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A B S T R A C T

The role of the host immune system in determining parasite burdens and mediating within-host parasite in-
teractions has traditionally been studied in highly controlled laboratory conditions. This does, however, not
reflect the diversity of individuals living in nature, which is often characterised by significant variation in host
demography, such as host age, sex, and infection history. Whilst studies using wild hosts and parasites are
beginning to give insights into the complex relationships between immunity, parasites and host demography, the
cause-and-effect relationships often remain unknown due to a lack of high resolution, longitudinal data. We
investigated the infection dynamics of two interacting gastrointestinal parasites of wild wood mice (Apodemus
sylvaticus), the nematode Heligmosomoides polygyrus and the coccidian Eimeria hungaryensis, in order to assess the
links between infection, coinfection, and the immunological dynamics of two antibodies (IgG1 and IgA). In an
anthelmintic treatment experiment, mice were given a single oral dose of an anthelmintic treatment, or control
dose, and then subsequently followed longitudinally over a period of 7–15 days to measure parasite burdens and
antibody levels. Anthelmintic treatment successfully reduced burdens of H. polygyrus, but had no significant
impact on E. hungaryensis. Treatment efficacy was driven by host age, with adult mice showing stronger re-
ductions in burdens compared to younger mice. We also found that the relationship between H. polygyrus-specific
IgG1 and nematode burden changed from positive in young mice to negative in adult mice. Our results highlight
that a key host demographic factor like age could account for large parts of the variation in nematode burden
and nematode-specific antibody levels observed in a naturally infected host population, possibly due to different
immune responses in young vs. old animals. Given the variable success in community-wide de-worming pro-
grammes in animals and humans, accounting for the age-structure of a population could increase overall effi-
cacy.

1. Introduction

In the wild, animals and humans vary greatly in key demographic
characteristics such as sex, age, reproductive status and infection his-
tory (Babayan et al., 2011). Variation in these factors can potentially
influence the strength and polarisation of a host's immune response
(Nussey et al., 2012), leading to differences in disease susceptibility,
severity, morbidity, and mortality between individuals (Hayward et al.,
2014; Budischak et al., 2015). However, our understanding of the im-
portance of various demographic factors in shaping disease burden and
susceptibility to parasitic infections by creating variation in the host's
immune response is limited due to the narrow demographic range and

genetic diversity of studies carried out in the lab (e.g. 6-week old inbred
mice, Bordon, 2016), and the limited resemblance lab mice share with
humans and animals in the wild (Mestas and Hughes, 2004; Beura et al.,
2016). Hence, understanding the interplay between the immune re-
sponse and host demography in shaping parasite infections (prevalence
and burden) requires the integration of both immunological and eco-
logical data in an easily accessible natural system.

Even though still rare, studies measuring immune parameters in the
wild allow unique insight into the dynamic relationships between im-
munity, parasite infection and coinfection, and host health (Pedersen
and Babayan, 2011). Studies of humans in endemic disease areas have
indicated important associations between immunity and infection
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burdens, for example (Hegewald et al., 2015) found that children in-
fected with different nematode and protozoan parasites show a mixed
pro-inflammatory and regulatory immune cell profile, and that while
IL-27 and IL-33 levels increased with the number of coinfecting parasite
species, IL-10 levels remained constant (Hegewald et al., 2015). Fur-
ther, children infected with Schistosoma spp., Entamoeba, and Necator
americanus exhibited reduced inflammatory responses but increased
type 2 responsiveness to antigen stimulation after anthelmintic treat-
ment (Hamm et al., 2009). In wild Soay sheep, variation in antibody
levels was found to correlate with over-winter survival, such that high
levels of IgG1 produced against nematodes were positively associated
with survival, whereas high levels of IgM produced against generic non-
self antigens such as keyhole limpet haemocyanin (KLH) were nega-
tively associated with survival (Nussey et al., 2014). On the other hand,
a study linking nematode coinfection with host demography, haema-
tological parameters and investment in lymphocyte defence in wild
African buffalo only found very few weak associations in male buffalos,
and no significant associations in female buffaloes (Budischak et al.,
2012). These and other studies highlight that there is a great deal of
variation in immune parameters amongst individuals in the wild, and
that these immune parameters might be key predictors of host health
and parasite infection dynamics (Nussey et al., 2014). However, more
data on fine-scale patterns of both parasite and immune dynamics are
needed to draw reliable conclusions about the interplay between im-
mune parameters, host demography and variation in parasite infec-
tions.

Crucially though, studies in the wild are often unable to dis-
criminate between predictors of protective immunity and immune
markers of infection. Due to time lags between parasite exposure, im-
mune activation and build up, and parasite clearance, it can be hard to
disentangle cause from effect based on snapshot measures of immune
and parasite status (i.e., whether measured immune parameters are
indicative of protection against current or future infections, generating
a negative relationship between immune and parasite measures, or
whether immune parameters are simply triggered by parasitic infec-
tions, generating a positive relationship between them (Babayan et al.,
2011; Pedersen and Babayan, 2011)). A key factor influencing this re-
lationship between observed levels of host immune parameters and
parasite burden is host age, due to intrinsic changes in how the immune
system responds to parasite infection over time (Humphreys and
Grencis, 2002), the accumulation of previous parasite exposure
(DeVeale et al., 2004), and how chronic parasitic infections affect the
ageing immune system (Babayan et al., 2018). Individuals are likely to
accumulate both parasite exposure and immune memory as they age.
Young individuals can have both immature immune systems and in-
frequent parasitic exposure, whereas older individuals may have lim-
ited novel parasite exposure but fully developed innate and adaptive
immune responses, and could have potentially started to experience
immunosenescence (Ginaldi et al., 2001). This means that a single
immune parameter can potentially change from an immune marker in
young individuals, to a predictor of immunity in older individuals,
making it challenging to infer the cause-and-effect relationships be-
tween age, immune function, and infection history in natural systems.
To overcome this, we require studies that measure all of these aspects
and repeatedly sample wild animals at a high temporal resolution
across a range of host ages, ideally coupled with experimental pertur-
bations to disrupt the interconnectedness of host age, parasite burden
and immune parameters.

Here, we present the results of an experimental study using wild
wood mice (Apodemus sylvaticus) to elucidate the relationships between
host age, natural levels of general and parasite-specific antibodies and
naturally-occurring infections with two interacting gastrointestinal
parasites.

The wood mice in our system are commonly infected by the cocci-
dian Eimeria hungaryensis and the nematode Heligmosomoides polygyrus.
H. polygyrus is closely related to the lab-adapted species H. bakeri (Cable

et al., 2006; Behnke and Harris, 2010), which has been used extensively
in laboratory studies as a model of gastrointestinal human helminth
infections (Maizels et al., 2012; Reynolds et al., 2012). This has re-
vealed that parasite-specific antibodies play a key role in immunity to
H. polygyrus in mice. Specifically, H. polygyrus-specific IgG1 can trap
and immobilize tissue-dwelling larvae, promote phagocytosis, and
wound-healing via alternatively activating macrophages (Esser-von
Bieren et al., 2013; Hewitson et al., 2015). Furthermore, we previously
found that treating wild mice with an anthelmintic drug (Ivermectin)
not only reduced the prevalence and intensity of H. polygyrus infections,
but also significantly increased the intensity of E. hungaryensis in co-
infected hosts, demonstrating a negative antagonistic within-host in-
teraction between the two parasites (Knowles et al., 2013). Interest-
ingly, we also showed in a cross-sectional experiment that mice infected
with Eimeria spp. had both lower levels of H. polygyrus-specific IgG1 and
total faecal IgA antibodies (Clerc et al., 2018). Eimeria hungaryensis
infects cells of the host's duodenum, in which it undergoes several
rounds of asexual replication before entering a sexual cycle, leaving the
infected cell to burst with newly formed oocysts. IgA is the most pre-
valent antibody at mucosal surfaces, where high-affinity IgA antibodies
protect from microparasite infections such as Eimeria spp., while low-
affinity IgA antibodies regulate commensal bacterial densities via im-
mune exclusion (Cerutti and Rescigno, 2008; Macpherson et al., 2012).
The precise role of IgA in anti-Eimeria immunity has not yet been elu-
cidated but anti-schizont and anti-sporozoite activities of IgA have been
shown during Eimeria infections in chickens (Davis et al., 1978; Trees
et al., 1989). Overall, this accessible wild system is ideally suited to
study the interplay between parasitic infections (both single and coin-
fection), variation in host demography and variation in key antibody
levels as a readout for the host immune response.

We performed a longitudinal anthelmintic treatment experiment in
a wild population of wood mice to investigate i) the short-term effect of
anthelmintic treatment on H. polygyrus infection probability and
burden, as well as the associated response against the non-drug target
parasite E. hungaryensis, ii) the effect of anthelmintic treatment on
specific and general antibody dynamics, iii) the cause-and-effect re-
lationship between antibody levels and parasite infection, and iv) the
effect of host age on the relationship between antibody levels and
parasite infection. Using a high trapping frequency, we were able to
closely follow immune and infection dynamics upon disturbance of a
natural coinfection/interaction system, giving unique insights into the
relationship between immune function, host demographic variation and
parasitic infection.

2. Methods

All animal work was done under Home Office Project Licence 70/
8543.

2.1. Field work

Our experiments took place in Callendar Woods, Falkirk, Scotland
(55.99° N, 3.77° W). We performed the experiment over three distinct
sessions, each session lasting 8 weeks: Session 1: July to August 2014,
Session 2: October to November 2014 and Session 3: June to July 2015.
In 2014, the experiment consisted of one large grid in which 2 Sherman
live traps (H. B. Sherman 2× 2.5×6.5 inch folding trap, Tallahassee,
FL, USA) were placed every 10m in a 130×80m rectangle (total 256
traps). In 2015, the large grid was split into two smaller grids that were
separated by ∼10m, and an additional third grid was added ∼50m
north of the other two grids. All three grids were 70×70m in size and
consisted of a total of 294 traps. Traps were baited with bedding, mixed
seeds, mealworms and a piece of carrot the day before a trapping night.
The following morning, traps were checked for the presence of animals.
At first capture, each wood mouse received a unique passive induced
transponder tag (PIT) injected subcutaneously in the scruff (AVID
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FriendChip), which allowed individual identification of mice at sub-
sequent captures. Further, all captured mice were randomly selected to
receive either a single oral dose of a combination of anthelmintic drugs:
Ivermectin at 100mg/kg (Wahid and Behnke, 1993) and Pyrantel at
9.4 mg/kg (Wahid et al., 1989), or water as a control. Combining these
two drugs enabled us to simultaneously target both adult (Pyrantel) and
the larval stages (Ivermectin) of H. polygyrus (Wahid et al., 1989). For
each mouse at each capture, we recorded spatial location of capture,
sex, reproductive status (females: perforated vagina, pregnant or lac-
tating, males: non-reproductive, testes descended or scrotal), body
weight, body length, and body condition (dorsal and pelvic fat reserves,
each scored from 1 to 5). We also checked each mouse for the presence
of ectoparasites such as mites, fleas or ticks. At one capture each week
(including first capture), we took a blood sample via puncture of the
facial vein. The blood was spun down in the lab for 10min at
12000 rpm and sera and blood pellet were stored individually at
−80 °C. Faecal samples were collected from the pre-sterilized traps that
each animal was captured in: 2–3 pellets were dry-frozen at −80 °C for
total faecal IgA ELISAs, whereas the rest was stored in 10% Formalin at
4 °C for faecal egg counts (Dryden et al., 2005). We determined parasite
infection (infected/uninfected) and burdens (number of eggs/oocysts
per 1 g of faeces) by counting parasite transmission stages after salt
floatation using a microscope at either 10× or 40× magnification (see
Knowles et al., 2012).

From previous studies in this system, we know that anthelmintic
drugs only reduce H. polygyrus burden for about 10–16 days (see
Knowles et al., 2012). Thus, we aimed to monitor each mouse over a
time-span of 15 days. At the beginning of each experiment session (first
two weeks), trapping took place daily in order to catch, tag and treat as
many mice in the population as possible. After this period, trapping
frequency changed to three times per week until the end of the session
(8 weeks). Thus, mice could potentially be trapped up to 10 times
within the 15 days window if they first appeared at the beginning of a
session and had a high trapping fidelity. However, since trapping fi-
delity can be low for some animals, we started culling mice from 7 days
post-treatment onwards in order to maximise sample size and toe en-
sure that we capture the mice when drug treatment was still effective
(up to 14 days). If an animal was caught after the 15 days period, it was
still culled and the data collected up to 15 days post-treatment was used
in the analysis, but the parasitological/immunological data collected
after 15 days post-treatment (faecal egg/oocyst counts, antibody levels)
were excluded from the analysis, as anthelmintic treatment is no longer
effective (Knowles et al., 2013). Mice were culled via cervical disloca-
tion and a terminal blood sample was obtained via cardiac puncture.
For each animal, we visually screened the gastrointestinal tract (small
intestine, caecum and colon) under a dissecting microscope to detect
the presence and quantity of intestinal nematodes. We used dried eye
lens weight (ELW; grams) as a quantitative measurement of host age.
This metric has been well established as a reliable proxy for host age
due to the consistently strong curvilinear relationship between ELW
and age in various species of small mammals of known age (Morris,
1972; Thomas and Bellis, 1980; Hardy et al., 1983; Rowe et al., 1985;
Tanikawa, 1993; Burlet et al., 2010). Furthermore, the relationship is
also stable to variation in other body characteristics such as body mass
and length (Thomas and Bellis, 1980). Both eyes were collected and
stored in 10% Formalin at 4 °C for at least 4 weeks. After separating the
eye lenses from the surrounding tissue, they were dried at 56 °C over-
night and weighted in pairs to the nearest mg.

2.2. Immunological methods

We focussed on two antibodies in this study: Total faecal IgA and H.
polygyrus-specific IgG1. Importantly, these can be measured in wood
mice using laboratory mouse reagents (whereas reagents for other im-
mune markers, such as key cytokines, have yet to be developed in this
non-model organism), making IgA and IgG1 the most appropriate

immune markers to study in these animals. To measure H. polygyrus-
specific IgG1, we coated plates (Nunc™ MicroWell™ 96-Well
Microplates) with 0.05 μg H. polygyrus excretory-secretory antigen ob-
tained from cultured adult worms (HES, supplied by R. M. Maizels) in
50 μl carbonate buffer overnight at 4 °C. Non-specific binding sites were
blocked with Tris-buffered Saline (TBS) containing 4% Bovine Serum
Albumin (BSA) at 37 °C for 2 h. Two-fold serial dilution of blood serum
were prepared in cluster tubes containing TBS-1% BSA, starting at
1:100. A serum-sample of artificially H. polygyrus-infected lab M. mus-
culus was added to each plate as a positive control (supplied by R. M.
Maizels). After plates were washed with TBS-0.1% Tween 20, sample
dilutions were added to the plates (50 μl per well) and incubated
overnight at 4 °C. After washing, 50 μl goat anti-mouse IgG1-HRP
(Southern Biotech, Lot J6908-MC69), diluted 1:2000 in TBS-1%BSA
was added to each well and incubated at 37 °C for 1 h in the dark. Plates
were washed 4 times with TBS-Tween 20 and 2 times with dH2O, before
50 μl Tetramethylbenzidine (TMB) solution was added to each well.
Plates were immediately covered with tinfoil and the enzymatic reac-
tion was let to develop for 7min. The reaction was stopped with 50 μl
0.18M Sulphuric acid and absorbance at 450 nm was measured. Cut-off
values were calculated per plate as mean absorbance of blank wells plus
3 times the standard deviation. The sample titre was determined as the
denominator of the lowest sample dilution step that showed absorbance
greater than the cut-off value.

For the faecal IgA ELISA, faecal extracts were prepared by adding 3
times the sample volume of protease inhibitor solution to the sample
(Complete Mini Protease Inhibitor Tablets, Roche, Cat
No.:11836153001). Samples were let to incubate for 1 h at room tem-
perature, after which samples were centrifuged at 12′000 rpm for 5min
and supernatant containing IgA removed. ELISA plates were then
coated with 0.1 μg of unlabelled goat anti-mouse IgA (Southern Biotech,
Lot H7912-S233) in 50 μl carbonate buffer. Non-specific binding sites
were blocked with TBS containing 4% BSA at 37 °C for 2 h. Faecal ex-
tracts were diluted 1:100 in cluster tubes containing TBS-1% BSA and
added to the plates as triplicates at 50 μl per well. Two twofold serial
dilutions of standard antibody (Purified mouse IgA, κ isotype control,
BD Pharmingen, Lot 3039828) at 50 μl per well, were added to each
plate. Plates were incubated overnight at 4 °C. After washing, 50 μl goat
anti-mouse IgA-HRP (Southern Biotech, Lot G4512-V522D), diluted
1:4′000 in TBS-1% BSA was added to each well and incubated at 37 °C
for 1 h in the dark. Plates were washed 4 times with TBS-Tween and 2
times with dH2O, before 50 μl TMB solution was added to each well.
Plates were immediately covered with tinfoil and enzymatic reaction
was let to develop for 7min. The reaction was stopped with 50 μl
0.18M Sulphuric acid and absorbance at 450 nm was measured. Sample
concentrations of total faecal IgA was determined using the software
provided by elisaanalysis.com, by fitting 4-parameter logistic regression
to standard curves.

2.3. Statistical analysis

All statistical analyses were performed using R version 3.2.2 (R
Development Core Team (2013), www.r-project.org). Mice showed
marked age-differences between sessions (Supplementary figure S1),
with animals captured in session 2 (autumn) having significantly lighter
eye lenses than animals in sessions 1 and 3 (ANOVA, session
F2,86= 10.51, p < 0.0001). This suggested that animals captured in
the autumn were on average younger than those captured in late
spring/early summer. This corresponds with the breeding season of
wild wood mice, i.e. the spring mice are likely to be the ones that
survived the winter, whereas the autumn mice are new young-of-the-
year animals (Montgomery, 1989). Hence, the variables “age” and
“session” were highly correlated, and preliminary analysis showed that
this caused issues when both were simultaneously used in a model.
Because “session” could not be fitted as a random effect (only three
levels), we only used “age” in our subsequent models as it gave us a
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better resolution of the population variation in age due to the con-
tinuous nature of this variable.

2.4. Temporal dynamics of treatment effects

We fit four individual models to assess the effect of time after an-
thelmintic treatment on either (i) H. polygyrus burden (HP model), (ii)
E. hungaryensis burden (EH model), (iii) H. polygyrus-specific IgG1 titre
(IgG1 model) and (iv) total faecal IgA concentration (IgA model). All
response variables were continuous, but because H. polygyrus and E.
hungaryensis burdens showed a high frequency of zeros (uninfected
animals), we used a Tweedie distribution with a point-mass at zero
(Dunn and Smyth, 2008), whereas we used a Gaussian distributions for
the IgG1 and IgA models. Each of the four models tested the effects of
the following factors: host sex (male or female), age (continuous; scaled
eye lens weight (ELW)) and year (2014 or 2015), with animal ID fit as a
random effect to account for multiple measurements per individual
mouse. Further, we included E. hungaryensis infection at first capture
(factor; infected or uninfected) in the HP model, and H. polygyrus in-
fection at first capture (factor; infected or uninfected) in the EH model.
In the IgG1 and the IgA models, we included both E. hungaryensis and H.
polygyrus infection at first capture. We used generalized additive mixed
effect models (GAMMs) using the gamm() function in the “mgcv” R
package (Wood, 2011), which enabled us to include a smooth-term for
treatment group (treated or untreated) by time post-treatment in the
models. This allowed for non-linear relationships between treatment
and the response variables to be fitted over time, without prior as-
sumption of the shape of this relationship. Best-fitting models were
estimated by stepwise backward exclusion of non-significant terms (cut-
off p-value was 0.05), beginning with interaction terms, and compared
using Akaike's information criterion (AIC).

2.5. Directionality between antibody levels and parasite burden

To assess the causal relationship between antibody levels and
parasite burdens, we tested these two hypotheses: 1) antibody levels at
first capture affect post-treatment parasite burdens, or 2) parasite
burdens at first capture affect post-treatment antibody levels. To test
these hypotheses, we constructed four GLM models with either post-
treatment parasite burdens (two models) or post-treatment antibody
levels (two models) as the response variable. We defined post-treatment
as the values of the response variable between 7 and 15 days post-
treatment (at day of cull for most animals). We then tested the effect of
antibody levels at first capture on post-treatment parasite burdens, and
vice versa. For example, the model explaining variation in post-treat-
ment H. polygyrus burden included IgG1 and IgA levels at first capture
as predictors, whereas the model explaining variation in post-treatment
IgA levels included H. polygyrus and E. hungaryensis burdens at first

capture as predictor variables. In all models, we included the following
predictors: host sex, age, anthelmintic treatment (factor; treated or
control) and year. Further, we fit interaction terms between age (con-
tinuous; ELW) and either parasite burden or antibody levels at first
capture in each model to account for the possibility of host age driving
the variation in either parasite burdens or antibody levels at first cap-
ture. We also included interaction terms between age and treatment in
each model to account for the possibility of age-specific effects of an-
thelmintic treatment on the response variable. H. polygyrus and E.
hungaryensis burden were again best described by a Tweedie distribu-
tion with a point-mass at zero, and antibody levels by a Gaussian dis-
tribution. Best fitting models were estimated by stepwise backward
exclusion of non-significant terms (cut-off p-value was 0.05), beginning
with interaction terms, and compared using AIC.

3. Results

In total, we captured 89 mice (33 females, 56 males): 25 in session
1, 30 in session 2 and 34 in session 3. Mice were captured on average 4
times over the 15 days experimental period (total n captures= 350,
range between 1 and 10 captures per mouse). We did not find a sig-
nificant difference in recapture rates between control and anthelmintic-
treated mice (control= 5.1 ± 0.17 SE, treatment= 5.4 ± 0.18 SE
captures; two-sample t-test p= 0.206).

We gave anthelmintic treatment to 39 animals while 50 animals
received control treatment (water). Initial prevalence for H. polygyrus
was 58%, and 36% for E. hungaryensis. However, after treatment, H.
polygyrus prevalence was reduced to 28% in treated mice, while it in-
creased to 83% in control animals. E. hungaryensis prevalence decreased
to 26% in treated mice and 29% in control mice.

3.1. Short-term effects of treatment

Using a dynamic GAMM modelling approach, we tested the short-
term effects of anthelmintic treatment on parasite burdens and antibody
levels. We found that anthelmintic treatment had an immediate and
strong effect on the burden of H. polygyrus, which decreased following
treatment until ∼10 days, after which it started to increase again
(Table 1, Fig. 1A). Counter to our previous observations (Knowles et al.
2013), anthelmintic treatment did not result in a subsequent increase in
E. hungaryensis burden (Table 1, Fig. 1B). Parasite burdens were also
significantly different between the two years, with lower overall bur-
dens in 2015 compared to 2014 (Table 1). For the two antibodies, total
faecal IgA significantly increased over time in control animals (Table 1,
Fig. 1C), whereas IgA levels in treated mice stayed constant over the
course of the experiment. Further, faecal IgA was positively associated
with H. polygyrus at first capture infection (Table 1). Lastly, while H.
polygyrus-specific IgG1 titre did not change over time of the experiment,

Table 1
Results for minimal GAMM models on H. polygyrus burden, E. hungaryensis burden, total faecal IgA and H. polygyrus-specific IgG1.

Model covariates H. polygyrus burden E. hungaryensis burden Total faecal IgA H. polygyrus-specific IgG1

Sex (male)
Age 1.56, p < 0.0001 ***, df= 83
Initial Eh infection (infected) NA
Initial Hp infection (infected) NA 0.44, p= 0.022 *, df= 84
Hp-specific IgG1 NA NA
Total faecal IgA −0.04, p= 0.020 *, df= 101 NA NA
Year (2015) −0.51, p= 0.012 *, df= 84 −0.63, p= 0.035 *, df= 84 1.11, p=0.051, df= 83
Treatment (Ivermectin) −1.41, p < 0.0001 ***, df= 84 −0.24, p= 0.399, df= 84 −0.39, p= 0.042 *, df= 84 −0.48, p= 0.359, df= 83
Ivermectin x days post treatment NA, p < 0.0001 ***, df= 2.3 NA, p= 0.623, df= 1 NA, p= 0.694, df= 1 NA, p= 0.436, df= 1
Control x days post treatment NA, p=0.056, df= 1 NA, p= 0.122, df= 1 NA, p= 0.022 *, df= 1 NA, p= 0.404, df= 1

Each column represents a single model, each row represents a model covariate. Each cell contains the covariate estimate and p value. Comparison levels for factors
are given in brackets. Cells containing NA represent covariates that were not included in the starting model, while empty cells represent covariates that were not
retained in the final model after model reduction. Hp stands for H. polygyrus, Eh stands for E. hungaryensis, and x denotes an interaction. ****p < 0.001, **p < 0.01,
*p < 0.05, ˙ p < 0.1.
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it did increase with host age (Table 1, Fig. 1D).

3.2. Directionality of interaction between antibody levels and parasite
burden

To disentangle the cause and effect relationships between parasite-
specific antibody production and parasite burdens, we tested whether
antibody levels at first capture could predict subsequent parasite bur-
dens, or vice versa. First, we found a significant relationship between H.
polygyrus burden at first capture and post-treatment IgG1 titres (day
7–15). Interestingly, this relationship was dependent on host age
(ELW). The range in ELW in our populations was 9.2 μg–29.0 μg and
thus ELW was a continuous variable in all models. Here, we divided this
range in ELW into equal thirds to display the results in age groups: (i)
juvenile mice (9.2 μg-15.8 μg), (ii) young adult mice as (15.8 μg-
22.4 μg), and (iii) adult mice (22.4 μg-29.0 μg; Fig. 2). These age cate-
gories also matched the mean body weights we measured (Fig. S2). In
juvenile mice, high H. polygyrus burden at first capture was associated
with low post-treatment H. polygyrus-specific IgG1 titres. This negative
relationship flattened out in young adult mice, and actually reversed in
adult mice, where high H. polygyrus burdens at first capture were as-
sociated with high post-treatment IgG1 levels (Table 2, Fig. 2). We also
found a significant age-dependent relationship between treatment and
post-treatment H. polygyrus burden: adult mice treated with the an-
thelmintic had subsequently lower H. polygyrus burdens than adult
untreated mice (Fig. 3, Table 2). However, in juvenile mice, treatment
had little effect on H. polygyrus burdens 15 days post-treatment (Fig. 3,
Table 2). Post-treatment E. hungaryensis burden was neither explained
by the demographic nor immune parameters used in our model. In the
case of post-treatment IgA levels, we only found a slight trend towards
an increase in IgA levels with age (Table 2).

4. Discussion

Using a longitudinal anthelmintic treatment experiment in a wild
wood mice population, we sought to understand the relationship be-
tween general and parasite-specific antibody levels, the burdens of two
interacting gastrointestinal parasites, and variation in host demo-
graphic factors. We showed a strong and immediate effect of anthel-
mintic treatment on H. polygyrus burdens. However, treated mice re-
verted to their pre-treatment egg shedding patterns within 10 days,

highlighting the strong force of helminth infection in nature (Speich
et al., 2016). Further, we showed that H. polygyrus burdens at first
capture determined subsequent H. polygyrus-specific IgG1 levels in an
age-dependent manner, demonstrating a dynamic relationship between
parasite infection, immunity and host age. Finally, host age also af-
fected a mouse's susceptibility to helminth infection, as H. polygyrus
burdens were reduced following treatment in adult mice, but not in
juvenile wild mice. Taken together, our results highlight the force of
infection experienced by mice in the wild, and we showed how one
antibody can change from an immune marker to a predictor of pro-
tective immunity depending on mouse age.

The use of anthelmintic treatment, in combination with a high
trapping frequency (3–5 nights per week) meant that we could monitor
the short-term responses of coinfecting parasites and general and hel-
minth-specific antibodies following anthelmintic treatment on a fine
time scale. This revealed that short-term reduction of H. polygyrus
burden occurred almost immediately after drug administration, and
burdens remained low until around 10 days post-treatment. After this
period, H. polygyrus burdens began to rise again. Since it takes around
8–10 days for H. polygyrus L3 larvae (infective stage) to develop into
adult worms in the host intestinal tissue (Valanparambil et al., 2014),
the eggs observed 10 days after treatment were likely produced either
by female worms that survived treatment and/or newly emerged adult
worms that were the product of reinfection shortly after treatment.
Counter to our expectations based on the results from Knowles et al.
(2013), we did not observe an increase in E. hungaryensis burden fol-
lowing the removal/reduction of H. polygyrus after anthelmintic treat-
ment. However, E. hungaryensis burdens in that earlier study were
higher (range 0–181 000 oocysts per gram faeces, mean 2876 oocysts
per gram faeces) than in the current study (range 0–213 135 oocysts per
gram faeces, mean 1714 oocyst per gram faeces). On the contrary, H.
polygyrus burdens were higher in this study (range 0–1828 eggs per
gram faeces, mean 46 eggs per gram faeces) compared to Knowles et al.
(2013) (range 0–563 eggs per gram faeces, mean 33 eggs per gram
faeces). This could suggest that the interaction between H. polygyrus
and E. hungaryensis could be density-dependent (e.g. Fenton, 2013),
where H. polygyrus only has a negative effect on E. hungaryensis when
they are both at a sufficiently high enough density. Such density-de-
pendent effects of parasite competition are consistent with both re-
source- and immune-mediated interactions (Griffiths et al., 2015), and
have been shown for coinfections between a bacterial and a fungal

Fig. 1. Dynamics of A) H. polygyrus burden, B) E. hungaryensis burden, C) total faecal IgA and D) H. polygyrus-specific IgG1 over the experimental period as predicted
by minimal GAMM models. Red lines represent model estimates for animals treated with anthelmintic, black lines represent model estimates for control animals.
Shaded areas represent estimated standard errors.
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parasite infection in the water flea Daphnia magna (Ebert et al., 2000),
and between larvae of three different helminth species infecting the
crustacean Paracalliope fluviatilis (Lagrue and Poulin, 2008). This
highlights that not only is it important to study the mechanism(s) un-
derlying parasite interactions, but also the qualitative and quantitative
aspects of infections, as this will ultimately have a big impact for op-
timising treatment strategies.

We further investigated the cause-and-effect relationships between
antibody levels and parasite infections. Previously, we found a negative
effect of the presence of Eimeria spp. on both H. polygyrus-specific IgG1
and total IgA, but it was not clear whether Eimeria spp. was the cause of
those low antibody levels, or whether mice with low antibody levels
were more susceptible to Eimeria spp. infection (Clerc et al., 2018).

Here, we could not find additional evidence that supported either of
these two hypotheses, as initial E. hungaryensis burdens were not as-
sociated with either post-treatment parasite-specific IgG1 or IgA, or vice
versa. As described above, it is possible that E. hungaryensis needs to be
at a high enough density in order to have a measurable effect on an-
tibody levels. On the other hand, we did find that H. polygyrus burden at
first capture affected post-treatment levels of H. polygyrus-specific IgG1,
whereas we did not find any effect of antibody levels at first capture on
post-treatment H. polygyrus burden. Further, the relationship between
H. polygyrus burden at first capture and post-treatment H. polygyrus-
specific IgG1 levels was dependent on age: In juvenile mice, post-
treatment IgG1 levels were inversely related to pre-treatment H. poly-
gyrus burden, irrespective of treatment. This may reflect the variation in

Fig. 2. Relationship between mouse age (scaled ELW), treatment and post-treatment H. polygyrus burden as predicted by GLM model. The red line represents model
estimates for treated animals, black lines represent model estimates for control animals. Shaded areas represent estimated standard errors. Points represent raw data.

Table 2
Results from minimal GLM models on post-treatment values of H. polygyrus burden, E. hungaryensis burden, H. polygyrus-specific IgG1 and total faecal IgA levels.

Model covariates H. polygyrus-specific IgG1 H. polygyrus burden E. hungaryensis burden Total faecal IgA

Sex (male)
Age 0.74, p= 0.100, df= 75 0.13, p=0.344, p= 71 0.30, p= 0.092 ˙, p= 78
Year (2015) 1.01, p= 0.152, df= 73 −0.63, p= 0.023 *, p= 72
Eh burden T0 0.001, p= 0.992, df= 74 NA NA
Hp burden T0 0.12, p= 0.510, df= 76 NA NA 0.11, p=0.151, p= 77
IgG1 T0 NA NA
IgA T0 NA NA
Treatment (Ivermectin) −2.87, p < 0.0001 ***, p= 70 −0.46, p= 0.120, p=76
Age x Treatment −1.13, p= 0.002 **, p= 69
Age x Hp T0 0.32, p= 0.051 ˙, p= 72 NA NA −0.11, p= 0.138, p=75
Age x Eh T0 0.17, p= 0.178, p= 71 NA NA
Age x IgG1 T0 NA NA
Age x IgA T0 NA NA

Each column represents a single model, each row represents a model covariate. Each cell contains the covariate estimate and p value. Comparison levels for factors
are given in brackets. Cells containing NA represent covariates that were not included in the starting model, while empty cells represent covariates that were not
retained in the final model after model reduction. Hp stands for H. polygyrus, Eh stands for E. hungaryensis, and x denotes an interaction. ****p < 0.001, **p < 0.01,
*p < 0.05, ˙ p < 0.10.14.

M. Clerc, et al. IJP: Parasites and Wildlife 8 (2019) 240–247

245



H. polygyrus exposure amongst juvenile mice, meaning that they differ
in the degree to which they already have established protective im-
munity. Specifically, those juveniles with high post-treatment IgG1 and
low pre-treatment H. polygyrus burden have likely been exposed more
often and hence have already established higher levels of IgG1-medi-
ated protective immunity compared to those juveniles with low post-
treatment IgG1 and high H. polygyrus burden at first capture. This
agrees with H. polygyrus-specific IgG1 dynamics found in laboratory
mice, where only multiple H. polygyrus infections led to the production
of affinity-maturated parasite-specific antibodies that had the capacity
to protect the host against re-infection and high burdens of adult worms
(McCoy et al., 2008; Hewitson et al., 2015). In contrast, we observed
that high pre-treatment H. polygyrus burdens in adult mice quickly
(within 15 days) triggered high post-treatment IgG1 levels, likely due to
higher baseline IgG1 levels as a consequence of previous infections,
suggesting that with increasing age, the role of IgG1 changes from an
immune effector in young mice to an immune marker in adult mice.
This is a rare demonstration of how the relationship between antibody
and parasite infection changes over the course of a host's life, suggesting
that it is crucial to not only consider a wider range of host ages in
controlled laboratory experiments, but also to account for population
age-structure when assessing the meaning of immune measurements
assessed from wild animals.

Importantly, we showed that variation in host age is associated with
variation in the strength of the host's immune response, which in turn
significantly affects the efficacy of Ivermectin treatment. Age-depen-
dent variation in treatment efficacy has also been found in human de-
worming studies that include pre-school aged children, where treat-
ment efficacy varies depending on child age, treatment dose, helminth
species, infection intensity and the time point when efficacy was

assessed (Albonico et al., 2008). Further, Jackson et al. (2014) showed
that wild field vole males transitioned from a resistant to a tolerant
phenotype towards macroparasite infection as they age (Jackson et al.,
2014). Here, we found that in juvenile mice, post-treatment H. polygyrus
burdens did not differ between treated and control mice. In contrast,
treatment efficacy increased with increasing host age and was very
effective in adult mice. Ivermectin acts by binding to glutamate-gated
chloride channels, which are not present in vertebrates. In doing so,
Ivermectin directly interferes with nematode motility, feeding and re-
production, without affecting the hosts immune response (Laing et al.,
2017). Therefore, we suggest that Ivermectin acts upon H. polygyrus in a
consistent fashion over a mouse's lifetime, and these age-related
changes are due differences in the strength of protective immunity. Lab
studies have shown that at least one infectious challenge is required to
trigger antibody and T-cell based protective immunity to H. polygyrus
(Hewitson et al., 2015), although it may require more challenges in
wild mice. Because young adult and adult mice are likely to have pre-
viously experienced multiple helminth challenges, their baseline anti-
body levels were already established both pre- and post-treatment. In
this case, mice are more likely to remain protected from re-infection
following treatment. On the other hand, antibody levels in juvenile
mice, and hence protective immunity, may not yet be established to a
level where they are protective against re-infection following treat-
ment. This result clearly demonstrates that age is crucial for the treat-
ment success for an individual, and hence the distribution of ages in a
population may impact the success or implementation of wider popu-
lation-level treatment programmes and therefore should be taken into
account in the design of treatment programmes.

Overall, our results provide a unique insight into the dynamic re-
lationship between host immunity and parasite infection in the wild,
which was only possible because we covered a wide span of demo-
graphic (age) variation. These findings suggest a need for alternative
drug-independent interventions to prevent helminth infections in young
individuals. For example, preventing extensive exposure in young in-
dividuals could serve as a tool to increase protection against high hel-
minth burdens and increase the efficacy of disease treatment pro-
grammes. Our results highlight the unique insights we can gain into the
factors shaping the immune environments of individuals in their nat-
ural habitats by incorporating traditional immunological approaches
within ecological experiments.
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