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ABSTRACT

Parametric models for galaxy star-formation histories (SFHs) are widely used, though they are known

to impose strong priors on physical parameters. This has consequences for measurements of the galaxy

stellar-mass function (GSMF), star-formation-rate density (SFRD) and star-forming main sequence

(SFMS). We investigate the effects of the exponentially declining, delayed exponentially declining,

lognormal and double power law SFH models using Bagpipes. We demonstrate that each of these

models imposes strong priors on specific star-formation rates (sSFRs), potentially biasing the SFMS,

and also imposes a strong prior preference for young stellar populations. We show that stellar mass,

SFR and mass-weighted age inferences from high-quality mock photometry vary with the choice of SFH

model by at least 0.1, 0.3 and 0.2 dex respectively. However the biases with respect to the true values

depend more on the true SFH shape than the choice of model. We also demonstrate that photometric

data cannot discriminate between SFH models, meaning it is important to perform independent tests

to find well-motivated priors. We finally fit a low-redshift, volume-complete sample of galaxies from the

Galaxy and Mass Assembly (GAMA) Survey with each model. We demonstrate that our stellar masses

and SFRs at redshift, z ∼ 0.05 are consistent with other analyses. However, our inferred cosmic SFRDs

peak at z ∼ 0.4, approximately 6 Gyr later than direct observations suggest, meaning our mass-weighted

ages are significantly underestimated. This makes the use of parametric SFH models for understanding

mass assembly in galaxies challenging. In a companion paper we consider non-parametric SFH models.

Keywords: keyword1 — keyword2 — keyword3

1. INTRODUCTION

One of the most important processes driving the evo-

lution of galaxies is star formation. This means that

the stellar masses and star-formation rates (SFRs) of

galaxies are two of their most fundamental properties.

Measurements of these quantities underpin many of the

most important results in the study of galaxy forma-

tion, such as the redshift evolution of the galaxy stellar-

mass function (GSMF; e.g. Tomczak et al. 2014), cosmic

star-formation-rate density (SFRD; e.g. Madau & Dick-

inson 2014) and the galaxy star-forming main sequence

(SFMS; e.g. Speagle et al. 2014).

To measure these quantities we rely on modelling and

fitting the observed spectral energy distributions (SEDs)
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of galaxies (see Conroy 2013), using methods ranging

from monochromatic SFR indicators and single-colour

mass-to-light relationships to full spectral fitting.

Models used to fit galaxy SEDs normally include a

star-formation history (SFH). The fitted SFH is then

used to derive the SFR and stellar mass (as distinct

from the total stellar mass formed; see Section 3), as

well as other quantities of interest such as the specific

SFR (sSFR) and mass-weighted age. This means that

the priors on these quantities are not set explicitly, but

instead are set implicitly by the priors applied to the

SFH. Because of this, SFH priors affect results obtained

for many of the most fundamental galaxy properties.

As the choice of prior is subjective, it is generally de-

sirable for the conclusions reached to be as insensitive to

the prior assumptions made as possible. For the prior

to be of minimal importance, two conditions must be

met. Firstly, the model being fitted must be capable

mailto: adamc@roe.ac.uk
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of accurately describing the data-generating processes.

Secondly, the data must be strongly constraining on the

values of all model parameters. The problem of fit-

ting SFHs to galaxy SEDs is particularly challenging

because, in general, neither of these conditions are met.

In this case the data-generating processes encompass

the entire physics of galaxy formation and evolution, and

are thus extremely complex. It has been shown through

simulations of galaxy formation (e.g. Davé et al. 2016;

Nelson et al. 2018) that these processes can give rise to

a huge diversity of complex galaxy SFHs, presenting a

significant modelling challenge.

Progress has been made in addressing this challenge,

however there is still much debate in the literature as

to the best approach. Three different families of models

are in common usage, all of which impose substantially

different priors on SFHs, both in terms of the range of

allowed shapes and the relative prior weights assigned

to different allowed shapes. Firstly, parameterised SFH

models, which are the subject of this work (see Section

2), secondly non-parametric models (e.g. Cid Fernan-

des et al. 2005; Ocvirk et al. 2006; Tojeiro et al. 2007;

Cappellari 2017; Leja et al. 2017; Chauke et al. 2018),

and thirdly models drawn directly from simulations (e.g.

Brammer et al. 2008; Pacifici et al. 2012). At the core of

this debate is a trade-off between flexibility and compu-

tational tractability, with more flexible models generally

being more computationally intensive to fit.

Even if a SFH model can be defined which is both

computationally tractable and flexible enough to encom-

pass the inherent complexity of galaxy SFHs, the priors

assumed for its parameters will still be important un-

less all of the model parameters are well constrained by

the data. However, as was extensively demonstrated by

Ocvirk et al. (2006), the problem of inferring SFHs from

galaxy SEDs is poorly conditioned, meaning even small

perturbations of the data can lead to large perturba-

tions of the inferred SFH. The main underlying reason

for this is the strong evolution of the mass-to-light ra-

tios of stellar populations with age, meaning that the

early-time evolution of the SFH has little effect on the

observed SED at later times if star-formation is ongoing.

The situation therefore is one in which inferences

made about key galaxy physical parameters are highly

sensitive to the SFH prior (e.g. Wuyts et al. 2009, 2011;

Lee et al. 2009; McLure et al. 2011; Pforr et al. 2012;

Mobasher et al. 2015; Salmon et al. 2015; Iyer & Gawiser

2017; Carnall et al. 2018). SFH priors are therefore a

subject of prime importance for all SED fitting analyses.

In this context it is important to critically evaluate

SFH priors to see whether the priors they impose on pa-

rameters of interest are well-motivated. Two significant

risks are the over-interpretation of data if observational

uncertainties are not carefully propagated, and the un-

intentional imposition of informative priors, which can

lead to strong posterior constraints even in the absence

of strongly constraining data. It is possible that issues

of this nature contribute to the known tensions between

the observed GSMF, SFRD and SFMS (e.g. Madau &

Dickinson 2014; Leja et al. 2015; Pacifici et al. 2015).

Recently, significant advances in statistical and com-

putational techniques (e.g. Skilling 2006; Feroz et al.

2009, 2013; Goodman & Weare 2010; Acquaviva et al.

2011; Foreman-Mackey et al. 2013) have made it possi-

ble to rapidly fit complex galaxy SED models to data

within a fully Bayesian framework, including full control

of the applied priors. A new generation of galaxy SED

fitting tools has been built to exploit this, such as Bea-

gle (Chevallard & Charlot 2016), Prospector (Leja

et al. 2017; Johnson et al. in preparation) and Bagpipes

(Carnall et al. 2018). These codes allow detailed analy-

ses of the effects of SFH priors, and direct comparisons

between results obtained under different assumptions.

In this work, we use Bayesian Analysis of Galax-

ies for Physical Inference and Parameter EStimation

(Bagpipes) to conduct an investigation into the priors

imposed by four commonly used parametric SFH mod-

els: exponentially declining, delayed exponentially de-

clining, lognormal and double power law. In a compan-

ion paper (Leja et al. 2018) we perform similar analyses

for non-parametric SFH models.

In Section 2 we introduce the parametric SFH models.

In Section 3 we consider the effects of these models in the

limit of weakly constraining data by discussing the priors

they impose on physical parameters, in particular sSFR

and mass-weighted age/formation time. In Section 4,

we consider the biases introduced in the case of fitting

these models to high signal-to-noise ratio (SNR) broad-

band photometric data. This is achieved by constructing

and fitting a simple mock galaxy catalogue, designed

to span a wide range of scenarios for the formation of

galaxies. We also discuss how well these mock data can

discriminate between different SFH models.

Finally, in Section 5, we perform a long-discussed con-

sistency check (e.g. Heavens et al. 2004) by using these

four models to fit a volume-complete sample of local

galaxies and comparing the redshift evolution of the

cosmic SFRD inferred from their SFHs to the relation-

ship obtained by measuring SFRs across cosmic time

by Madau & Dickinson (2014). For this analysis we

use a sample in the redshift interval 0.05 < z < 0.08

with high-quality photometric data and spectroscopic

redshifts from the Galaxy and Mass Assembly (GAMA)

Survey (Driver et al. 2009, 2016; Baldry et al. 2018).
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Table 1. Parameters and prior distributions for each SFH model. Logarithmic priors are uniform in log10 of the parameter.

Model Parameter Symbol / Unit Range Prior

Exponentially declining / Start time T0 / Gyr (0, tobs − 0.1) uniform

Delayed exponentially declining Timescale τ / Gyr (0.3, 10) uniform

Lognormal Peak time tmax / Gyr (0.1, 15) uniform

FWHM TFWHM / Gyr (0.1, 20) uniform

Double power law Falling slope α (0.1, 1000) logarithmic

Rising slope β (0.1, 1000) logarithmic

Turnover τ / Gyr (0.1, tobs) uniform

Global Normalisation Mformed / M� (1, 1013) logarithmic

We assume ΩM = 0.3, ΩΛ = 0.7 and H0 = 70

km s−1 Mpc−1. All times, t, are measured forwards from

the beginning of the Universe such that t(z) is the age

of the Universe at redshift z. We assume a Kroupa &

Boily (2002) initial mass function (IMF).

2. PARAMETRIC SFH MODELS

Parametric models approximate galaxy SFHs using

simple functional forms, typically involving 2 − 3 shape

parameters plus a normalisation. These are, in some

respects, the least flexible option for fitting SFHs, im-

posing strong prior limitations on the range of allowable

shapes. However their relative speed and simplicity of

fitting means that they are widely used. It has also been

demonstrated that complex SFHs from simulations can

be reasonably well described by parametric models (e.g.

Simha et al. 2014, Diemer et al. 2017).

The four widely used parametric SFH models we con-

sider (and some recent examples of their use in the lit-

erature) are: exponentially declining (Mortlock et al.
2017; Wu et al. 2018; McLure et al. 2018), delayed expo-

nentially declining (Ciesla et al. 2017; Chevallard et al.

2017), lognormal (Diemer et al. 2017; Cohn 2018) and

double power law (Ciesla et al. 2017; Carnall et al. 2018).

For brevity we will refer to them as tau, delayed, log-

normal and DPL models respectively.

The models are introduced in the following four sub-

sections; the prior probability densities we assume for

their parameters are reported in Table 1. We have cho-

sen a simple set of prior probability densities in each case

to act as a basis for comparison. The effects of chang-

ing these will be discussed in Section 3.2. In all cases

we normalise the SFH by the total stellar mass formed,

Mformed at the time of observation, tobs. We assign a log-

arithmic prior to Mformed, which is the minimally infor-

mative prior when the uncertainty spans several orders

of magnitude (e.g. Simpson et al. 2017).

2.1. Exponentially declining

Exponentially declining SFHs (tau models) are prob-

ably the most commonly applied SFH model. They as-

sume that star-formation jumps from zero to its maxi-

mum value at some time T0, after which star-formation

declines exponentially with some timescale τ,

SFR(t) ∝


exp

(
−

t − T0

τ

)
t > T0

0 t < T0.

(1)

Tau models are often used as a fiducial model against

which others can be compared, however they have been

shown to become less appropriate at higher redshifts

(e.g. Reddy et al. 2012) as they cannot reproduce rising

SFHs. They have also been shown to produce biased

estimates of stellar mass, SFR and mass-weighted age

when used to fit mock observations of simulated galaxies

(e.g. Simha et al. 2014; Pacifici et al. 2015; Carnall et al.

2018). The priors listed in Table 1 for this model are

adapted from those used by Wuyts et al. (2011).

2.2. Delayed exponentially declining

A simple extension of exponentially declining SFHs

are delayed exponentially declining SFHs (delayed mod-

els). Multiplying the tau-model SFR by the time since

T0 removes both the discontinuity in SFR at T0 and the

condition that star formation can only decline after that

point. This results in a more flexible and more physical

model, which can reproduce rising SFHs if τ is large.

The SFR is now described by

SFR(t) ∝


(t − T0) exp

(
−

t − T0

τ

)
t > T0

0 t < T0.

(2)

For our delayed model we apply the same prior proba-

bility densities for τ and T0 as for our tau model.
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2.3. Lognormal

Lognormal models for individual galaxy SFHs were

postulated by Gladders et al. (2013), based, in part, on

the evolution of the cosmic SFRD being well fitted by

the lognormal function. The SFR is described by

SFR(t) ∝
1

t
exp

(
−

(
ln(t) − T0

)2
2τ2

)
(3)

where τ and T0 are free parameters. Because these pa-

rameters do not have intuitive interpretations (e.g. star-

formation does not peak at t = eT0) we follow Diemer

et al. (2017) in reparameterising in terms of tmax, the

time at which star-formation peaks, and TFWHM, the

full-width at half maximum of the SFH. We constrain

tmax to be less than 15 Gyr after the beginning of the

Universe and TFWHM to be less than 20 Gyr in order to

limit the prior volume containing models with very large

tmax and TFWHM which have almost identical shapes at

times earlier than the z = 0 age of the Universe.

2.4. Double power law

The double-power-law (DPL) function introduces an-

other free parameter in order to separate the rising and

declining phases of the SFH, which are modelled by

two separate power-law slopes. This function has been

shown to provide a good description of the redshift evo-

lution of the cosmic SFRD (Behroozi et al. 2013; Glad-

ders et al. 2013), as well as producing good fits to SFHs

from simulations (e.g. Pacifici et al. 2016; Diemer et al.

2017; Carnall et al. 2018). The functional form is

SFR(t) ∝

[(
t
τ

)α
+

(
t
τ

)−β]−1
(4)

where α is the falling slope, β is the rising slope and τ

is related to (but not the same as) the peak time. The

priors reported in Table 1 are based on those used by

Carnall et al. (2018).

3. PRIORS ON PHYSICAL PARAMETERS

As described in Section 1, in most galaxy SED fitting

analyses, the priors on the parameters of interest (e.g.

stellar mass, star-formation rate, mass-weighted age) are

not set explicitly, instead being set implicitly by the pri-

ors applied to the SFH. In this section we use Bagpipes

to sample the prior distributions listed in Table 1 for the

models described in Section 2 and report and discuss the

priors imposed on parameters of interest.

For each draw from the prior, we obtain the stellar

mass, M∗ (which is the total mass in stars and remnants

at the time of observation), by integrating the SFH mul-

tiplied by the mass-return fraction as a function of stel-

lar age. This is distinct from the normalisation of the

SFH, Mformed described in Section 2, which is the total

stellar mass formed. We also average over the most re-

cent 100 Myr of the SFH to obtain an estimate of the

current SFR, which we denote SFR100.

The dependence of M∗ on the shape of the SFH is rel-

atively weak, meaning that the prior on M∗ is largely

independent of the parametric form used. The M∗ prior

instead closely mirrors the prior placed on Mformed, typ-

ically with an offset of ∼ 0.2 dex (the return fraction).

We therefore do not discuss stellar masses in this section,

however it should be noted that the SFH prior can still

bias measurements of M∗ if the model cannot reproduce

the true SFH shape (see Section 4).

The SFR prior has significant dependencies on both

the SFH model and the stellar mass. In order to iso-

late the effect of the SFH model, we will consider the

prior on the specific star-formation rate, sSFR, which

we calculate by sSFR = SFR100/M∗.
The second physical parameter we consider in this sec-

tion is the mass-weighted formation time, tMW. This

corresponds to the more commonly used mass-weighted

age, but is measured forwards from the beginning of the

Universe to maintain consistency between objects at dif-

ferent observed redshifts. We calculate this by

tMW =

∫ tobs

0
t SFR(t) dt∫ tobs

0
SFR(t) dt

. (5)

This parameter gives an indication of the epoch at which

the stellar masses of galaxies were assembled, which

should ultimately agree with the measured redshift evo-

lution of the cosmic SFRD (see Section 5).

In Section 3.1 we report the priors imposed on sSFR

and mass-weighted formation time by our fiducial mod-

els at z = 0. Then, in Section 3.2, we consider the effects

of varying the prior probability densities for individual

model parameters. Finally, in Section 3.3, we explore

the effects of moving to higher observed redshifts.

3.1. Fiducial models at redshift zero

We first sample the fiducial prior distributions shown

in Table 1 at a fixed redshift of z = 0. Fig. 1 shows the

priors imposed on sSFR, tMW and SFH shape by the

four parametric models.

The far-left panels show the priors imposed on sSFR,

with the consensus z = 0 SFMS reported by Speagle

et al. (2014) shown as a solid blue line (the shaded region

represents a scatter of 0.3 dex). It can be seen that

the sSFR priors imposed by all four models are strongly

peaked around sSFR ∼ 10−10 yr−1, with tails out to lower

sSFRs. A limit of sSFR ≤ 10−8 yr−1 is imposed by the

use of a SFR timescale of 100 Myr.
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Figure 1. Prior probability densities for sSFR, mass-weighted formation time and SFH shape imposed by each of our four
parametric SFH models (see Section 2 and Table 1). To the left, the prior medians are shown as dashed purple lines. The z = 0
SFMS of Speagle et al. (2014) for a representative stellar mass of M∗ = 1010.5M� (close to the characteristic mass of the GSMF)
is shown on the far-left panels as a blue solid line. The blue shaded region shows a scatter of 0.3 dex. The mass-weighted
formation time for the stars in the Universe, derived from the Madau & Dickinson (2014) SFRD curve, is shown as a solid green
line on the centre-left panels. To the right, the solid purple line is the prior median and the shaded region shows the 16th–84th

percentiles. A sample of draws from each prior is shown in grey. The Madau & Dickinson (2014) SFRD curve is shown in green.

Given that the SFRs of galaxies are poorly constrained

by the observed SED (see Section 1), the fact we ob-

serve different sSFR priors for different models is one of

the main reasons that different locations are observed

for the SFMS in different studies (e.g. Speagle et al.

2014; Pacifici et al. 2015). However, the strongly peaked

(and hence informative) nature of these prior distribu-

tions also suggests another possibility: that galaxy SFRs

measured assuming these parametric SFH models could

be driven towards a narrow range of sSFR values by the

SFH prior. This could cause a SFMS to be observed even

when the data does not have the necessary constraining

power to infer reliable SFRs, or artificially tighten an

otherwise less-well-defined SFMS.

The centre-left panels show the priors imposed on

mass-weighted formation time, with the mass-weighted

formation time for the stellar population of the Universe

at z = 0, as calculated from the Madau & Dickinson

(2014) SFRD curve, shown by a solid green line. It
can be seen that all of the models we consider favour

larger tMW than Madau & Dickinson (2014), with the

tau and delayed models in particular favouring young

galaxy stellar populations. The lognormal and DPL

models produce broader priors on tMW, but still favour

later times than the epoch at which it is known that

galaxies assembled the majority of their stellar masses.

The right panels show the priors imposed on SFH shape

by dividing out the dependency on Mformed. The Madau

& Dickinson (2014) curve is also shown, clearly demon-

strating that these fiducial priors favour later stellar-

mass assembly.

In response to issues of this nature, there has been

a recent rapid increase in the diversity and complexity

of parametric SFH models in use in the literature (e.g.

Ciesla et al. 2017; Glazebrook et al. 2017; Merlin et al.

2018; Carnall et al. 2018; Schreiber et al. 2018). This in-
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mation time by the exponentially declining SFH parameter-
isation (Equation 1) under the assumption of different prior
probability densities for the τ parameter. Other priors are
the same as listed in Table 1. Vertical lines are as in Fig. 1.

creasing diversity in applied methodologies necessitates

a firm basis for comparisons between different methods.

The method presented in this section (sampling SFHs

from the prior probability distributions on model pa-

rameters, then using these to construct the priors on the

parameters of interest) is applicable to any kind of SFH

model. We therefore suggest that these tests should al-

ways be conducted when a new model is used, in order

to understand the priors being imposed, and to facilitate
comparisons with other methods.

This method illustrates the power of the fully Bayesian

methodology being pioneered in SED fitting analyses.

To give an example of how this could be used to refine

a SFH model, a more physical prior could be motivated

by the ansatz that the shape prior should resemble the

overall cosmic SFRD (e.g. Gladders et al. 2013). In this

case we would wish to find a prior which rises rapidly to a

peak around z = 2 on the right panels of Fig. 1 and then

declines more slowly, with tMW peaked around the green

line on the centre-left panels (see Appendix A). Another

option would be to design a prior centred on the SFH of a

galaxy which follows the SFMS throughout its evolution

(e.g. Ciesla et al. 2017). If no compelling argument can

be made for a prior belief that the distribution of galaxy

sSFRs at z = 0 is strongly peaked at ∼ 10−10 yr−1, then

a less informative prior on sSFR would also be desirable.
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Figure 3. Priors imposed on sSFR and mass-weighted for-
mation time by the exponentially declining SFH parameter-
isation (Equation 1) with the priors shown in Table 1 at dif-
ferent observed redshifts (different T0 priors). Vertical lines
are as described in the Fig. 1 caption at the redshifts shown.

3.2. The effects of changing the prior probability

densities assumed for model parameters

The discussion of Section 3.1 refers only to one set of

fiducial prior probability densities for the parameters of

the four SFH models, chosen to be typical of applications

of these models in the literature. Changing any of these

will affect the priors shown in Fig. 1, with a variety of

different combinations possible.

Whilst Bagpipes can be used to obtain priors on

physical parameters for any of these combinations, we

here restrict our discussion to two cases of particu-

lar interest involving the prior probability density as-

sumed for the τ parameter of the exponentially declin-

ing SFH model. These provide representative examples

from which the magnitude of the effects of such changes

can be seen. Another example will be provided in Sec-

tion 3.3, where we will consider changing the observed

redshift. This is effectively a specific case of changing

the prior on the T0 parameter. An expanded discussion

of the prior probability densities for the lognormal and

DPL models is also provided in Appendix A.

An alternative parameterisation of the tau model to

that given in Equation 1 is SFR(t) ∝ e−γ(t−T0), where

γ = τ−1 (e.g. Pacifici et al. 2015; Salim et al. 2016). A

uniform prior applied to γ corresponds to a prior prob-
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ability density on τ of P(τ) ∝ τ−1, as opposed to a uni-

form prior on τ. The use of a logarithmic prior on τ

is also often discussed. We therefore test two alterna-

tive prior probability densities for τ, P(τ) ∝ log10(τ) and

P(τ) ∝ τ−1 whilst maintaining the ranges and priors for

T0 and Mformed quoted in Table 1.

Fig. 2 shows the priors on sSFR and mass-weighted

formation time for the two alternative τ priors, as well

as the original uniform prior from Fig. 1 for reference. It

can be seen that both of these alternative priors broaden

the prior on sSFR towards lower values, with the distri-

bution under the assumption of P(τ) ∝ τ−1 being rel-

atively flat. Additionally, both of these priors extend

the distribution of mass-weighted formation times fur-

ther towards earlier times, again with the assumption of

P(τ) ∝ τ−1 producing a relatively flat prior on tMW.

We conclude, by a comparison of Figures 1 and 2,

that changing the prior probability densities assumed for

SFH model parameters can produce significant changes

in the priors imposed on the parameters of interest, of

the same order of magnitude as changing between differ-

ent SFH parameterisations. We also conclude that when

using the exponentially declining SFH model, a prior

probability density for the τ parameter of of P(τ) ∝ τ−1

produces a less informative prior on parameters of inter-

est than the more common uniform τ prior, P(τ) ∝ 1.

3.3. The effects of changing the observed redshift

We have so far restricted our discussion to the priors

imposed at z = 0. It is also interesting to consider if and

how these priors change as a function of observed red-

shift. In particular, given our conclusion in Section 3.1

that the priors imposed could bias results from galaxy

SED fitting in favour of a tight SFMS within a narrow

range in sSFR, it is interesting to consider whether the

redshift evolution of the prior on sSFR matches the red-

shift evolution of the SFMS.

Fig. 3 shows the priors imposed on sSFR and mass-

weighted formation time by the fiducial tau model as

described in Table 1 at a range of observed redshifts,

chosen to span the cosmic time interval between the

epoch of peak star-formation and the present day. In-

creasing the redshift effectively changes the prior on the

T0 parameter by reducing tobs, the upper limit. This

discussion is therefore simply a specific case of changing

prior probability densities, as discussed more generally

in Section 3.2.

It can be seen that the prior on mass-weighted for-

mation time retains the same shape and retains a bias

towards later formation than the tMW values calculated

from the Madau & Dickinson (2014) SFRD curve.

The sSFR priors imposed by this model can be seen to

be a strong function of redshift, with the prior evolving

towards sharper peaks at higher sSFRs with increas-

ing redshift. This evolution is in the same sense as the

SFMS, although the evolution is weaker than for the

SFMS of Speagle et al. (2014) at fixed stellar mass.

It is informative to compare the results shown in Fig.

3 with those of Ciesla et al. (2017). The left hand panel

of their fig. 8 shows that, even at z = 0, the peak of the

sSFR prior for their tau model falls below the SFMS

at our fiducial stellar mass of M∗ = 1010.5M�. This

contrasts with the top two panels of Fig. 3, where the

prior peaks above the SFMS. This difference is a conse-

quence of different lower limits placed on the τ param-

eter: Ciesla et al. (2017) use 1 Myr, as opposed to our

limit of 300 Myr.

We conclude that the use of standard parametric SFH

models both has the potential to push galaxies towards

a narrow range of sSFR values, and that this range of

sSFR values evolves with observed redshift in the same

sense as the SFMS. Clearly, therefore, an important con-

sideration when designing galaxy SED fitting analyses is

to avoid unintentionally biasing results towards recovery

of a tight SFMS by the use of a strong prior on sSFR

where the observational data being fitted may not be

constraining enough to reliably infer SFRs.

4. TESTING PARAMETRIC MODELS WITH

MOCK OBSERVATIONS

In Section 3 we have discussed how, in the absence

of strongly constraining data, the priors imposed by the

SFH model on physical parameters can affect the results

obtained by assigning greater prior weights to SFHs of

certain shapes. However, even in the high-SNR regime,

the limited range of shapes that a given parametric SFH

model is capable of reproducing can introduce biases

into physical parameter estimates. To understand these

biases it is necessary to examine some test cases involv-

ing high-SNR data.

In this section we test the abilities of the parametric

SFH models introduced in Section 2 to recover galaxy

physical parameters from mock high-SNR broad-band

photometric data. In Section 4.1 we describe our mock

catalogue, and the generation and fitting of mock pho-

tometry with Bagpipes. In Section 4.2 we discuss the

biases introduced by the use of parametric SFH mod-

els to fit these mock data. In Section 4.3 we compare

the quality of the fits obtained using different paramet-

ric SFH models. Finally, in Section 4.4 we consider the

implications of our results for the use of broad-band pho-

tometric observations as a tool for learning about galaxy

SFHs.
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Figure 4. SEDs (left) and SFHs (right) for each of the
mock galaxies introduced in Section 4.1. Photometric fluxes
derived from these spectra are shown as circles on the left
for each of the following filters: GALEX FUV/NUV, SDSS
ugriz, 2MASS JHKs and Spitzer/IRAC channels 1 − 4.

4.1. Generating and fitting mock data

To facilitate our tests, a set of five mock galaxies at

z = 0 with different SFHs was generated. The SFHs are:

• Constant: equal SFR from t = 0 to tobs.

• Falling: exponential decline (see Equation 1) with

T0 = 0 and τ = tobs/10 = 1.4 Gyr.

• Rising: SFR(t) ∝ e
t
τ with τ = tobs/4 = 3.4 Gyr.

• Recent burst: constant SFR from t = 0 to tobs
making up 80% of Mformed and a Gaussian burst

centred 500 Myr before tobs with width σ = 200

Myr making up the other 20% of Mformed.

• Sudden quench: constant star formation from

t = 0 to tobs − 1 Gyr, then constant star formation

at 2% of the original level from that point to tobs.

Mock photometry was generated with Bagpipes using

the methods described in Carnall et al. (2018) for each of

the following photometric filters: GALEX FUV/NUV,

SDSS ugriz, 2MASS JHKs and Spitzer/IRAC channels

1 − 4. We assign each photometric flux an uncertainty

corresponding to a high SNR of 25. However, we do not

perturb the model fluxes by these uncertainties, so as

to isolate the effects of the SFH parameterisation. The

mock SEDs and SFHs are shown in Fig. 4.

Each model was assigned a total stellar mass formed,

Mformed = 1010 M� and a metallicity of Z = 0.02 (which

we take to be Solar metallicity, Z�). An ionization pa-

rameter of log10(U) = − 3 was assumed for nebular

emission. Dust attenuation with AV = 0.3 mag was ap-

plied using the Calzetti et al. (2000) attenuation curve.

Attenuation was assumed to be doubled for stars formed

in the last 10 Myr and for nebular emission. All attenu-

ated light was assumed to be re-radiated in the infrared

using the dust emission models of Draine & Li (2007),

(recently added to Bagpipes). We assume values of 2

for Qpah, the percentage of dust mass in polycyclic aro-

matic hydrocarbons, 1 for Umin, the minimum starlight

intensity to which the dust is exposed, and 0.01 for γe,

the fraction of the incident starlight at Umin.

Our mock catalogue was chosen to span a wide range

of scenarios for the formation of galaxies. However it

should be noted that, by constructing this catalogue,

we are expressing prior beliefs about the SFHs of real

galaxies. The results of Sections 4.2 and 4.3 are neces-

sarily dependent on these prior beliefs (see Section 4.4).

The same mock catalogue is used in our companion pa-

per (Leja et al. 2018), however it should be noted that a

number of different assumptions are made by Bagpipes

and Prospector, in particular for the stellar/nebular

emission and dust attenuation models.

Each of the four parametric models introduced in Sec-

tion 2 was fitted to each set of mock photometry assum-

ing the priors given in Table 1 at a fixed redshift of

z = 0. The other free parameters are AV for the Calzetti

et al. (2000) dust attenuation law, to which we assign

a uniform prior between 0 and 4 mag, metallicity, Z,

to which we assign a logarithmic prior over the range

0.2 < Z/Z� < 2, and the dust emission parameters, to

which we assign the same priors as Leja et al. (2017),

except that we do not extrapolate Qpah beyond a max-

imum value of 4.58.

4.2. Recovery of SFHs and physical parameters

Fig. 5 shows the posterior SFHs obtained by the pro-

cess described in Section 4.1 compared to the input mock

SFHs. Fig. 6 shows the posterior constraints obtained

for a number of physical parameters compared to their

true values. It can be seen that the quality of the recov-

ered posterior SFHs and physical parameters is a strong

function of the shape of the input mock SFH and a

weaker, but still significant, function of the parametric

SFH model which is fitted. This finding is supported by

Fig. 6, where it can be seen that often all four models
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return consistent values for physical parameters which

are in strong tension with the true value.

The SFHs of the first three “simple” mocks (constant,

falling, rising) are relatively well recovered by all of the

SFH models, with the exception of the tau model, which

predictably struggles to recover the constant and rising

SFHs. It is also interesting to highlight the case of the

tau model fitting the falling mock, as in this case the

true SFH exists within the prior. It can be seen from

Fig. 5 that, whilst the tau model recovers the shape of

the input SFH well, the recovery is not perfect as might

be expected. This is due to the non-Gaussian shape of

the posterior distribution, in this case for the T0 and τ

parameters.

This is a common consequence of poorly constrain-

ing data, and means that the most probable (maximum

a posteriori) and posterior median parameter estimates

may be offset. In this case, because the model fluxes

have not been perturbed, the most probable model is

the input model. However, when dealing with real ob-

servational uncertainties and non-Gaussian posteriors,

the maximum a posteriori parameter estimates are of-

ten poorly representative of the posterior.

For the “simple” mocks, the stellar mass, SFR, dust

attenuation and metallicity posteriors can be seen from

Fig. 6 to typically fall within 1 − 2σ of the true values,

with biases of the order of ∼ 0.1 dex for stellar mass and

∼ 0.2 dex for SFR. The posterior mass-weighted forma-

tion times are more strongly in tension with the input

values (up to ∼ 4σ), and are typically overestimates of

the true values. These biases are due to all four mod-

els, to some extent, failing to reproduce the early-time

evolution of these mock SFHs.

By contrast, all four SFH models struggle to reproduce

the more complex shapes of the recent burst and sudden

quench models. More significant biases in the recovery
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Figure 6. Physical parameter recovery from mock data (see Section 4.1) using our SFH models (see Section 2 and Table 1).
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of physical parameters can be seen in these cases, up to

0.3 dex in SFR, 0.2 mag in dust attenuation, and 0.3

dex in metallicity. For the burst mock in particular, the

posterior probability distributions strongly exclude the

true values for all parameters except M∗. The posterior

SFHs shown in Fig. 5 appear unable to simultaneously

reproduce both the overall shapes of these mock SFHs

and their rapid variability at late times, with the shapes

fitted representing a compromise between the two. The

strong biases in the recovered dust and metallicity val-

ues are a consequence of the age-metallicity-dust de-

generacy, which allows the mock photometry to be well

matched even whilst fitting radically different SFHs.

Based upon these results, we conclude that the choice

of parametric SFH model has the potential to signifi-

cantly affect the physical parameter estimates obtained

when fitting high-SNR broad-band photometric obser-

vations, in particular by at least 0.1, 0.3 and 0.2 dex for

stellar mass, SFR, mass-weighted formation time respec-

tively. Our finding of ∼ 0.1 dex variations in stellar-mass

measurements is in good agreement with similar analy-

ses in the literature (e.g. Pacifici et al. 2015; Mobasher

et al. 2015; Iyer & Gawiser 2017). For SFRs however,
both Pacifici et al. (2015) and Iyer & Gawiser (2017)

find a wider range of variations, suggesting our limited

library of mocks does not encompass the most patholog-

ical cases.

However, often all four of our models return consis-

tent posterior estimates for physical parameters which

are strongly biased from the input values. This suggests

that the true shape of the SFH is the most important

factor in whether parametric models can return unbiased

physical parameter values, with even a simple mock cat-

alogue containing SFHs which are not well described by

any of our parametric models. The parametric models

are least reliable for galaxies which experience recent,

rapid changes in their SFRs. This limitation can be im-

proved upon by the use of non-parametric models (Leja

et al. 2018).
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4.3. Comparisons between SFH models

Given the biases we have discussed in Section 4.2, it is

interesting to consider whether there is a case, based on

our results, for using one of these parametric models in

preference to others. In the ideal case, we would be able

to identify one parametric model which reliably returns

smaller biases in physical parameter estimates than the

others and recommend this for general use. Failing this,

we would hope to be able to identify the model which

returns the least biased physical parameter estimates for

a specific object (without knowledge of the true values)

by assessing the relative quality of the fits. It should

again be stressed, as in Section 4.1, that any conclusions

as to which parametric SFH models are more preferred

depend on the prior beliefs about real galaxy SFHs we

expressed when building our mock galaxy catalogue.

Considering the relative biases returned by the use

of different models, as discussed in Section 4.2, often

our different SFH models return consistent parameter

estimates, all of which are biased with respect to the in-

put values. In cases where the relative biases differ, the

tau model generally returns more highly biased physical

parameter estimates, however there is little distinction

between the biases obtained when using the other three

parametric models. We therefore conclude that none of

the delayed, lognormal or DPL models can be said to re-

liably produce less-biased physical parameter estimates

than any other when fitting high-SNR photometric data.

We therefore move on to consider which models pro-

duce the best fits to our mock data. Fig. 7 shows the

residuals between our posterior predictions for photome-

try and our input mock data. Results are shown for each

of our four SFH models fitted to the recent burst and

sudden quench mocks (results for the other three mocks

are very similar). It can be seen that all of the models

produce posterior distributions which appear to be ac-

ceptable fits to the mock photometry. Furthermore, it is

impossible to distinguish by eye between the posteriors

obtained by fitting each of the different models.

In order to quantify this we consider the Bayesian evi-

dence for each model fitted to each set of mock photom-

etry. Evidence is analogous in a Bayesian framework to

the more commonly used minimum reduced chi-squared

value, and is often used to discriminate between models

(e.g. Trotta 2008; Salmon et al. 2016). Fig. 8 shows the

evidence for each model fitted to each set of mock pho-

tometry relative to the tau model. The coloured stripes

represent (from top to bottom) strong evidence for, weak

evidence for, no evidence for, weak evidence against and

strong evidence against one model compared to another.

It can be seen from Fig. 8 that none of our parametric

models is strongly favoured or disfavoured compared to

the tau model for any of the mocks. Even for the falling

mock, where the input model is within the tau-model

prior, only a very weak preference is visible. This means

that it is not possible, in general, to identify which SFH

model produces the least biased physical parameter esti-

mates for individual objects by assessing the “goodness

of fit” to broad-band photometry. A specific case was

recently demonstrated by Belli et al. (2018), who show

that it is not possible to distinguish between parametric

SFH models for a sample of quiescent galaxies.
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4.4. Broad-band photometry as a tool for

understanding galaxy SFHs

In Section 4.3 we have demonstrated that, even

though we observe from Fig. 6 that the tau model

produces more highly biased physical parameter esti-

mates for our mock catalogue, this is not associated

with a worse quality of fit. This means that, for the

case in which we have no knowledge of the true physical

parameter values, we have no basis for deciding which

parametric SFH model produces less-biased physical

parameter estimates.

Our conclusion that the tau model produces more

highly biased physical parameter estimates in Section

4.3 is a consequence of the prior beliefs about real galaxy

SFHs we expressed when constructing our mock cata-

logue in Section 4.1. If all of the mocks in our catalogue

were similar to the falling mock, we would conclude that

the tau model describes galaxy SFHs equally as well or

better than the other three models.

This leads us to an important conclusion: high-SNR

broad-band photometry cannot, in general, constrain

prior beliefs about which parametric SFH models are

most appropriate for describing the SFHs of real galax-

ies. Hypotheses such as galaxy SFHs being well de-

scribed by the lognormal function (Gladders et al. 2013)

cannot be proven or disproven using broad-band photo-

metric observations. The physical parameter inferences

made are therefore necessarily dependent on prior be-

liefs, to at least the levels reported in Section 4.2.

There are three possible responses to this conclusion.

Firstly, one can perform a more sophisticated version of

the analysis presented in Sections 4.1 and 4.2, by gen-

erating a catalogue of mock data which represents a set

of prior beliefs about galaxy formation (e.g. Buat et al.

2014; Ciesla et al. 2015), then fitting those mocks with

different parametric SFH models to decide which is the

most appropriate for representing those prior beliefs.

A popular choice is to use catalogues of mock observa-

tions drawn from simulations of galaxy formation (e.g.

Pacifici et al. 2015; Diemer et al. 2017; Carnall et al.

2018). However, the lack of flexibility in parametric SFH

models means that the process of selecting an appropri-

ate model usually involves a significant amount of trial

and error, with no clear physical link between the cho-

sen model and the prior beliefs expressed. Additionally,

the use of prior beliefs drawn from simulations renders

comparisons between observational results and simula-

tion outputs of questionable value.

This brings us to the second option: the use of non-

parametric SFH models. Because of the increased flex-

ibility of these models, it is far easier to encode more

specific prior beliefs about the shapes of galaxy SFHs

into the model, with or without the use of mock ob-

servations drawn from simulations. This option is the

subject of a companion paper (Leja et al. 2018).

The final option is the analysis of higher quality ob-

servational data, such as high-SNR continuum spec-

troscopy, which has been shown to be more strongly

constraining on galaxy SFHs (e.g. Gallazzi et al. 2005,

2008; Ocvirk et al. 2006; Pacifici et al. 2012; Thomas

et al. 2017; Carnall et al. in preparation). These kinds

of analyses are extremely promising, as they have the

potential to demonstrate a clear preference in favour of

one model for the SFHs of galaxies over others, provid-

ing deeper insights into the physics driving the assembly

of stellar mass in galaxies.

5. TESTING PARAMETRIC MODELS WITH

OBSERVATIONAL DATA

In Sections 3 and 4 we have demonstrated the effects

of different parametric SFH models on results obtained

through SED fitting for galaxy stellar masses, SFRs and

mass-weighted formation times. As noted in Section 1,

all measurements of these quantities are dependent, to

some extent, on the SFH model. However, it is possi-

ble to minimise the impact of the SFH by looking at
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Table 2. A comparison of z ∼ 0.05 SFRD and SMD esti-
mates. The first four rows show our estimates using different
SFH models to fit the GAMA sample (see Section 5.1). We
also show several results from the literature (converted to our
IMF where necessary). M14 is Madau & Dickinson (2014),
W17 is Wright et al. (2017), and D18 is Driver et al. (2018).
The uncertainties quoted do not include systematic effects.

Model log10

(
SMD

M� Mpc−3

)
log10

(
SFRD

M� yr−1 Mpc−3

)
Tau 8.40+0.02

−0.03 −2.041+0.002
−0.001

Delayed 8.39+0.02
−0.02 −2.033+0.001

−0.001

Lognormal 8.37+0.02
−0.02 −2.082+0.002

−0.001

DPL 8.38+0.03
−0.03 −2.088+0.001

−0.002

MD14 8.55 −1.97

W17 8.35+0.06
−0.07 –

D18 8.30+0.01
−0.01 −1.95+0.00

−0.00

SFR indicators which are sensitive to star-formation on

very short timescales, over which it is safe to assume

that star-formation is constant (e.g. Kennicutt & Evans

2012). By making these observations for representative

samples of galaxies across cosmic time, it is possible

to infer the redshift evolution of the cosmic SFRD and

hence stellar-mass density (SMD) independently of in-

dividual galaxy SFHs (e.g. Madau & Dickinson 2014).

In this section, we fit a low-redshift, volume-complete

sample of galaxies using our parametric SFH models.

We then consider whether the results obtained through

SED fitting for the redshift evolution of the cosmic

SFRD and SMD are consistent with these “SFH-free”

estimates. This provides a valuable additional perspec-

tive on the physical motivation for the priors we are im-

posing by the use of parametric SFH models on stellar

masses, SFRs and mass-weighted formation times (e.g.

Heavens et al. 2004; Ocvirk et al. 2006; Gallazzi et al.

2008; Wuyts et al. 2011). We will also compare our re-

sults to similar SED fitting analyses in the literature as

a check on our Bagpipes fitting methodology.

In Section 5.1 we discuss the fitting of our observa-

tional sample. In Section 5.2 we consider our stellar-

mass measurements by calculating the cosmic SMD. In

Section 5.3 we consider our SFR measurements by calcu-

lating the cosmic SFRD and comparing to independent,

Hα-derived SFRs. Finally, in Section 5.4 we consider our

mass-weighted formation time measurements by consid-

ering the shape of our inferred SFRD evolution.
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Figure 9. Comparisons between SFRs derived from SED
fitting and from dust-corrected Hα fluxes using the Kenni-
cutt & Evans (2012) relation. The top panel shows SFRs ob-
tained using our tau SFH model; our other models produce
similar results. The bottom panel shows SFR estimates from
MagPhys, released as part of GAMA DR3.

5.1. GAMA data and fitting methodology

In this section, we use data from the Galaxy and

Mass Assembly Survey (GAMA; Driver et al. 2009, 2016;

Baldry et al. 2018) DR3 release. In particular, the

21-band aperture-matched catalogue for the equatorial

G09, G12 and G15 fields generated using the Lambdar

code by Wright et al. (2016). The catalogue includes far-

UV to far-IR photometry from GALEX, SDSS, VISTA,

WISE and Herschel over a 180 deg2 area.

We define our sample by using the stellar mass es-

timates of Taylor et al. (2011) to select objects with

M∗ > 109 M�. GAMA is mass-complete down to 109 M�
at z . 0.08 (Lange et al. 2015; Driver et al. 2016), and

we therefore select objects with GAMA spectroscopic

redshifts in the range 0.05 < z < 0.08. This results

in a sample of 6134 objects. Whilst this is, in reality,

a mass-complete rather than volume-complete sample,

∼ 95% of the stellar mass in the Universe at z = 0 is in

galaxies above this mass limit (Tomczak et al. 2014). We

therefore approximate our sample as volume-complete.

Each object is fitted with Bagpipes using each of the

four parametric SFH models described in Section 2, un-

der the same assumptions as described in Section 4.1.

To calculate the inferred cosmic SFRD evolution, for

each SFH model we extract 100 posterior draws for the

SFH of each object. These are then summed across ob-

jects and divided by the comoving volume from which

our sample is drawn. We use these curves to calculate

the inferred SMD and SFRD at z ∼ 0.05 for each SFH

model. These values are reported in Table 2.
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5.2. Inferred stellar masses

We first consider the stellar masses we infer for our

sample. We evaluate our stellar masses by comparing

the cosmic SMD results for each model, shown in Table

2, to results from the literature. Our results can be seen

to be consistent with those of Wright et al. (2017), de-

rived from the same catalogue using the MagPhys code

(da Cunha et al. 2008). A similar analysis by Driver

et al. (2018) yields a slightly lower value, however all

of these results are consistent to well within the ∼ 0.3

dex systematic uncertainties normally assumed for stel-

lar mass measurements (e.g. Mobasher et al. 2015). We

thus conclude that our stellar mass estimates are con-

sistent with similar analyses in the literature.

A “SFH-free” estimate of the cosmic SMD can also be

obtained by integrating the Madau & Dickinson (2014)

SFRD curve, then multiplying by (1−R), where R = 0.27

is the mass-return fraction. A ∼ 0.2 dex offset has been

widely observed between this estimate and those from

SED fitting analyses (e.g. Leja et al. 2015). Our re-

sults also reflect this tension, and although this offset

is within the systematic uncertainties, the question re-

mains as to which systematic effect is responsible. Our

results in Section 4.2 suggest that the use of paramet-

ric SFH models can lead to systematic offsets in stellar-

mass measurements at levels of ∼ 0.1 dex, with the main

driver of these offsets being the shape of the true SFH.

It is possible therefore that the majority of this offset

is due to the biasing effects of parametric SFH models.

However this would only be true in the scenario that all

galaxy SFHs have true shapes which cause parametric

models to underestimate their stellar masses (e.g. simi-

lar to our falling mock).

5.3. Inferred star-formation rates

We now consider the star-formation rates we infer for

our sample. As can be seen from Table 2, our SFRD re-

sults at z ∼ 0.05 fall ∼ 0.1 dex lower than both the SED

fitting analysis of Driver et al. (2018) and the SFRD

curve of Madau & Dickinson (2014). However the off-

set is, again, well within the systematic uncertainties

of ∼ 0.5 dex normally assumed for SFR measurements

(e.g. Pacifici et al. 2015). It is interesting to note that,

whereas our SMD measurements reported in Table 2 are

consistent, our SFRD measurements are strongly incon-

sistent with each other. This suggests that SFR mea-

surements are more strongly biased by SFH priors than

stellar mass measurements.

We can also assess the quality of the SFRs we de-

rive on an individual basis by comparing our SFRs to

those inferred from Hα fluxes. GAMA DR3 includes cal-

ibrated measurements of Hα and Hβ fluxes from GAMA

and Sloan Digital Sky Survey (SDSS) spectra. We begin

by selecting the 1373 objects of the 6134 in our sample

which have SNR > 5 in both Hα and Hβ. We then cor-

rect the Hα fluxes for dust attenuation using the mea-

sured Balmer decrements, following the process outlined

in section 3 of Domı́nguez et al. (2013). We finally con-

vert the dust-corrected Hα fluxes to SFRs using the cal-

ibration of Kennicutt & Evans (2012).

Fig. 9 shows our tau-model SFRs compared to those

derived from Hα as a function of our inferred stellar

masses. SED-derived SFRs, calculated using Mag-

Phys, were also released as part of GAMA DR3. These

are also shown compared to Hα on Fig. 9. It can be

seen that both sets of results agree well with Hα at lower

masses, however SFRs at progressively higher masses are

increasingly under-predicted with respect to Hα.

It should be noted that the scatter observed in Fig. 9

is partially due to variations in galaxy SFRs on the very

short timescales to which Hα is sensitive. Our paramet-

ric models are not capable of reproducing variations on

such short timescales, however several approaches have

been demonstrated which allow parametric models to

reproduce this behaviour, such as the addition of bursts

of star-formation (e.g. da Cunha et al. 2008), and re-

sampling the average SFR over the last 10 Myr from a

separate distribution (e.g. Pacifici et al. 2016).

The change we observe in the mean SFR offset with

stellar mass is consistent with our result from Section

4.2, that biases in SFRs inferred using parametric SFH

models are a strong function of the true SFH shape.

Lower-mass galaxies are known to form their stars later

in cosmic history, and are likely to have SFHs consistent

with our constant and/or rising mocks, for which we

recover either unbiased or slightly underestimated SFRs.

Conversely, the significant underestimation of SFRs

with respect to Hα at higher masses in Fig. 9 is not

consistent with the SFR offsets observed for any of our

mocks in Figure 6. As in Section 4.2, this again suggests

that our mock catalogue does not encompass the most

pathological cases. However it should also be noted that

the dustier nature of higher mass galaxies (e.g. Garn &

Best 2010) makes Hα a less-reliable SFR indicator.

5.4. Inferred mass-weighted formation times: the shape

of the inferred SFRD evolution

We finally consider the mass-weighted formation times

we infer for our sample, by considering the implied red-

shift evolution of the cosmic SFRD. Our results are

shown in Fig. 10, along with the Madau & Dickinson

(2014) result. Whilst we have demonstrated in Sections

5.2 and 5.3 that the stellar masses and SFRs we in-

fer for our sample at z ∼ 0.05 are broadly consistent



Parametric SFH Models 15

024681012

Age of Universe / Gyr

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

lo
g 1

0
(S

F
R

D
/

M
�

yr
−

1
M

p
c−

3
)

Tau

Delayed

Lognormal

DPL

0.1 0.25 0.5 1 2 3 10
Redshift

Madau & Dickinson (2014)

Figure 10. Redshift evolution of the cosmic SFRD as derived from the GAMA sample under the assumption of different
parametric SFH models. The solid lines show the posterior medians and the shaded regions show the 16th–84th percentiles.
The result obtained by Madau & Dickinson (2014) by measuring the SFRs of galaxies across cosmic time is shown in black.
The shape of the SFRD curve can be seen to be poorly reproduced, with mass assembly occurring later in cosmic history.

with Madau & Dickinson (2014), it can be seen that the

cosmic SFRD evolution we infer is very different. Our

SFRD curves peak significantly later in cosmic history,

at z ∼ 0.4, when the Universe is 9 − 10 Gyr old. This

is in marked contrast to the Madau & Dickinson (2014)

curve, for which the SFRD peaks at z ∼ 2, when the

Universe is 2 − 3 Gyr old.

Measuring SFRs for individual high-redshift galaxies

is a more direct measurement of the redshift evolution of

the cosmic SFRD, and can be regarded, for the purposes

of our discussion, as ground truth. Fig. 10 therefore

suggests that we significantly overestimate the mass-

weighted formation times for galaxies in our sample, by

as much as ∼ 5 Gyr on average.

A similar overestimation of mass-weighted formation

times (underestimation of mass-weighted ages) has been

previously observed in SED fitting analyses using both

parametric and non-parametric SFHs (e.g. Gallazzi

et al. 2008, Wuyts et al. 2011, Leitner 2012). An anal-

ysis by Panter et al. (2003) and Heavens et al. (2004)

extracted SFHs for almost 100,000 galaxies from SDSS

spectra using the Moped code, which employs an 11-

parameter non-parametric SFH model. They found that

the cosmic SFRD peaks at z ∼ 0.5, when the Universe

was 8−9 Gyr old, similar to the results obtained with our

parametric SFH models. However, an updated analysis

by Panter et al. (2007) found that star-formation peaked

in their highest-redshift bin at z > 1.87, demonstrating

the significant impact of SED-modelling assumptions on

mass-weighted formation time inferences.

In Fig. 1, we showed that the priors imposed by our

parametric SFH models favour later galaxy formation

than Madau & Dickinson (2014). In fact, the prior medi-

ans shown on the centre-left panels of Fig. 1 correspond

closely to the peaks in cosmic SFRD shown in Fig. 10.

It seems likely, therefore, that the strong posterior con-

straints we obtain for cosmic SFRD evolution, favouring

a late peak in cosmic SFRD, are a consequence of the

strong priors imposed by our parametric SFH models,

rather than the photometric data we fit. This conclusion

is supported by the fact that the DPL model exhibits

both a prior preference for older ages than the other

models in Fig. 1, and earlier mass assembly in Fig. 10.

A key goal for contemporary SED fitting analyses is to

move beyond the acquisition of galaxy physical parame-

ters at the redshift of observation to reliably infer mass-

assembly histories at earlier times. This ability would be

a valuable tool for explicitly linking galaxy populations

at different epochs (e.g. McLure et al. 2018; Penter-

icci et al. 2018). Whilst it has long been known that tau

models do not produce accurate mass-assembly histories

(e.g. Wuyts et al. 2011; Reddy et al. 2012; Pforr et al.
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2012; Buat et al. 2014), our results suggest that newer

parameterisations, such as the lognormal and DPL mod-

els, do not significantly improve our ability to obtain re-

alistic mass-assembly histories from the observed SED.

Whilst it is possible to calibrate these models to obtain

unbiased results in certain circumstances (e.g. Carnall

et al. 2018), in order to obtain realistic mass-assembly

histories for representative samples of galaxies, further

consideration should be given to non-parametric and

simulation-derived SFH models.

6. CONCLUSION

In this work we have carried out an investigation of the

effects of four parametric SFH models (exponentially de-

clining, delayed exponentially declining, lognormal and

double power law) on galaxy stellar masses, SFRs and

mass-weighted formation times. We have considered:

• The priors imposed on physical parameters by the

use of each parametric SFH model in Section 3.

• The biases introduced when fitting mock high-

SNR broad-band photometric data in Section 4.

• The consistency of SFHs inferred for a volume-

complete, low-redshift sample of galaxies from

GAMA with the cosmic SFRD evolution reported

by Madau & Dickinson (2014) in Section 5.

In Fig. 1 we demonstrate that each of these parametric

models imposes relatively similar, strongly peaked priors

on sSFR, which could act to tighten and shift the SFMS,

depending on the details of the modelling assumptions

used. All four SFH models also impose a prior preference

for stellar-mass assembly at later times (younger stellar

ages) than is observed to be the case through measuring
galaxy SFRs at high redshift. Fig. 2 demonstrates that

changing the prior probability densities on model pa-

rameters can change the priors on physical parameters

at least as significantly as changing the parametric SFH

model adopted. In particular, a uniform prior on 1/τ for

the tau model is less informative on galaxy sSFRs than

a uniform prior on τ.

By fitting a mock catalogue of high-SNR broad-band

photometry, we have shown in Fig. 6 that inferred stellar

masses, SFRs and mass-weighted formation times/ages

are prior-dependent at levels of at least 0.1, 0.3 and 0.2

dex respectively. However, the dominant factor which

determines how well the true values of these parameters

can be recovered is the shape of the true SFH, rather

than the parametric model being fitted. Our parametric

models are all significantly limited in their ability to

reproduce SFHs with strong, recent variations in SFR,

and will consequently return strongly biased parameters

when fitting galaxies with these SFHs.

Under the assumption that our mock catalogue is rep-

resentative of real galaxy SFHs, we have shown that tau

models produce more strongly biased physical parame-

ter estimates than our other three models. However, in

Fig. 8, we demonstrate that high-SNR broad-band pho-

tometry cannot discriminate between prior beliefs about

which parametric SFH models are most appropriate for

describing real galaxy SFHs. This means that carefully

considered, physically motivated priors are a necessary

component of any SED fitting analysis.

Finally we have fitted a volume-complete sample of

galaxies at 0.05 < z < 0.08 with high-quality photomet-

ric data from the GAMA Survey. We demonstrate in

Table 2 and Fig. 9 that our Bagpipes stellar-mass and

SFR measurements at z ∼ 0.05 are consistent both with

other SED fitting analyses from the literature and the

SFRD curve of Madau & Dickinson (2014).

However, in Fig. 10 we demonstrate that the mass-

weighted formation times we infer are significantly over-

estimated (mass-weighted ages are underestimated), as

the ensemble of our fitted SFHs predicts a much later

peak in cosmic SFRD than Madau & Dickinson (2014).

Our analysis suggests that the cosmic SFRD peaked at

z ∼ 0.4, approximately 6 Gyr later than is directly ob-

served. A comparison of Fig. 1 with Fig. 10 suggests

that this result is a consequence of the poorly-motivated

priors imposed by our parametric SFH models.

Our analyses demonstrate the challenges involved in

using parametric SFH models as tools for understand-

ing the history of galaxy stellar-mass assembly. Non-

parametric SFH models are a promising alternative to

the parametric forms discussed in this work. Such mod-

els both provide greater flexibility than parametric mod-

els, and allow prior beliefs to be incorporated in a more

direct way. In a companion paper (Leja et al. 2018) we

consider the advantages and disadvantages of such mod-

els by subjecting them to similar tests to those we have

employed in this work.

The observation of samples of galaxies at different

points in cosmic history and subsequent attempts to

connect them are powerful tools for understanding

galaxy evolution (e.g. Wild et al. 2016; Belli et al. 2018).

However, despite the aim of understanding populations

of galaxies, all current SED fitting analyses treat indi-

vidual galaxies as statistically independent from each

other. A more powerful approach would be to simul-

taneously model and fit whole populations of galaxies

through the use of a hierarchical Bayesian model.

This could be used, for example, to enforce continu-

ity between galaxy populations at different redshifts by
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treating the redshift evolution of the cosmic SFRD as a

prior distribution. The hyper-parameters of this prior

could then be jointly constrained by samples of galaxies

across a range of observed redshifts, using both instanta-

neous SFRs and SFHs. Under this scheme we would be

able to self-consistently model the redshift evolution of

the GSMF, SFMS and cosmic SFRD, as well as obtain-

ing better constraints on the SFHs of individual galax-

ies through the use of well-motivated population priors

(Bayesian shrinkage).
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APPENDIX

A. EFFECTS OF DIFFERENT PRIORS FOR THE LOGNORMAL AND DOUBLE POWER LAW MODELS

As discussed in Section 3.1, the recent increase in the diversity of SFH models used in the literature precludes a

side-by-side comparison of all options. Instead we advocate that authors who use new models should present the

results of tests such as those performed in Section 3, in order to understand the priors which are being imposed on

the physical parameters of interest. As the lognormal and DPL models we consider in this paper are relatively novel,

we here further elaborate on the results of Section 3 for these models. The aim is to provide a discussion which helps

authors wishing to use these models to select appropriate prior probability densities for model parameters.

A.1. The lognormal model
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Figure 11. The effects of changing the prior on the tmax parameter of the lognormal SFH model. All details are as in Figure 1.

A number of variations might reasonably be considered on the priors reported for this model in Table 1. For example,

Diemer et al. (2017) introduce a relatively complex set of priors to penalise extremely large tmax and TFWHM values.

As the uncertainties on tmax and TFWHM span several orders of magnitude, it is reasonable to consider assigning them
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priors which are uniform in logarithmic, rather than linear space. This was tested in the case of TFWHM and found to

result in extremely narrow, bursty SFHs which, when fitted to data, typically adopted TFWHM values consistent with

the lower limit on the prior. As this is not thought to be a physically realistic shape for the SFHs of most galaxies, this

option was discounted. Instead, in Figure 11 we demonstrate the effects of imposing a prior of P(tmax) ∝ log10(tmax)

between the limits quoted in Table 1, as opposed to the original uniform prior shown on Fig. 1. This can be seen to

significantly change the shape prior, encoding a preference for earlier formation, which brings the prior on tform into

better agreement with Madau & Dickinson (2014). However, this change also significantly narrows the priors on SFH

shape and tform, reducing the ability of this prior to describe the diversity of possible SFH shapes.

A.2. The double power law model
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Figure 12. The effects of changing the priors on the τ and β parameters of the DPL SFH model. All details are as in Figure 1.

The priors for the DPL model listed in Table 1 were arrived at following extensive experimentation with different

options, partially detailed in Carnall et al. (2018). The shape of the SFH changes roughly uniformly with the logarithm

of α and β between the limits of 0.1 and 1000. Outside of this range, further increase or decrease of these parameters

results in no further change to the SFH shape, as the slopes are essentially horizontal for values < 0.1, or vertical for

values > 1000. Using uniform priors on α and β leads to the same effect as was discussed for the TFWHM parameter of

the lognormal model in Appendix A.1, with extremely bursty SFHs being assigned the bulk of the prior mass.

Given the success achieved in emphasising earlier formation observed in Fig. 11, we perform a similar test to

Appendix A.1 by changing the prior on the τ parameter from the initial uniform prior to P(τ) ∝ log10(τ). The results

of this test are shown in the middle row of Fig. 12. It can be seen that this change overweights models which form the

majority of their stars at very early times, producing a prior preference for older stellar populations than the Madau

& Dickinson (2014) curve. We therefore suggest retaining a uniform prior on τ for the DPL model.

The main advantage of the DPL model is the ability to decouple the early and late time SFHs, with separate

parameters controlling the slopes of each. With this in mind, and considering the results of Fig. 1, we assess the

possibility of changing the prior on the rising slope from P(β) ∝ log10(β) to P(β) ∝ 1/β. This change lends more prior

weight to flatter rising slopes, thus causing star-formation to be more extended back towards earlier times before it
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peaks. These results are shown in the bottom row of Fig. 12. This is probably the most promising of the alternatives

we have considered to the priors listed in Table 1, with the average of the tform prior in good agreement with Madau

& Dickinson (2014). However the average SFH shape can still be seen to be quite different from Madau & Dickinson

(2014), with the sSFR prior also retaining a fairly strong peak.

As discussed in Section 4.4 and demonstrated in this Appendix, the process of tuning a parametric SFH model

involves a large amount of trial and error, with no clear physical link between the priors chosen and the physics the

SFH model represents. We therefore suggest that non-parametric SFH models are a better choice, as they allow

physical information to be included in the prior in a more direct way. For further information and examples see Leja

et al. (2018).
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