy,tn0,t−1

n0,t = ρt(ϕa,tnt−1 + ϕy,tn0,t−1)

]
(1.4)

t just before reproduction

[
na,t = ϕa,tnt−1

n1,t = ϕy,tρtnt−1

]
(1.5)

Immigration and emigration.443

Immigration and emigration can be included in the dynamics. Extending the444

balance equation model,445

nt = nt−1 +Rt −Mt + It − Et (1.6)

where It is the number immigrating into the population and Et is the number446

emigrating from the population. The multiplicative model can be extended447
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but does not necessarily remain multiplicative. The ordering of processes is448

again important. Assuming that immigrants arrive, and emigrants leave after449

mortality occurs, but prior to reproduction, the model is450

nt = (1 + ρt)(ζtϕtnt−1 + It) (1.7)

where ζt is the fraction of the survivors from nt−1 that stay and It is again the451

number of immigrants. If the order of processes change, the model changes. For452

example, suppose that immigrants arrive and emigrants leave after mortality453

and reproduction:454

nt = ζtρtϕtnt−1 + It (1.8)

Movement.455

When components of the population are distinguished by spatial location,456

sometimes called metapopulations, the process of movement becomes relevant.457

Immigration and emigration is of course a movement process but where the458

individuals are coming from (immigrants) or going to (emigrants) are not459

distinguished. With multiple locations there is often a movement transition460

matrix which may or may not be time invariant. For example with three461

regions labeled A, B, and C, a time invariant transition matrix, M , has the462

following structure.463

M =


t+ 1

t → A → B → C
A 1− µA→B − µA→C µA→B µA→C

B µB→A 1− µB→A − µB→C µB→C

C µC→A µC→B 1− µC→A − µC→B

(1.9)

where the µ ∈ [0,1] and the columns sum to 1.464

Growth.465

When subpopulations are defined in terms of size categories, movement be-466

tween size classes could be defined in terms of the fractions of a given size467

category moving from one category to another. The process is analogous to468

that for movement between spatial regions.469

In the case of finest scale partitioning of populations to the individual470

entity level, growth from one size at time t, zt, to another size at time t+ 1,471

zt+1, could be modeled by the addition of an individual growth increment,472

xt+1,473

zt+1|zt = zt + xt+1 (1.10)

xt+1 could be a function of the size at time t, zt. Such fine scale handling of474

growth is central to IPMs (Section 1.5) and can be a part of IBMs (Section475

1.6).476
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1.3.3 Stochasticity477

As discussed previously, environmental stochasticity is often more important478

to account for than demographic stochasticity so long as the population is not479

too small. An example of the mathematical distinction between the two forms480

is presented by modifying the simple population model in equation (1.1).481

Assume that the underlying annual population growth rate does not vary482

between years, namely, does not have environmental stochasticity, and denote483

that rate λ. However, there is between-individual variation in the growth rate484

contribution. A demographic stochasticity extension to eq’n (1.1) is485

nt|nt−1 ∼ Poisson(nt−1λ) (1.11)

Environmental stochasticity alone is reflected by population growth rates that486

vary between years but the per individual contribution to the growth rate is487

the same for all individuals. An example model is488

λt ∼ [Gamma (α, β)] , (1.12)

nt|nt−1 = λtnt−1

where [ ] denotes the nearest integer function. An example of a mathemati-489

cally convenient alternative formulation for environmental stochasticity, which490

ignores the discrete nature of many populations is the following:491

nt|nt−1 ∼ Lognormal
(
log(nt−1λ)− 0.5σ2

ϵ , σ
2
ϵ

)
(1.13)

The term 0.5σ2
ϵ is a bias correction which ensures that the expected abun-492

dance, E[nt|nt−1], is nt−1λ.493

Environmental and demographic variation typically coincide. One way to494

demonstrate this is with a hierarchical model:495

λt ∼ Gamma(α, β) (1.14)

nt|nt−1, λt ∼ Poisson(nt−1λt) (1.15)

Specific ways of introducing demographic and environmental stochasticity496

to other processes, e.g., survival, are described later.497

Asymptotic results for environmentally stochastic growth rates.498

The long term, or asymptotic, behavior of a single population trajectory499

with environmentally stochastic annual growth rates, such as in eq’n (1.12) is500

tractable and has similarities with deterministic exponential growth models.501

Consider the following general single population model:502

nt = λtnt−1, where λt
iid∼ Distribution(µ, σ2) (1.16)

where E[λt]=µ and V [λt]=σ2. Given an initial abundance n0, nt can be rewrit-503

ten as504

nt = n0

t∏
i=1

λi
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Taking the natural logarithm of both sides of the equation,505

ln(nt) = ln(n0) +
t∑

i=1

ln(λi),

which can be re-expressed as506

ln(nt)− ln(n0)

t
=

1

t

t∑
i=1

ln(λi) (1.17)

The righthand side of eq’n (1.17) is the mean of a sequence of indepen-507

dent random variables, ln(λi), i = 1, . . . , t. Adding the assumption that the508

E(ln(λt)
2) < ∞, the strong law of large numbers says that the average con-509

verges to E[ln(λ)]. Further, by the Central Limit Theorem, the asymptotic510

distribution the mean of the log of the “annual” growth rates is normal. De-511

noting the sample average log growth rate by ln(λ))512

ln(λ)) =
1

t

t∑
i=1

ln(λi) ∼ Asymptotic Normal (E[ln(λ)], V (ln(λ)))(1.18)

Another way to express this result, using the lefthand side of eq’n (1.17),513

ln(nt) ∼ Asymptotic Normal (ln(n0) + tE[ln(λ)], tV (ln(λ))) (1.19)

or514

nt ∼ Asymptotic Lognormal (n0 exp(tE[ln(λ)]), tV (ln(λ))) (1.20)

Thus, the average population abundance at t is identical to a deterministic515

exponential growth model.516

Survival.517

Environmental and demographic variation in the survival fractions can be518

modeled with the same hierarchical structure used for population growth519

(eq’ns 1.14 and 1.15). One such combination is a logit-normal model for envi-520

ronmental stochasticity and a binomial distribution for demographic stochas-521

ticity. Letting ϕc,t be the survival probability for subpopulation c at time522

t,523

logit(ϕc,t) ∼ Normal
(
β0,ϕ,c, σ

2
ϕ,c

)
(1.21)

nc,t ∼ Binomial (nc,t−1, ϕc)

where logit(x) = ln(x/(1− x)). Beta distributions for the ϕc,t are alternative524

for environmental stochasticity,525

ϕc,t ∼ Beta (αϕ,c, βϕ,c)

but this distribution may be more awkward when it comes to including co-526

variates.527
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Reproduction.528

One way to characterize reproduction is in terms of the number of progeny529

produced by a given individual in the population, perhaps only mature and530

female individuals. Letting ρc,t be the expected progeny multiplier for sub-531

population c at time t, a hierarchical model for both levels of stochasticity is532

a Lognormal and Poisson combination.533

ρc,t ∼ Lognormal
(
ln(µc)− 0.5σ2

µ,c, σ
2
µ,c

)
(1.22)

nc,0,t ∼ Poisson (ρc,tnc,t)

where nc,0,t is the number of progeny produced. An alternative distribution534

for ρc,t is the Gamma,535

ρc,t ∼ Gamma (αρ, βρ)

but again the inclusion of covariates may be more awkward than for the log-536

normal.537

Immigration and Emigration.538

Only the case of multiplicative survival, reproduction, and emigration pro-539

cesses with additive immigration is considered and the only partitioning of540

the population is of adults and young. Immigrants are generated from an ar-541

bitrary non-negative integer valued distribution, here a Poisson will be used.542

The hierarchical structure for survival and reproduction used previously (1.21543

and 1.22) is used again and the emigration probability is dealt with the same544

as the survival probability. The order of processes is survival, reproduction,545

emigration, and immigration where just born individuals do not emigrate. The546

notation t
′
denotes time just after survival but before emigration.547

Survival probability logit(ϕt) ∼ Normal
(
βϕ, σ

2
ϕ

)
(1.23)

Survivors nt′ ∼ Binomial (nt−1, ϕt) (1.24)

Reproductive rate ρt ∼ Lognormal
(
ln(βρ)− 0.5σ2

ρ, σ
2
ρ

)
(1.25)

Reproduction nc,0,t ∼ Poisson (ρtnt′ ) (1.26)

Emigration probability logit(ζt) ∼ Normal
(
βζ , σ

2
ζ

)
(1.27)

Non-emigrants nt ∼ Binomial (nt′ , ζt) (1.28)

Immigrants I ∼ Poisson (η) (1.29)

Movement.548

Environnmental stochasticity can be introduced by randomly drawing a vector549

of movement probabilities for each row of the movement matrix, eq’n (1.9),550

and then conditional on these probabilities the numbers moving to each lo-551

cation are drawn at random. One hierarchical formulation is a multi-vector552
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extended logit-multivariate normal (Newman and Brandes, 2010) and multi-553

nomial combination. Just one vector of the formulation, the case of being in554

location A at time t, is shown here, and subscripting notation for parameters555

indicating time are omitted.556  ln
(

µA→B

1−µA→B−µA→C

)
ln
(

µA→C

1−µA→B−µA→C

)  ∼ MVN

([
β0,µA,B

β0,µA,C

]
,

[
σ2
A,A→B σA,A→B,A→C

σA,A→B,A→C σ2
A,A→C

])
(1.30)

nA→B,t, nA→C,t ∼ Multinomial (nA,t−1, µA→B , µA→C) (1.31)

An alternative distribution for environmental stochasticity for the µ’s is a557

Dirichlet distribution but it does not necessarily lend itself as easily to the558

inclusion of covariates as the extended logit-MVN.559

Growth.560

As for the deterministic case, when growth refers to movement from a cate-561

gorical size class, a stochastic representation of the advancement is again anal-562

ogous to the handling of between region movement. In the case of individual563

entities, assuming that growth is never negative, a stochastic formulation is a564

Gamma probability density function for the increment in growth:565

zt|zt−1 = zt−1 + xt

where566

xt ∼ Gamma (α, β)

with parametric formulation being E[xt] being αβ. The parameters α and β567

could be individual specific, say functions of other covariates, or draws from568

another probability distribution, thus introducing additional stochasticity.569

1.3.4 Density dependence570

A variety of univariate models with density dependent population growth571

rates, λ(nt), are commonly used. We begin with some well known determin-572

istic, and mostly discrete time, models. These univariate models are readily573

applied to individual subpopulations of a structured population, but appli-574

cations where the subpopulations interact, as in predator-prey situations or575

spatially partitioned partitions, are more involved.576

A slight variation on the exponential growth model is the Gompertz model,577

where the following formulation is taken from Dennis et al. (2006).578

Gompertz model : nt = λn1+α
t−1 (1.32)

where α < 0 is the parameter inducing density dependence. Substituting n579

for nt and nt−1 the equilibrium abundance for the Gompertz distribution is580

nGompertz,e = λ
−1
α
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Another well known model is the logistic model, which has discrete and581

continuous time forms:582

Logistic (discrete) model : nt = nt + λnt

(
1− nt

K

)
(1.33)

Logistic (continuous) model : n(t) =
K

1 + K−n(0)
n(0) λt

(1.34)

In both cases K is the upper bound on the population abundance, i.e., the583

carrying capacity.584

A well-known model that originated with fish populations, but is now585

applied many other kinds of populations, is the Ricker model.586

Ricker model : nt = (ϕa + ϕyb exp(−cnt−1))nt−1 (1.35)

The Ricker model formulation citep[taken from][]gurney1998ecological can be587

viewed as a balance equation where the product ϕant−1 is the number of sur-588

viving adults and ϕyf exp(−cnt−1) is the number of survivng offspring, the589

recruits. The term b is the fecundity of the average adult (with sex being590

ignored here; if the sex ratio if 50:50, b could equal half the average female fe-591

cundity), exp(−cnt−1) is a density dependent reproductive success rate which592

decreases as abundance increases and reproductive success is the number alive593

at some point in time prior to time t, and ϕy is the survival probability from594

that time point to t. Combining the product f and ϕy into a single term has no595

effect on the model dynamics. Substituting n for nt and nt−1 the equilibrium596

abundance for the Ricker model is597

nRicker,e =
−1

c
ln

(
1− ϕa

ϕyb

)
Another well known model from fisheries science is the Beverton Holt598

model, again taking the formulation from citepgurney1998ecological.599

Beverton Holt : nt =

(
ϕa +

ϕyb

1 + cnt−1

)
nt−1 (1.36)

The parameters ϕa, ϕy, and b have the same interpretation as for the Ricker600

model, and the parameter c is again the density dependent parameter. The601

equilibrium abundance is602

nBevertonHolt,e =
ϕyb(1− ϕa)

(1− ϕa)c

Figure 1.1 shows population growth trajectories for these five models such that603

the equilibrium abundances are nearly identical (around 800) and ϕa is 0.7 and604

ϕy is 0.2 for both the Ricker and Beverton Holt models. The Ricker model605

can overshoot the equilibrium abundance while the other models converge606

monotonically.607
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FIGURE 1.1
Population trajectories with initial abundance=50 for Gompertz, Ricker, and
Beverton Holt growth models. Equilibrium abundances are around 800 for all
three models and ϕa is 0.7 and ϕy is 0.2 for both the Ricker and Beverton
Holt models.
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The density dependent formulations for population growth λt in the Ricker608

and Beverton Holt models can be seen to be simply density dependent repro-609

duction rates as opposed to density dependent survival rates by simply re-610

moving the number of adults and the adult survival term ϕa from the model.611

Then the reproductive rate multipliers are:612

Ricker reproduction rate : (ϕyb) exp(−cnt−1)

Beverton Holt reproduction rate : (ϕyb)
1

1 + cnt−1

The difference in the density dependent effects for the two models can be613

seen in the terms following (ϕyb). Density dependence in the Gompertz model614

cannot be disentangled into effects on reproduction and survival as λ is not615

being adjusted. Instead the per capita contribution of each individual to the616

population growth rate is being diminished abundance increases.617

Density dependence at a subprocess level.618

Density dependence can be introduced for other vital rates such as survival,619

movement, and individual animal growth rates. An example formulation of620

density dependence and environmental stochasticity is a logit-normal distri-621

bution with population abundance as a covariate:622

logit(ϕt) ∼ Normal
(
β0,ϕ + β1,ϕnt−1, σ

2
ϕ

)
where β1,ϕ is constrained to be negative. Similar adjustments can be made for623

movement probabilities between spatially distinct subpopulations, an example624

is given shortly.625

Density dependence for multiple (sub)populations.626

If the vital rates for one subpopulation do not affect another subpopulation,627

then the above univariate density dependent models can be applied on a per628

subpopulation basis for subpopulation specific vital rates. More realistically,629

subpopulation abundances will impact vital rates for other subpopulations, if630

the subpopulations occupy the same geographic area this is likely obvious as631

it is the total resource consumption or usage that matters.632

Even when subpopulations are defined by spatially distinct locations, the633

density in one spatial subpopulation can affect another spatial subpopulation,634

e.g., one region is becoming crowded and individuals leave to seek less densely635

populated regions, thus movement probabilities are affected by density de-636

pendence. Referring to stochastic movement example given previously, eq’n637

(1.30), adjustments could be made to the mean parameters in the multivari-638

ate normal model. Movement from one location to another is made a function639

of the relative densities in the originating region and the destination region. In640

the following formulation, assuming that the slopes (β1’s) are positive valued,641

the probability of moving from A to either B or C increases as the density in642
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A relative to the density in B or C increases.643  β0,µA,B + β1,µA,B
δAt−1

δB,t−1

β0,µA,C + β1,µA,C
δAt−1

δC,t−1


where δx = nx/∥x∥ and ∥x∥ is the area of x.644

Density dependence, predation and competition645

The dynamics of predator-prey interactions and between species competition646

are implicitly density dependent. For example, as the abundance (density) of a647

predator increases survival probabilities for the prey population decrease. One648

of the best known, and simpler, mathematical models for predator-prey dy-649

namics is the Lotka-Volterra model which is a continuous time model defined650

in terms of differential equations for the instantaneous population growth rate651

citep[][p. 155]gurney1998ecological:652

dPrey

dt
= (r − αPredator(t))Prey(t)

dPredator

dt
= (ϵαPrey(t)− δ)Predator(t)

Following convention, the indexing for continuous time models is in parenthe-653

ses n(t) in contrast to discrete time indexing with subscripts nt.654

Referring to the prey equation, in the absence of predators, the instan-655

taneous growth rate of the prey population is r and the population trajec-656

tory is exponential growth, Prey(t) = exp(r)Prey(t − 1). The addition of657

predators to the population is causing mortality at rate αPredator(t), where658

α is the per capita consumption rate of prey by predators. For predator659

dynamics, the mortality rate is a constant independent of predator abun-660

dance; in the absence of prey, the population trajectory is exponential de-661

cline, Predator(t) = exp(−δ)Predator(t − 1). Predator growth is entirely662

dependent on the presence of prey with instantaneous growth rate ϵαPrey(t),663

where ϵ is the per prey item predator offspring rate. If Prey(t) was a con-664

stant, Prey∗, the resulting dynamics would be exponential, Predator(t) =665

exp(ϵαPrey∗ − δ)Predator(t − 1). The Lotka-Volterra model is considered a666

relative simple, and unrealistic model (Gurney and Nisbet, 1998, p. 159), but667

the resulting dynamics can be relatively complex with oscillating population668

trajectories. See Gurney and Nisbet (1998) for examples of the trajectories and669

dynamics as well as extensions, such as a prey model where prey abundance670

also affects the population growth rate (self-limiting prey).671

Periodicity and chaos.672

The periodicity observed in the Lotka-Volterra model, and much more com-673

plex dynamics, can occur with discrete time single population models like the674

Ricker and discrete logistic model. Figure 1.3.4 Gurney and Nisbet (based675

on Figure 2.6 in 1998) shows what can happen for a variaty of combined re-676

cruitment rate values, ϕjf , when adult survival, ϕa, is zero and the density677
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FIGURE 1.2
Population trajectories for the Ricker model for a variety of ϕjf combinations
with ϕa=0 and c=0.001.

dependent parameter c=0.001. With too little recruitment (a), the population678

goes extinct, (b) shows a stable equilibrium, (c) and (d) show damped and679

expanding oscillations, respectively, (e) and (f) have two and four year period-680

icities, respectively, and (g) is chaotic (no periodicity and apparently random681

fluctuations).682

1.3.5 Inclusion of covariates683

Similar to density dependent models where abundance was used as a covari-684

ate to modify vital rates, environmental and anthropogenic covariates can be685

included; e.g., bird survival modeled as a function of weather data (North and686

Morgan, 1979).687

Covariates can also be used as a means of assessing the effects of predators,688

competitors, or prey abundance when the populations’ dynamics of predators,689

competitors, or prey are not modeled. Instead the abundances of these groups690

are simply treated as fixed input values that affect the vital rates for the pop-691

ulation of interest. The legitimacy of such handling of these other populations692

assumes that these other populations are not receiving any feedback from the693

population of interest. If the primary population’s abundance has relatively694

little effect on the abundances of the other populations, for example, the pri-695

mary population is a minor food item for predators, then treating these other696
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population abundances as covariates may not adequate. Otherwise the more697

complex models for the joint dynamics, as in the Lotka-Volterra model, would698

be more appropriate.699

1.3.6 Simultaneous versus sequential processes700

The modeling of multiple processes in previous examples, e.g., eq’ns (1.23-701

1.29), assumed that the processes occur in a specific sequence. Such a tidy702

partitioning of processes may be a poor approximation to reality for some703

populations. In the case of harvested populations, for example, harvest-related704

mortality is co-occurring with other sources of mortality. One of the simpler705

treatments of such simultaneous mortality is frequently used in fisheries sci-706

ence. The underlying differential equation in the simplest case of two sources707

of mortality, say fishing and natural mortality, is the following:708

dn(t)

dt
= −(F +M)n(t) (1.37)

where F and M are instantaneous fishing and natural mortality rates. The709

solution to the differential equation is710

n(t+∆) = exp(−(F +M)∆)n(t) (1.38)

where exp(−(F +M)∆) is the survival fraction over a time interval of length711

∆. The number that die in total and from each source is then712

Total Mortality = (1− exp(−(F +M)∆)n(t) (1.39)

Fishing Mortality =
F

F +M
(1− exp(−(F +M)∆)n(t) (1.40)

Natural Mortality =
M

F +M
(1− exp(−(F +M)∆)n(t) (1.41)

Formulations and simultaneous and competing sources of mortality can be713

translated into discrete time population dynamics models in various ways.714

For example, a hierarchical model for survival which includes environmental715

and demographic stochasticity and covariates can be constructed.716

ln(Ft) ∼ Normal
(
β0,F + β1,Fx1,t, σ

2
F

)
(1.42)

ln(Mt) ∼ Normal
(
β0,M + β1,Mx2,t, σ

2
M

)
(1.43)

nt ∼ Binomial (nt−1, exp[−(Ft +Mt)]) (1.44)

The mortality due to each source between time t and t + 1 can be predicted717

using eq’ns (1.40) and (1.41) with ∆=1.718

1.3.7 Remarks: Estimability and Data Collection.719

It is relatively easy to formulate a population dynamics model where the720

parameters cannot be estimated given the available data. For example, annual721
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surveys alone do not allow separate estimation of the survival fraction, ϕt, and722

reproductive rate, γt, in the simple univariate model (1.3). Intuitively given723

estimates of nt and nt−1 one can just estimate the combination (1 + γt)ϕt.724

One way to disentangle such combinations of parameters, in the case of se-725

quential processes, is to have abundance estimates at time points immediately726

after the end each process. For example, in the model (1.3) abundance should727

be measured twice a year, once immediately following the survival process, and728

once after reproduction. The reality of the processes is typically more com-729

plicated with such sharp demarcations unlikely, but formulating such models730

can provide guidance for data collection.731

Detailed discussion of issues of estimability, or parameter redundancy, for732

population dynamics-related models can be found in Catchpole and Morgan733

(1997, 2001); Cole and Morgan (2010); Cole et al. (2012).734

1.4 Matrix Projection Models, MPMs735

Lewis (1942) and Leslie (1945) independently proposed matrix projection736

models as a means of modeling the population dynamics of populations with737

age-specific subpopulations, more commonly referred to as age-structured738

models. Let n0,t denote the number of young at time t and na,t be the abun-739

dance for ages 1 to A − 1, and nA+,t be the abundance of age A and older740

individuals. A deterministic formulation for the dynamics can be written as741 

n0,t

n1,t

n2,t

...
nA,t

nA+,t


=


γ0 γ1 γ2 . . . γA−1 γA
ϕ1 0 0 . . . 0 0
0 ϕ2 0 . . . 0 0
... 0 0 . . . ϕA ϕA+





n0,t−1

n1,t−1

n2,t−1

...
nA,t−1

nA+,t−1


(1.45)

or more compactly as nt = Lnt−1. Lefkovitch (1965) proposed an MPM where742

the subpopulations were distinguished by life stage rather than age class,743

e.g., young, immature, and mature, thus a stage-structured model. Of course,744

partitioning by gender, genotype, and many other subpopulation identifiers is745

possible.746

1.4.1 Analysis of MPMs.747

Caswell (2001, p. 18) refers to four sets of general questions which can be748

asked about MPMs for which the answers can elucidate deeper understanding749

of the dynamics. His questions (paraphrased and italicized) are shown below.750

1. What is the asymptotic behavior of the MPM? As time increases, does the751
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total population grow or decline exponentially? Do the relative propor-752

tions of each subpopulation become constant? Does the population ap-753

proach an upper bound (carrying capacity)? Do the total population and754

individual subpopulation abundances oscillate (in a damped or undamped755

manner)? Do the abundances display periodicity? Do the abundances be-756

come chaotic?757

2. Is the MPM ergodic? In other words, are the asymptotic dynamics inde-758

pendent of the initial conditions, e.g., independent of the actual values of759

n0?760

3. What are the transient dynamics? What are the dynamics like in the short761

term as opposed to the asymptotic or limiting results?762

4. How sensitive are the results to the values of the elements of the matrix?763

The survival probabilities and fecundity rates, for example, are estimates,764

and will have some degree of estimation error. How much would the pop-765

ulation dynamics, including asymptotic and transient dynamics, change if766

some elements of the matrix were changed “slightly”?767

We will not address all these questions further here and refer the inter-768

ested reader to Caswell (2001). However we will briefly discuss one type of769

asymptotic behavior, for both deterministic and stochastic MPMs, which is770

analogous to single population exponential growth models.771

1.4.2 Limiting behavior of density independent, time invari-772

ate MPMs.773

Results from linear algebra can be used to describe the asymptotic behavior774

of a time invariant projection matrix, if the matrix has certain mathematical775

properties. Three properties are (a) non-negativity (all elements are ≥ 0), (b)776

irreducible (e.g., every age class can contribute to every other age class at777

some point in time), (c) primitive (there is some positive integer k such that778

every element in the matrix raised to the power k, Lk, is a positive number).779

If these conditions are met, in the limit the population dynamics are either780

exponential growth or decay, i.e., ATnt = λnt, where λ is a scalar value that781

is multiplied against each component of the vector nt. Further, the relative782

proportions of each component of nt will remain constant.783

For example, a MPM with three age classes has the following Leslie matrix784

L =

 0.0 1.2 1.4
0.3 0.0 0.0
0.0 0.5 0.9


The initial abundance vector is n

′

0 = (100,50,10). The population over 9 iter-785

ations is:786
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Stage 1 2 3 4 5 6 7 8 9 10
Young 100 74 84 90 103 116 131 148 167 189
Adult 50 30 22 25 27 31 35 39 44 50
Old 10 34 46 52 59 67 76 86 97 109

787

The population growth rates, per stage, over time:788

Stage 2 3 4 5 6 7 8 9 10
Young 0.74 1.13 1.08 1.14 1.12 1.13 1.13 1.13 1.13
Adult 0.60 0.74 1.13 1.08 1.14 1.12 1.13 1.13 1.13
Old 3.40 1.34 1.14 1.14 1.13 1.13 1.13 1.13 1.13

789

Thus after six generations the annual growth rate reaches 13% and stays there.790

The fraction of the population in each stage class:791

Stage 1 2 3 4 5 6 7 8 9 10
Young 0.62 0.54 0.55 0.54 0.54 0.54 0.54 0.54 0.54 0.54
Adult 0.31 0.22 0.15 0.15 0.14 0.14 0.14 0.14 0.14 0.14
Old 0.06 0.25 0.30 0.31 0.31 0.31 0.31 0.31 0.31 0.31

792

And, after six generations the fractions in the Young, Adult, and Old stages793

remain 0.54, 0.14, and 0.31.794

The limiting population growth rate and proportions of each category can795

be determined analytically again using linear algebra, in particular, by carry-796

ing out an eigen analysis of L. For a p by p matrix L, the eigen analysis yields797

p eigenvalues, λ1, . . ., λp, and p corresponding right eigenvectors, v1, . . ., vp.798

An eigenvalue and its corresponding eigenvector have the relationship, Lvi799

= λivi. Denote the largest eigenvalue λ1 and its corresponding eigenvector800

v1. Then λ1 is equal to limiting population growth rate, in the example 1.13801

(more precisely, 1.12938), and dividing each element of v1 by its total yields802

the limiting fractions, here (0.54, 0.14, 0.31).803

1.4.3 Stochasticity.804

There are various ways to add stochasticity to MPMs, one of which is to805

randomly draw elements of the matrix from probability distributions, e.g.,806

randomly draw survival probabilities for age a individuals. This has the effect807

of introducing environmental stochasticity. Under some conditions, in the ab-808

sence of density dependence for example, the introduction of environmental, or809

demographic, stochasticity will not appreciably alter the asymptotic dynamics810

from that of a deterministic MPM, namely that the above eigen analysis re-811

sults more or less hold, in the limit there is an average growth rate and stable812

population structure. Caswell (2001, Chap. 14) provides details of these results813

(with some of earliest work from Cohen, 1976; Tuljapurkar and Orzack, 1980).814
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Below we closely follow (Caswell, 2001) and somewhat mimic the derivation of815

the asymptotic distribution of the stochastic univariate model shown in eq’ns816

(1.16 - 1.20). Let A1, A2,. . ., be a “stationary, metrically transitive stochastic817

process with E(ln+||A||1) < ∞, where ln(x+) = max(0, ln(x)). Suppose that818

the matrices At are drawn from an ergodic set of matrices,” (Caswell, 2001,819

p. 393) . The total population size at time t, denoted N(t), is the vector norm820

of nt (
∑

i |nt,i|). Given an initial vector n0:821

N(t) = ||nt|| = ||
t∏

i=1

Ain0|| (1.46)

⇒
1

t
ln (N(t)) =

1

t
ln ||

t∏
i=1

Ain0|| (1.47)

Furstenberg and Kesten (1960) proved that the limit of (1.47) existed (with822

probability 1). That limiting value, denoted ln(λs), is called the stochastic823

growth rate.824

lim
t→∞

1

t
ln (N(t)) = lim

t→∞

1

t
ln ||

t∏
i=1

Ain0|| = ln(λs) (1.48)

With further conditions on the matrices, Ai, including nonnegativity, the825

asymptotic distribution of the population total is lognormal:826

N(t) ∼ Asymptotic Lognormal
(
exp(t ln(λs)), tσ

2
)

(1.49)

where σ2 is some constant. Thus, similar to eq’n (1.20), the asymptotic mean827

of the population total is the same as for a univariate exponential popula-828

tion growth model, and λs is analogous to the largest eigenvalue, λ1, of a829

deterministic MPM.830

1.4.4 Density dependent MPMs.831

Density dependence can be introduced into MPMs by simply making some of832

the elements of the projection matrix density dependent. Consider the exam-833

ple given previously with three age classes, young, adult, and old, and suppose834

that the fecundity of the old group was a function of the total abundance of835

adult and old individuals. Then the (1,3) element in the transition matrix is836

simply written as such a function. The linearity aspect of the MPM is subse-837

quently altered and the analyses carried out for density independent MPMs838

do not directly apply, e.g., the eigen analysis is no longer directly applicable.839

Caswell (2001, Chap. 16) provides considerable details on the construction840

and analysis of density dependent MPMs.841
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1.4.5 Building block approach to matrix construction.842

Buckland et al. (2007) present a building block approach to formulating the843

MPMs and further examples are given in Newman et al. (2014). The essential844

idea assumes a particular sequence to processes which operate on a vector of845

population abundances, such as survival, then movement, then reproduction.846

An example from Newman et al. (2014, eq. 2.11, p. 18)is based on two sub-847

populations distinguished by size class (small and large) with three processes,848

survival, then size class changes (only from small to large), and reproduction.849

The survival probabilities are size specific (ϕL and ϕS), the probability that a850

small individual becomes large is π, and only large individuals can reproduce851

and they do so with rate ρ.852 [
nS,t

nL,t

]
=

[
1 ρ
0 1

] [
1− π 0
π 1

] [
ϕS 0
0 ϕL

] [
nS,t−1

nL,t−1

]
=

[
(1− π + ρπ)ϕS ρϕL

πϕL ϕL

] [
nS,t−1

nL,t−1

]
(1.50)

The matrix in eq’n (1.50) is an example of a Lefkovitch matrix which is ar-853

guably more simply constructed by using such a building block approach than854

by trying to construct the final matrix in a single operation.855

1.4.6 Estimating the elements of projection matrices.856

Caswell (2001, p. 22) states that, to fill the elements of the matrix, life tables857

are used. Life tables contain mortality probabilities, the probability that an858

individual of age a will die before reaching age a+1, and maternity functions,859

the expected number of offspring that an age a individual will produce in the860

next year. How the life tables and maternity functions are constructed in the861

first place may be no trivial task, and is beyond the scope of this section.862

However, we do note that with wildlife populations, mark-recapture studies863

where the animals are aged at time of marking, can provide estimates of age-864

specific survival. For example, a population of ducks were banded, aged at865

time of banding, and later recovered. Mark-recapture methods are used to866

calculate ϕ̂a, the estimated probability that an age a animal lives to age a+1.867

Similarly, the average number of young produced by age a females is used as868

an estimate of the fecundity parameter for age a females, or when the total869

population is modeled and a 50:50 sex ratio is assumed, the estimated average870

fecundity is 0.5f̂a.871

An alternative approach is to integrate inference about vital rates with872

inference about the entire population dynamics model where stochasticity in873

the population dynamics is accounted for simultaneously with sampling error874

in the estimation of vital rate parameters. The SSM framework provides a875

structure for doing this and is discussed in Section 1.7.876
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1.5 Integral Projection Models, IPMs877

The partitioning of a population into discrete subpopulations, namely formu-878

lating a structured population, may be arbitrary when natural divisions are879

lacking. For example, suppose the population cannot be readily aged nor sub-880

divided into distinct life stages and individual size, say weight, is the feature881

used to subdivide the population. The selection of size classes, small, medium,882

and large, will necessarily have arbitrary boundaries. The weight classes for the883

three size classes are (0,10), [10,20), [20+], an animal weighing 9.99 pounds is884

labeled small and one weighing 10.0 pounds is medium. Those two individuals885

will be treated differently in terms of population processes, e.g., the survival886

probability is 0.5 for small individuals and 0.8 for medium individuals, while887

in reality the survival probabilities for both individuals may be much more888

similar. Integral Projection Models (IPMS; Easterling et al., 2000), sometimes889

called integrodifference equation models (see Caswell, 2001, for historical ref-890

erences), are a modeling approach that maintains the continuous nature of a891

factor that distinguishes population members, while (generally) maintaining892

the discrete time step characteristic of MPMs.893

1.5.1 Kernel structure of IPMs.894

The core of an IPM, which is analogous to an element in the transition matrix895

of an MPM, is the kernel denoted K(z
′

t+1|zt). The kernel can be viewed as a896

conditional probability density function for the “probability” that an animal897

of size z at time t, denoted zt, is size z
′
at time t+ 1, denoted z

′

t+1. The word898

probability is put in quotation marks as this is a density not a probability.899

More accurately K(z
′

t+1|zt)∆ is an approximate probability for such a move-900

ment from size zt to a size in an interval of width ∆ containing z
′

t+1, e.g.,901

z
′

t+1 ± 0.5∆. The number of individuals in a given size class at time t + 1 is902

then the sum of all individuals, of any size class at time t, say n(z∗t ) where903

z∗t ∈ Ω and Ω is a suitably large range of sizes, that survive, growth, and/or904

contribute to individuals of size class zt+1 at time t+ 1:905

n(z
′

t+1) =

∫
zt∈Ω

K(z
′

t+1|zt)n(zt)dzt (1.51)

A simpler version of the kernel is time invariant, F (z
′ |z), where the conditional906

density for the contribution to size class z
′
at time t+ 1 from size class zt is907

the same for all times t.908

The population growth process is the result of other processes, such as909

survival and reproduction. So the kernel K can be decomposed into survival910

of the current population and reproduction entering the population. Here,911

however, individual size is also a factor and survival and reproduction is into912

a specific size class, zt+1, thus growth from size class zt to zt+1 is a third913
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process to account for. The resulting partitioning of the kernel:914

K(z
′

t+1|zt) = P (z
′

t+1|zt) + F (z
′

t+1|zt) (1.52)

where P is the survival/growth kernel, the combined conditional density for915

surviving to time t+1 and changing to size class zt+1, and F is the fecundity916

kernel, is the conditional density for recruits at time t+1 of size zt+1 (Merow917

et al., 2014) .918

There are a wide variety of formulations for the survival/growth kernel.919

One formulation is to treat the two processes as independent, the result be-920

ing the product of the conditional probability of surviving, ϕ(zt), and the921

conditional density of moving to size class z
′
, g(z

′

t+1|zt):922

P (z
′

t+1|zt) = ϕ(zt)g(z
′

t+1|zt) (1.53)

In principle, though this may be rarely appropiate, a joint density for survival923

and growth could be used; e.g., movement to a much larger size class could be924

accompanied by lowered survival probability. The survival probability could925

be a more complicated function of competing or sequential mortality factors;926

e.g., there are two mortality processes occurring in sequence, ϕ(zt)= ϕ1,ztϕ2,zt .927

There are also a wide variety of formulations for the fecundity kernel. For928

example, a female fish has a probability distribution for the number of eggs929

produced, f(E|zt), there is a probability that the eggs will be fertilized, pE ,930

a probability that the fertilized eggs will hatch, ph, and then there is density931

function that hatched larvae will be a particular size, h(z
′
), where the last932

three processes are independent of zt. Then933

F (z
′

t+1|zt) = f(E|zt)pEphh(z
′
) (1.54)

Merow et al. (2014) note that a common feature of the survival/growth and934

fecundity kernel formulations is an individual component, e.g., ϕ(zt) in eq’n935

(1.53) and (f(E|zt)pEph) in eq’n (1.54), and a size redistribution component,936

e.g., g(z
′

t+1|zt) in eq’n (1.53) and h(z
′
) in eq’n (1.54).937

1.5.2 Implementation of an IPM.938

Equation (1.51) is analogous to the generation of a single component in the939

state vector of an MPM. With an MPM, the entire state vector at time t+ 1940

is nt+1 = Lnt, where the ith entry in nt+1 denoted ni,t+1 is the following941

summation:942

ni,t+1 =

p∑
j=1

Li,jnj,t (1.55)

where L has p columns. Each Li,j in the summation is analogous to a kernel943

function as it is the per individual contribution from “size” class i at time t944
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to “size” class j from time t+ 1. If the vector nt is further partitioned into a945

relative large number of size classes, the summation operation in eq’n (1.55)946

approaches an integration operation.947

Implementation of an IPM is in practice the reverse operation. Referring948

to the integral in eq’n 1.51, the interval Ω, which contains the range of size949

classes that can contribute to size class z
′
, is partitioned into m size classes. A950

finite sum approximation to integration, e.g., the midpoint rule, the trapezoid951

rule, or Simpson’s rule, is used calculate the number of individuals in size class952

z
′
. An example of the midpoint rule: suppose Ω is an interval [L,U ] which953

is partitioned into m intervals of equal length (U − L)/h, and let zi be the954

midpoint of the ith size class, also known as mesh points (Rees et al., 2014),955

where956

zi = L+ (i− 0.5) ∗ j, i = 1, 2, . . . ,m

The integral (1.51) can be approximated by957

n(z
′

t+1) ≈
m∑
i=1

K(z
′
|zi)hn(zi,t) (1.56)

1.5.3 Estimation of kernel components.958

Assuming that relevant data on size, survival, reproduction success, etc, are959

available, there are many standard statistical model fitting procedures, linear960

regressions, nonlinear regression, generalized linear models including logistic961

regression, and generalized additive models, that can be utilized to construct962

the components of the transition kernel, K(z
′

t+1|zt). Likewise, many of the963

associated model fit diagnostic procedures could, and should be, used to assess964

the quality of the estimated components of the kernel (Rees et al., 2014).965

Referring to the example survival/growth kernel in eq’n ( 1.53) and the966

example fecundity kernel in eq’n (1.54), a number of probability and den-967

sity functions are needed to calculate the transition densities. For individual968

components that are probabilities, e.g., the conditional probability of sur-969

vival, sample data on size conditional outcomes can be used to calculate es-970

timates. For example, a mark-recovery study of banded ducks could provide971

size-specific annual survival probabilities where a smooth fitted survival func-972

tion, such as a logit model, log (ϕ/(1− ϕ)) |z = β0 + β1z. Whether or not973

time-specific functions could be fit may depend upon the number of years of974

data available. Survival probabilities can be a function of size and environmen-975

tal covariates, e.g., winter temperatures. For size redistribution components,976

e.g., the conditional density for moving from size class z to z∗ in eq’n (1.53),977

longitudinal data is required. Size measurements made over time on multiple978

individuals are required.979

Inference methods for IPMs are continually developing. For example,980
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Ghosh et al. (2012) use Bayesian hierarchical models where the size distribu-981

tion is a point pattern on some interval and carry out an integrated analysis982

that combines the parameter estimation/model fitting stage and the projec-983

tion stage.984

1.5.4 Application, use and analysis of IPMs985

Plant species were the most common organisms in early applications of IPMs,986

e.g., Northern Monkhood (Easterling et al., 2000), with the growth transitions987

between different plant sizes, e.g., stem diameter, and including of processes988

like flowering strategies. The scope of applications has expanded to include989

birds (Great tits, Childs et al., 2016), arachnids (soil mites, Brooks et al.,990

2015), mammals (Soay sheep), diseases (hosts and parasites, Metcalf et al.,991

2016).992

The set of questions asked of MPMs in Section 1.4.1 can be asked of IPMs.993

For example the asymptotic behavior of IPMs can be examined. Is there a994

limiting population growth rate, a dominant eigenvalue λ1 and corresponding995

stable “size” class distribution? Sensitivity analyses are also possible. See Ell-996

ner and Rees (2006) for examples of such analyses. Available software includes997

the R package IPMpack which does the following: “Construction and analysis998

of integral projection models and associated measures of population growth,999

structure, perturbations (sensitivities and elasticities), overall population dy-1000

namics, age-specific metrics, etc”.1001

In addition to population dynamics analysis the scope of ecological infer-1002

ence using IPMs includes analysis of evolutionary strategies (Ellner and Rees,1003

2006). Brooks et al. (2015) separated out the effects of individual body size1004

on developmental rates from the effects of environmental conditions on repro-1005

ductive rates. Metcalf et al. (2016) examined the feedback between host and1006

parasite in an epidemiological analysis.1007

1.6 Individual Based Models, IBMs1008

Individual based models (IBMs; DeAngelis and Grimm, 2013), sometimes re-1009

ferred to as agent-based models (but see Roughgarden, 2012, for a definition of1010

agents narrower than individuals), in ecology are computer simulation proce-1011

dures that, in their most complete form, track the entire life history of multiple1012

individuals simultaneously. Variables that are tracked include emergence into1013

the population (date of birth, germination, hatch date), size at birth, sex,1014

size over time, maturation process including time of sexually mature and re-1015

production, spatial location and movement over time, senescence, and death.1016

One central feature of many ecological IBMs is the modeling of interactions1017

of individuals with each other, including individuals of the same species, e.g.,1018



34 Newman - DRAFT - May 17, 2016

reflecting competition for resources and density dependence, or individuals of1019

different species, e.g., reflecting predator-prey dynamics or more broadly eco-1020

logical community interactions. The other central feature is the simulation of1021

interactions of individuals with their abiotic environment, e.g., air tempera-1022

ture and precipitation, and their biotic environment excluding like individuals,1023

e.g., vegetative browse and zooplankton.1024

IBMs are by design forward simulation based approaches to modeling de-1025

mographics and, as such, the opportunity to insert complexity into dynamic1026

processes is relatively unlimited, constrained in principle by the available com-1027

puter storage and processing speed. Population level properties can be exam-1028

ined at arbitrary points in time in the simulation process by aggregating the1029

states of individuals in arbitrary ways. For example, the simulation may start1030

with a vector of 1000 individuals where each individual has an associated vec-1031

tor of initial conditions such as age, weight, sex, spatial location, maturity,1032

and whatever attributes are used to distinguish individuals, i.e., attributes1033

that could serve as potential subpopulation categories in an arbitrarily struc-1034

tured MPM. Processes like survival, growth, movement, reproduction are then1035

applied to each individual and at an arbitrary time point t1, numbers of indi-1036

viduals in a set of spatial regions further distinguished by sex and age class,1037

say, are tallied to yield abundances of multiple subpopulations. Continuing1038

the simulation to a later time point, t2 (> t1), the aggregation is done again.1039

Repeating the simulation and aggregation K times yields a multivariate time1040

series of subpopulation abundances, nt1 , nt2 , . . ., ntK . Analysis of population1041

level dynamics can then be conducted, studying such things as the effects of1042

region-specific harvest regulations on a population of deer, for example. If the1043

effects of changes to or states of environmental and anthropogenic factors on1044

the population dynamics cannot be readily solved in any analytic sense, IBM1045

output can provide some experiential, albeit simulated, insight.1046

1.6.1 Statistical designs for and analysis of IBMs1047

The simulation nature of IBMs with multiple attributes and multiple lev-1048

els to attributes lends itself to using methods from the statistical design of1049

experiments, such as factorial experiments, to construct a set of forward simu-1050

lations with an arbitrary number of replications, and an arbitrary longitudinal1051

time series length. For example, if three attributes are of particular interest,1052

say sex, spatial location, and age class with corresponding levels of (female,1053

male), (I, II, III, IV) regions, and ages (0,1,2,3+), then a factorial design with1054

2×4×4 = 32 “treatment” combinations can be conducted with r replications1055

of each combination. Statistical methods for analyzing data from factorial1056

experiments such as analysis of variance or response surface modeling can1057

then be applied. Aggregated data could also used to construct simple MPMs,1058

like year-specific Leslie matrices, and methods for assessing MPMs, such as1059

calculating annual finite population growth rates for multiple years could be1060

employed (for such an example, see Rose et al., 2013).1061
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The computational burden of IBMs can grow in a number of ways. First,1062

as might have been apparent from the previous 2×4×4 factorial above, as the1063

number of attributes of interest and the levels of each attribute increases, the1064

number of treatment combinations can grow rapidly. Second, as the level of1065

environmental stochasticity (or demographic) increases, the number of repli-1066

cates required to provide a desired level of precision for estimates of average1067

population level responses along with the associated stochastic variation in-1068

creases as well. Third, questions about the effects of the distribution of initial1069

attribute values at time t0 as well as questions about the nature of the pro-1070

cesses, e.g., density dependent or density independent recruitment success or1071

the chosen value, or distribution of values, for juvenile survival probabilities,1072

can lead to a considerable number of sensitivity analyses.1073

1.6.2 Comparison with population models1074

In contrast to population models, such as the Ricker model (eq’n 1.35), for1075

which long term population-level behavior such as exponential growth, an1076

asymptotic upper bound, or periodicity can sometimes be determined ana-1077

lytically or by elementary computer simulation, population-level behavior for1078

IBMs is an emergent property that might only be apparent from simulation.1079

The resulting behavior is the result of potentially complex interactions of in-1080

dividuals with each other and with their abiotic environment (DeAngelis and1081

Grimm, 2013), and can demonstrate “the importance of local interactions1082

between individuals in ecological systems” (Judson, 1994).1083

A succinct way to contrast population-level models and IBMs is top-down1084

versus bottom-up. Population-level models are top-down in that they predict1085

what happens to individuals as function of population level characteristics,1086

e.g., fecundity of the individual decreases as the total population abundance1087

increases (density dependence exists). Conversely, IBMS are are bottom-up1088

in that modeling begins with the characteristics of multiple individuals and1089

manifests characteristics of the population as a whole. An interesting example1090

of the latter is with Anolis lizards in the Caribbean (discussed in Roughgar-1091

den, 2012) where an IBM simulated energy gained per unit time after a lizard1092

consumed a prey item as a function of distance from the prey and the optimal1093

foraging distance could then be determined. From that model for the “energy1094

capture” the daily growth rate of the lizard was predicted, with distinction1095

made between growth prior to reproductive stage and during the reproductive1096

stage. Using these results an optimal growth rate, as a function of age, was1097

calculated, which was then used with information on survival probabilities1098

and maternity rates to determine that optimal female body size was 45mm.1099

As Roughgarden (2012) said “[t]his example illustrates a complete and suc-1100

cessful modeling protocol that begins with the properties of an individual and1101

culminates in the an evolutionary prediction of the adult body size for lizards1102

on an island in the absence of congeneric competitors”.1103
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1.6.3 Applications of IBMs1104

Some of the earliest applications of IBMs in ecology were in forestry, and such1105

applications remain common. In the IBM JABOWA (Botkin et al., 1972),1106

individual trees were the fundamental entities and the central measure on each1107

tree was its stem diameter (at some height on the tree). Other tree measures1108

such as volume and crown biomass are sometimes functions of diameter. The1109

emergence, growth, and eventual death of a tree is a function of interactions1110

with neighboring trees, their size and proximity and the degree to which their1111

presence led to competition for resources for light and water, for example,1112

and a function of interactions with the abiotic environment, e.g., soil type and1113

chemistry, precipitation, temperature, and light. IBMs have been used for both1114

management purposes, to predict growth and yield of commercially harvested1115

species, and to “explore ecological mechanisms and patterns of structure and1116

functional dynamics in natural forest ecosystem” (Liu and Ashton, 1995).1117

Applications of IBMs to fish populations have been common as well, where1118

IBMs “track the attributes of individual fish through time and aggregate them1119

to generate insights into population function” (Van Winkle et al., 1993). IBMs1120

simulate how fish of different phenotypes interact with their biotic and abi-1121

otic environment. Differences in phenotype can refer to differences in length,1122

weight, sex, and age, the biotic environment can include prey items, such1123

as zooplankton or vegetation, and the abiotic environment can include wa-1124

ter temperature, salinity, water clarity. An IBM application to Delta Smelt1125

(Hypomesus transpacificus, Rose et al., 2013) also included bioenergetics con-1126

siderations, namely the transformation of consumed prey into fish growth.1127

More generally, the use of IBMs in ecology can be broadly divided into1128

applications for (individual) populations, communities and ecosystems. Sin-1129

gle population-level IBMs have been mentioned above, e.g., Anolis lizards and1130

Delta Smelt, but IBMs have used to model predator-prey dynamics (Cudding-1131

ton and Yodzis, 2002). A community-level application by Weiss et al. (2014)1132

used an IBM to simulate how the dynamics of a community assembly of 90 hy-1133

pothetical plant types were affected by soil attributes and grazing intensities.1134

The results were then compared to field-based observations of species richness1135

and diversity. Least common are ecosystems level applications; a hypothetical1136

food web system used an IBM to model interactions between three trophic1137

levels, plant, herbivore and carnivore (Schmitz and Booth, 1997).1138

1.6.4 Data needs and structure1139

There are at least three levels of data or information needs for IBMs. One is1140

the information on the initial attributes to be assigned to the individuals, an1141

attribute vector (Van Winkle et al., 1993), and the biotic and abiotic environ-1142

ment. Due to general case where proximity to other individuals is a factor in1143

the dynamics, information is needed at least about spatial location, thus an1144

initial spatial distribution is needed: should locations be randomly placed as in1145
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a Poisson process, systematically placed, clustered, placed with probabilities1146

proportional to particular habitat conditions? In addition to spatial location1147

other individual attributes, e.g., size, sex, age, need to be assigned. To achieve1148

greater realism, the actual multivariate distribution of such attributes should1149

be mimicked. Attributes of the environment that the individuals populate1150

are also needed, included spatial location. For example, if the population of1151

interest is an herbivore, then the types of plants, abundance and spatial dis-1152

tribution must be specified. Similarly, abiotic features, e.g., soil types, water1153

sources, etc, need to be determined.1154

The other need is for information about how the individuals interact with1155

each other and with their environment in terms of processes of relevance to1156

the model purpose. For example, how is the probability of survival affected1157

by the availability and proximity to food items? How is movement affected by1158

population density, biotic and abiotic features?1159

To verify that IBM output, and apparent emergent population level prop-1160

erties, e.g., collective survival, reproduction, and movement rates, are reason-1161

able, field-based observations are needed.1162

Given these data needs, “IBMs have therefore been criticized as being too1163

‘data hungry’-especially IBMs designed for specific, applied problems (Grimm1164

and Railsback, 2013). The available data may thus constrain and guide the1165

formulation on an IBM, affecting things like the time step resolution, spatial1166

scope, number of attributes followed, and number of interactive processes1167

simulated.1168

1.6.5 Relationship with IPMs1169

IBMs overlap somewhat with IPMs in that measurements on individuals made1170

over time, i.e., longitudinal data, are central. IPMs use such data to model1171

the relationship between the value of an attribute measured at time t and1172

its value at time t + 1, say, the probability of transitions from one value to1173

another are then calculated based on the collective pairings of values from1174

multiple individuals. IBMs at times start a sample of n0 individuals with1175

randomly chosen initial attribute values, say x0,1, x0,2, . . ., and x0,n, and with1176

the relationship between xt,i and xt+1,i for arbitrary individual i, typically a1177

stochastic relationship, and then projects the longitudinal trajectory of each1178

of the n individuals forward in time via stochastic simulation or deterministic1179

projection. IBMs can be used to generate data that are then used to evaluate1180

fitting procedures for IPMs and the subsequent performance of IPMs can be1181

evaluated by comparing IPM predictions to the “true” values generated by1182

simulated IBM output (Rees et al., 2014).1183
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1.7 State-Space Models, SSMs1184

State-space models (SSMs) are models for two time series running in parallel.1185

One time series, here referred to as the state process time series, describes1186

the evolution of the true, but generally unknown, state of nature over time.1187

The other time series, here called the observation time series, is a sequence of1188

imperfect or inexact measurements of the state process time series. The state1189

process time series will be denoted nt, t=0, 1, 2, . . ., T , and the observation1190

time series is yt with t=1,2,. . ., T . The state n0 is referred to as the initial1191

state. The discrete integer valued subscripting of the two time series is used1192

here primarily to reduce notation as somewhat arbitrary time points could be1193

used, t1, t2, . . ., tT . The time series indexing for both time series do not nec-1194

essarily need to coincide, e.g., there could be half the observations if the state1195

is only observed every other time point, although statistical estimation limi-1196

tations might occur. Also, the dimensions of nt and yt need not be the same,1197

although situations where the dimensions differ, in particular the dimension1198

of nt is greater than the dimension of yt statistical inference limitations or1199

problems may result. For an ecological application, nt could be viewed as a1200

vector of true abundances of subpopulations at time t and yt as estimates of1201

individual components or combinations of components of nt.1202

Given these two time series, the structure of a SSM is a paired sequence of1203

probability distributions (probability mass functions for integer valued compo-1204

nents or probability density functions for continuous valued components) that1205

characterize the evolution of the state process and the relationship between1206

the observation vector and the state vector. The the probability distribution1207

for the state process is typically first order Markov, i.e., the state at time t1208

given the state at time t − 1 is conditionally independent of all other states.1209

This conditional distribution is sometimes called the state transition “equa-1210

tion”. The observation vector at time t, given the state vector at time t, is1211

conditionally independent all other state vectors and all other observation1212

vectors.1213

1.7.1 Normal dynamic linear models1214

A classic SSM, originating from Kalman (1960), is the normal dynamic linear1215

model (NDLM). A specific example of an NDLM is the following. form.1216

n0 ∼ D(θ)

nt|nt−1 ∼ MVN(Lnt−1,Σ) , t = 1, 2, . . . , T

yt|nt ∼ MVN(Bnt,Ω) , t = 1, 2, . . . , T

where D(θ) denotes an arbitrary probability distribution with parameter θ1217

which may be degenerate, i.e., n0 is a fixed value, MVN is multivariate nor-1218

mal, L and B are matrices (most simply square matrices), and Σ and Ω are1219
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variance-covariance matrices. As denoted here all the matrices are time invari-1220

ant, but that does not need to be the case. Given the observation time series,1221

yt, t=1,2,. . ., T , and the values of n0, Lt, Bt, Σt, and Ωt, an algorithm known1222

as the Kalman filter can be used to calculate the conditional distribution of nt,1223

which is multivariate normal, giveny1, . . ., yt. The Kalman filter also yields1224

the calculated value of the likelihood (the joint marginal distribution of yt,1225

t=1,2,. . .,T ), which can in principle then be used to estimate unknown pa-1226

rameters of the transition and variance-covariance matrices. In practice there1227

are considerable restrictions on the estimability of the parameters, and cor-1228

relations between estimates of the parameters of the state process covariance1229

matrix and parameters of the observation covariance matrix (Dennis et al.,1230

2006).1231

The notation L for the state transition matrix was selected to suggest the1232

notion of a Leslie matrix as for an age-structured MPM, a SSM extensions1233

of MPMs are not uncommon (Sullivan (1992); Newman (1998), and see the1234

gray whale example in section 6.4.2.2 of Newman et al. (2014)). Thus the1235

components of L can include fecundity and survival, for example, or can be1236

considerably more complex, as suggested in the building block approach to1237

MPM formulation discussed previously.1238

1.7.2 Non-normal, nonlinear SSMs1239

The NDLM structure, while it has the advantage of the Kalman algorithm1240

machinery, may often be considered too constricting and unrealistic for popu-1241

lation dynamics modeling. More realistic state-space models can on occasion1242

be “shoe-horned” into the NDLM framework. Log transformations to linearize1243

multiplicative relationships can sometimes work depending upon the formula-1244

tion of the state (and observation) models. For example, Dennis et al. (2006)1245

used a stochastic Gompertz model for the state process distribution.1246

nt|nt−1 = λn1+α
t−1 exp ϵt

where α ≤ 0 and ϵt ∼ Normal(0,σ2
ϵ ). A natural log transform yields a linear1247

normal state distribution.1248

ln(nt)|nt−1 ∼ Normal
(
ln(λ) + (1 + α) ln(nt−1), σ

2
ϵ

)
Another way to modify an otherwise non-normal, and perhaps nonlinear SSM,1249

into a NDLM approximation is to work with just the first two moments of the1250

state process distribution and then use the mean and covariance structure as1251

the normal mean vector and covariance matrix. Newman (1998) and Newman1252

et al. (2014) give examples of such substitutions. A simplistic univariate ex-1253

ample is to suppose that a scalar valued state nt is Binomial(nt−1, ϕt), where1254

ϕt is the survival probability, perhaps a function of covariates. The conditional1255

expected value of nt is of course ϕtnt−1 ≡ Ltnt−1, and the conditional variance1256

is nt−1ϕt(1− ϕt) ≡ Qt. Other, perhaps somewhat slight, departures from the1257
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NDLM formulation can be accommodated by Taylor series transformations1258

of the process, using the Extended Kalman Filter (EKF; Einicke and White,1259

1999). A more recent alternative to the EKF, which has been shown to have at1260

least equal and often far superior performance (Durbin and Koopman, 2012,1261

p. 236) is the Unscented Kalman Filter (Julier and Uhlmann, 2004).1262

Computer intensive Monte Carlo methods such as Markov chain Monte1263

Carlo (MCMC, Gilks et al., 1996) and Sequential Monte Carlo (SMC Doucet1264

and Gordon, 2001) offer the ultimate flexibility for fitting nonlinear, non-1265

normal SSMs. With the MC procedures applied to such SSMs, Bayesian infer-1266

ence has been the dominant approach, but not always (see De Valpine, 2003;1267

Ionides et al., 2006, for exceptions). One of the first ecological applications1268

using MC methods was by Meyer and Millar (1999), who used the program1269

BUGS (Bayesian inference Using Gibbs Sampling) to fit an SSM with scalar1270

states and observations. The state was scaled biomass (pt= Bt/K), rather1271

than abundance, where biomass (Bt) was divided by carrying capacity, K,1272

thus 0 < pt ≤ 1), and the observation was a biased measure of scaled biomass,1273

an index (yt):1274

pt|pt−1 ∼ Lognormal
(
ln

(
pt−1 + rpt−1(1− pt)−

ct−1

K

)
, σ2

p

)
yt|pt ∼ Lognormal

(
ln (qKpt) , σ

2
o

)
Thus the SSM was intrinsically nonlinear (no transformation of the state would1275

linearize the mean structure) and non-normal. Environmental stochasticity1276

was implicit to the Millar and Meyer model in the lognormal variation around1277

the median response.1278

1.7.3 Hierarchical and continuous time SSMs1279

An extension of SSMs is a hierarchical state-space model (HSSM). A general1280

formulation for an HSSM in a Bayesian framework is the following1281

Prior distribution : π(η, ω) (1.57)

Stochastic variation in parameter : h(Θt, η) (1.58)

State process model : gt(nt|nt−1,Θt) (1.59)

Observation model : ft(yt|nt,Ω) (1.60)

Newman and Lindley (2006) used Sequential Monte Carlo to fit a Bayesian1282

HSSM to salmon data which included both environmental and demographic1283

stochasticity. The environmental stochasticity was modeled as above with sep-1284

arate distributions for year-specific survival and maturation probabilities. De-1285

mographic stochasticity was incorporated in the state process equations using1286

multinomial distributions to reflect between individual variation in survival1287

and maturation (although given the population size, the influence of demo-1288

graphic stochasticity on the results was likely minimal).1289
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Durbin and Koopman (2012) discuss continuous time SSMs for a couple1290

cases including what is called a continuous time local level SSM. Here n(t)1291

= n(0) + σϵ ω(t), where ωt arises from a Brownian motion process, which1292

means ω(0)=0, ω(t) ∼ Normal(0,t) for 0 < t < ∞, and “jumps” or increments1293

without common endpoints are independent, e.g., ω(2)−ω(1) is independent of1294

ω(4)−ω(3). For an ecological application of continuous time SSMs see Johnson1295

et al. (2008) who model the location of marine mammals using telemetry data.1296

1.8 Concluding Remarks1297

1.8.1 Omissions and sparse coverage1298

Demography is vast topic with considerable depth and breadth, as book length1299

treatments of MPMs and IBMs alone indicate. Continuous time demographic1300

models, including models based on deterministic or stochastic differential1301

equations, have been largely ignored here (the Lotka-Volterra predator-prey1302

model being one exception). Williams et al. (2002) provides an introduction to1303

continuous Markov processes, including birth and death processes, and Brow-1304

nian motion in the context of models for animal populations. Gurney and1305

Nisbet (1998) present several topics in modeling ecological dynamics where1306

discrete time and continuous time models are compared and contrasted. For1307

continuous time SSMs, Durbin and Koopman (2012) is a reference.1308

Key principles or aspects of ecological theory which have demographic im-1309

plications that were not mentioned include fitness (of which there are multiple1310

interpretations, with reproductive success an approximate measure), adapta-1311

tion, mutation. Effective population size, Ne, of an existing population, here1312

defined as the minimum number of individuals necessary in a hypothetical1313

population that would represent existing populations ability to retain the ge-1314

netic diversity present, is an important concept for endangered species, and1315

methods for calculating Ne were not addressed. Coverage of the demogra-1316

phy of multiple populations, communities, and ecosystems was scanty, with1317

some mention made using IBMs, but measures of community structure such as1318

species richness and models for changes in such measures were not mentioned.1319

Demographic modeling of ecosystems has been particularly popular in fish-1320

eries (Christensen and Pauly, 1992; Walters et al., 1997, 1999) with Ecopath1321

with Ecosim and Ecospace being the best known software.1322

1.8.2 Recommended literature1323

For MPMs, the Caswell (2001) book remains an outstanding reference with1324

near encyclopedic coverage of material to 2001. For stochastic MPMs, the1325

Tuljapurkar (1990) book is a classic.1326
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For IPMs, there are two “How To” papers, Rees et al. (2014) and Merow1327

et al. (2014) which provide the basic components of IBMs, ways of estimating1328

the kernel components, and ways of making the projections (using numerical1329

integration methods). The original paper (Easterling et al., 2000) includes1330

detailed discussion of the advantages of IPMs over MPMs, while Ellner and1331

Rees (2006) include detailed examples of stable population analyses often done1332

with MPMs. More sophisticated and integrated IPM fitting and projection1333

approaches are described by Ghosh et al. (2012).1334

For IBMS, Grimm and Railsback (2013) provide a book length treatment,1335

while DeAngelis and Grimm (2013) is a more recent and considerably briefer1336

overview paper. (Roughgarden, 2012) gives an alternative perspective on the1337

definition of and uses of IBMs, viewing agent-based models as a special case,1338

for example.1339

For SSMs, Durbin and Koopman (2012) is a book length and extremely1340

thorough treatment of SSMs about two thirds of the book covering linear1341

SSMs, including classical treatment with the Kalman algorithms and exten-1342

sions, and the remainder of the book on nonlinear, non-normal SSMs including1343

coverage of special cases as well as quite general formulations that are typ-1344

ically fit by Monte Carlo procedures. Specific focus on the use of SSMs for1345

population dynamics modeling is given by Newman et al. (2014).1346

1.8.3 Speculations on future developments1347

Future developments in biological demography can be placed in three cate-1348

gories: data, model formulations, and model fitting.1349

Data.1350

The volume and complexity of data on individual organisms will continue1351

to grow as the life spans of biological monitoring programs extend, as new1352

monitoring programs are established, and as technology for collecting data1353

advances. Electronic monitoring devices, e.g., radio tag collars, acoustic tags,1354

tags that record the diving depths of marine animals, are providing increas-1355

ingly fine temporal and spatial resolution information on individual animal1356

movement. Chemical analyses of organisms are providing more information1357

about some aspects of individual life histories, e.g., chemical analyses of bony1358

structures in fish, such as otoliths, can provide information about where the1359

fish were born and migration paths (Secor et al., 1995). Environmental DNA1360

(eDNA) is an emerging tool for indirectly detecting the presence of various1361

species (Thomsen and Willerslev, 2015). Remote sensing data provides in-1362

creasingly abundant and detailed information about the abiotic environment1363

inhabited by organisms. In short, the “attribute vectors” (Van Winkle et al.,1364

1993) for individuals, for populations, and abiotic and biotic environments1365

will grow in length.1366
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Model formulations.1367

Of the four general formulations for demographic modeling, SSMs are unique1368

in making explicit the distinction between process variation (environmental1369

and demographic stochasticity), and observation noise (e.g., sampling errors).1370

Inclusion of both sources of uncertainty in demographic models will be more1371

common. Bolker (2008) has a nice discussion of differences in methods for1372

fitting models with process variation alone, observation noise alone, and both1373

process and observation variation, and argues for the latter. In brief, hierarchi-1374

cal modeling (Kery and Royle, 2016; King et al., 2009), whether in a Bayesian1375

framework (eq’ns 1.57-1.60), or non-Bayesian framework (eq’ns 1.58-1.60) will1376

become more commonplace.1377

Hierarchical extensions of MPMs which separate process and observation1378

variation within the normal dynamic linear model framework of SSMs date1379

back to the 1990s, e.g., Sullivan (1992) and Newman (1998). Separate account-1380

ing of process and observation variation in MPMs (as well as other frame-1381

works) can lead to substantive differences in inferences; An example given by1382

Newman et al. (2014) for modeling the population dynamics of Eastern North1383

Pacific gray whales (Eschrichtius robustus contrasted an MPM with observa-1384

tion error only with a SSM extension. Differences in some of the parameter1385

estimates were considerable, e.g., juvenile survival probability was estimated1386

to be 0.9999 (upper bound) for the observation error only model and 0.82811387

for the SSM. NDLM formulations have been used primarily for computational1388

convenience as the Kalman filter provides an efficient means of calculating the1389

likelihood. Given advances in model fitting procedures there is less need to re-1390

strict process models to linear formulations, implicit to MPMs, with additive1391

normal (or multiplicative lognormal) distributions. More biologically realistic1392

nonlinear, and non-Gaussian formulations may make applications in the MPM1393

framework less common. However, the MPM structure will remain valuable1394

for formulating approximate deterministic skeletons underlying more realistic1395

models (Buckland et al., 2007).1396

For IPMs and IBMs, computer simulations can explicitly partition and ac-1397

count for process and observation uncertainty. With IPMs, bootstrapping the1398

process model fitting procedure, namely the estimation of the kernel density1399

components, would provide measures of parameter estimate uncertainty as1400

well as between animal variation. For example, when estimating the growth1401

density, g(z
′

t+1|zt), in the survival/growth kernel (eq’n 1.53), the longitudinal1402

data on sizes would be resampled and a bootstrapped distribution of growth1403

densities would provide a measure of parameter uncertainty. For a given fitted1404

growth density model, the simulated variation of individual sizes around the1405

expected size at time t+1 would provide a measure of demographic variation.1406

For IBMs, computer simulation of between individual variation and param-1407

eter uncertainty can be carried out within a designed experiment structure,1408

e.g., factorial designs, to (a) determine the relative import of specific factors1409
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on the model predictions and (b) quantify the degree of uncertainty in model1410

predictions.1411

Model fitting.1412

Extended attribute vectors for increasingly large numbers of individuals, along1413

with increasingly complex demographic model formulations, necessitate in-1414

creasingly complex model fitting procedures. The pace of development for1415

fitting such models is rapid and the variety of model fitting options available1416

is increasing. Here we focus on some of these options for making inferences1417

for dynamic hierarchical demographic models, like SSMs, with both a state1418

process model and an observation model.1419

At the heart of the fitting procedures for hierarchical models is mathe-1420

matical integration and numerical optimization. For some of these models,1421

exact, closed form solutions to the integration and optimization problems do1422

exist. The NDLM is a notable case where the Kalman filter in effect does the1423

integration to yield the conditional distribution for states and the likelihood,1424

which then facilitates maximum likelihood estimation. Numerical approxima-1425

tions to nonlinear, but Gaussian, population dynamics models yield models1426

amenable to such analytic solutions, e.g.,the extended Kalman filter with its1427

first order Taylor series approximation to the state process and observation1428

models.1429

Inference for more general hierarchical dynamic models requires approx-1430

imate techniques for integrating over the unobserved state process to yield1431

the likelihood, or the conditional distribution for the states given the observa-1432

tions. Approximate analytic solutions to the integration problems include the1433

Laplace approximation (Tierney and Kadane, 1986) and the Integrated Nested1434

Laplace Approximation (INLA, Rue et al., 2009). The software package, AD1435

Model Builder (ADMB, Fournier et al., 2012), uses Laplace approximations1436

to integrate over the state process distributions to yield the likelihood and1437

then automatic differentiation for calculating maximum likelihood estimates1438

of the parameters.1439

Computer intensive Monte Carlo (MC) procedures, e.g., MCMC and se-1440

quential Monte Carlo, carry out the integration by simulation. In the Bayesian1441

framework, “optimization” per se is not done, as the entire posterior distribu-1442

tion for states and parameters is generated. In the likelihood framework, MC1443

methods can produce estimates of the likelihood function and optimization1444

is then done with that estimate (De Valpine, 2003). Commonly used MCMC1445

software for fitting Bayesian SSMs includes WinBUGS (Lunn et al., 2000) and1446

JAGS (Plummer et al., 2003).1447

Two recent software programs, NIMBLE and the R package pomp, allow1448

users to choose from a variety of computer intensive model fitting procedures.1449

NIMBLE (de Valpine et al., 2015) extends the BUGS software and allows es-1450

timation within Bayesian or likelihood frameworks. The R package pomp, for1451

“partially observed Markov processes” , contains a variety of procedures for1452
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fitting state-space models, with including “sequential Monte Carlo, iterated1453

filtering, particle Markov chain Monte Carlo, approximate Bayesian compu-1454

tation, maximum synthetic likelihood estimation, nonlinear forecasting, and1455

trajectory matching” (King et al., 2016).1456
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