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Genome-wide methylation is modified by
caloric restriction in Daphnia magna
Jack Hearn1,2* , Marianne Pearson2, Mark Blaxter2, Philip J. Wilson3 and Tom J. Little2

Abstract

Background: The degradation of epigenetic control with age is associated with progressive diseases of ageing,
including cancers, immunodeficiency and diabetes. Reduced caloric intake slows the effects of ageing and age-
related disease in vertebrates and invertebrates, a process potentially mediated by the impact of caloric restriction
on epigenetic factors such as DNA methylation. We used whole genome bisulphite sequencing to study how DNA
methylation patterns change with diet in a small invertebrate, the crustacean Daphnia magna. Daphnia show the
classic response of longer life under caloric restriction (CR), and they reproduce clonally, which permits the study of
epigenetic changes in the absence of genetic variation.

Results: Global cytosine followed by guanine (CpG) methylation was 0.7–0.9%, and there was no difference in
overall methylation levels between normal and calorie restricted replicates. However, 333 differentially methylated
regions (DMRs) were evident between the normally fed and CR replicates post-filtering. Of these 65% were
hypomethylated in the CR group, and 35% were hypermethylated in the CR group.

Conclusions: Our results demonstrate an effect of CR on the genome-wide methylation profile. This adds to
a growing body of research in Daphnia magna that demonstrate an epigenomic response to environmental
stimuli. Specifically, gene Ontology (GO) term enrichment of genes associated with hyper and hypo-methylated
DMRs showed significant enrichment for methylation and acyl-CoA dehydrogenase activity, which are linked to current
understanding of their roles in CR in invertebrate model organisms.

Keywords: Epigenetics, Daphnia, DNA methylation, Caloric restriction, Nutrition, Bisulphite sequencing, Differential
methylation, Genomics

Background
Epigenetic modifications play a key role in patterning
gene expression and organismal development. This is
particularly evident when epigenetic control degrades,
resulting in progressive diseases in humans, including
cancers, immunodeficiency and diabetes [1]. The deg-
radation of epigenetic control with age is proposed to
occur in a drift-like process. One mechanism that may
rescue age-related epigenetic dysregulation is caloric re-
striction (CR) – reduced caloric intake without malnutri-
tion or loss of micro-nutrients. CR slows the effects of
aging and postpones the development of age-related

diseases [2–4]. Extension of lifespan is observed in inver-
tebrates and vertebrates, including in yeast, spiders, co-
pepods, worms, silkworms, fish, non-human primates
and Daphnia [4–10]. The marine copepod crustacean
Paracartia grani is an example of this [7], and the ob-
served lifespan increase is coupled to lower cumulative
egg production in comparison with cohorts fed a
high-food diet. This is interpreted as an evolutionary
trade-off that allows survival during food shortages that
increases the probability of recruitment for some
offspring [7, 11]. In rhesus monkeys and mice, a caloric
restriction of 30 and 40% respectively appears to reduce
epigenetic drift in methylation and increases lifespan. In
rodents lifespan can be extended by up to 50% [12]. CR
may also delay onset of a spectrum of diseases including
cancer, kidney disease, autoimmune disease and diabetes
[13–15], as well as neurodegenerative diseases [16, 17].
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Mammals have been the focus of studies linking
methylation, CR, and ageing due to the high rates of
methylation in vertebrates, and the regulatory effect of
methylation on disease progression in humans. Con-
versely, the lower genome-wide rates of methylation in ar-
thropods [18] has hindered study of methylation-derived
responses to the environment in this group, but this is
now changing [8, 18–25]. Especially as the model organ-
ism Drosophila melanogaster, along with other surveyed
Dipterans, exhibits negligible CpG methylation [18].

Genome-wide percentage of DNA methylation is low in
arthropods
DNA methylation, a reversible covalent modification
that regulates gene expression, is the best-studied epi-
genetic mechanism. DNA methylation of cytosines oc-
curs when DNA methyltransferase enzymes (DNMTs)
transfer a methyl group onto cytosine [26] to create a
5-methylcytosine. This can occur at a cytosine immedi-
ately followed by guanine (CpG site), or as occurs in
plants at a CHH or CHG site; where H can be any of A,
T or C. In mammals around 70% of CpGs are methylated
[27], whereas the genome-wide rate of CpG methylation in
invertebrate species sampled to date is much lower, from
0% in Drosophila to 15% in the oyster Crassostrea gigas
[18, 28]. The crustaceans Daphnia magna and Daphnia
pulex (Arthropoda: Crustacea) have genomic CpG methy-
lation of 0.52–.74 and 0.7% respectively [25, 29].
In mammals, certain insect orders [18], and the crust-

acean Daphnia, there are three DNMT enzymes. The
gene products of DNMT3a and DNMT3b establish
methylation de novo, while DNMT1 maintains methyla-
tion, and DNMT2 has no known role in DNA methyla-
tion. DNMT3 has been lost the most among insects and
is present in only four orders [18]. Despite the apparent
key role of this gene, the genome of the silkworm (Bombyx
mori) which lacks DNMT3 along with other Lepidoptera
shows evidence for DNA methylation [8, 18].
CpG methylation can increase or decrease gene ex-

pression dependent on the location of the methylation.
In mammalian promoter regions, which can be rich in
CpGs and are known as CpG islands, it represses ex-
pression of the gene. Further to this, many mammalian
CpG islands are also enriched for permissive chromatin
modification, which condenses the structure of chroma-
tin and further prevents transcription. In contrast,
methylation of gene bodies in mammals leads to an in-
crease in expression of the effected gene. Invertebrates
have few CpG Islands, and methylation predominantly
occurs in gene bodies, and is enriched in exonic sequence
to form a mosaic-like pattern genome-wide [30–33].
Daphnia magna is no exception to this [25, 29]. The role
of gene-body methylation in invertebrates is not as clear
as in mammals, but it is implicated in facilitating stable

transcription of housekeeping genes and mediating alter-
native splicing [33–35]. This link to alternative splicing
has been identified in D. magna [22, 25]. In Daphnia
magna and pulex there is a also positive correlation be-
tween highly methylated genes and gene expression in the
germline [25]. More specifically, methylation of exons 2–4
is significantly associated with this effect, as it is in
humans [25, 36]. In honeybees, differential methylation of
CpGs is potentially associated with differential gene ex-
pression through ‘priming’ of genes in response to in-
truders [20]. Interestingly, in silkworms there is no
correlation between methylation in promoters and gene
expression [8], suggesting invertebrates and vertebrates
differ in their usage of CpG methylation.
Identifying differentially methylated regions in organ-

isms with low-levels of methylation, like most arthro-
pods, lacks a standardised approach at present, but
DMRs are detectable as a growing body of research
shows. This may reflect the nature of invertebrate
methylation, with clusters of methylated CpGs inter-
spersed by long, fallow, regions. In the above honeybee
study, the authors identified differentially methylated re-
gions between the brains of aggressive and control bees
[20]. In Daphnia, transgenerational inheritance of CpG
modifications has been shown in response to salinity,
changes in which impact life-history traits, toxic cyano-
bacteria, and radioactivity via a whole genome bisulphite
sequencing approach [22–24].

Caloric restriction and DNA methylation
The relationship between diet and CpG methylation, and
subsequent impact on ageing and health, is well established
in mammals. Indeed, DNA methylation may be a predictor
of biological age [37, 38], and a reduction in expression
levels of DNMT enzymes leading to a global loss of gen-
omic methylation is associated with ageing humans [39].
Although promoter regions of certain genes become hyper-
methylated with age [40]. This is in contrast to honey bees
in which an increase in de novo methylation activity
through DNMT3 is observed [19]. Inhibition of DNMT ac-
tivity increased lifespans of treated bees, but in a CR inde-
pendent manner [19]. Specific examples of a diet by
methylation interaction include the expression of DNMTs
which have elevated expression in response to CR in cancer
cells, counteracting the global hypomethylation [41] ob-
served during ageing. CR also causes a reduction in lipid
metabolism gene expression by DNA methylation of gene
bodies in mouse livers [42]. As a result, older mice under-
going CR were protected from fatty degeneration, visceral
fat accumulation, and hepatic insulin resistance compared
to controls. In rats and monkeys short-term CR in older in-
dividuals ameliorates the effects of ageing with respect to
disease markers, oxidative stress and damage, and increases
the expression of longevity related genes [43, 44].
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Caloric restriction and CpG methylation in Daphnia
Our work aims to determine if an experimentally con-
trolled nutritional environment directs changes in
methylation status in the crustacean Daphnia magna.
Species of Daphnia are well characterised for their re-
sponse to CR [45], including clear maternal effect phe-
notypes in D. magna [9, 10, 46–48]. However, increased
lifespan is not a universal response among D. magna
strains (T. Little, unpublished data) which can exhibit
inter-clonal differences in lifespan and other age-related
parameters such as age and size at first reproduction
when sampled from the same habitat [49]. This is also
true for D. pulex where increased lifespans are observed
under CR [50–52] but not always [53, 54]. We per-
formed whole genome bisulphite sequencing of CR and
normally-fed (NF) replicates of D. magna of the the
same Kaimes strain as prior studies demonstrating a ma-
ternal effect response to CR. We identify regions of dif-
ferential methylation using an approach that successful
in previous studies focused on differential modifications
at CpG in response to environment-derived treatments
[22–25] including salinity and exposure to the toxic
cyanobacterium Microcystis aureginosa. D. magna show
the classic response of longer life under CR and strong
maternal effects; the offspring of calorie-restricted
mothers being larger and more resistant to pathogens
than their counterparts from better fed mothers. Provi-
sioning of offspring, e.g. with carbohydrates, protein or
fats, is one explanation for these maternal-effect pheno-
types, and epigenetic processes, such as methylation, are
also potentially key regulators in these plastic responses
to fluctuating environments.
Daphnia have many attributes that make them

favourable for epigenetic study. It has long been known
that they undergo adult tissue regeneration unlike other
invertebrates, akin to humans [54–56]. Furthermore,
they reproduce clonally, which permits the study of epi-
genetic changes in the absence of genetic variation.
Clonal replicates are equivalent to identical twin studies,
but with an experimentally chosen number of -uplets.
CpG-based methylation occurs in Daphnia, its genome
encodes all three DNMT enzymes orthologous to
mammalian DNMT enzymes, and a growing body of
research is showing that global methylation patterns
in Daphnia change in response to a variety of envir-
onmental factors [21–25, 29, 57, 58].

Results
Methylated sites prediction
We performed whole genome bisulphite sequencing
(WGBS) of calorie-restricted (CR) and normally-fed
(NF) D. magna to generate data for identification of
methylated C residues and exploration of the C methyla-
tion response to CR. Trimmed bisulphite-converted reads

aligned to the D. magna strain 32 converted genome [48]
using Bismark [59] exhibited lower mapping efficiencies
than standard short-read alignments, as is typical of
WGBS [60], with 20–32% of reads not aligning to the ref-
erence genome (Additional files 1 and 2). Of the aligned
reads, 29–38% of reads were discarded as PCR duplicates,
and 6–10% of the remainder contained predicted CHH or
CHG methylated sites. These CHH and CHG site contain-
ing reads were removed from analyses, as D. magna con-
tains negligible CHH/G methylation [29] meaning they
are indicative of bisulphite unconverted reads. This re-
sulted in average replicate read coverages of 8- to 12-fold.
Global CpG methylation was 0.7–0.9% in all samples, and
no difference in overall methylation levels was observed
between NF and CR replicates paired t-test two-tailed
p-value = 0.17). Removal of polymorphic CpG sites using
variants predicted from the bisulphite-unconverted
data had little effect on the total number of sites
(Additional file 1). This was necessary as at a poly-
morphic C/T site the T allele can be miscalled as an
unmethylated C causing an underestimation of the
methylation profile at that site. After filtering, 99.2%
of sites were retained per replicate, with average total
sites across replicates going from 6.9 million to 6.85
million. Hierarchical clustering of replicates by methy-
lation status demonstrated that mother had a stronger
effect on global methylation status than nutritional
treatment (Fig. 1). Thus, it was necessary to incorporate
pairing information into our statistical test. We did this by
performing paired t-tests of CpG sites in the Bioconductor
R package “Bsseq” [61].

Differential methylation assessment
After filtering for coverage, 4.15 million CpG sites were
retained for differential methylation testing. Bsseq test-
ing of differential methylation revealed 8764 potential
regions using t-statistic cut-offs of − 4.6, 4.6. This was
filtered to 453 DMRs with at least three methylated
CpGs and a mean difference greater than 0.1. These
DMRS were further filtered after combining raw per re-
gion p-values into one p-value (false discovery rate cor-
rection < 0.05) in comb-p [62]. This resulted in 333
regions (Fig. 2. Volcano plot of FDR corrected p-values)
adapting Herb et al. [20]. Of these 117 (35%) were
hypermethylated in the CR group versus normal food,
and 216 (65%) were hypomethylated in the CR group
versus normal food. Only a fraction of these DMRs ex-
hibited a mean difference of greater than 20% in either
direction at 4% (5/117) for hyper- and 6% (12/216) for
hypomethylated regions respectively. DMRs were 161
base-pairs (bp) and 193 bp long on average for CR
hyper- and CR hypo-methylated regions, respectively
and ranged from 18 to 602 bp in length. There were
from three to 20 CpGs per cluster with an average of six.
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CR hypermethylated DMRs overlapped 165 gene predic-
tions in the D. magna gene set, while CR hypomethylated
DMRs overlapped 284. The majority of these overlapped ex-
onic sequences for both hypo- and hypermethylated regions:
82% (234/384) for CR hypomethylated DMRs and 81%
(133/165) for CR hypermethylated DMRs. Only 33 DMRs
(10%) did not overlap a predicted gene body. The increase
in number of DMR containing genes versus total DMRs re-
flects overlapping or redundant predictions in the D. magna
genome annotation version 2.4 [63]. Because of this we used
a non-redundant set of genes from the D. magna gene set
as input to GO term enrichment, which resulted in 192
hypo- and 115 hypermethylated genes being considered for
functional enrichment. Annotations for these genes are
given in Additional files 3 and 4, a greater portion of genes
are uncharacterised for hypo- than hypermethylated genes
at 28 to 10% respectively. Two genes contain DMRs in both
directions (Table 1), one encodes for a latent nuclear antigen
and the other a heat shock cognate (Hsc-70) interacting
protein. For both genes the exon (exon 2) closer to the pre-
dicted start of the gene is hypomethylated, and the 3′ exon
is hypermethylated (exon 4 and 6).

GO term enrichment in methylated genes and DMRs
GO term enrichment was explored using the “weight01” al-
gorithm in topGO (downloaded from: https://bioconduc

tor.org/packages/release/bioc/html/topGO.html) and mo-
lecular function (MF) and biological process (BP) terms are
reported. The enrichment analysis showed significant over
representation in one molecular function “acyl-CoA de-
hydrogenase activity” (GO:0003995) GO term and one bio-
logical process “methylation” (GO:0032259) GO term for
genes associated with the DMRs (Table 2, Additional file 5),
both of which were hypomethylated under CR in all cat-
egories of gene tested (all, > 1 CpG, > 3 CpGs). This is not
altogether surprising as the number of gene containing
methylated CpGs was a high fraction of the total annotated
genes (75% for > 1 CpG, and 68% for > 3 CpGs) and is
keeping with previous observations [25]. There were two
genes associated with acyl-CoA dehydrogenase activity and
three with methylation, none of which overlap between
terms. The methylation genes consist of two ribosomal
RNA methyltransferases and a Cap-specific mRNA
(Nucleoside-2′-O-)-methyltransferase, none of which are a
member of the DNMT gene family. Both of the acyl-CoA
dehydrogenase genes are medium-chain specific acyl-CoA
dehydrogenases.

Discussion
Global methylation and differentially methylated regions
The global D. magna CpG methylome of ~ 0.7%, consist-
ent across replicates, is similar to that reported previously

Fig. 1 Dendrogram showing replicates cluster by mother and not by treatment in global CpG similarity. Mother is indicated by number, blue H:
normal food and red L: calorie restricted replicate. Node support values in green were assessed by 10,000 bootstraps in pvclust, bootstrap probability
and approximately unbiased methods had identical values. Dendrogram created using ward.D2 method in methylKit and pvclust. Number refers to
mother from which that replicate was derived; H for normal food diet, L for caloric restriction
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for different clones of D. magna (0.74 and 0.5% respect-
ively) [25, 29]. Slight differences between studies may be
related to D. magna strain differences, or differences in
different data filtering methods [29]. In line with previ-
ously observed methylation patterns in Daphnia [22–25]

and arthropods [30, 32, 64] in general, the majority of
DMRs were identified in exonic regions of gene bodies.
The magnitude of change in methylation of DMRs is
mainly between 10 and 20% (Fig. 2), with some outliers.
Indeed, the greatest difference between treatments was

Fig. 2 Volcano plot of per-region FDR corrected p-values against difference in mean methylation between caloric restricted and normal food
conditions. Red dots are DMRs that passed t-statistic filtering and had a region p-value below < 0.05, these were retained for further analysis.
Pink dots are DMRs that passed t-statistic filtering but were not significant by corrected p-value. Black dots are none-significant DMRs by the chosen
criteria, dashed grey vertical lines indicate the difference in means (0.1, − 0.1) required to accept a DMR along with a t-statistic of − 4.6 and 4.6 and 3
CpG sites, black dots with a p-value less than 0.05 and greater than [0.1] difference in means failed one of these two conditions. Horizontal grey
dashed line indicates a p-value threshold of 0.05

Table 1 Differentially methylated regions in opposite directions overlapping the same genes

Gene Genomic Position DMR Length of DMR Condition in CR Number of sites Corrected P-value Exon Strand

Dapma7bEVm000710 scaffold02569:
76199–79,126

76,729–77,106 377 hypo 16 0.0007575 2 of 8 +

Dapma7bEVm000710 scaffold02569:
76199–79,126

77,694–77,926 232 hyper 5 0.001717 6 of 8 +

Dapma7bEVm003762 scaffold01005:
527546–535,133

534,741–534,857 116 hypo 9 0.009821 2 of 6 –

Dapma7bEVm003762 scaffold01005:
527546–535,133

534,106–534,213 106 hyper 4 0.006839 4 of 6 –

Gene: gene name, Genomic Position: gene coordinates, DMR: coordinates of the differentially methylated region, Length of DMR: length in bp, Number of site:
number of methylated CpGs in region, Corrected P-value: FDR corrected p-value for that DMR from comb-p analysis, Exon: which exon of the gene DMR occurs in
followed by number of exons for that gene, Strand: which genomic strand the gene occurs on
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only 33% for a DMR hypomethylated under CR overlap-
ping both exonic and intronic sequence in 40S ribosomal
protein S26 (Additional files 3 and 4, genes with exons
overlapping DMRs of greater than 20% mean difference).
This could reflect our whole organism-based study in
which large changes in specific tissues are moderated by
no change the majority of tissues for that genomic region.
These differences in mean methylation are in line with
that for D. magna response to Microcystis stress, where
differences up to 40% were observed [22]. However, the
comparison is not direct as that study compared differ-
ence between methylation at gene bodies rather than
DMRs. The extent to which changes in magnitude of
DMRs or gene bodies is functionally relevant is currently
unknown in Daphnia, and arthropods in general. It is pos-
sible that the low, but significant, differences in mean
methylation > 10% have little functional effect, and as such
requires validation through future studies. In Daphnia
and other arthropods there is a correlation between DMRs
and alternative splicing [22, 24, 25, 30], and is proposed to
form an adaptive response to environmental pressures
[22, 24, 25]. Increased gene expression is associated with
high-levels of germline methylation in Daphnia [25], but
the impact of environmentally-induced changes on
gene expression is not yet understood beyond alterna-
tive splicing [22].
There are two genes that contain DMRs methylated in

different directions (Table 1), in both cases the first exon
(exon two in both genes), has the greater number of
methylated CpGs versus the later exon. This is consist-
ent with Kvist et al. [25] as exons two and three in D.
magna are the most methylated exons genome-wide,
with a decline in methylation in subsequent exons. It
remains for future work to dissect if the differential
methylation in these genes results in any change in
gene expression or variation in alternative splicing at
these loci.

Enriched GO terms hypomethylated under CR
The Biological Process GO term ‘methylation’ was
enriched in or DMRs and associated with two ribosomal
RNA methyltransferase genes and a Cap-specific mRNA
(Nucleoside-2′-O-)-methyltransferase gene. The biological
roles of these genes are poorly understood, but one

hypothesis is that RNA methyltransferases are regulators
of global protein translation [65]. One rRNA methyltrans-
ferase, NSUN5, is part of a conserved mechanism that
modulates ageing [66], as reduced levels of this gene in-
creases lifespan and stress resistance in yeast, worms and
flies [66]. Another mechanism by which RNA methyl-
transferases may act is in protein synthesis that determine
cell size, which is hypothesised to explain the small stature
of organisms lacking rRNA methyltransferases [65]. This
is concordant with the observed phenotype of adult CR
Daphnia which are smaller than NF individuals, although
functional validation would be required to link RNA
methyltransferases causally to size difference phenotypes
in Daphnia. Cap-specific mRNA (Nucleoside-2′-O-)-
methyltransferase adds a methyl group to at the ribose
2′-O position of the first transcribed nucleotide, which is
important for discriminating self RNAs from foreign
RNAs produced by viruses [67, 68]. There is no clear link
to caloric restriction with this gene.
The enriched molecular function GO term, Acyl CoA

dehydrogenase activity, is associated with two medium-
chain specific acyl-CoA dehydrogenase genes. These
genes are involved in the breakdown of fatty acid mole-
cules through β-oxidation. Reduced activity of this class
of genes in humans impairs the β-oxidation pathway
which leads to an intolerance to fasting [69]. There are
no studies linking these genes to diet in worms or flies
as yet, however they are implicated in heat adaptation
through the stabilization of lipid membranes [70].
Broadly interpreted, lipid metabolism is strongly linked
to caloric restriction-derived lifespan increase in flies
[71], but the specific role of acyl CoA dehydrogenases
remains to be elucidated. DNA methylation may act in
concert with other mechanisms in response to CR as has
been shown with miRNAs [48], but most-likely also
through histone modifications [72]. A focus for future
research will be the interaction of these different mech-
anism and their impact, or lack thereof, on global gene
expression changes that result in the observed Daphnia
CR phenotypes.
This experiment was performed with clonally reprodu-

cing Daphnia. This has the large advantage of a genetic-
ally uniform background on which to base results [72],
but caution is required when extrapolating our results to

Table 2 Gene ontology functional enrichment of DMRs

GO ID GO term Ancestors Direction CpG 0 CpG 3 All

Biological process

GO:0032259 methylation 2 Hypo Yes Yes Yes

Molecular function

GO:0003995 acyl-CoA dehydrogenase activity 4 Hypo Yes Yes Yes

Table lists all significant terms identified in the Biological Process and Molecular Function categories with the ‘weight01’ algorithm, which accounts for GO term
hierarchy. Genes of interest were tested against all genes, genes containing at least one methylated CpG and genes containing at least 3 methylated CpGs as per
the DMR filtering of greater than 0 and 3 CpGs
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sexually reproducing organisms. As discussed by Kvist et
al. [24], it is not known if differential methylation is
maintained through both parthenogenesis (mitotic) and
sexual reproduction (meiosis) as only parthenogenetic-
ally transmitted phenotypic changes have been studied.
This is also the case for maternal effects resulting from
CR in the strain of D. magna used here [9, 10, 46, 48].
Jeremias et al. [23] speculate that parthenogenetic spe-
cies may use epigenetic modifications to introduce
phenotypic variation rapidly in response to a stimulus
versus obligately sexual reproducers. They note that
Daphnia species are well known for their phenotypic
plasticity, especially in defensive modifications to the
exoskeleton. The ‘resetting’ of CpG methylation in mam-
mals for example could prevent such a mechanism of
phenotypic plasticity propagating [73]. However, the
prevalence of this meiotic reset does vary among verte-
brate taxa [73–75], suggesting the potential exists for
propagation of DNA methylation changes through sexual
reproduction. The mode of methylation in the Daphnia
genome: low global levels of methylation interspersed with
highly methylated gene bodies, is in keeping with sexually
reproducing invertebrates [23, 25].

Conclusions
We have shown that caloric restriction effects the
methylation status of a subset of genes in Daphnia
magna, despite the low overall CpG methylation
found in this species. This is in line with recent work
into other environmental stressors of Daphnia. Func-
tional enrichment analysis of the annotation of loci
with changed methylation status identified hypome-
thylation in the CR treatment of genes involved in
methylation and acyl-coenzyme A dehydrogenases as
the functionally enriched mode of the response. While
we have focused on the effect of caloric restriction on
DNA methylation status, there are alternative poten-
tial epigenetic responses to CR, including differential
expression of small RNAs (sRNAs) and histone modi-
fications. Previously, we established that CR induces
differential micro RNA (miRNA) expression in D.
magna under an equivalent experimental design [48],
but other sRNAs, for example piwi interacting RNAs
(piRNAs) and transfer RNA-derived small RNA
(tsRNA), could also have a role in CR-dependent gene
regulation [76, 77]. Histone modification in response
to CR or protein restriction are proposed to increase
longevity [78] by delaying and repressing ageing-re-
lated processes and diseases. Future studies using the
tractable D. magna model could vary a range of diet-
ary components (overall calories, proteins or fatty
acids), and examine the joint effects of a range of epi-
genetic mechanisms.

Methods
Daphnia magna preparation and experiment
We used a single clone (known to us as Clone 32) of D.
magna, collected from the Kaimes pond near Leitholm
in the Scottish Borders [79]. Six replicates of control (i.e.
well-fed, or normal food (NF)) D. magna were compared
to six replicates of caloric restricted (CR) D. magna to
identify differentially methylated regions. Maternal lines
were first acclimatized for three generations. For this, in-
dividuals were kept in artificial pond medium [80] at 20 °
C and on a 12 h:12 h light:dark cycle and fed 2.5 × 106

cells of the single-celled green algae Chlorella vulgaris
daily. Following three generations of acclimatisation
(detailed in [48]), 40 offspring from each mother were
isolated and split to form a replicate. Twenty were fed a
normal diet of 5 × 106 algal cells/day and the remaining
20 that were fed a CR diet of 1 × 106 algal cells/day. Each
replicate was split and reared in four sub-replicate jars
of five animals. These were pooled for DNA extraction.
Hence, NF and CR replicates were paired by mother and
each consisted of 20 individuals in total. The experiment
was ended after the birth of second clutch (approxi-
mately day 12 of the treatment generation). D. magna
were ground by motorized pestle in Digsol and protein-
ase K and incubated overnight at 37 °C and stored at −
70 °C until DNA extraction.

DNA extraction and sequencing
DNA was extracted from pooled D. magna per replicate by
phenol-chloroform followed by a Riboshredder RNA diges-
tion step and repeat of the phenol-chloroform step. DNA
was eluted into 100 μl of TE buffer and quantified by Qubit
fluorimeter Sample purity was checked by 260:280 ratio on
Nanodrop, and DNA integrity was examined by running
approximately 35 ng DNA on a 0.8% agarose gel stained
with ethidium bromide. Each DNA extraction was split in
two for creation of a bisulphite converted library and corre-
sponding bisulphite unconverted library (all steps the same
except bisulphite conversion). Twenty-four libraries were
created: 12 bisulphite-converted and 12 corresponding un-
converted samples. This was done to identify per replicate
mismatches from the reference and remove false positive
methylation calls. All libraries were created by Edinburgh
Genomics using the Zymogen EZ DNA Methylation-
Lightning Kit and Methylseq Library prep Illumina TruSeq
DNA Methylation Kit and 125 base pair paired-end se-
quenced on Illumina HiSeq. Raw read data have been de-
posited in the European Nucleotide Archive under
accession PRJEB24784 (file names and conversion status,
Additional file 6).

Quality assessment and mapping
Before aligning reads to the D. magna reference genome
(version 2.4 downloaded from: http://arthropods.eugenes.org/
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EvidentialGene/daphnia/daphnia_magna/Genes/function/
cddrpsdapmaevg14.gotab2), the reference was edited to
match the haplotypes present in clone 32 [48]. This conver-
sion increased read mapping efficiency by reducing poly-
morphism between the reference (assembled from a different
clone) and our data.
Reads from both bisulphite converted and uncon-

verted libraries were trimmed of the first and last nine
bases of every read using TrimGalore! (version 0.4.1)
[81] after initial inspection of Bismark m-bias plots.
TrimGalore! was also used to remove base calls with a
Phred score of 20 or lower, adapter sequences, and se-
quences shorter than 20 bases. FastQC 0.11.4 (down-
loaded from: http://www.bioinformatics.babraham.ac.uk/
projects/fastqc) was used to inspect the data. Bisulphite
calls were made with Bismark 0.16.3 [59]. Bismark align-
ments were performed with option “–score_min
L,0,-0.6”. PCR duplicates were removed using the dedu-
plicate_bismark script. Bismark reports indicated that li-
braries were not fully bisulphite converted and raw
methylation calls were approximately 3% for CpG, CHH
and CHG sites. Previous research has shown that CHH
and CHG methylation is negligible in the D. magna gen-
ome [29]. As a result, we used the filter_non_conversion
script to remove reads that contained CHH and/or CHG
methylation sites as indicative of a non-bisulphite con-
verted read. Finally, methylated sites were identified
using bismark_methylation_extractor and reports cre-
ated with bismark2report.
Further variants were predicted per replicate using the

unconverted library reads by following the GATK pipe-
line [82] and converted strain 32 reference sequence.
One round of base quality score recalibration was suffi-
cient using variants previously identified from strain 32.
Variants were hard-filtered in GATK using recommen-
dations for single nucleotide polymorphisms (SNPs):
quality by depth (QD) > 2, fisher strand (FS) > 60, root
mean square of mapping quality (MQ) < 40, mapping
quality rank sum test (MQRankSum) < − 12.5 and read
position rank sum (ReadPosRankSum) < − 8.0. Sites with
SNPs at methylated positions were removed from the
analysis using BEDtools [83].

Differential methylation analysis and region validation
All analyses were performed using methylation calls
from the bisulphite converted libraries only. Hierarchical
sample clustering of genome-wide methylation patterns
across replicates was generated using methylKit [84] and
pvclust [85]. A matrix was prepared by adapting R code
of the “clusterSamples” command in methyKit and used
as input to Pvclust (Additional file 7). The dendrogram was
then inferred by hierarchical clustering of correlation-based
distances using the Ward.D2 method, confidence in
relationships between replicates was provided by 10,000

bootstraps. The 6 NF and six CR replicates were then com-
pared using the bsseq [61] Bioconductor package in R to
identify regions of differential methylation, the input files
were the same as for hierarchical clustering (Additional
file 7). Bsseq uses the Bsmooth algorithm to identify
local methylation estimates from low-coverage data, it
exploits highly-correlated methylation levels across ge-
nomes. D. magna is no exception despite low-levels
of CpG methylation. It has a “mosaic-like” distribu-
tion of methylation as shown by [25]. Regions of dif-
ferential methylation are then assessed using the
biological variation provided by the replicates. We ran
bsseq with a paired t-test to incorporate differences
between pairs due to mother on methylation. CpG
sites were filtered so that at least two replicates in
each treatment had six or more reads. We converted
locally corrected t-test statistics into p-values (with
five degrees of freedom, as six replicate pairs minus
one) and a significance threshold of 0.05 was applied.
P-values were converted to q-values using the Biocon-
ductor package “qvalue” [62] and a false discovery
rate threshold of 0.05 was applied to each CpG site
(p- and q-value R scripts: Additional file 7). Bsseq
identified DMRs were selected using a t-statistic cut-
off of − 4.6 and 4.6, a greater than 0.1 average differ-
ence in methylation between groups, and at least
three methylated CpGs. Genes overlapping DMRs
were identified using the D. magna assembly version
2.4 genome annotation file and BEDTools. This list of
overlapping genes was used as a basis for functional
enrichment analysis.
To validate bsseq filtered DMR regions we adapted the

approach of Herb et al. [20]. We took raw p-values per
methylated CpG calculated in bsseq, as opposed to bum-
phunter in [20], and overlapped them with all of the
bsseq predicted DMR regions, not the filtered set. These
p-values were then combined using comb-p [86] to iden-
tify shared peaks between the bsseq DMR and comb-p
approach. Comb-p is a five-step process that first (1) cal-
culates the correlation between proximal p-values of
varying distances (the autocorrelation), (2) combines ad-
jacent p-values using the Stouffer-Liptak-Kechris correc-
tion which incorporates autocorreclation, (3) adjusts for
false discovery by the Benjamini-Hochberg correction,
(4) identifies enrichment regions as series of low
p-values, and (5) p-value per region is assigned using the
Stouffer-Liptak correction. The results of comb-p and
bsseq filtered DMRs were intersected and those regions
with corrected p-values from comb-p were further
considered.

Functional enrichment analysis
Enriched GO (gene ontology) terms were identified
using topGO. The weight01 algorithm was applied as it
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considers the GO hierarchy, a Fisher’s exact test with an
α of 0.01 was used to identify enriched genes, and no
p-value correction was applied as per topGO author rec-
ommendation (R code, Additional file 7). Hypo- and
hypermethylated genes of interest were tested against
databases of GO terms for all D. magna genes, those
with at least one methylated CpG, and those with at
least three CpGs to match the bsseq filtering of DMRs.
The per-CpG raw methylation (pre-smoothing) rates
were extracted from the Bsmooth object using getMeth
in bsseq. Molecular function (MF) and biological process
(BP) GO terms are reported. D. magna GO terms were
downloaded from http://arthropods.eugenes.org/Eviden-
tialGene/daphnia/daphnia_magna/Genes/function/
cddrpsdapmaevg14.gotab2.

Additional files

Additional file 1: Reads sequenced per replicate for both converted
and unconverted libraries. Alignments analysed is number of read-pairs
per bisulphite converted library aligned by Bismark; deduplicated is
number of read pairs after removal of PCR duplicates; non CpG filtered is
read-pairs remaining after removal of CHH and CHG containing reads;
bases remaining are number of bases left for CpG methylation prediction
in Bismark; average coverage is for filtered bases at a D. magna genome
size of 240 megabases; CpG sites remaining before and after filtering of
polymorphic sites, polymorphic sites were identified from unconverted
libraries against a reference genome converted to Clone 32; Non CpG %
methylated are CHH and CHG sites methylated (100 minus this figure is
equivalent to bisulphite conversion efficiency), CpG % methylated is the
genome-wide percentage of CpG methylation, and CpG % methylated
filtered is the percentage remaining after reads containing CHH or CHG
methylation are removed from the analysis. Diet, H: normal food, L: caloric
restriction, code: combination of diet and mother. (XLSX 48 kb)

Additional file 2: MultiQC report in html format reporting general
statistics from the Bismark alignment process for all replicates. Including
alignment rates, deduplication effect, overall cytosine methylation and
m-bias plot. This plot shows average methylation level per position
across reads, demonstrating minimal bias at 5′ and 3′ reads after
trimming of first and last nine base pairs of each read. (HTML 1089 kb)

Additional file 3: Gene annotations for genes with overlapping significantly
hypomethylated regions under caloric restriction. Genes overlapped by a DMR
of greater than 20% mean difference in methylation level are indicated in
column 3. (XLSX 14 kb)

Additional file 4: Gene annotations for genes with overlapping significantly
hypermethylated regions under caloric restriction. Genes overlapped by a
DMR of greater than 20% mean difference in methylation level are indicated
in column 3. (XLSX 12 kb)

Additional file 5: GO term hierarchies for the two enriched GO terms:
A) Biological Process and B) Molecular Function. Ovals and rectangles
contain GO identification, GO name, p-value and number of genes tested
and over total number of genes from that category. Red rectangles
represent significant terms under the topGO criteria applied. (PS 91 kb)

Additional file 6: Raw read files used in this study deposited in the
European Nucleotide Archive under accession PRJEB24784. Treatment,
H: normal food and L: caloric restricted. (XLSX 34 kb)

Additional file 7: R code used in methylKit, pvclust, bsseq, and comb-p
sections of this study. (TXT 8 kb)
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