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Asymptotic Analysis of the
LMS Algorithm with Momentum

László Gerencsér, Member, IEEE, Balázs Csanád Csáji, Member, IEEE, Sotirios Sabanis

Abstract—A widely studied filtering algorithm in signal pro-
cessing is the least mean square (LMS) method, due to B. Widrow
and T. Hoff, 1960. A popular extension of the LMS algorithm,
which is also important in deep learning, is the LMS method
with momentum, originated by S. Roy and J.J. Shynk back in
1988. This is a fixed gain (or constant step-size) version of the
LMS method modified by an additional momentum term that
is proportional to the last correction term. Recently, a certain
equivalence of the two methods has been rigorously established
by K. Yuan, B. Ying and A.H. Sayed, assuming martingale
difference gradient noise. The purpose of this paper is to present
the outline of a significantly simpler and more transparent
asymptotic analysis of the LMS algorithm with momentum under
the assumption of stationary, ergodic and mixing signals.

Index Terms—least mean square methods, statistical analysis,
recursive estimation, gradient methods, machine learning

I. INTRODUCTION

A classical, widely studied recursive estimation method for
determining the mean-square optimal linear filter is the least
mean square (LMS) method, due to B. Widrow and T. Hoff
[1], devised for pattern recognition problems. The algorithm
can be seen as a stochastic gradient (SG) method with fixed
gain. The fine structure of the estimation error process for
small adaptation gain has been studied in a number of works.

A general class of fixed gain recursive estimation methods,
under mild ergodicity assumptions, with applications to vari-
ants of the LMS algorithm, including the sign-error and sign-
sign algorithms, was studied by J. A. Bucklew, T. G. Kurtz and
W. A. Sethares [2, Theorem 2], leading to a result establishing
the weak convergence of the (piecewise constant extension
of the) rescaled estimation error process to the solution of
a linear stochastic differential equation on the semi-infinite
interval [0,∞) with a concise and transparent proof.

An alternative general class of fixed gain recursive estima-
tion methods defined in a Markovian framework was studied
by A. Benveniste, M. Metivier and P. Priouret, see [3]. They
formulate a similar weak convergence result for fixed finite

This research was partially supported by the Royal Society International
Exchange Program, UK, Grant no. IE150128 and the National Research,
Development and Innovation Office (NKFIH), Hungary, Grant no. 2018-1.2.1-
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time intervals, see Theorem 7 of Part II, Section 4.4.1 [3].
The advantage of their approach is that their framework allows
recursive algorithms with feedback effects, which is typical,
e.g., for recursive estimation of linear stochastic systems.

A refined characterization of the (piecewise constant exte-
sion of the) of LMS in a different direction was given by
A. Heunis and L.A. Joslin [4], providing a limit theorem in
the form of a functional law of the iterated logarithm.

Higher order moments of the estimation error of LMS
were estimated in [5] for bounded signals satisfying a certain
mixing condition, showing that the Lp-norms of these errors
are proportional to the square root of the gain. A similar result
was established under much weaker conditions for general
stochastic approximation (SA) methods, allowing discontin-
uous correction terms, satisfying a relaxed mixing condition
by H. N. Chau, Ch. Kumar, M. Rásonyi and S. Sabanis [6].

A common experimental finding with stochastic gradient
methods is that they tend to be slow in the initial phase,
especially if the number of parameters is huge, as is the case
with problems in deep learning. A currently widely applied
modification of standard stochastic gradient methods, resulting
in the acceleration of the early stages of the algorithms, is
the use of a momentum term, a device that has proven to
be succesful in determimistic optimization, see Polyak [7].
The original method is also known as the heavy-ball method
referring to the fact that the dynamics of the minimization
method can be described as the motion of a heavy-ball along
a hilly terrain trying to find its way to the absolute minimum
by trying to avoid undesirable local minima.

Theoretical justification of the superiority of SG methods
with momentum, in the early stages, are not available in the
literature, however the “steady-state” behavior of the estimator
process generated by SG methods with momentum have been
known to be inferior to that of the standard SG methods since
the works of Polyak [8]. In a paper of 2016 K. Yuan, B. Ying
and A.H. Sayed established a remarkable equivalence of SG
methods with momentum to the standard SG methods with
a rescaled gain [9]. Their result is obtained among others
under the condition that what is called the gradient noise is a
martingale difference. In case of LMS, paper [9] assumes an
independent sequence of observations to ensure this.

The objective of the present paper is to significantly relax
the assumptions on the “gradient noise”, and to provide an
accurate characterization of the relationship between the two
estimator processes in an asymptotic sense, relying on weak
convergence results developed in [2], leading to a transparent
proof. In particular, we show that the asymptotic distribution of



the two estimator processes are identical modulo scaling, and
the effect of the various scaling factors is precisely explored.

For the sake of simplicity, our results will be presented for
the LMS method, but they can be adapted directly to general
recursive estimation methods discussed in [2].

II. PRELIMINARIES

Let (xn,yn),∞ < n <+∞ be a jointly wide sense stationary
stochastic process, where (xn) is Rp-valued and (yn) is real-
valued. The best linear mean-square estimator of yn in terms
of the instantenous signal xn is defined as the solution of the
following minimization problem

min
θ

E [(yn− xT
n θ)2], (1)

the solution of which will be denoted by θ ∗. Thus, θ ∗ is the
solution of the linear algebraic equation

E [xnxT
n ] θ = R∗θ = E [xnyn] with R∗ := E [xnxT

n ]. (2)

[C0] We assume that matrix R∗ is non-singular, so that θ ∗

is uniquely defined as θ ∗ = (R∗)−1 E [x0y0].

Then, the LMS method is described by the algorithm

θn+1 = θn +µ xn+1(yn+1− xT
n+1θn), n≥ 0, (3)

with some non-random initial condition θ0. Here µ > 0 is
a fixed gain or constant step-size, also called learning rate.
Introducing an artificial observation error vn, and the (filter
coefficient) estimation error ∆n as

vn := yn− xT
n θ
∗ and ∆n := θn−θ

∗, (4)

the estimation error process (∆n) follows the dynamics:

∆n+1 = ∆n−µ xn+1xT
n+1∆n +µ xn+1vn+1, n≥ 0, (5)

with ∆0 = θ0−θ ∗. Note that E [xnvn] = 0 for any n ≥ 0, i.e.,
the observation error vn is orthogonal to data xn for any n≥ 0.

Henceforth, we shall strengthen our initial condition by
assuming the following:

[C1] The joint process (xn,yn),∞ < n < +∞ is a strictly
stationary and ergodic stochastic process.

The above algorithm is a special case of the more general
stochastic approximation (SA) method defined by

θn+1 = θn +µH(θn,Xn+1), n≥ 0, (6)

with some non-random initial condition θ0, where (Xn) is a
strictly stationary, ergodic stochastic process and H(θ ,X) is
integrable w.r.t. the law of X0. In the case of the LMS method,

H(θ ,Xn) = xn(yn− xT
n θ) =: Hn(θ), (7)

with Xn = (xT
n , yn)

T.
A standard tool for the analysis of stochastic approximation

methods is the associated ODE, two early, scholarly references
for which are [2], [3]. The ODE in our case takes the form,
with the notation h(θ) := E [xn+1(yn+1− xT

n+1θ)],

d
dt

θ̄t = h(θ̄(t)) = b−R∗θ̄t , t ≥ 0, (8)

where b :=E [xnyn]. For the sake of convenience in formulating
the relevant results, we set θ̄0 = θ0.

One of the benefits of the ODE method is that it provides
quantified bounds or even characterization of the estimation
error. To describe the magnitude of the estimator error process
(θn) let us first consider its piecewise constant extension
defined by θ c

t = θn for n ≤ t < n+ 1. Equivalently, we may
write θ c

t = θ[t], where [t] denotes the integer part of t. Then,
an early result along the lines of applying the ODE method
is that, assuming bounded signals, satisfying certain mixing
conditions, we have for any fixed T > 0, and k being a non-
negative integer, that the following holds:

sup
kT≤t≤(k+1)T

|θ c
t − θ̄t |= OM((µT )1/2), (9)

assuming the initial condition θ̄kT = θ c
kT , see [5].

The assumption on the boundedness of the signals would
ensure that the estimator process itself stay bounded w.p.1, and
thus a common problem in recursive estimation, namely the
need to enforce the boundedness of the estimator process, does
not arise. In the general case of possibly unbounded signals we
resort to a standard device, which is the use of truncation. This
is in fact applied in our prime reference, [2]. Thus the original
LMS algorithm is modified by taking a truncation domain D,
where D is the interior of a compact set, and we stop the
estimator process (θn) if it leaves D. In technical terms,

τ := inf{ t : θ
c
t /∈ D}. (10)

[C2] We assume that the truncation domain is such that the
solution of the ODE (8), with θ̄0 = θ0, does not leave D.

To describe the finer structure of the estimator error process
(θn) let us define the error processes

θ̃n := (θn− θ̄n), (11)

for n ≥ 0, and similarly, set θ̃ c
t := (θ c

t − θ̄t). The key object
of study for the weak convergence theory of the LMS, and in
fact for more general class of SA processes is the normalized
and time-scaled process (Vt(µ)) defined by

Vt(µ) := µ
−1/2

θ̃[(t∧τ)/µ] = µ
−1/2

θ̃
c
(t∧τ)/µ

. (12)

In describing the weak limit of the stopped SA process a
crucial role is played by the asymptotic covariance matrices of
the empirical means of the centered correction terms (Hn(θ)−
h(θ), which can be expressed, under reasonable conditions, as

S(θ) :=
+∞

∑
k=−∞

E [(Hk(θ)−h(θ)(H0(θ)−h(θ))T, (13)

which series converges, e.g., under various mixing conditions.
This is ensured by [C3] bellow (cf. [10, Theorem 19.1]).

For θ = θ ∗, in the case of the LMS method, we get

S := S(θ ∗) =
+∞

∑
k=−∞

E [xkwkw0xT
0 ]. (14)



[C3] We assume that the process defined by

Lt(µ) =
[t/µ]−1

∑
n=0

(
Hn(θ̄µn)−h(θ̄µn)

)√
µ, (15)

converges weakly, as µ → 0, to a time-inhomogeneous zero-
mean Brownian motion (Lt) with local covariances (S(θ̄t)).

We conjecture that for the verification of the above condi-
tion, it is sufficient to check that for any fixed θ̄ the process

Lt(µ) =
[t/µ]−1

∑
n=0

(
Hn(θ̄)−h(θ̄)

)√
µ, (16)

converges weakly, as µ → 0, to a time-homogeneous zero-
mean Brownian motion Lt(θ̄) with covariance matrix S(θ̄).

We note that there is a wide range of results ensuring a
Donsker-type theorem as stated above, including stochastic
processes with various mixing conditions, or martingales, see
[10]. A prominent example is given in [10, Theorem 19.1].

We can conclude, using Theorem 2 of [2], that the following
weak convergence result holds:

Theorem 1. Under conditions C0, C1, C2 and C3, process
(Vt(µ)) converges weakly, as µ → 0, to a process (Zt) satis-
fying the linear stochastic differential equation (SDE),

dZt =−R∗Ztdt +S1/2(θ̄t)dWt , (17)

for t ≥ 0, with initial condition Z0 = 0, where (Wt) is a
standard Brownian motion in Rp.

Let us denote the asymptotic covariance matrix of process
(Zt) by P0, It is known that matrix P0 is the unique solution
of the algebraic Lyapunov equation

−R∗P0−P0R∗+S = 0, (18)

where matrix S := S(θ ∗) is given by equation (14). Although
the weak convergence of (Vt(µ)) does not imply directly
that the distribution of µ−1/2θ̃[(t∧τ)/µ] converges weakly to
N (0,P0), when µ → 0 and t → ∞, the corresponding claim
for general SA processes in a Markovian framework has been
established in [3, Part II, Chapter 4, Theorem 15]. Surprisingly,
the covariance matrix P0 will pop up also in the asymptotic
analysis of the LMS method with momentum.

III. LMS WITH MOMENTUM

A widely studied modification of the fixed gain LMS
method is the LMS method with momentum, using a device
that has proven to be succesful in determimistic optimization
[7]. The original method is also known as the heavy-ball
method, since the dynamics of the minimization method can
be described as the motion of a heavy-ball along a hilly terrain:

θn+1 = θn +µ xn+1(yn+1− xT
n+1θn)+ γ (θn−θn−1), (19)

where 0 < γ < 1 and n ≥ 0, with some non-random initial
condition θ0, and θ−1 = θ0. The momentum term intruduces
some kind of memory into the dynamics, and it is hoped that it
has a smoothing effect on the estimator process. Note that the
LMS with momentum is driven by a second order dynamics.

The parameter-error process, (∆n), is then defined by the
following second order dynamics

∆n+1 = ∆n−µxn+1xT
n+1∆n + γ(∆n−∆n−1)+µxn+1vn+1, (20)

for n≥ 0, with ∆−1 = ∆0.
In order to analyze the behaviour of (∆n) we follow standard

recipes of the theory of linear systems and introduce the state-
vector having twice the dimension of that of ∆n,

Un :=
[

∆n
∆n−1

]
. (21)

Then, the state-space dynamics will become:

Un+1 =Un +An+1Un +µWn+1, (22)

where

An+1 =

[
γI−µ · xn+1xT

n+1 −γI
I −I

]
, (23)

Wn+1 =

[
xn+1vn+1

0

]
. (24)

It is not obvious if and how the above dynamics can be
interpreted as a SA method. Note that for small µ and γ close
to 1 the matrix An+1 is close to the singular matrix

T+
1 =

[
I −I
I −I

]
. (25)

for which we have (T+
1 )2 = 0.

Linear transformation of the state-space. In order to
capture the effect and the interaction of the small parameters
µ and 1−γ on the dynamics (22), following [9], we introduce
a linear state-space transformation Ū := TU with

T := T (γ) =
1

1− γ

[
I −γI
I −I

]
, (26)

T−1 := T−1(γ) =

[
I −γI
I −I

]
. (27)

We decompose Ān into two parts Ān = Ā(1)+ Ā(2)
n , where

A(1) =

[
γI −γI
I −I

]
and A(2)

n =

[
−µxnxT

n 0
0 0

]
.

Then, multiplying (22) by T from the left, and substituting
U = T−1Ū we get that the new state-transition matrix Ān can
be written as the sum Ān = Ā(1)+ Ā(2)

n , where

Ā(1) = TA(1)T−1 =
1

1− γ

[
I −γI
I −I

][
γI −γI
I −I

]
T−1

=
1

1− γ

[
0 0

(γ−1)I (−γ +1)I

][
I −γI
I −I

]

= (1− γ)

[
0 0
0 −I

]
, (28)

and for Ā(2)
n = TA(2)

n T−1 we have



Ā(2)
n =

1
1− γ

[
I −γI
I −I

][
−µxnxT

n 0
0 0

]
T−1

=
1

1− γ

[
−µxnxT

n 0
−µxnxT

n 0

][
I −γI
I −I

]

=
1

1− γ

[
−µxnxT

n µγxnxT
n

−µxnxT
n µγxnxT

n

]

=
µ

1− γ

[
−1 γ

−1 γ

]
⊗ xnxT

n . (29)

After multiplication by T , the stochastic input becomes

W̄n = T µ

[
xnvn

0

]
=

1
1− γ

[
I −γI
I −I

]
·µ
[

xnvn
0

]

=
µ

1− γ

[
xnvn
xnvn

]
. (30)

The transformed dynamics. A shorthand description for
the dynamics of the transformed state process is

Ūn+1 = Ūn + Ān+1Ūn +W̄n+1. (31)

For the initial condition we have

Ū0 = T ∆̄0 =
1

1− γ

[
I −γI
I −I

][
∆0
∆0

]

=
1

1− γ

[
(1− γ)∆0

0

]
=

[
∆0
0

]
, (32)

thus the initial condition is independent of µ and γ !
The point of this transformation is to get a fixed gain SA

procedure for Ūn in its standard form. This is achived by
synchronizing the parameters µ and γ. Note that Ā(1) is scaled
by 1−γ, while Ā(2)

n and the input noise is scaled by µ/(1−γ).
Therefore, a natural way of synchronizing them is to set

µ

1− γ
= c(1− γ) leading to µ = c(1− γ)2. (33)

with some fixed constant c > 0. Thus (31) can be rewritten as
a SA recursion with the fixed gain λ := 1− γ as follows:

Ūn+1 = Ūn + λ B̄n+1Ūn + λ
2D̄n+1Ūn + λ W̄n+1, (34)

for n≥ 0, where

B̄n :=
[

0 0
0 −I

]
+ c
[
−1 1
−1 1

]
⊗ xnxT

n , (35)

D̄n := c
[

0 −1
0 −1

]
⊗ xnxT

n , (36)

W̄n = c
[

xnvn
xnvn

]
. (37)

Let us approximate (34) by a standard SA recursion where the
term with step-size λ 2 has been removed, that is

Ū∗n+1 = Ū∗n + λ B̄n+1Ū∗n + λ W̄n+1, with Ū∗0 = Ū0. (38)

Using the linearity of the dynamics and under some technical
conditions it can be shown for the difference process,

∆Ūn := Ūn−Ū∗n , (39)

that ‖∆Ūn‖≤Cnλ 2, where (Cn) is a strictly stationary process.

The associated ODE. Let us define the random field R2p→
R2p, and introduce the notations

H̄n(Ū) := (B̄n +λ D̄n)Ū +W̄n (40)

h(Ū) := E[H̄n(Ū)] = B̄λ Ū , (41)

where

B̄λ := E[B̄n +λ D̄n] =

[
0 0
0 −I

]
+ c
[
−1 1−λ

−1 1−λ

]
⊗R∗. (42)

Then, the associated ODE takes the form

d
dt

¯̄Ut = h̄( ¯̄Ut) = B̄λ
¯̄Ut , t ≥ 0. (43)

For the sake of convenience, we set ¯̄U0 = Ū0. The solution for
the limit when λ ↓ 0, corresponding to (38), is denoted by ¯̄U∗t .

Lemma 1. If λ is sufficiently small, then B̄λ is stable.

The proof of Lemma 1 can be found in Appendix A. It is
straightforward to show that

‖ ¯̄Ut − ¯̄U∗t ‖ ≤ ¯̄cλ , (44)

for all t ≥ 0, where ¯̄c is a deterministic constant.
As in the plain LMS case, the assumption on the bound-

edness of the signals xn,vn would ensure that the estimator
process itself stay bounded w.p.1. In the general case of
possibly unbounded signals we resort to a (virtual) truncation
in order to analyze Ūn. Thus transformed estimator process
is modified by taking a truncation domain D̄, where D̄ is the
interior of a compact set, such that Ū∗ := 0 ∈ D̄, and we stop
the process (Ūn) if it leaves D̄.

[C2’] We assume that the truncation domain is such that the
solution of the ODE (43), with ¯̄U0 = Ū0, does not leave D̄.

We set
τ̄ := inf{n : Ūn /∈ D̄}. (45)

Let us define the error process, for n≥ 0, as

˜̄Un := (Ūn− ¯̄Un). (46)

and define the normalized and time-scaled error process as

V̄t(λ ) := λ
−1/2 ˜̄U[(t∧τ̄)/λ ]. (47)

Analogously for the process (Ū∗n ) we take a truncation domain
D̄∗ such that D̄⊆ int(D̄∗) and define τ̄∗ as in (45). Repeating
the above procedure we get

V̄ ∗t (λ ) := λ
−1/2 ˜̄U∗[(t∧τ̄∗)/λ ]. (48)

It can be shown under suitable and reasonable technical
conditions that the following assumption is satisfied

[CW] V̄t(λ )−V̄ ∗t (λ ) converges weakly to zero, as λ → 0.

We note in passing that P(τ̄∗ ≥ τ̄) tends to 1 as λ → 0. Due to
assumption [CW] we can work with the asymptotic properties
of (Ū∗n ) and thus henceforth we will focus on this process.



The asymptotic covariance matrices of the empirical means
of the centered correction terms (H̄∗n (Ū)− h̄∗(Ū)), can be
expressed, under reasonable conditions (e.g., [10]) as

S̄(Ū) :=
+∞

∑
k=−∞

E [(H̄∗k (Ū)− h̄∗(Ū)(H̄∗0 (Ū)− h̄∗(Ū))T, (49)

where H∗k and h∗ denote the limit of Hk and h as λ ↓ 0.
It can be easily seen that, in the case of the approximate

LMS method with momentum (38), for Ū = Ū∗ = 0 , we get

S̄ := S̄(0) = c2
[

S S
S S

]
. (50)

In analogy with Condition 2 of [2], we have:

[C3’] We assume that the process defined by

L̄t(λ ) =
[t/λ ]−1

∑
n=0

(
H̄∗n ( ¯̄U

∗
λn)− h̄∗( ¯̄U

∗
λn)
)√

λ , (51)

converges weakly, as λ → 0, to a time-inhomogeneous zero-
mean Brownian motion (L̄t) with local covariances (S̄( ¯̄U

∗
t )).

Then, analogously to Theorem 1, also using Theorem 2 of [2],
the following weak convergence result:

Theorem 2. Under conditions C0, C1, C2’, C3’ and CW,
process (V̄t(λ )) converges weakly, as λ → 0, to a process (Z̄t)
satisfying the linear stochastic differential equation (SDE),

dZ̄t = B̄∗ Z̄tdt + S̄1/2( ¯̄U
∗
t )dW̄t , (52)

for t ≥ 0, with initial condition Z̄0 = 0, where (W̄t) is a
standard Brownian motion in R2p and B̄∗ is

B̄∗ := lim
λ ↓0

B̄λ =

[
0 0
0 −I

]
+ c
[
−1 1
−1 1

]
⊗R∗. (53)

Let us denote the asymptotic covariance matrix of the
process (Z̄t) by P̄. Then, matrix P̄ is the unique solution of
the algebraic Lyapunov equation

B̄∗P̄+ P̄B̄T
∗ + S̄ = 0, (54)

where matrix S̄ := S̄(0) is given by equation (50).
The relationship between P̄ and P0 will be given in Lemma

2. Assuming that the weak convergence of (V̄t(λ )) to N (0, P̄),
when λ → 0 and t→∞, can be established, we will be able to
infer a weak convergence result for the original error process.

IV. COMPARING LMS WITH AND WITHOUT MOMENTUM

The main aim of this section is to compute the asymptotic
covariance of the weak limit process associated with momen-
tum LMS and compare it to that of plain LMS. We do this in
two steps. First, we compute the asymptotic covariance of the
transformed process, then, we map it to the original space.

The asymptotic covariance matrix of process (Z̄t), namely,
the one obtained from the extended and transformed filter
coefficient estimaton error process of LMS with momentum,
is denoted by P̄. Matrix P̄ satisfies the Lyapunov equation

B̄∗P̄+ P̄B̄T
∗ + S̄ = 0, (55)

where S̄ and B̄∗ are defined by (50) and (53), respectively.

Lemma 2. The solution of the Lyapunov equation (55) is

P̄ =
c
2

[
cS+2P0 cS

cS cS

]
. (56)

The proof of Lemma 2 can be found in Appendix B.

With Theorem 2 and matrix P̄ at hand, we aim at establish-
ing a weak convergence result and a corresponding covariance
matrix for the LMS method with momentum.

Recall that the linear transformation introduced for the state
space recursion, Ūn = TUn, implies that Un = T−1Ūn. However,
matrix T−1 = T−1(γ) depends on γ , and T−1(1) is singular.

Nevertheless, since (V̄t(λ ))⇒ (Z̄t), as λ → 0, where “⇒”
denotes weak convergence; and T−1(γ)→ T+

1 , as γ→ 1, where
T−1(γ) and T+

1 are constant matrices; we can apply Slutsky’s
theorem for Polish spaces to conclude that (T−1(γ)V̄t(λ ))⇒
(T+

1 Z̄t), as γ → 1 (or, equivalently, λ → 0, since λ = 1− γ).
In other words, we essentially established that, as λ → 0,

λ
−1/2

(
U[ t/λ ]−T−1 ¯̄U[ t/λ ]

)
⇒ (T+

1 Z̄t). (57)

Let us denote the asymptotic covariance matrix of process
(T+

1 Z̄t) by P. Matrix P can be computed from P̄ by

P = T+
1 P̄(T+

1 )T = c
[

P0 P0
P0 P0

]
, (58)

using the special structure of matrix T+
1 , see (25). As this

matrix was obtained from a “doubled” process, cf. (21),
its submatrices provide the corresponding covariance in the
original space. Now we can state the following theorem:

Theorem 3. Assume C0, C1, C2, C2’, C3, C3’, CW and that
the weak convergences carry over to N (0,P0) and N (0,P),
as t→ ∞, in case of plain and momentum LMS, respectively.
Then, the covariance (sub)matrix of the asymptotic distribution
associated with LMS with momentum is c ·P0, where P0 is the
corresponding covariance of plain LMS and c = µ/(1− γ)2.

Recall that constants µ and γ are the gains of the correction
and momentum terms, respectively. Then, for any µ and γ the
asymptotic covariances of the associated processes of plain and
momentum LMS methods differ only by a constant factor.

If we set c = 1, then the two asymptotic covariances are the
same, and in this sense the two algorithms are equivalent.

However, while the weak convergence of standard LMS was
obtained by normalizing with µ−1/2, in case of LMS with
momentum, we need to normalize with λ−1/2, where λ =

√
µ ,

which implies a slower convergence to the limiting process;
in fact there is an order of magnitude difference.

We can decrease the covariance of the asymptotic distribu-
tion for the momentum LMS by decreasing c, however, since
λ =

√
µ/c, this will further slow the convergence down.

If, on the contrary, we want a smaller normalization factor
for the case of LMS with momentum by setting c large enough,
it will obviously increase the covariance of the asymptotic
distribution. Therefore, there is a trade-off between achieving a



small asymptotic covariance and having a fast rate (i.e., smaller
normalization factors for the weak convergence).

V. CONCLUSIONS

In this paper we have presented the outline of a transparent
proof related to a recent result [9]. We studied the asymptotic
behavior of the LMS method with momentum, under different,
but significantly more realistic conditions. The key technical
tool of our analysis was a beautiful and powerful weak
convergence result of [2]. We slightly extended the setup of
[9] by allowing the correction and momentum gains to be
independently chosen, resulting in a trade-off between the rate
and the covariance of the asymptotic distribution.

REFERENCES

[1] B. Widrow and M. E. Hoff, “Adaptive switching circuits,” tech. rep.,
Standford Electrodics Lab, Standford University, California, 1960.

[2] J. A. Bucklew, T. G. Kurtz, and W. A. Sethares, “Weak convergence and
local stability properties of fixed step size recursive algorithms,” IEEE
Transactions on Information Theory, vol. 39, no. 3, pp. 966–978, 1993.

[3] A. Benveniste, M. Métivier, and P. Priouret, Adaptive algorithms and
stochastic approximations. Springer Science & Business Media, 1990.

[4] J. A. Joslin and A. J. Heunis, “Law of the iterated logarithm for a
constant-gain linear stochastic gradient algorithm,” SIAM Journal on
Control and Optimization, vol. 39, no. 2, pp. 533–570, 2000.

[5] L. Gerencsér, “Rate of convergence of the LMS method,” Systems &
Control Letters, vol. 24, no. 5, pp. 385–388, 1995.
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APPENDIX A
PROOF OF LEMMA 1

Proof. It is sufficient to prove the lemma for λ = 0. We may
also assume c = 1, simply replacing R∗ by cR∗ in the proof
below. Then, using the Schur complement corresponding to
the (1,1) block, the characteristic polynomial of B̄ is

det(B̄−ρI) =
[
−R∗−ρI R∗

−R∗ R∗− I−ρI

]
= (59)

det(−R∗−ρI) det
(

R∗− I−ρI +R∗ (−R∗−ρI)−1 R∗
)
.

The matrix in the second term can be written, using the
commutativity of (−R∗−ρI)−1 and R∗, as

(−R∗−ρI)−1 ((−R∗−ρI)(R∗− I−ρI)+(R∗)2) (60)

Since R∗ was assumed to be positive definite, it is sufficient
to show that the roots of

det
(
ρ

2I +ρI +R∗
)
= 0. (61)

Performing a diagonalization of R∗ via an oprthonormal
coordinate transformation, and denoting the eigenvalues of R∗

by σk, the left hand side can be written
p

∏
k=1

(
ρ

2 +ρ +σk
)
. (62)

Now σk > 0 for all k implies the claim of the lemma by well-
known, elementary calculations.

APPENDIX B
PROOF OF LEMMA 2

Proof. First, we can observe that

B̄∗P̄ =

[
0 0
0 −I

][
P̄11 P̄12
P̄21 P̄22

]
+ c
[
−R∗ R∗

−R∗ R∗

][
P̄11 P̄12
P̄21 P̄22

]
=

[
0 0
−P̄21 −P̄22

]
+ c
[
−R∗(P̄11− P̄21) −R∗(P̄12− P̄22)
−R∗(P̄11− P̄21) −R∗(P̄12− P̄22)

]
and thus

P̄TB̄T
∗ =

[
0 −P̄21
0 −P̄22

]
+ c
[
−(P̄11− P̄21)R∗ −(P̄11− P̄21)R∗

−(P̄12− P̄22)R∗ −(P̄12− P̄22)R∗

]
.

One then observes that the (1,1) element of the (block) matrix
B̄∗P̄+ P̄TB̄T

∗ + S̄ satisfies the equation

−cR∗(P̄11− P̄21)− (P̄11− P̄21)cR∗+ c2S = 0. (63)

It follows from the uniqueness of the solution of the Lyapunov
equation associated with the standard LMS, i.e., (18), that

P̄11− P̄21 = cP0. (64)

The latter also implies (by using transposition) that

P̄11− P̄12 = cP0. (65)

Summing the last two equations yields

2P̄11− P̄12− P̄21 = 2cP0. (66)

Moreover, the elements (1,2), (2,1) and (2,2) of the (block)
matrix B̄∗P̄+ P̄TB̄T

∗ + S̄ satisfy the following equations:

−cR∗(P̄12− P̄22)− (P̄11− P̄12)cR∗− P̄12 + c2S = 0 (67)

−cR∗(P̄11− P̄21)− (P̄21− P̄22)cR∗− P̄21 + c2S = 0 (68)

−cR∗(P̄12− P̄22)− (P̄21− P̄22)cR∗−2P̄22 + c2S = 0 (69)

and recall the equation for the element (1,1), i.e. (63),

−cR∗(P̄11− P̄21)− (P̄11− P̄21)cR∗+ c2S = 0. (70)

When adding (70) and (69) together and subtracting from them
(67) and (68), one concludes that the overall sum of terms
having cR∗ as a multiplier vanishes. Consequently, due to (66)

P̄22 = P̄11− cP0 (71)

which yields, also using (65) and (64), that

P̄ =

[
P̄11 P̄11− cP0

P̄11− cP0 P̄11− cP0

]
. (72)

Thus, equation (69) is reduced to 2P̄22 = S, which yields P̄22 =
c2S/2, and consequently due to (71), one obtains P̄11 = S/2+
P0 and the solution to the Lyapunov equation is (56).


