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Parity Doubling as a Tool for
Right-handed Current Searches

James Gratrex and Roman Zwicky

Higgs Centre for Theoretical Physics, School of Physics and Astronomy,

University of Edinburgh, Edinburgh EH9 3JZ, Scotland

E-Mail: roman.zwicky@ed.ac.uk , j.gratrex@ed.ac.uk.

The V-A structure of the weak interactions leads to definite amplitude hierarchies in
exclusive heavy-to-light decays mediated by b→ (d, s)γ and b→ (d, s)`¯̀. However,
the extraction of right-handed currents beyond the Standard Model is contami-
nated by V-A long-distance contributions leaking into right-handed amplitudes.
We propose that these quantum-number changing long-distance contributions can
be controlled by considering the almost parity-degenerate vector meson final states
by exploiting the opposite relative sign of left- versus right-handed amplitudes. For
example, measuring the time-dependent rates of a pair of vector V (JP = 1−) and
axial A(1+) mesons in B → (V,A)γ, up to an order of magnitude is gained on
the theory uncertainty prediction, controlled by long-distance ratios to the right-
handed amplitude. This renders these decays clean probes to null tests, from the
theory side.
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1. Introduction

It is well-known that the V-A structure of the weak interaction leaves characteristic traces
in the polarisation of weak decays e.g. [1–3]. This is particularly attractive in heavy-to-light
flavour-changing neutral currents (FCNCs), such as b → Dγ or b → D`¯̀ with D = d, s and
` = e, µ, τ . These transitions therefore make excellent probes to search for new physics with
V+A structure, referred to as right-handed currents (RHC) below. Schematically, the effective
Hamiltonian for such decays reads

Hb→dγ
eff ∼ C d̄LΓbOr + C ′ d̄RΓbO′r , C(′) = C

(′)
SM + C

(′)
NP , (1)

where 2dL(R) = (1∓γ5)d, and O
(′)
r stands for the (r)emaining part of the operator, to be made

more precise in section 2. The b → sγ case is recovered by d → s, with according changes in
the CKM factors. In the Standard Model (SM), (C ′/C)SM ∼ mD/mb, whereas in generic New
Physics (NP) models (C ′/C)NP � (C ′/C)SM [4–7], with current constraints on the electroweak
penguin operator around (C ′7/C7)NP ∼ 1/5 [8–10]. In the terminology of the Minimal Flavour
Violation (MFV) effective field theory framework, the O- and O′-type operators, with the
above-mentioned hierarchies, are referred to as MFV and non-MFV type [11].

Non-perturbative matrix elements, connecting Heff to amplitudes, can dilute the cleanliness
of the signal. For B̄ → V γ, where V is a vector meson (e.g. ρ,K∗, . . . ), the form factors,
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referred to as short-distance (SD) contributions hereafter, obey exact algebraic relations, lead-
ing to accidental control in the SD part. However, sizeable tree-level four-quark operators
with charm and up quarks, Heff ∼ d̄LγµUŪLγµb (U = u, c), induce genuine long-distance (LD)
effects, which are more difficult to control. It was argued, based on studying the inclusive
B̄ → Xsγ decay, that such contaminations could be rather significant [12], whereas actual
computations show smaller effects in exclusive channels [13–17].

In this article, we show that these LD effects can be controlled by a symmetry that in
turn also explains the smallness found in the concrete computation [13] quoted just above.
The symmetry in question is the chiral restoration limit. The crucial point is that decays of
opposite parity, such as B̄ → ρ(1−−)γ versus B̄ → a1(1++)γ, are opposite in sign in the right-
handed amplitude between the exact SD and LD contributions (originating from the sizeable
V-A part).1 While decays of axial mesons have received some attention as complementary
probes for RHC (e.g. [21–23]), we advocate that the combination of the two decay channels
allows for a cleaner extraction of the relevant observables controlled by ratios of vector to axial
LD amplitudes. In light-cone approaches, this necessitates axial vector meson distribution
amplitudes (DAs) [24], whose symmetry relations with vector meson DAs can be studied
rather systematically [25]. For a simplified discussion of the main ideas of this paper we refer
the reader to [26].

The paper is organised as follows. In section 2 it is shown, using the path integral, that the
fraction of LD- over SD-RHC flips sign for parity doublers. In section 3, the parity doublers
are listed (section 3.1), followed by a discussion of the sources of correction to the symmetry
limit in section 3.2. Applications to the time-dependent rates of B̄ → (V,A)γ, a detailed
breakdown of B̄s → φ(f1)γ, and remarks on B → (V,A)`¯̀ are presented in sections 4.1, 4.2
and 4.3 respectively. The paper ends with conclusions in section 5, including comments on
the experimental feasibility of the measurement. A discussion on the chiral order parameter,
illustrating some technical aspects of the paper, is given in appendix A.

2. The use of parity doubling for right-handed current searches

After briefly discussing the structure of B → V γ amplitudes in section 2.1, we demonstrate in
section 2.2 how the left- and right-handed amplitudes of opposite parity states come with a
relative minus sign.

2.1. Chirality hierarchy of amplitudes in the Standard Model

The B → V γ amplitude can be expressed in terms of the two photon polarisations as2

A ≡ 〈γ(q, ε)V (p, η)|Heff|B̄(pB)〉 = ĀB̄→V γL SL + ĀB̄→V γR SR , (2)

where SL(R) ≡ [ε(ε∗, η∗, p, q)±i{(ε∗η∗)(pq)−(ε∗p)(η∗q)}], Levi-Civita sign convention ε0123 = 1,
contractions of vectors are understood, and ε and η are the polarisation vectors of the photon

1We choose to use the ρ and a1 as the prime examples for general discussions on historical grounds, in connection
with the Weinberg sum rules [18, 19]. Other parity doubling pairs, with considerably smaller widths, are
tabulated in section 3.1. For an exhaustive review on the physics and history of parity doubling, we refer
the reader to reference [20]. Some more discussion can found in appendix B.

2The extension to the notation of B → V `¯̀ is as follows: AL(R) ∼ H∓, with photon polarisation vectors

ε(±) = (0,±1, i, 0)/
√

2, and the amplitudes are frequently written in terms of
√

2A⊥(‖) = H+ ∓H− [27,28].
Away from q2 = 0, one also needs the amplitude A0, corresponding to the longitudinal polarisation of the
vector meson or the off-shell photon.
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and the meson respectively. The bar refers to B̄ transitions (b → Dγ), where D = (d, s), as
opposed to the B-transition (b̄→ D̄γ). Each chirality amplitude can then be decomposed into
contributions from O and O′ operators (1):

ĀB̄→V γχ = Āχ + Ā
′
χ , χ = L,R , (3)

dropping the superscript for brevity. The V-A interactions imply |Āχ| � |Ā
′
χ|, which is, for

example, encoded in C ′7/C7 = mD/mb in the SM, where the C7 and C ′7 are Wilson coefficients

of the effective Hamiltonian (U = u, c and λ
(D)
U = VUbV

∗
UD)

H
b→(D=d,s)γ
eff =

4GF√
2

(
λ

(D)
U

[
C1O

U
1 + C2O

U
2

]
− λ(D)

t

8∑

i=3

CiOi

)
+ {C,DL → C ′, DR} , (4)

with more detailed definitions in appendix C.
Normalising to the dominant SD contribution, the amplitudes (3) read

ĀB̄→V γL = 4
√

2GFλtC7T1(0)
(

1 + λ̃i(ε
i
V,L + ε

′i
V,L)

)
,

ĀB̄→V γR = 4
√

2GFλtC7T1(0)
(
Ĉ ′7 + λ̃i(ε

i
V,R + ε

′i
V,R)

)
, (5)

with summation over i = u, c implied, −2T1(0)SL(R) = 〈V |s̄L(R)σ ·Fb|B̄〉, and εiV,χ includes
the ratio of Wilson coefficients and the QCD matrix element but not the CKM contribution
λ̃i ≡ λi/λt (with (D) superscript suppressed). The NP part ∆Re

iφ∆R of the RHC is encoded
in

Ĉ ′7 ≡
C ′7
C7

= m̂d,s + ∆Re
iφ∆R , m̂D ≡ mD/mb , (6)

where, by convention, ∆R ≥ 0, and φ∆R
is the weak (CP-odd) phase relative to the SM phase

originating from λ
(D)
t . For further discussion, it is convenient to break down the relative parts

into the following table:

ĀB̄→V γχ ĀSD,χ ĀLD,χ Ā
′
SD,χ Ā

′
LD,χ

χ = L 1 λ̃iε
i
V,L 0 λ̃iε

′i
V,L

χ = R 0 λ̃iε
i
V,R m̂d,s + ∆Re

iφ∆R λ̃iε
′i
V,R

. (7)

The two zero entries in (7) are due to the algebraic relation σαβγ5 = − i
2ε
αβγδσγδ, which

descends to the form-factor relation T1(0) = T2(0).
The relative importance of the LD contributions in b→ Dγ depends on the CKM hierarchy

(43). More specifically, the Ā
′
LD,χ are not of major importance, as only the C ′8O

′
8-operator

contributes, and it was shown in [29] that, at leading twist, Ā
′
LD,L = 0, while Ā

′
LD,R is at

the percent level in the normalisation above. The εiV,L,R are the, potentially sizeable, LD

contributions. Throughout this presentation we assume εiV,L,R � 1, which is a circumstance

that can be checked experimentally for the εiV,R contribution (cf. section 4.2).

Crucially, the breakdown (7) reveals that, in a vector-meson final state of definite parity, εiV,R
cannot be distinguished from the RHC ∆Re

iφ∆R . It is the aim of this work to show, however,
that ∆Re

iφ∆R can be unambiguously identified when two parity-doubler vector meson final
states, to be listed in section 3.1, are taken into account. In order to gain some insight, we
first discuss the procedure in the chiral symmetry restoration limit, before returning to QCD
in section 3.
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2.2. The chiral symmetry restoration limit

We consider the effect of the chiral symmetry restoration limit on the breakdown (7), using
B → ρ versus B → a1 as a template. In this limit, suppressing the Baryon number U(1)V , the
global flavour symmetry of NF fermions is restored:

{mq, 〈q̄q〉, . . . } → 0 , ⇒ SU(NF )V → SU(NF )V × SU(NF )A ×U(1)A , (8)

where SU(NF )V ×SU(NF )A ' SU(NF )L×SU(NF )R, and the dots stand for other SU(NF )A×
U(1)A-violating condensates such as 〈q̄σ ·Gq〉 (see appendix A for further discussion). Let us
mention in passing that such a situation can be simulated on the lattice at temperatures above
the chiral phase transition, cf. footnote 15 in appendix B.

2.2.1. Path integral representation of matrix elements

heff ∼
q̄(v + aγ5)Γb

ρµ = q̄T IγµqJB

heff ∼
−q̄(a + vγ5)Γb

B → ργ
(
ℓℓ̄

)
B → a1γ

(
ℓℓ̄

)

JB (a1)µ = q̄T Iγµγ5q

γ5S
(q)
G = −S

(q)
G γ5

Figure 1: Diagram representing the procedure outlined in the text, using the relation (13), which
necessitates both the limits mq → 0 and 〈q̄q〉 → 0 in (8). The argument only requires
that the weak vertex heff be a local operator, and thus applies to both SD (form-factor)
and LD (charm-loop) contributions. Note that the argument also applies to the annihilation
topology where the photon is emitted from the b-quark or light-quark lines in the triangle
graph. The schematic correlation functions on the left and right are exactly equal, from
where the information on the matrix elements can be assessed via the LSZ formalism or
dispersion relations, when taking into account finite-width effects. Corrections to this exact
equality, beyond the chiral symmetry limit, are discussed in section 3.

In establishing our main result, the path-integral formalism, with quarks propagating in a
background gluon field, will prove powerful.3 The ρ- and a1-meson can be represented by the
interpolating currents, with isospin I,

ρIµ = q̄γµT
Iq , (a1)Iµ = q̄γµγ5T

Iq , (9)

3The realisation in concrete computations, e.g. light-cone sum rules, is rather subtle, which is to do with the
nature of the restoration limit [13].
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while the B-meson JPC = 0−+ can be interpolated by JB = b̄γ5q. The correlation function4

M[V ]
(v,a) ≡ 〈0|TJB(x)V I

µ (y)heff(0)|0〉 , (10)

provides all the necessary information to understand the properties of the matrix element
〈V |Heff|B〉, e.g. by using the LSZ formalism or dispersion representations in case finite-width
effects are to be studied. Above, V I

µ stands for either of the interpolating currents defined in
(9), and

heff = q̄(v + aγ5)ΓbOr , (11)

is a schematic substitute for Heff (4), where (v, a) = (1,±1) correspond to O- and O′-like oper-
ators. SD and LD charm contributions correspond to Or ∼ 1, c̄Γrc for example. Lorentz/colour
contractions over Γ and Γr are suppressed, as these have no impact on our argument. Inte-
grating out the quarks in the path integral, the matrix element (10) assumes the form

M[ρ0]
(v,a) ∼

∫
DµGTr[(v + aγ5)S

(b)
G (0, x)γ5S

(d)
G (x, y)γµS

(d)
G (y, 0)] , (12)

where DµG = DGµ det( /D+ iMf )eiS(G) (Dµ = (∂ − igG)µ) is the path integral measure, S(G)
the Yang-Mills action, and Mf denotes the mass matrix, which comprises of all flavours. The

quark propagator in the gluon background field is S
(q)
G (w, z) = 〈w|( /D + imq)

−1|z〉, and obeys

γ5S
(q)
G (w, z) = −S(q)

G (w, z)γ5 , (13)

in the restoration limit (8). We stress that (13), upon which the argument is based, necessitates
both the vanishing SU(2)A × U(1)A-violating condensates and the limit mq → 0, with some
more detail on related matters deferred to appendix A.

2.2.2. Relating matrix elements of parity doublers

Now comes the main step, where we replace γµ → γµ(γ5)2 and use (13) to arrive at

M[a1]
(a,v) = −M[ρ0]

(v,a) , (14)

which can also be written symbolically as HV±A
eff |ρ → ±HV±A

eff |a1 . This relation translates into
the amplitudes (2), with CO- and C ′O′-contributions in (4):

ĀB̄→ργχ (C,C ′) = ĀB̄→a1γ
χ (−C,C ′) . (15)

Moreover, in terms of the breakdown (7), the relations (14) and (15) lead to

ĀB̄→ρ(a1)γ
χ ĀSD,χ ĀLD,χ Ā

′
SD,χ Ā

′
LD,χ

χ = L ±1 ±λ̃iεiV,L 0 λ̃iε
′i
V,L

χ = R 0 ±λ̃iεiV,R m̂d,s + ∆Re
iφ∆R λ̃iε

′i
V,R

. (16)

4Our notation follows Minkowski space conventions, and, since our argument is formal, we shall ignore questions
of convergence of the path integral. The argument would also apply to Euclidean space, in so far as one
manages to obtain the LD matrix elements from this formalism. Finite-width effects of the vector mesons
are not crucial for the argument, and partly cancel in the symmetry limit.
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We wish to emphasise that the procedure in this section leading to (14) works for any local
operator of the form in (11), and so, in particular, applies to both the LD and SD contributions,
which is reflected in the second amplitude breakdown (16). This argument establishes the main
point of this work, and we now turn to the discussion of how this can be applied beyond the
symmetry limit.

3. Beyond the symmetry limit

We briefly discuss the question of how to isolate the relevant phenomenology using parity
doubling.5

3.1. Parity doubling for phenomenologically relevant vector mesons

Table 1 indicates the main B → V (1−) and JP = 1+ B → A(1+) final states, which we refer
to as parity doublers in this work. Note that the charge quantum number is not of importance
for practical purposes, so that 1++ and 1+− can both be considered as effective parity doublers
of the 1−− (or 1−+, cf. caption of table 1) states. The interpolating operators, denoted OV in
the table, are

V
(I)

(5) = q̄γλ(γ5)(T I)q , T
(I)
(5) = q̄σκλ(γ5)(T I)q , (17)

where q = u, d, and Lorentz indices have been suppressed on the left-hand side. Vector and
axial mesons couple to these currents as

〈0|V(5)|V (A)〉 ∼ ηλ , 〈0|T(5)|V (A)〉 ∼ η[λpκ] , (18)

where square brackets denote antisymmetrisation in indices. The canonical parity doublers are
listed on the horizontal lines. However, by SU(NF )V flavour symmetry, it will become clear
that the measurement of a single parity doubler can reveal important information on primed
Wilson coefficients C ′7,8 (and C ′9,10) by disentangling the LD contributions.

3.2. Sources of correction to the symmetry limit

In the real world, SU(NF )A×U(1)A is broken, e.g. by 〈q̄q〉µ=1GeV ' (−0.24(1) GeV)3, raising
the question of the corrections to (14) and the resultant breakdown (16). We find it advanta-
geous to distinguish two sources: corrections to the γ5-trick (13), and those arising from the
hadronic parameters of the vector mesons.

Corrections to (14), for instance, can be understood by considering the light-cone Operator
Product Expansion (OPE), with the interpolating current replaced by a B-meson light-cone
DA e.g. [30], in place of the complete path integral (12). In this case, (13) results in both mq-
and 〈q̄q〉-corrections, along with other condensates. Whereas the former are parametrically
small, the latter are suppressed in effect by O(1)|〈q̄q〉/M3| ' O(1)(1/4)3, where M ' 1 GeV
is the Borel mass scale. It remains to be seen how effective this suppression is in explicit
computations. The remaining corrections to the symmetric breakdown (16) arise from dif-
ferences in the hadronic parameters, namely the meson mass and the DA parameters. The
latter are either (partly) known or are expressible in terms of mq, 〈q̄q〉, and higher-dimensional
condensates [25]. Moreover, these can be assessed experimentally, cf. section 4.

5See also appendix B for more details on parity doubling.

6



IG 1−− ΓV
mV

OV IG 1++ ΓV
mV

OV IG 1+− ΓV
mV

OV

1+ ρ(770) 19.1(1) (V, T )I 1− a1(1260) 35(14) V I
5 1+ b1(1235) 11.5(7) T I5

0− ω(782) 1.08(1) V, T 0+ f1(1285) 1.77(1) V5 0− h1(1170) 31.0(5) T5

0− φ(1020) 0.417(2) (V, T )s̄s 0+ f1(1420) 3.8(2) V s̄s
5 0− h1(1380) 6.3(16) T s̄s5

I 1− 1+ 1+

1
2 K∗(895) 5.6(1) (V, T )s 1

2 K1(1270) 7.1(16) V s
5

1
2 K1(1400) 12.0(9) T s5

Table 1: Mass (mV ) and width (ΓV ) data for the neutral mesons, from the latest PDG data [31].
Uncertainties in these parameters are also indicated in brackets alongside the central values.
The IG and JPC quantum numbers have also been indicated. The K particles are separated,
as they do not have definiteG-parity states. The twoK1-particles are subject to a mixing angle
θK1

, which is fortunately known to reasonable accuracy [32]. Mixing between particles in the
same column has to be taken into account as well, cf. appendix C of [33] for the discussion of
the 1−−-states for example. The interpolating operators under the OV -column are described
in the main text in (17) and superscripts s and s̄s denote replacements of the light quarks
q → s. In addition, there are “exotic” 1−+ states, with interpolating operators of the type

OV ∼ q̄γλT
I
↔
Dµq and q̄σλκT

I
↔
Dµq. The π1(1400) [31] (IG = 1−) is a candidate particle for

carrying these quantum numbers. Such states are rather broad, e.g. Γπ1/mπ1 ∼ 1/4, and are
not well-studied. The particle content of some non-exotic states in the table remains to be
definitively established [31], but all states are expected to have significant q̄q-wave functions.
For example, from ALEPH data [34], e.g. figures 63 and 65, it can be inferred that the
statement above is correct for a1(1260). The determination of the 3-particle content, or the
matrix element 〈0|q̄Gq|V (A)〉, is an important problem which deserves assessment from lattice
QCD, in addition to the existing QCD sum rule results.

4. Applications to experimental searches

4.1. Right-handed currents from time-dependent rates

A relevant question is how to test the chirality hierarchy (7). The decay rate does not lend
itself to such tests, as the right-handed amplitude is dominated by the left-handed one. The
situation is, however, favourable in the case where the B-meson is neutral and undergoes
mixing [2] (and/or decays to at least 3 hadrons and a photon [21,35–37]). The mixing is driven
by particle and antiparticle having a common final state, e.g. B̄ → V γL ← B. In this case,
one of the amplitudes is chirally suppressed, giving rise to a direct linear behaviour in right-
handed amplitudes, Γmix ∼ ĀR, compared to the unfavourable behaviour of the t = 0-rate
Γ ∼ |ĀL|2 + |ĀR|2.

The time-dependent rate of a BD meson, produced at t = 0, assuming CPT-invariance and
|q/p| = 1,6 takes the form

B(B̄D[BD]→ V γ) = B0e
−ΓDt[ch(

∆ΓD
2

t)−Hsh(
∆ΓD

2
t)∓C cos(∆mDt)±S sin(∆mDt)] , (19)

where ∆ΓD ≡ Γ
(H)
D −Γ

(L)
D is the width difference, and ∆mD ≡ m(H)

D −m(L)
D the mass difference,

6The quantities p and q describe the transition matrix from mass to flavour eigenstates where arg(q/p) = −φBD .
In BD-B̄D mixing they are indeed compatible with the assumption |q/p| = 1, up to negligible corrections [38].
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of the heavy (H) and light (L) mass eigenstates. The quantities S and C are related to
indirect and direct CP violation respectively. In the Particle Data Group (PDG) notation [31],
H ≡ A∆Γ. In terms of the decomposition (2), dropping the superscripts for brevity, these
quantities read (N = |AL|2 + |ĀL|2 + |AR|2 + |ĀR|2)

S(H) = 2Im(Re)

[
q

p
(ĀLA∗L + ĀRA∗R)

]
N−1 , (20)

and we quote C =
(
(|AL|2 + |AR|2)− (|ĀL|2 + |ĀR|2)

)
N−1, although this observable is of no

further relevance for this work.
In the SM, there are three weak phases orginating from λu,c,t, one of which can be eliminated

by the unitarity relation λu + λc + λt = 0. Hence, one may write

ĀL ∼ (1 + λ̃i ε
i
V,L) ⇒ AR ∼ ξV (1 + λ̃∗i ε

i
V,L) ,

ĀR ∼ (Ĉ ′7 + λ̃i ε
i
V,R) ⇒ AL ∼ ξV (Ĉ ′7 + λ̃∗i ε

i
V,R) , (21)

where the result on the right follows by CP conjugation, and ξV is the CP eigenvalue of V .
The observables S and H take the form

S(H)V (A)γ = 2ξV {±(m̂D
sin
cos

(2φt − φBD) + ∆R
sin
cos

(2φt + φR − φBD)) +

|λ̃i|Re[εiV (A),R] sin
cos

(φt + φi − φBD)}(1 +O(m̂D,∆R, ε
i
V (A),χ)) , (22)

where the sines and cosines refer to S and H, and the signs ± follow from the breakdown (16).
Corrections to (22) can be expected to be small, and are not difficult to restore, but we have
chosen to present a simple formula for illustrative purposes.

It is instructive to expand (22) for specific modes. There are four classes of B → V γ decays,
due to the choice of initial state meson, Bd or Bs, while the transition itself can be either b→ d
or b→ s. Since ∆Γd is too small to have an observable effect, this makes the HBd parameter
unobservable in practice. Below, we present the observables (22) for three of these classes,
postponing details on Bs → K̄∗ (b→ s) to [13] as the decay is experimentally less attractive.
The formulae in (22) take the form

SBd→ρ(a1)γ ' 2{±∆R sinφR + sinβ|λ̃(d)
c |Re[εcρ(a1),R]− sin(β + γ)|λ̃(d)

u |Re[εuρ(a1),R]} ,

SBd→K∗(K1)γ ' 2ξK∗(K1){∓(∆R sin(2β − φR) + m̂s sin 2β) + sin 2βRe[εcK∗(K1),R]} ,

SBs→φ(f1)γ ' 2{±∆R sin(φR)} ,

HBs→φ(f1)γ ' 2{±(∆R cos(φR) + m̂s)− Re[εcφ(f1),R]} , (23)

where λ̃
(d)
c,u = O(1), λ̃

(s)
u � λ̃

(s)
c ≡ λ(s)

c /λ
(s)
t ' −1, and we have used ξV,A = 1. For SBd→K∗(K1)γ ,

either (near) CP eigenstate (KS,Lπ
0) can be observed in the subsequent decay, so we indicate

the explicit CP eigenvalue ξK∗(K1) in this case.7 The vanishing of SBs→φ(f1)γ ' 0 in the SM

7Taking the difference in SBd→K∗(KSπ
0)−SBd→K∗(KLπ

0) will enhance the statistics, but cannot eliminate the
LD contribution, as the CP-eigenvalue is just a global phase.
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comes from the cancellation of all weak phases involved, and this quantity is therefore a null
test for weak phases of RHC.

The expressions (23) are for the JPC = 1++ parity doublers. If, instead, one were to use
doublers with the JPC = 1+− quantum numbers, then ξ(1+−) = −1, and the corresponding
observables S and H pick up an additional minus sign.

4.2. The approach exemplified in Bs → φ(f1)γ

From (23), it can be seen that both observables S and H in (22) are of interest, and can be
observed experimentally, in the decay Bs → φ(f1/h1)γ, where f1 ≡ f1(1420) and h1 ≡ h1(1380).
Using ξh1 = −1, one gets a remarkable equation

(
Hφγ ±Hf1(h1)γ

)
' − 2Re[εcφ,R + εcf1(h1),R]

= − 2Re[εcφ,R](1 + Rcf1(h1),φ) , (24)

where

RiA,V ≡
Re[εiA,R]

Re[εiV,R]
= 1 +O(mq, 〈q̄q〉) . (25)

and the ' in (24) indicates the approximations made in (22), as well as neglecting the λu LD
contribution.8 Eq. (24) is remarkable in that it shows that it is possible to measure the sum of
the LD (charm) contributions without any compromise from the symmetry breaking, thanks to
the exact form factor relation T1(0) = T2(0). In extracting the LD contribution, what matters
is not how far away RA,V is from unity but the uncertainty itself. As an example, supposing we
could determine RA,V to 20% uncertainty, with RA,V being one of the four values (1, 1.2, 1.5, 2).
Then one could extract εcφ,R from experiment with an accuracy of (10, 11, 12, 13)% respectively.
This is very much improved situation in two ways. Firstly, one can extract the LD contribution
by solely predicting the uncertainty on RiA,V rather than the LD matrix element itself. In
addition, this translates into a considerably smaller uncertainty of the LD matrix element
than one could hope to get from an a priori computation.

Finally, we mention that the counterpart of (24) is the equation where the SD part is
enhanced and the LD part reduced, and reads

∆R cos(φ∆R
) =

1

4
(Hφγ ∓Hf1(h1)γ) +

1

2
Re[εcφ,R − εcf1(h1),R]− m̂s . (26)

It remains to be seen in the future how well such quantities can be measured and how well the
ratios RiA,V can be predicted. It is clear that the potential improvement is significantly larger
than what can be hoped for in a direct computation, as many uncertainties will cancel, some
of them due to the symmetry limit.

4.3. B → V `¯̀ and other decay channels

Decays such as B → K∗(→ Kπ)µ+µ− are an important probe of NP in the flavour sector
[39–42], as their angular distributions allow the assessment of a wealth of observables, twelve
for the dimension-six Heff [43]; higher-dimensional operators are also accessible by extracting
higher moments (modulo QED effects) [28].

8These approximations can be easily relaxed if required, depending on the required accuracy, cf. also the
discussion following Eq. (22).
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The parity-doubling approach can be extended to B → (V,A)`¯̀ rather straightforwardly
by considering the angular observables. In the notation of [28], the moments, or angular

coefficients, are Glk,l`m , where lk,` denote the partial wave of the Kπ and µµ-pair respectively,
and m is the relative helicity difference. An interference of left- and right-handed polarisation
corresponds to the helicity difference m = 2, which leads to the real and imaginary parts
of GlK ,l`m → G2,2

2 being the observables of interest. These have indeed been identified, with

the acronyms P1 = A
(2)
T ∼ Re[G2,2

2 ], P3 ∼ Im[G2,2
2 ], some time ago (e.g. [44, 45]) as giving

access to RHC at low q2.9 A measurement of the right-handed LD contribution at q2 = 0,
or at low q2, could also provide invaluable information on the angular anomalies [46] (most
notably, P ′5 ∼ Re[G2,1

1 ]) observed in B → K∗`¯̀ at LHCb, in connection with approaches using
analyticity [47, 48]. In this respect, B → K∗e+e− is an even more promising channel, studied
at the LHCb experiment [49], and with good prospects at Belle II. Exploring the potential of
time-dependent angular distributions would also seem to be an interesting possibility [50].

Thus, B → (V,A)`¯̀ allows the assessment of all the right-handed operators O′7,8,9,10, or their
respective Wilson coefficients, without resorting to time-dependent amplitudes, meaning that
decay modes for charged mesons can also be assessed in this manner.

We wish to emphasise that the ideas in this paper, whilst they have been discussed primarily
in the context of B → (V,A)γ and B → (V,A)`¯̀ decays, can be extended to other decays of
interest, as long as such systems admit parity-doubling partner decays.10 Examples include
the D → V γ(`¯̀) sector, e.g. [51, 52], as well as higher-spin states e.g. B → K2γ(`¯̀), since
parity doubling occurs in those modes [20].11 Applications to symmetry-based amplitude
parametrisations in B → PV (A), with P being a pseudoscalar meson, are another possibility,
although one would expect stronger breaking effects in final-state interactions than in the LD
amplitude of radiative decays.

5. Discussion and conclusions

In this paper, we have advocated that the contamination of right-handed currents in B →
V γ(`¯̀) decays due to long-distance effects can be controlled by considering in addition the
corresponding decay B → Aγ(`¯̀). It was shown, in the chiral symmetry restoration limit
(8), that the leaking of the V-A contributions into the right-handed amplitude for the parity
doublers comes with exactly the opposite sign, as compared to the leading short-distance
contributions (16).

The case beyond the symmetry limit is briefly discussed in the previous section for B →
V (A)`¯̀, and for B → V (A)γ the summary is as follows. The sum of the vector and axial long-
distance contribution can still be extracted from experiment (e.g. (24)), because of the exact
form factor relation T1(0) = T2(0). This then allows to test theory predictions of exclusive
long-distance contributions [13,14,16,54] and contrast them with the, somewhat larger, indirect

9The restriction to low q2 is due to kinematics and matrix element effects. Firstly, the kinematics of Lorentz
invariance enforces that the helicity amplitudes are degenerate at maximal q2 (the kinematic endpoint) [27],
so that the V-A effect is maximally diluted. Secondly, the accidental control T1(0) = T2(0) is weakened
when q2 is increased, as the LD effect enters the left-handed amplitude.

10This excludes the Kaon system, for example, which decays into pions; being pseudo-Goldstone bosons, these
do not have parity-doubling partners.

11A hybrid of the two types of decay discussed above is the photon conversion B → (K∗ → Kπ)(γN → `+`−N),
proposed in [53], for which the methods of this paper apply equally when the K∗ is replaced by the K1(1270),
for example.
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estimation from the inclusive b→ Xsγ channel [12]. More concretely, the charm contamination
was computed to be 0.6% for SBd→K∗γ in [16], whereas [12] estimated the contaminations to
be up to 6%. In addition, the smallness of the theoretical result can be understood by invoking
the parity-doubling limit [13].

From (24) one can extract the sum of the axial and vector long-distance contribution. One
can obtain the individual contributions by taking into account a theory prediction of the ratio
RA,V (25), which comes with reduced uncertainty due to standard uncertainty cancellations,
further enhanced by the symmetry limit. An error on RA,V of 20% results in an uncertainty on
the single long-distance contribution of just around 10%, if no experimental error is assumed.
In summary, we have proposed a data-theory-driven program to reduce the uncertainty of
the long-distance contamination, paving the way to much cleaner searches for right-handed
currents.12

Let us turn at last to the experimental perspectives. For Belle II, an uncertainty of 3%
is anticipated in this observable with a data set of 50 ab−1 [55]. This estimate does not yet
take into account the gain in photon efficiency in differences and sums of rates, relevant to
the parity-doubling approach cf. (24,26). The analysis of axial vector meson final states is
more challenging, because of their decay chains. However, the measurement of a single channel
can still provide invaluable information on the long-distance contributions (24), as they are
related by SU(NF )V flavour symmetry, taking into account normalisation issues such as mixing
angles. Promising states are the K1(1270) and the f1(1285) or f1(1420). Belle has reported
a time-dependent measurement of B0 → ρ0Ksγ [56] and the rate B(B+ → K+

1 (1270)γ) '
4.3(9)(9) · 10−5 [57]. At the LHCb experiment, the K1 states were seen in B → K+π+π− at
the LHCb [58], and the first observation of B (Bs,d → f1(1285)J/Ψ) ' 7 · 10−5, 8 · 10−6 was
reported in [59].
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A. Chiral restoration limit and γ5S
(q)
G = −S(q)

G γ5 (13)

The pion decay constant, Fπ ' 92 MeV in QCD, is defined by 〈πb(p)|JA,aµ |0〉 = δabpµFπ, with

JA,aµ = q̄T aγµγ5q, and q are NF light quarks. Fπ is the order parameter of spontaneous chiral
symmetry breaking. At the heuristic level, Fπ 6= 0 implies the non-invariance of the vacuum
with respect to the axial flavour charge QA,a =

∫
V d

3xJA,a0 . In this appendix, we aim to show
that our formula (13),

mq, 〈q̄q〉 = · · · = 0 ⇔ γ5S
(q)
G (w, z) = −S(q)

G (w, z)γ5 (⇔ Fπ = 0) , (27)

12In reference [35] it was suggested, though not worked out in detail, that the use of B → P1P2γ together with
a Dalitz-plot analysis could be used to disentangle the long-distance- from the short-distance contribution.
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depends, as expected, on the restoration limit. This result serves to illustrate (13) in some
more detail than discussed in the main text.

We first proceed to show that γ5S
(q)
G (w, z) = −S(q)

G (w, z)γ5 ⇒ Fπ = 0. For this purpose,
consider the correlation function, used to derive the Weinberg sum rules [18],

(Πa,b
LR)µν(q2) = i

∫
d4xeiq·x〈TJa,Lµ (x)Jb,Rν (x)〉 = (qµqν − q2gµν)Πa,b

LR(q2) , (28)

where J
a,L(R)
µ = 2q̄T aγµ(γ5)qL(R), and (a, b) are SU(NF )(L,R) flavour indices. One may inte-

grate out the fermion in the path integral formulation to obtain

(Π̂a,b
LR)µν(x) =

1

2
δab
∫
DµG

(
Tr[S

(q)
G (x, 0)γµS

(q)
G (0, x)γν ]− Tr[S

(q)
G (x, 0)γµγ5S

(q)
G (0, x)γνγ5]

)
,

(29)
where the hat denotes the Fourier transform, and the path integral measure, already defined

below Eq. (12), is DµG = DGµ det( /D + iMf )eiS(G). Using γ5S
(q)
G (w, z) = −S(q)

G (w, z)γ5 (13),

one concludes that (Π̂a,b
LR)µν(x) = 0 by commuting the γ5 through the fermion propagator and

the γ-matrix in (29). Since 4(Πa,b
LR)µν = δab((ΠV V )µν − (ΠAA)µν), the spectral densities

ρV (s) = ρA(s) , (30)

of the dispersion representation (πρV,A(s) = Im[ΠV V (AA)(s)])
13

ΠV (A)(q
2) =

∫ ∞

0
ds

ρV (A)(s)

s− q2 − i0 , (31)

are point-by-point identical. The spectral densities are given by

ρA(s) = F 2
πδ(s−m2

π) + F 2
a1
δ(s−m2

a1
) + . . . , ρV (s) = F 2

ρ δ(s−m2
ρ) + . . . , (32)

where the dots stand for higher states, and the fact that we used the narrow width approxi-
mation for the ρ and a1 meson is immaterial. The only crucial point is that (30) necessarily
implies Fπ = 0, since there is no massless particle in the vector channel.

In the second part, we show that mq, 〈q̄q〉 = 〈q̄σ ·Gq〉 = · · · = 0 ⇔ γ5S
(q)
G (w, z) =

−S(q)
G (w, z)γ5, which is what was used in the main text in section 2.2.1. In practical com-

putations, using the OPE one uses the formula [60]

〈q̄m(x1)qn(x2)〉 = Nc

[
1

12

(
1 +

i

d
mq/x12

)

nm

〈q̄q〉+
g2

288

(
i

12
x2

12(/x12)nm〈V a
q V

a
f 〉
)

+
1

192
x2

12(1 +
i

6
mq/x12)nm〈q̄σ ·Gq〉+ . . .

]
(33)

where x12 ≡ (x1−x2), m and n are Dirac indices, 〈V a
q V

a
f 〉 = 〈q̄γµtaq

∑
f f̄γ

µtaf〉, and the dots
stand for higher dimensional condensates. We only consider the terms which do not vanish
in the mq → 0 limit. It is readily seen that 〈q̄q〉 and 〈q̄σ ·Gq〉 are obstructions to (13), which
is expected since they are not invariant under SU(NF )A (and U(1)A). The contrary applies

13 Strictly speaking, one would need to subtract the dispersion representation once, but it is immaterial for the
presentation.
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to 〈V a
q V

a
f 〉. The statement about 〈q̄q〉 can be made slightly more rigorous. Following the

argument of [61], the fermion propagator in the external gluon field may be written as

〈q(x)q̄(0)〉G = iSG(x, 0) =
∑

n

φn(x)φ†n(0)

mq − iλn
(34)

where φn are the Dirac operator eigenmodes i /Dφn = λnφn. Noting that γ5φn is an eigenmode
of eigenvalue −λn, and that the zero eigenmodes are suppressed by V −1/2 in the infinite-volume
limit, one finds

〈q̄q〉 =
1

V

∫

V
d4x〈q̄q〉 V→∞→ −2mq

∫ ∞

0
dλ

ρ(λ)

m2
q + λ2

, (35)

where the function ρ(λ) is the Dirac eigenmode density. In the limit mq → 0, one obtains
the celebrated Banks-Casher relation 〈q̄q〉 = −sign(m)πρ(0) [61]. Therefore, one concludes

that 〈q̄q〉 = 0 (ρ(0) = 0) is a necessary condition for γ5S
(q)
G (w, z) = −S(q)

G (w, z)γ5 (13) to
hold. Similar arguments would apply to further terms in (33), but are more difficult to render
rigorous. Since Fπ = 0⇒ mq, 〈q̄q〉 = · · · = 0, this finally results in (27).

B. Parity doubling

In this section, we provide some minimal background on parity doubling, which has a long
history in particle physics [20]. Parity doubling achieved its modern paradigm shift with the
advent of the Weinberg sum rules [18], partly described in the previous section, and has recently
been investigated on the lattice [62–64].14,15

The basic idea is that a global symmetry, generated by a charge Q, induces degeneracies in
the spectrum, as it commutes with the Hamiltonian. Examples include supersymmetry, with
degeneracies between bosons and fermions, or simply the global SU(Nf )V flavour symmetry,
leading to isospin multiplets. In the restoration limit (8), which leads to the enhanced flavour
symmetry SU(Nf )V → SU(Nf )V × SU(Nf )A × U(1)A, the same types of degeneracy can be
expected. There is, however, another important point that accompanies this effect: namely,
that the additional global symmetry gives rise to new quantum numbers.

For the sake of concreteness, let us choose Nf = 2 below. In the case at hand, SU(2)V ×
SU(2)A ' SU(2)L × SU(2)R, this leads to both a left- and right-handed isospin quantum
number (IL, IR) instead of just the isospin IV itself. The classification of the representations is
discussed in [69]. More precisely, the particles are classified according to the parity-chiral group
SU(2) × SU(2) × Ci, where Ci is the space reflection. The lowest irreducible representations
(IL, IR), of dimension (2IL+1)(2IR+1), are listed in figure 2. The splitting from left to right can

14The restoration of the axial flavour symmetries for excited states in the spectrum was proposed in [65] and
subsequently challenged in [66].

15 Lattice simulations at temperatures above the chiral phase transition have been performed [67, 68], where
a restoration of the U(1)A-anomaly has been observed. The restoration of the symmetry in the spectrum,
along with enhanced symmetries, has been found in lattice simulations with truncated eigenmodes of the
Dirac operator [62, 63]. The motivation for this truncation is that the lowest eigenvalues are related to the
breaking of chiral symmetry by the Banks-Casher relation [61]. The restoration of the flavour symmetry,
and some of the symmetry enhancements, have been confirmed by the above-mentioned finite-temperature
simulations [64]. Whereas more is to be learnt from this interesting topic in the future, the precise outcomes
are not important for our practical purposes. However, if one were able to perturb in 〈qq〉 and mq, then the
exact limit would be of interest.
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SU(2)A

SU(2)A

SU(2)A

U(1)A U(1)A

Figure 2: Lowest-lying particles coupling to vector and tensor currents of isosinglet- and isotriplet-
type, making a total of 16 vector mesons. For simple comparison, we use the same graphic
presentation with similar notation as used in [62]. The interpolating operators are defined
in (17) where the coupling to the states is specified further below. In the restoration limit
(8), one would expect a 4-, 4- and 6-plet degeneracy by the restoration of the SU(2)A (red
arrows). In the case where U(1)A (blue arrows) symmetry is also restored, this leads to a 8-
and 6-plet degeneracy. The actual degeneracy is found to be larger [62], compatible with an
emergent SU(4) [70] (or even SU(4)× SU(4) [71]) symmetry.

be understood as the branching rule of (IL, IR)|SUV (2); e.g. (1/2, 1/2)a|SUV (2) → 3b⊥1
+1ω⊥ . The

two interpolating currents discussed as templates in the text (17) correspond to the (1, 0)⊕(0, 1)
multiplet. The two (1/2, 1/2) representations denoted by superscripts a and b are distinct by
the parity operation. The use of ‖ and ⊥ as superscripts is non-standard, and inspired by the
notation of the corresponding decay constants. As a last generic remark, let us add that, in the
real world, the ρ and the ρ′ = ρ(1450) are admixtures of the ρ‖ and ρ⊥-states. In the following
subsection, we give an example where one can explicitly see how the U(1)A×SU(2)A-violating
condensates control differences in the hadronic data between the ρ and a1.

B.1. The Weinberg sum rules as an example

From group-theoretic considerations, one can argue that the first correction to the chirality
correlation function (28) is given by (Πa,b

LR)µν(q2) ∼ 〈OχSB〉Q−6 + O(Q−8), where q2 ≡ −Q2

(e.g. [72]), 4OχSB = q̄T 3λiqLq̄T
3λiqR, and λi are the SU(3) colour matrices. One can then
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power-expand the denominator and arrive at the first two Weinberg sum rules

∫ ∞

0
sn(ρV (s)− ρA(s)) = 0 , n = 0, 1 . (36)

The leading correction, or the third sum rule, is given by

∫ ∞

0
s2(ρV (s)− ρA(s)) = 2παs〈OχSB〉 . (37)

So far, everything is exact. Since the correlation functions are well-described at high q2 by
perturbation theory, which is equal for the V - and the A-channel, ρV (s) ' ρA(s) will hold for
some s > s0. Weinberg [18] assumed that s0 is just above the a1 resonance, and restricted
himself to the parametrisations found in (32), from which he deduced

F 2
ρ − F 2

π − F 2
a1

= 0 ,

m2
ρF

2
ρ −m2

a1
F 2
a1

= 0 ,

m4
ρF

2
ρ −m4

a1
F 2
a1

= 2παs〈OχSB〉 . (38)

These sum rules are rather well-satisfied at the empirical level. The last equation nicely
illustrates, in a concrete setting, how the restoration limit is controlled by the SU(2)A ×
U(1)A-violating condensate 〈OχSB〉. We note that, in the vacuum factorisation approximation,

〈OχSB〉 = −N2
c−1
N2
c
〈q̄q〉2 [60].

C. Definition of effective Hamiltonian

Here we describe in more detail the effective Hamiltonian for b → (d, s)γ and b → (d, s)`¯̀

decays, clarifying the notation in (4). In the basis of [73], the operators contributing to (4)
are: the four-quark tree-level operators

OU1 = D̄L,iγµUjŪL,jγ
µbi ,

OU2 = D̄LγµUŪLγ
µb ; (39)

the loop-induced four-quark operators, O3,...,6:

O3 =
(
D̄Lγµb

)∑

q

(q̄Lγ
µq) , O4 =

(
D̄L,iγµbj

)∑

q

(q̄L,jγ
µqi) ,

O5 =
(
D̄Lγµb

)∑

q

(q̄Rγ
µq) , O6 =

(
D̄L,iγµbj

)∑

q

(q̄R,jγ
µqi) ; (40)

and the electromagnetic and QCD dipoles (with Dµ = ∂µ − igsGµ − ieAµ convention)

O7(8) = − e(g)

16π2
mbs̄Lσ · F (G)b . (41)

The Ci are scale-dependent Wilson coefficients, which can be calculated perturbatively using
renormalisation group methods (e.g. [73, 74]). The most relevant Ci for the discussion in the
paper are (C2, C1, C7)(mb) ' (1,−0.13,−0.37).
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For b→ (d, s)`¯̀ decays, one also needs the operators

O9,(10) =
αEM

4π
D̄Lγµb¯̀γ

µ (γ5) ` . (42)

Parity-flipped versions of the operators above can be obtained by the replacement O′ =
O|D̄L→D̄R , as well as (in the SM) mb → mD in O7,8. The relative importance of the OU=u,c

1,2

operators is dependent on the CKM hierarchy λ
(D)
U = VUbV

∗
UD for b→ d and b→ s

λ(s)
u : λ(s)

c : λ
(s)
t = λ4 : λ2 : λ2 , λ(d)

u : λ(d)
c : λ

(d)
t = λ3 : λ3 : λ3 , (43)

respectively. Above, λ is the Wolfenstein parameter, with the approximate value λ ' 0.225 [31].
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