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A Rough Path Perspective on Renormalization

Y. Bruned, I. Chevyrev, P. K. Friz, and R. Preiß

January 6, 2017

Abstract

We revisit (higher-order) translation operators on rough paths, in both the geometric and
branched setting. As in Hairer’s work on the renormalization of singular SPDEs we propose a
purely algebraic view on the matter. Recent advances in the theory of regularity structures,
especially the Hopf algebraic interplay of positive and negative renormalization of Bruned–
Hairer–Zambotti (2016), are seen to have precise counterparts in the rough path context, even
with a similar formalism (short of polynomial decorations and colourings). Renormalization is
then seen to correspond precisely to (higher-order) rough path translation.
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1 Introduction

1.1 Rough paths and regularity structures

The theory of rough paths deals with controlled differential equations of the form

dYt =

d∑
i=1

fi (Yt) dX
i
t ≡ f (Yt) dXt

where X : [0, T ] → Rd is a continuous path of low, say α-Hölder, regularity for 0 < α ≤ 1. As
may be seen by formal Picard iteration, solution can be expanded in terms of certain integrals.
Assuming validity of the chain-rule, these are just iterated integrals of the form

∫
dXi1 · · · dXin

with integration over a n-dimensional simplex. In geometric rough path theory one postulates the
existence of such integrals, for sufficiently many words w = (i1, . . . , in), namely |w| = n ≤ [1/α],
such as to regain analytic control: the collection of resulting objects

〈X, w〉 =

∫
. . .

∫
dXi1 . . . dXin (integration over s < t1 < · · · < tn < t, ∀0 ≤ s < t ≤ T )

subject to suitable analytic and algebraic constraints (in particular, Chen’s relation, which describes
the recentering s → s̃ ) is then known as a (level-n) geometric rough path [Lyo98, LQ02, LCL07,
FV10]. Without assuming a chain-rule (think: Itô), iterated integrals of the form

∫
XiXjdXk

appear in the expansion, the resulting objects are then naturally indexed by trees, for example

〈X, τ〉 =

∫
XiXjdXk with τ = [•i•j ]•k ≡

k

ji

.

The collection of all such objects, again for sufficiently many trees, |τ | = #nodes ≤ [1/α] and subject
to algebraic and analytic constraints, form what is known as a branched rough path [Gub10, HK15];
every geometric rough path can then be canonically viewed as a branched rough path. A basic result
- known as the extension theorem [Lyo98, Gub10] - asserts that all ”higher” iterated integrals, n-
fold with n > [1/α], are automatically well-defined, with validity of all algebraic and analytic
constraints in the extended setting.1 Solving differential equations driven by such rough paths can

1This entire ensemble of iterated integrals is called the signature or the fully lifted rough path.
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then be achieved, following [Gub04], see also [FH14], by formulating a fixed point problem in a
space of controlled rough paths, essentially a (linear) space of good integrands for rough integration
(mind that rough path spaces are, in contrast, fundamentally non-linear due to the afore-mentioned
algebraic constraints). Given a rough differential equation (RDE) of the form

dY = f (Y ) dX

it is interesting to see the effect on Y induced by higher-order perturbations on X. For instance, one
can use Itô integration to lift a Brownian motion to a (level-2) random rough path, X = BItô (ω)
of regularity α ∈ (1/3, 1/2), in which case the above RDE corresponds to a classical Itô SDE.
However, we may perturb BItô =

(
B,BItô

)
via BItô

s,t 7→ BItô
s,t + 1

2I (t− s) =: BStrat
s,t , without touching

the underlying Brownian path B. The above RDE then becomes a Stratonovich SDE, the effect
of this perturbation is then given in terms of an Itô-Stratonovich correction, here of the form
1
2

∑d
i=1∇fifi. Examples from physics (Brownian motion in a magnetic field) suggest second order

perturbation of the form BStrat
s,t 7→ BStrat

s,t + a (t− s), for some a ∈ so (d), the SDE then sees an

additional drift vector-field of the form
∑
i,j a

ij [fi, fj ]. All these examples are but the tip of
an iceberg: higher order perturbations (which can be traced back to Sussmann’s work on ODEs
driven by highly oscillatory signals) were studied from a SDE/RDE perspective in [FO09], see also
[FV10]. The situation is actually similar for (non-singular, though non-linear) stochastic/rough
PDEs: as noted in [CFO11], tampering with higher-levels of the lifted noise affects the structure of
the SPDE/RPDE in a way as one would expect from the methods of “rough” characteristics.

From rough paths to regularity structures. The theory of regularity structures [Hai14]
extends rough path theory and then provides a remarkable framework to analyse (singular) semi-
linear stochastic partial differential equations, e.g. of the form

(∂t −∆)u = f (u,Du) + g (u) ξ (t, x, ω)

with (d+ 1)-dimensional space-time white noise. The demarche is similar as above: noise is lifted
to a model, whose algebraic properties (especially with regard to recentering) are formulated with
the aid of the structure group. Given an (abstract) model, a fixed point problem is solved and
gives a solution flow in a (linear) space of modelled distributions. The abstract solution can then be
mapped (“reconstructed”) into an actual Schwartz distribution. In fact, one has the rather precise
correspondences as follows (see [FH14] for explicit details in the level-2 setting):

rough path ←→ model
Chen’s relation ←→ structure group
controlled rough path ←→ modelled distribution
rough integration ←→ reconstruction map

Table 1: Basic correspondences: rough paths ←→ regularity structures

Furthermore, one has similar results concerning continuity properties of the solution map as a
function of the enhanced noise:

continuity of solution in (rough path ←→ model) topology

Unfortunately mollified lifted noise - in infinite dimensions - in general does not converge (as a
model), hence renormalization plays a fundamental role in regularity structures. The algebraic

3



formalism of how to conduct this renormalization then relies on heavy Hopf algebraic considerations
[Hai14], pushed to a (seemingly) definite state of affairs in [BHZ16], see also [Hai16] for a summary.
Our investigation was driven by two questions:

(1) Are there meaningful (finite-dimensional) examples from stochastics which require renormal-
ization?

(2) Do we have algebraic structures in rough path theory comparable with those seen in regularity
structures?

In contrast to common belief, perhaps, the answer to question (1) is yes: despite the fact that
reasonable approximations to Brownian motion – including piecewise linear - mollifier - Karhunen-
Loeve type - and random walk approximations – all converge to the (Stratonovich) Brownian rough
path, there are perfectly meaningful (finite-dimensional, and even 1-dimensional!) situations which
require renormalization. We sketch these in Section 1.2 below, together with precise references. The
main part of this work then deals with, and towards, question (2): Following [BHZ16], the algebraic
formalism in regularity structures relies crucially on two Hopf algebra, T+ and T− (which are further
in “cointeraction”). The first one helps to construct the structure group which, in turn, provides
the recentering (”positive renormalization” in the language of [BHZ16]) and hence constitutes an
abstract form of Chen’s relation in rough path theory. In this sense, T+ was always present in rough
path theory, the point being enforced in the case of branched rough paths [Gub10, HK15] where
T+ is effectively given by the Connes-Kreimer Hopf algebra. (Making this link precise and explicit
seems a worthwhile undertaking in its own right, we accomplish this en passant in the sequel.)

Question (2) is then reduced to the question if T−, built to carry out the actual renormalization
of models, and subsequently SPDEs, (”negative renormalization” in the language of [BHZ16]),
has any correspondence in rough path theory. Our answer is again affirmative and, very loosely
speaking, a main insight of this paper is:

translation of rough paths ←→ renormalization of models

Several remarks are in order.

• Much of this paper can be read from a rough path perspective only. That is, despite the
looming goal to find a connection to regularity structures, we first develop the algebraic
renormalization theory for rough paths in its own right; analytic considerations then take
place in Section 5. The link to regularity structures and its renormalization theory is only
made in Section 6.

• In applications to (singular) SPDEs, renormalization is typically a must-do (with some sur-
prising exceptions such as the motion of a random loop [Hai16]), whereas in typical SDE situa-
tions, renormalization/translation is a can-do (and hence better called translation). That said,
in the next section we present several examples, based on finite- (and even one-) dimensional
Brownian motion, which do require genuine renormalization.

• Our approach actually differs from the work of Hairer and coauthors [Hai14, BHZ16], for we
are taking a primal view which, in the case of branched rough paths, leads us to make
crucial use of pre-Lie structures (a concept not present in [BHZ16]). Only after developing
the corresponding dual view, and further restricting our general setup, do we start to see
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precise correspondences to [BHZ16]. (In Section 1.3 below we introduce primal resp. dual
view in an elementary setting.)

• We have an explicit understanding of the renormalization group in terms of the Lie algebra
associated to the Butcher group, equipped with vector space addition. (In particular, despite
non-commutativity of the Butcher group, our renormalization group turns out to be abelian,
corresponding to addition in the Lie algebra.)

• The existence of a finite-dimensional renormalization group is much related to the stationarity
of the (lifted) noise, see [Hai14] and forthcoming work [CH16]. In the rough path context, this
amounts to saying that a random (branched) rough path X = X (ω), with values in a (trun-
cated) Butcher (hence finite-dimensional Lie) group G, actually has independent increments
with respect to the Grossmann-Larson product ? (dual to the Connes-Kreimer coproduct ∆?).
In other words, X is a (continuous) G-valued Lévy process. This invites a comparison with
[FS14, Che15] and in Section 4.2 we shall see how Lévy triplets behave under renormalization.

1.2 Higher-order translation and renormalization in finite-dimensions

Physical Brownian motion in a (large) magnetic field. It was shown in [FGL15] that the
motion of a charged Brownian particle, in the zero mass limit, in a magnetic field naturally leads
to a perturbed second level, of the form B̄s,t = BStrat

s,t + a (t− s) for some 0 6= a ∈ so (d). Here a
is proportional to the strength of the magnetic field. One can set up the evolution of the physical
(finite mass ε) system, with trajectories Bε, in a way that the magnetic field scales as a power of 1/ε,
as a method to model magnetic fields which are very large in comparison to the (very small) mass.
Doing so leads to approximations Bε of Brownian motion, whose canonical rough path lifts Bε

do not converge in rough path space (due to divergence of the Lévy’s area). This can be rectified
by replacing Bε with a translated rough path MvεB

ε, with a suitable second-level perturbation
vε ∈ so (d), so that MvεB

ε converges in rough path space. Moreover, vε can be chosen so that the
renormalized limit is indeed BStrat. Details of this second-level renormalization can be found in
[BCF17]. We also point out that higher order renormalization can be expected in the presence of
highly oscillatory fields, which also points to some natural connections with homogenization theory.

Higher-order Feynman-Kac theory. Building on works of V. Yu. Krylov, the forthcoming
work by Sina Nejad [Nej] constructs higher order analogues to the classical Feynman-Kac formula,
which utilises a notion of Lipγ functions on paths inspired by the work of Lyons-Yang [LY16].
Switching between non-divergence form (Itô) and sum-of-squares (Stratonovich) generators then
has an analogue for higher order operators, for which a formulation in terms of our rough path
translation operators naturally appear.

Rough stochastic volatility and robust Itô integration. Applications from quantitative
finance recently led to the pathwise study of the (1-dimensional) Itô-integral,∫ T

0

f(B̂t)dBt with B̂t =

∫ t

0

|t− s|H−1/2
dBs

where f : R→ R is of the form x 7→ exp (ηx). When H ∈ (0, 1/2), the case relevant in applications,
this stochastic integration is singular in the sense that the mollifier approximations actually diverge
(infinite Itô-Stratonovich correction, due to infinite quadratic variation of B̂ when H < 1/2). The
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integrand f(BHt ), which plays the role of a stochastic volatility process (η > 0 is a volatility-of-
volatility parameter) is not a controlled rough path, nor has the pair (B̂, B) a satisfactory rough
path lift (the Itô integral

∫
B̂dB is well-defined, but

∫
BdB̂ is not). The correct “Itô rough path”

in this context is then an Rn+1-valued “partial” branched rough path of the form(
B, B̂,

∫
B̂dB̂, ...

∫
B̂ndB

)
where n ∼ 1/H. Again, mollifier approximations will diverge but it is possible to see that one can
carry out a renormalization which restores convergence to the Itô limit. (Note the similarity with
SPDE situations like KPZ.) See the forthcoming work [BFG+] for details.

Fractional delay / Hoff process Viewed as two-dimensional rough paths, Brownian motion
and its ε-delay, t 7→ (Bt, Bt−ε), does not converge to (B,B), with - as one may expect - zero
area. Instead, the quadratic variation of Brownian motion leads to a rough path limit of the form
(B,B;A) with area of order one. It is then possible to check that, replacing B by a fBm with
Hurst parameter H < 1/2, the same construction will yield exploding Lévy area as ε ↓ 0. The
same phenomena is seen in lead-lag situations, popular in time series analysis. As in the case of
physical Brownian motion in a (large) magnetic field, these divergences can be cured by applying
suitable (second-level) translation / renormalization operators. See e.g. [FV10, Ch.13], [FHL16]
for the Brownian case, [BCF17] for the (singular) fractional case H < 1/2.

1.3 Translation of paths: primal vs. dual description

Consider a d-dimensional path Xt, written with respect to the standard basis e1, . . . , ed of Rd,

Xt =

d∑
i=1

Xi
tei.

We are interested in constant speed perturbations, of the form

TvXt := Xt + tv, with v =

d∑
i=1

viei ∈ Rd.

In coordinates, (TvXt)
i

= Xi
t + tvi for i = 1, . . . , d, which is just the dual point of view,

〈TvX, e∗i 〉 = 〈Xt, e
∗
i 〉+ 〈tv, e∗i 〉 .

For a primal point of view, take e0, e1, . . . , ed to be the standard basis of R1+d, and consider the
R1+d-valued “time-space” path

X̄t = Xt +X0
t e0 =

d∑
i=0

Xi
tei

with scalar-valued X0
t ≡ t. We can now write

TvX̄t = X̄t + tv = Xt +X0
t (e0 + v)
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which identifies Tv as linear map on R1+d, which maps e0 7→ e0 + v, and ei 7→ ei for i = 1, . . . , d.
This is our primal view. We then can (and will) also look at general endomorphisms of the vector
space R1+d, which we still write in the form

ej 7→ ej + vj , j = 0, . . . , d

vj =

d∑
i=0

vijei ∈ R1+d.

(The initially discussed case corresponds to (v0, v1, . . . , vd) = (v0, 0, . . . , 0), with v0 ⊥ e∗0, and
much of the sequel, especially with regard to the dual view, will take advantage of this additional
structure.)

We shall be interested to understand how such perturbations propagate to higher level iterated
integrals, whenever X has sufficient structure to make this meaningful.

For instance, if X = B(ω), a d-dimensional Brownian motion, an object of interest would be,
with repeated (Stratonovich) integration over {(r, s, t) : 0 ≤ r ≤ s ≤ t ≤ T},

(TvB)ijk :=

∫
◦(dBi + vi dr) ◦ (dBj + vj ds) ◦ (dBk + vk dt) = Bijkt + ...

where the omitted terms (dots) can be spelled out in terms of contractions of v (resp. tensor-powers
of v) and iterated integrals of (1 + d)-dimensional time-space Brownian motion “(t, B)”. (Observe
that we just gave a dual description of this perturbation, as seen on the third level, yet the initial
perturbation took place at the first level: v is vector here.)

There is interest in higher-level perturbations. In particular, given a 2-tensor v =
∑d
i,j=1 v

ijei⊗
ej , we can consider the level-2-perturbation with no effect on the first level, i.e., (TvBt)

i ≡ Bit,
while for all i, j = 1, ..., d,

(TvBt)
ij = Bijt + vij t

For instance, writingBI;w for iterated Itô integrals, in contrast toBw defined by iterated Stratonovich
integration, we have with v := 1

2I
d where (Id)ij = δij , i.e., the identity matrix,

(TvBt)
I;ij = Bijt .

This is nothing but a restatement of the familiar formula
∫ t

0
Bi◦dBj =

∫ t
0
BidBj+ 1

2δ
ijt. It is a non-

trivial exercise to understand the Itô-Stratonovich correction at the level of higher iterated integrals,
cf. [BA89] and a “branched” version thereof briefly discussed in Section 4.1 below. Further examples
were already given in the previous section, notably the case B̄ij = (TaBt)

ij with an anti-symmetric
2-tensor a = (aij) which arises in the study of Brownian particles in a magnetic field.

1.4 Organization of the paper

This note is organized as follows. In Section 2, we first discuss renormalization/translation in the
by now well established setting of geometric rough paths. The algebraic background is found for
instance in [Reu93]. We then, in Section 3, move to branched rough paths [Gub10], in the notation
and formalism from Hairer-Kelly [HK15]. In Section 4 we illustrate the use of the (branched)
translation operator (additional examples were already mentioned in Section 1.2.), while in Section
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5 we describe the analytic and algebraic effects of such translations on rough paths and associated
RDEs. Lastly, Section 6 is devoted to the systematic comparison of the translation operator and
“negative renormalization” introduced in [BHZ16].

Acknowledgements. P.K.F. is partially supported by the European Research Council through
CoG-683166 and DFG research unit FOR2402. I.C., affiliated to TU Berlin when this project was
commenced, was supported by DFG research unit FOR2402.

2 Translation of geometric rough paths

We review the algebraic setup for geometric rough paths, as enhancements of X = (X0, X1, ..., Xd),
a signal with values in V = R1+d. Recall the natural state-space of such rough paths is T ((V )), a
space of tensor series (resp. a suitable truncation thereof related to the regularity of X). Typically
Ẋ ≡ (ξ0, ξ1, ..., ξd) models noise. Eventually, we will be interested in X0(t) = t, so that X is a
time-space (rough) path, though this plays little role in this section.

2.1 Preliminaries for tensor series

We first establish the notation and conventions used throughout the paper. Most algebraic aspects
used in this section may be found in [Reu93] and [FV10] Chapter 7.

Throughout the paper we let {e0, e1, . . . , ed} be a basis for R1+d. Let

(T ((R1+d)), ⊗̇,∆�, α)

denote the Hopf algebra of tensor series equipped with tensor product ⊗̇, the coproduct ∆� which
is dual to to the shuffle product � on T (R1+d), and antipode α. Recall that ∆� is explicitly given
as the unique algebra morphism such that

∆� : T ((R1+d)) 7→ T ((R1+d))⊗ T ((R1+d))

∆� : v 7→ v ⊗ 1 + 1⊗ v, ∀v ∈ R1+d.

We shall often refer to elements ei1⊗̇ . . . ⊗̇eik as words consisting of the letters ei1 , . . . , eik ∈
{e0, . . . , ed}, and shall write ei1,...,ik = ei1⊗̇ . . . ⊗̇eik .

We likewise denote by
(T (R1+d),�,∆⊗̇, α̃)

the shuffle Hopf algebra. Recall that by identifying R1+d with its dual through the basis {e0, . . . , ed},
there is a natural duality between T (R1+d) and T ((R1+d)) in which � is dual to ∆�, and ⊗̇ is dual
to ∆⊗̇.

We let G(R1+d) and L((R1+d)) denote the set of group-like and primitive elements of T ((R1+d))
respectively. Recall that L((R1+d)) is precisely the space of Lie series over R1+d, and that

G(R1+d) = exp⊗̇(L((R1+d))).

For any integer N ≥ 0, we denote by TN (R1+d) the truncated algebra obtained as the quotient of
T ((R1+d)) by the ideal consisting of all series with no words of length less than N (we keep in mind
that the tensor product is always in place on TN (R1+d)). Similarly we let GN (R1+d) ⊂ TN (Rd)
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and LN (R1+d) ⊂ TN (R1+d) denote the step-N free nilpotent Lie group and Lie algebra over R1+d

respectively, constructed in analogous ways.
Finally, we identify Rd with the subspace of R1+d with basis {e1, . . . , ed}. From this identifica-

tion, we canonically treat all objects discussed above built from Rd as subsets of their counterparts
built from R1+d. For example, we treat the algebra T ((Rd)) and Lie algebra LN (Rd) as a subalgebra
of T ((R1+d)) and a Lie subalgebra of LN (R1+d) respectively.

2.2 Translation of tensor series

Definition 1. For a collection of Lie series v = (v0, . . . , vd) ⊂ L((R1+d)), define the algebra
morphism Tv : T ((R1+d)) 7→ T ((R1+d)) as the unique extension of the linear map

Tv : R1+d 7→ L((R1+d))

Tv : ei 7→ ei + vi, ∀i ∈ {0, . . . , d}.

In the sequel we shall often be concerned with the case that vi = 0 for i = 1, . . . , d and v0 takes
a special form. We shall make precise whenever such a condition is in place by writing, for example,
v = v0 ∈ LN (Rd).

We observe the following immediate properties of Tv:

• Since Tv is an algebra morphism which preserves the Lie algebra L((R1+d)), it holds that Tv
maps G(R1+d) into G(R1+d);

• Tv◦Tu = Tv+Tv(u), where we write Tv(u) := (Tv(u0), . . . , Tv(ud)). In particular, Tv+u = Tv◦Tu
for all v = v0, u = u0 ∈ L((Rd));

• For every integer N ≥ 0, Tv induces a well-defined algebra morphism TNv : TN (R1+d) 7→
TN (R1+d), which furthermore maps GN (R1+d) into itself.

The following lemma moreover shows that Tv respects the Hopf algebra structure of T ((R1+d)).

Lemma 2. The map Tv : T ((R1+d)) 7→ T ((R1+d)) is a Hopf algebra morphism.

Proof. By construction, Tv respects the product ⊗̇. To show that (Tv ⊗Tv)∆� = ∆�Tv, note that
both (Tv⊗Tv)∆� and ∆�Tv are algebra morphisms, and so they are equal provided they agree on
e0, . . . , ed. Indeed, we have

∆�Tv(ei) = ∆�(ei + vi) = 1⊗ (ei + vi) + (ei + vi)⊗ 1

(here we used that each vi is a Lie element, i.e., primitive in the sense ∆�vi = 1⊗ vi + vi ⊗ 1) and

(Tv ⊗ Tv)∆�(ei) = (Tv ⊗ Tv)(1⊗ ei + ei ⊗ 1) = 1⊗ (ei + vi) + (ei + vi)⊗ 1,

as required. So far, we have shown Tv is a bialgebra morphism. It remains to show that Tv commutes
with the antipode α. Actually, this is implied by general principles ([Pre16] Theorem 2.14), but
as it is short to spell out, we give a direct argument: consider the opposite algebra (T ((R1+d)))op

(same set and vector space structure as T ((R1+d)) but with reverse multiplication). Then α :
T ((R1+d)) 7→ (T ((R1+d)))op is an algebra morphism, and again it suffices to check that αTv and
Tvα agree on e0, . . . , ed. Indeed, since vi ∈ L((R1+d)), we have α(vi) = −vi, and thus

αTv(ei) = α(ei + vi) = −ei − vi
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and
Tvα(ei) = Tv(−ei) = −ei − vi.

2.3 Dual action on the shuffle Hopf algebra T (R1+d)

We now wish to describe the dual map T ∗v : T (R1+d) 7→ T (R1+d) for which

〈Tvx, y〉 = 〈x, T ∗v y〉, ∀x ∈ T ((R1+d)), ∀y ∈ T (R1+d).

We note immediately that Lemma 2 implies T ∗v is a Hopf algebra morphism from (T (R1+d),�,∆⊗̇, α̃)
to itself.

For simplicity, and as this is the case most relevant to us, we only consider in detail the case
v = v0 ∈ L((R1+d)), i.e., vi = 0 for i = 1, . . . , d (but see Remark 4 for a description of the general
case).

Let S denote the unital free commutative algebra generated by the non-empty words ei1,...,ik =
ei1⊗̇ . . . ⊗̇eik in T (R1+d). We let 1 and · denote the unit element and product of S respectively.
For example,

e0,1 · e2 = e2 · e0,1 ∈ S,
e0 · e1,2 6= e0 · e2,1 ∈ S.

For a word w ∈ T (R1+d), we let D(w) denote the set of all elements

w1 · . . . · wk ⊗ w̃ ∈ S ⊗ T (R1+d)

where w1, . . . , wk is formed from disjoint subwords of w and w̃ is the word obtained by replacing
every wi in w with e0 (note that 1⊗ w, corresponding to k = 0, is also in D(w)).

Consider the linear map S : T (R1+d) 7→ S ⊗ T (R1+d) defined for all words w ∈ T (R1+d) by

S(w) =
∑

w1·...·wk⊗w̃∈D(w)

w1 · . . . · wk ⊗ w̃.

For example

S(e0,1,2) =1⊗ (e0,1,2,)

+ (e0)⊗ (e0,1,2) + (e1)⊗ (e0,0,2) + (e2)⊗ (e0,1,0)

+ (e0 · e1)⊗ (e0,0,2) + (e0 · e2)⊗ (e0,1,0) + (e1 · e2)⊗ (e0,0,0)

+ (e0 · e1 · e2)⊗ (e0,0,0) + (e0,1)⊗ (e0,2) + (e1,2)⊗ (e0,0)

+ (e0,1 · e2)⊗ (e0,0) + (e0 · e1,2)⊗ (e0,0)

+ (e0,1,2)⊗ (e0).

Proposition 3. Let v = v0 ∈ L((R1+d)). The dual map T ∗v : T (R1+d) 7→ T (R1+d) is given by

T ∗vw = (v ⊗ id)S(w),

where v(w1 · . . . · wk) := 〈w1, v〉 . . . 〈wk, v〉 and v(1) := 1.
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In principle, Proposition 3 can be proved algebraically by showing that the adjoint of Φ :=
(v⊗ id)S is an algebra morphism from T ((R1+d)) to itself, and check that Φ∗(ei) = Tv(ei) for every
generator ei. Indeed this is the method used in Section 3.3 to prove the analogous result for the
translation map on branched rough paths. However in the current setting of geometric rough paths,
we can provide a direct combinatorial proof.

Proof. Note that the claim is equivalent to showing that for every two words u,w ∈ T (R1+d)
(treating u ∈ T ((R1+d)))

〈Tvu,w〉 =
∑

w1·...·wk⊗w̃∈D(w)

〈w1, v〉 . . . 〈wk, v〉〈w̃, u〉. (1)

Consider a word u = ei1⊗̇ . . . ⊗̇eik ∈ T (R1+d). Then

Tv(u) = ei1⊗̇ . . . ⊗̇(e0 + v)⊗̇ . . . ⊗̇eik ,

where every occurrence of e0 in u is replaced by e0+v. We readily deduce that for every w ∈ T (R1+d)

〈Tv(u), w〉 =
∑

w1·...·wk⊗w̃∈D(w)
u=w̃

〈w1, v〉 . . . 〈wk, v〉. (2)

For example, with v = [e1, e2] = e1,2 − e2,1 and u = e0,1,2, we have

Tv(u) = e0,1,2 + e1,2,1,2 − e2,1,1,2,

and we see that indeed for
w ∈ A := {e0,1,2, e1,2,1,2, e2,1,1,2},

the right hand side of (2) gives 〈Tv(u), w〉, whilst 〈w1, v〉 . . . 〈wk, v〉 = 0 for all w ∈ T (R1+d)\A and
w1 · . . . · wk ⊗ w̃ ∈ D(w) such that u = w̃. But now (2) immediately implies (1).

Remark 4. A similar result to Proposition 3 holds for the general case v = (v0, . . . , vd). The
definition of S changes in the obvious way that in the second tensor, instead of replacing every
subword by the letter e0, one instead replaces every combination of subwords by all combinations
of ei, i ∈ {0, . . . , d}, while in the first tensor, one marks each extracted subword wj with the
corresponding label i ∈ {0, . . . , d} that replaced it, which gives (wj)i (so the left tensor no longer
belongs to S but instead to the free commutative algebra generated by (w)i, for all words w ∈
T (R1+d) and labels i ∈ {0, . . . , d}). Finally the term 〈w1, v〉 . . . 〈wk, v〉 would then be replaced by
〈(w1)i1 , vi1〉 . . . 〈(wk)ik , vik〉.
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3 Translation of branched rough paths

In the previous section we studied the translation operator T , in the setting relevant for geometric
rough path. Here we extend these results to the branched rough path setting, calling the translation
operator M to avoid confusion. Our construction of M faces new difficulties, which we resolve with
pre-Lie structures. The dual view then leads us to an extraction procedure of subtrees (a concept
familiar from regularity structures, to be explored in Section 6).

3.1 Preliminaries for forest series

As in the preceding section, we first introduce the notation used throughout the section. We mostly
follow the notation of Hairer-Kelly [HK15] and refer the reader to [GBVF01] Chapter 14 for relevant
algebraic material.

We let B denote the real vector space spanned by the set of unordered rooted trees with vertices
labelled from the set {0, . . . , d}. We denote by B∗ its algebraic dual, which we identify with the
space of formal series of labelled trees. We canonically identify with R1+d the subspace of B (and
of B∗) spanned by the trees with a single vertex {•0, . . . , •d}.

We further denote by H the vector space spanned by (unordered) forests composed of trees
(including the empty forest denoted by 1), and let H∗ denote its algebraic dual which we identify
with the space of formal series of forests. We canonically treat B∗ as a subspace of H∗. Following
commonly used notation (e.g., [HK15]), for trees τ1, . . . , τn ∈ B we let [τ1 . . . τn]•i ∈ B denote the
forest τ1 . . . τn ∈ H grafted onto the vertex •i.

We equip H∗ with the structure of the Grossman-Larson Hopf algebra

(H∗, ?,∆�, α)

and H with the structure of the dual graded Hopf algebra (the Connes-Kreimer Hopf algebra)

(H,�,∆?, α̃).

In other words, H is the free commutative algebra over B equipped with a coproduct ∆?, and
graded by the number of vertices in a forest. We shall often drop the product � and simply write
τ � σ = τσ.

The coproduct ∆? may be described in terms of admissible cuts, for which we use the convention
to keep the “trunk” on the right: for every tree τ ∈ B

∆?τ =
∑
c

τ c1 . . . τ
c
k ⊗ τ c0,

where we sum over all admissible cuts c of τ , and denote by τ c0 the trunk and by τ c1 . . . τ
c
k the

branches of the cut respectively.
In the sequel, we shall also find it convenient to treat the spaceH equipped with ? as a subalgebra

of H∗, in which case we explicitly refer to it as the algebra (H, ?).
Recall that the space of series B∗ is exactly the set of primitive elements of H∗. We let G denote

the group-like elements of H∗, often called the Butcher group, for which it holds that

G = exp?(B∗).
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All the objects introduced above play an analogous role to those of the previous section. To
summarise this correspondence, it is helpful to keep the following picture in mind 2

“Primal space” ... H∗ ←→ T ((R1+d))

“Dual space” ... H ←→ T (R1+d)

Lie elements ... B∗ ⊂ H∗ ←→ L((R1+d))

Group-like elements ... G ⊂ H∗ ←→ G(R1+d).

As in the previous section, for any integer N ≥ 0 we letHN denote “truncated” algebra obtained
by the quotient of H∗ by the ideal consisting of all series with no forests having less than N vertices
(we keep in mind that the product ? is always in place for the truncated objects). Similarly we
let GN ⊂ HN and BN ⊂ HN denote the step-N Butcher Lie group over R1+d its and Lie algebra
respectively, constructed in analogous ways.

Finally, as before, we use (Rd) to denote the analogous objects built from Rd, and which we
treat as subsets of their “full” counterparts built from R1+d (by identifying Rd with the subspace
of R1+d with basis {e1, . . . , ed}). For example, we treat H∗(Rd) and BN (Rd) as a subalgebra of H∗
and a Lie subalgebra of BN respectively.

3.2 Translation of forest series

3.2.1 Non-uniqueness of algebra extensions

In the previous section, we defined a map Tv which “translated” elements in T ((R1+d)) in directions
(v0, . . . , vd) ⊂ L((R1+d)), and which mapped the set of group-like elements G(R1+d) into itself.
In the same spirit, we aim to define a map Mv which translates elements in H∗ in directions
(v0, . . . , vd) ⊂ B∗, and which likewise maps G into itself.

Note that our construction of Tv relied on the fact that any linear map M : R1+d 7→ T ((R1+d))
extended uniquely to an algebra morphism M : T ((R1+d)) 7→ T ((R1+d)) (for the product ⊗̇). We
note here that no such universal property holds for H∗; indeed, there exists a canonical injective
algebra morphism

ı : T ((R1+d)) 7→ H∗

ı : ei 7→ •i
(3)

which embeds T ((R1+d)) into a strict subalgebra of H∗.
Specifically, we can see that ı is injective by considering the space B∗` ⊂ B∗ of linear trees, i.e.,

trees of the form [. . . [•i1 ]•i2 ] . . .]•ik . Then there is a natural projection π` : H∗ 7→ B∗` , and one
can readily see that π` ◦ ı is a vector space isomorphism (this is the same isomorphism described
in Remark 2.7 of [HK15]). To see further that the image of T ((R1+d)) under ı is not all of H∗, it
suffices to observe that the linear tree [•i]•j is not in the algebra generated by {•i}1+d

i=1 .

2The reader may wish for a more unified notation of these spaces. However, it does not appear wise to deviate
from established notation in the geometric rough path literature, nor do we want to change notation from [HK15],
which is our main source for branched rough paths.

Also, our use of the adjectives “primal” and “dual” is motivated by viewing the rough path state space as primal,
see Section 1.3, whereas words/trees are viewed as dual objects. This is somewhat the other way round in [HK15],
wherer these spaces were introduced as H∗ and H, respectively. No confusion will arise of this.
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Remark 5. The embedding ı arises naturally in the context of branched rough paths as this is
essentially the embedding used in [HK15] to realise geometric rough paths as branched rough paths
(though note ı in [HK15] denotes π` ◦ ı in our notation).

Remark 6. While the above argument shows that (B, [·, ·]) is clearly not isomorphic to L(R1+d) as
a Lie algebra, it is a curious and non-trivial fact that (B, [·, ·]) is isomorphic to a free Lie algebra
generated by another subspace of B. Correspondingly, (H, ?), being isomorphic to the universal
enveloping algebra of B, is isomorphic to a tensor algebra (see [Foi02] Section 8, or [Cha10]).

It follows form the above discussion that given a map M : R1+d 7→ H∗, even one whose range is
in B∗, there is in general no canonical choice of how to extend M to elements outside ı(T ((R1+d)))
if we only demand that the extension M : H∗ 7→ H∗ is an algebra morphsim (moreover, without
calling on Remark 6, it is a priori not even clear that such an extension always exists).

Example 7. Consider the 1 + d = 1 (i.e., a single label 0), and the map M : {•0, [•0]•0} 7→ B∗
given by

M : •0 7→ •0
M : [•0]•0 7→ •0.

Since
•0 ? •0 = [•0]•0 + 2 •0 •0,

we may extend M to an algebra morphism on the truncated space H2 7→ H2 by setting

M(•0•0) =
1

2
([•0]•0 + 2 •0 •0 − •0) .

This example shows that, on the level of the truncated algebras, there is not a unique algebra mor-
phism above the identity map id : •0 7→ •0.

Of course it is not clear from the above that the identity map id : •0 7→ •0 can extend in a
non-trivial way to an algebra morphism on all of H∗ 7→ H∗, but such extensions will always exist
due to Remark 6.

In what follows, we address this non-uniqueness issue by demanding a finer structure on the
extension of M , namely that M : B∗ 7→ B∗ is a pre-Lie algebra morphism. The notion of a
pre-Lie algebra will be recalled in the following subsection, and the significance of preserving the
pre-Lie product on B∗ will be made precise in Section 5.2. For now we simply state that this is
a natural condition to demand given the role of pre-Lie algebras in control theory and Butcher
series [CEFM11, Man11].

3.2.2 The free pre-Lie algebra over R1+d

Definition 8. A (left) pre-Lie algebra is a vector space V with a bilinear map . : V × V 7→ V ,
called the pre-Lie product, such that

(x . y) . z − x . (y . z) = (y . x) . z − y . (x . z), ∀x, y, z ∈ V.

That is, the associator (x, y, z) := (x . y) . z − x . (y . z) is invariant under exchanging x and y.

One can readily check that every pre-Lie algebra (V, .) induced a Lie algebra (V, [·, ·]) consisting
of the same vector space V with bracket [x, y] := x . y − y . x.
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Example 9. A basic example of a pre-Lie algebra is the space of smooth vector fields on Re with
the product (fi∂i) . (fj∂j) := (fi∂ifj)∂j. The induced bracket is the usual Lie bracket of vector
fields.

The space of trees B can be equipped with a (non-associative) pre-Lie product y: B × B 7→ B
defined by

τ1 y τ2 =
∑
τ

n(τ1, τ2, τ)τ ,

where the sum is over all trees τ ∈ B and n(τ1, τ2, τ) is the number of single admissible cuts of τ
for which the branch is τ1 and the trunk is τ2. Equivalently, y is given in terms of ? by

τ1 y τ2 = πB(τ1 ? τ2),

where πB : H 7→ B is the projection onto B.
It holds that (B,y) indeed defines a Lie algebra for which

[τ1, τ2] := τ1 y τ2 − τ2 y τ1 = τ1 ? τ2 − τ2 ? τ1,

i.e., the Lie algebra structures on B induced by ? and y coincide. Moreover since y respects the
grading of B, we can naturally extend y to a bilinear map on the space of series, so that (B∗,y)
is also a pre-Lie algebra.

We now recall the following universal property of (B,y) first established by Chapoton and
Livernet [CL01] Corollary 1.10 (see also [DL02] Theorem 6.3).

Theorem 10. The space (B,y) is the free pre-Lie algebra over R1+d.

An equivalent formulation of Theorem 10 is that for any pre-Lie algebra (V, .) and linear map
M : R1+d 7→ V , there exists a unique extension of M to a pre-Lie algebra morphism M : (B,y) 7→
(V, .).

3.2.3 Construction of the translation map

An immediate consequence of Theorem 10 is the following.

Theorem 11. Every linear map M : R1+d 7→ B∗ extends to a unique algebra morphism M : H∗ 7→
H∗ whose restriction to B∗ is a pre-Lie algebra morphism from B∗ to itself.

Proof. By Theorem 10, M extends uniquely to a pre-Lie algebra morphism M : B 7→ B∗. Recall
that for a Lie algebra g, the universal enveloping algebra U(g) is the (unique up to isomorphism)
algebra such that g embeds into U(g), and for any algebra A, every Lie algebra morphism f : g 7→ A
extends uniquely to an algebra morphism f : U(g) 7→ A. Recall also that, by the Milnor-Moore
theorem, (H, ?) is isomorphic to the universal enveloping algebra of (B, [·, ·]).

It thus follows that M extends further to a unique algebra morphism M : (H, ?) 7→ (H∗, ?).
Finally, since M necessarily does not decrease the degree of every element x ∈ H, we obtain a unique
extension M : H∗ 7→ H∗ for which the restriction M : B∗ 7→ B∗ is a pre-Lie algebra morphism as
desired.

We can finally define a natural translation map Mv : H∗ 7→ H∗ analogous to Tv.

15



Definition 12. For v = (v0, . . . , vd) ⊂ B∗, define Mv : H∗ 7→ H∗ as the unique algebra morphism
obtained in Theorem 11 from the linear map

Mv : R1+d 7→ B∗

Mv : •i 7→ •i + vi, ∀i ∈ {0, . . . , d}.

Example 13. Let us illustrate how the construction works in the case of two nodes with a single
label 0. Since Mv is constructed as pre-Lie algebra morphism, we compute

Mv

(
[•0]•0

)
= Mv (•0 y •0) = Mv (•0) yMv (•0) = (•0 + v0) y (•0 + v0) .

Since Mv is in addition an algebra morphism w.r.t. ? we have

(•0 + v0) ? (•0 + v0) = (Mv•0) ? (Mv•0) = Mv (•0 ? •0) = Mv

(
2 •0 •0 + [•0]•0

)
from which we can uniquely determine Mv (•0•0).

As in the previous section, we shall often be concerned with the case that vi = 0 for i = 1, . . . , d
and v0 takes a special form. We again make precise whenever such a condition is in place by writing,
for example, v = v0 ∈ BN (Rd).

We observe the following immediate properties of Mv, analogous to those of Tv:

• Since Mv is an algebra morphism which preserves the Lie algebra B∗, it holds that Mv maps
G into G;

• Mv ◦Mu = Mv+Mv(u), where we write Mv(u) = (Mv(u0), . . . ,Mv(ud)). In particular, Mv+u =

Mv ◦Mu for all v = v0, u = u0 ∈ B∗(Rd);

• For every integer N ≥ 0, Mv induces a well-defined algebra morphism MN
v : HN 7→ HN ,

which maps GN into GN ;

• Recall the embedding ı : T ((R1+d)) 7→ H∗ from (3). Then for all v = (v0, . . . , vd) ⊂ L∗, it
holds that Mı(v) ◦ ı = ı ◦ Tv (as both are morphisms from T ((R1+d)) to H∗ which agree on
e0, . . . , ed).

Lemma 14. The map Mv : H∗ 7→ H∗ is a Hopf algebra morphism.

Remark 15. We note that in the following proof, we only use the fact that Mv is an algebra
morphism from H∗ to itself which preserves the space of primitive elements B∗, and so do not
directly use the fact that Mv preserves the pre-Lie product of B∗.

Proof. By construction, Mv respects the product ? of H∗. To show that the maps (Mv ⊗Mv)∆�
and ∆�Mv agree, note that it suffices to show they agree in H. In turn, their restrictions to H
are algebra morphisms (H, ?) 7→ (H∗, ?), and, since (H, ?) is the universal enveloping algebra of its
space of primitive elements B by the Milnor-Moore theorem, it suffices to show that

(Mv ⊗Mv)∆�τ = ∆�Mvτ , ∀τ ∈ B.

But this is immediate since Mv maps B∗ into itself and Mv(1) = 1.
We have now shown that Mv is a bialgebra morphism. It now follows from general principles

([Pre16] Theorem 2.14) that Mv also commutes with the antipode (though this also follows from a
direct argument identical to the proof of Lemma 2).
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3.3 Dual action on the Connes–Kreimer Hopf algebra H
As in Section 2.3, we now wish to describe the dual map M∗v : H 7→ H for which

〈Mvx, y〉 = 〈x,M∗v y〉, ∀x ∈ H∗, ∀y ∈ H.

For simplicity, we again consider in detail only the special case vi = 0 for i = 1, . . . , d (but see
Remark 19 for a description of the general case).

Let A denote the unital free commutative algebra generated by the trees τ ∈ B. We let 1 and ·
denote the unit element and product of A respectively. The algebra A plays here the same role as
the algebra S in Section 2.3.

Remark 16. Although the algebras (A, ·) and (H,�) are isomorphic, they should be thought of as
separate spaces and thus we make a clear distinction between the two.

For a tree τ ∈ B, we let D(τ) denote the set of all elements

τ1 · . . . · τk ⊗ τ̃ ∈ A⊗ B

where τ1, . . . , τk is formed from all non-empty disjoint collections of subtrees of τ (including subtrees
consisting of a single vertex), and τ̃ is the tree obtained by contracting every subtree τ i to a single
node which is then labelled by 0 (note that 1⊗ τ , corresponding to k = 0, is also in D(τ)).

Consider the linear map δ : H 7→ A⊗H defined for all trees τ ∈ B by

δτ =
∑

τ1·...·τk⊗τ̃∈D(τ)

τ1 · . . . · τk ⊗ τ̃ ,

and then extended multiplicatively to all of H, where we canonically treat A ⊗ H as an algebra
with multiplication MA⊗H(τ1 ⊗ τ̂1 ⊗ τ2 ⊗ τ̂2) := (τ1 · τ2)⊗ (τ̂1 � τ̂2) for τ1, τ2 ∈ A, τ̂1, τ̂2 ∈ H.

For example,

δ
i

kj

=1⊗
i

kj

+
i
⊗

0

kj

+
j
⊗

i

k0

+
k
⊗

i

0j

+
i

k

⊗
0

j

+
i

j

⊗
0

k

+
i

kj

⊗
0

+
i
·
j
⊗

0

k0

+
i
·
k
⊗

0

0j

+
j
·
k
⊗

i

00

+
j
·

i

k

⊗
0

0

+
k
·

i

j

⊗
0

0

+
i
·
j
·
k
⊗

0

00

.

(4)

Proposition 17. Let v = v0 ∈ B∗. The dual map M∗v : H 7→ H is given by

M∗v τ = (v ⊗ id) ◦ δ(τ),

where v(τ1 · . . . · τk) := 〈τ1, v〉 . . . 〈τk, v〉 and v(1) := 1.
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For the proof of Proposition 17, we require the following combinatorial lemma. We note that
similar “cointeraction” results appear for closely related algebraic structures in [CEFM11, Thm
8] and [BHZ16, Thm 5.37]. We will particularly discuss in further detail the link with the work
of [BHZ16] in Section 6.

Lemma 18. Let y∗: B 7→ B ⊗ B denote the adjoint of y. It holds that

(id⊗y∗)δ =M1,3(δ ⊗ δ) y∗, (5)

where M1,3 : A⊗B ⊗A⊗B 7→ A⊗B ⊗B is the linear map defined by M1,3(τ1 ⊗ τ2 ⊗ τ3 ⊗ τ4) =
τ1τ3 ⊗ τ2 ⊗ τ4.

Proof. Note that

y∗ τ =
∑
c

bc ⊗ τ c

where the sum runs of all single admissible cuts c of τ , and bc is the branch, τ c the trunk of c.
Consider a single cut c of τ across an edge e. Let τ c denote the sum of the terms of (id⊗ y∗)δτ
obtained by contracting all collections of subtrees of τ which do not contain e, followed by a cut
(on the second tensor) along the edge e (which necessarily remains). One immediately sees that τ c

is equivalently given by first cutting along e, and then contracting along all collections of subtrees
of bc and τ c, and then grouping the extracted subtrees together, i.e., τ c =M1,3(δ ⊗ δ)(bc ⊗ τ c). It
finally remains to observe that summing over all single cuts c gives (5).

Proof of Proposition 17. Denote by

Φ = (v ⊗ id) ◦ δ : B 7→ B.

Since Mv is a Hopf algebra morphism by Lemma 14, it follows that so is M∗v . In particular, it
suffices to show that Φτ = M∗v τ for every tree τ ∈ B.

To this end, observe that Lemma 18 implies y∗ Φ = (Φ ⊗ Φ) y∗, from which it follows that
Φ∗ : B∗ 7→ B∗ is a pre-Lie algebra morphism. Furthermore, for every tree τ ∈ B

∀i ∈ {1, . . . , d}, 〈Φ∗•i, τ〉 = 〈•i,Φτ〉 = 〈•i, τ〉 = 〈Mv•i, τ〉;
〈Φ∗•0, τ〉 = 〈•0,Φτ〉 = 〈•0, τ〉+ 〈v, τ〉 = 〈Mv•0, τ〉.

It follows that Φ∗ is a pre-Lie algebra morphism on (B∗,y) which agrees with Mv on the set
{•0, . . . , •d} ⊂ B∗. Hence, by the universal property of (B,y) (Theorem 10), Φ∗ agrees with Mv

on all of B∗, which concludes the proof.

Remark 19. A similar result to Proposition 17 holds for the general case v = (v0, . . . , vd). The
definition of δ changes in the obvious way that in the second tensor, instead of replacing every
subtree by the node •0, one instead replaces every combination of subtrees by all combinations of •i,
i ∈ {0, . . . , d}, while in the first tensor, one marks each extracted subtree τ j with the corresponding
label i ∈ {0, . . . , d} that replaced it, which gives (τ j)i (so the left tensor no longer belongs to A
but instead to the free commutative algebra generated by (τ)i, for all trees τ ∈ B and labels i ∈
{0, . . . , d}). Finally the term 〈τ1, v〉 . . . 〈τk, v〉 would then be replaced by 〈(τ1)i1 , vi1〉 . . . 〈(τk)ik , vik〉.
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4 Examples

4.1 Itô-Stratonovich conversion

As an application of Proposition 17, we illustrate how to re-express iterated Stratonovich integrals
(and products thereof) over some interval [s, t] as Itô integrals. Consider the R1+d-valued process
Bt = (B0

t , B
1
t , . . . , B

d
t ), where (B1

t , . . . , B
d
t ) is a standard Rd-valued Brownian motion, and B0

t ≡ t
denotes the time component. Let BStrat denote the enhancement of Bt to an α-Hölder branched
rough path, α ∈ (0, 1/2), using Stratonovich iterated integrals. For example,〈

BStrat
s,t , τ

〉
=

∫
· · ·
∫

s<t1<···<tm<t

◦ dBi1t1 ◦ · · · ◦ dB
im
tm (6)

for the linear tree τ = [. . . [•i1 ]•i2 . . .]•im , i1, . . . , im ∈ {0, . . . , d},

and 〈
BStrat
s,t , τ

〉
=

∫ t

s

BjuB
k
u ◦ dBiu

for τ = [•j•k]•i , i, j, k ∈ {0, . . . , d}.

Similarly, we define BItô in exactly the same way using Itô integrals.

Remark 20. In view of the Hölder regularity, only the first 2 levels of BStrat, call this B(2);Strat,
need to be constructed by stochastic integration. The “full” T ((Rd))-valued (geometric) rough paths
BStrat is then obtained from B(2);Strat via the extension theorem in rough path theory. Strictly
speaking, however, one needs to verify that the so supplied rough path, on [s, t] and evaluated
against τ , for |τ | > 2, agrees a.s. with the object defined by iterated Stratonovich integration
in (6). This can done by showing

〈
BStrat
s,t , τ

〉
. |t − s|α|τ | a.s., together with appealing to the

uniqueness part of the extension theorem. 3

For a tree τ ∈ B, recall the definition of D(τ) ⊂ A ⊗ B from Section 3.3 (which was used to
define δ). Consider the subset D̂(τ) ⊆ D(τ) containing 1 ⊗ τ and all τ1 · . . . · τk ⊗ τ̃ ∈ D(τ) for
which τ j ∈ {[•1]•1 , . . . , [•d]•d} for all 1 ≤ j ≤ k.

Proposition 21. For every tree τ ∈ B it holds that

〈BStrat
s,t , τ〉 =

∑
τ1·...·τk⊗τ̃∈D̂(τ)

(
1

2

)k
〈BItô

s,t , τ̃〉. (7)

Proof. Consider the sum of linear trees v = v0 = 1
2

∑d
i=1[•i]•i ∈ B2(Rd). One can readily verify

that BStrat = Mv(B
Itô), understood in the pointwise sense BStrat

s,t = Mv(B
Itô
s,t ). Indeed, both BStrat

and Mv(B
Itô) are a.s. “full” α-Hölder rough path, where this fact - in the case of Mv(B

Itô) - either
requires an (easy) check by hand, or an appeal to Theorem 28, (ii), below. Since, by construction,
both agree on the first two levels, and α ∈ (1/2, 1/3), we see that BStrat and Mv(B

Itô) must be
equal, a.s., thanks to the uniqueness part of the extension theorem.

3In the geometric rough path case only, one can give an argument based on the fact that the full rough path is
the solution to a linear RDE, knowing that solutions to RDEs driven by Stratonovich Brownian rough paths are
solutions to the corresponding Stratonovich SDEs. No such argument works in the branched case.
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It then follows by Proposition 17 that

〈BStrat
s,t , τ〉 = 〈BItô

s,t ,M
∗
v τ〉 =

∑
τ1·...·τk⊗τ̃∈D(τ)

〈BItô
s,t , 〈v, τ1〉 . . . 〈v, τk〉τ̃〉.

Since 〈v,1〉 = 1, while 〈v, τ j〉 = 1/2 if τ j ∈ {[•1]•1 , . . . , [•d]•d} and zero otherwise, we obtain
precisely (7).

Example 22. Consider the case τ = [•j•k]•i so that

〈BStrat
s,t , τ〉 =

∫ t

s

BjuB
k
u ◦ dBiu.

Recalling the definition of D̂(τ) and the explicit form of δτ in (4), we see that if i is distinct from
both j, k, then only 1⊗ τ remains in D̂(τ), and so (in trivial agreement with stochastic calculus)

〈BStrat
s,t , τ〉 = 〈BItô

s,t , τ〉.

On the other hand,if i = j 6= k, an additional term [•i]•i ⊗ [•k]•0 appears in D̂(τ), and so

〈BStrat
s,t , τ〉 = 〈BItô

s,t , τ〉+
1

2

∫ ∫
s<t1<t2<t

dBkt1dB
0
t2

= 〈BItô
s,t , τ〉+

1

2

∫ t

s

Bkudu.

The case i = k 6= j is identical. At last, in the case i = j = k, looking at δτ shows that

〈BStrat, τ〉 = 〈BItô, τ〉+
1

2

∫ ∫
s<t1<t2<t

dBit1dB
0
t2 +

1

2

∫ ∫
s<t1<t2<t

dBit1dB
0
t2

= 〈BItô, τ〉+

∫ t

s

Biudu.

Remark 23. When τ = [. . . [•i1 ]•i2 . . .]•im is a linear tree, this is in agreement with [BA89] Propo-

sition 1. In fact, by considering general semi-martingales X1
t , . . . , X

d
t and adding extra labels •i,j ,

1 ≤ i ≤ j ≤ d (thus increasing the underlying dimension from d to d + d(d + 1)/2) to encode
the quadratic variants [Xi, Xj ], the above procedure (in the more general setting with elements
vij = [•i]•j ∈ B2(Rd), see Remark 19), immediately provides an Itô-Stratonovich conversion for-
mula for general semi-martingales.

4.2 Lévy rough paths

Note that the example in the previous section can be viewed as follows: BItô and BStrat are both
G2-valued Lévy processes which are branched p-rough paths, 2 < p < 3, and one can recover the
signature of one from the other by a suitable (deterministic) translation map Mv : G 7→ G. We now
consider a generalisation of this setting to arbitrary GN -valued Lévy processes, which have already
been studied in the context of rough paths in [FS14, Che15].
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Let τ1, . . . , τm be a basis for BN consisting of trees, which we identify with left-invariant vector
fields on GN , where we suppose for convenience that τ1 = •0. Recall that GN is a homogenous
group in the sense of [FS82] (cf. [HK15] Remark 2.15).

Recall that to every (left) Lévy process X in GN without jumps and with identity starting point
(i.e., X0 = 1GN a.s.) there is an associated Lévy triplet (A,B, 0), where B =

∑m
i=1B

iτ i is an
element of BN and (Ai,j)mi,j=1 is a correlation matrix. Then the generator of X is given for all

f ∈ C2
0 (GN ) by (see, e.g., [Lia04])

lim
t→0

t−1E [f(x ?Xt)− f(x)] =

m∑
i=1

Bi(τ if)(x) +
1

2

m∑
i,j=1

Ai,j(τ iτ jf)(x).

Remark 24. We have assumed here that X is without jumps only for simplicty. Indeed, one can
treat any GN -valued càdlàg process X of finite p-variation (in th rough path sense) as a branched
p-rough path (albeit in general non-canonically) using the notion of a path function [Che15].

Lemma 25. Let M : HN 7→ HN be an algebra morphism which preserves GN and X a Lévy process
in GN with Lévy triplet (A,B, 0).

Then M(X) is the (unique in law) GN -valued (left) Lévy process with generator given for all
f ∈ C2

0 (GN ) by

lim
t→0

t−1E [f(x ?MXt)− f(x)] =

m∑
i=1

Bi(Mτ if)(x) +
1

2

m∑
i,j=1

Ai,j(Mτ iMτ jf)(x). (8)

Proof. The fact that MX is a Lévy process is immediate from the fact that X is a Lévy process
and that M : GN 7→ GN is a (continuous) group morphism. It thus only remains to show (8), where
we may suppose without loss of generality that x = 1GN . To this end, define h = f ◦M and observe
that

lim
t→0

t−1E [f(MXt)− f(1GN )] =

m∑
i=1

Bi(τ ih)(1GN ) +
1

2

m∑
i,j=1

Ai,j(τ iτ jh)(1GN )

(note that in general h might fail to decay at infinity and thus not be an element of C2
0 (GN ),

however the above limit is readily justified by taking suitable approximations). Using the fact that
(τh)(x) = d

dth(x ? etτ ) |t=0, one can easily verify that for all σ, τ ∈ BN and x ∈ GN

(τh)(x) = (Mτf)(Mx),

(στh)(x) = ((Mσ)(Mτ)f)(Mx),

from which (8) follows.

We now specialise to the case that (Ai,j)mi,j=1 is a correlation matrix for which Ai,i = 0 whenever
τ i has more than bN/2c nodes, which is a necessary and sufficient condition for the sample paths
of X to a.s. have finite p-variation for all N < p < N + 1 [Che15]. Assume also that Ai,i = 0
whenever τ i contains a node with label 0, and that B = τ1 = •0, so that for all f ∈ C2

0 (GN )

lim
t→0

t−1E [f(x ?Xt)− f(x)] = (τ1f)(x) +
1

2

m∑
i,j=1

Ai,j(τ iτ jf)(x).
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The drift term (τ1f)(x) should be interpreted as the time component of the branched rough path
X (which also explains the zero-diffusion condition in the direction of trees with a label 0).

Any other GN -valued Lévy process X̃ without jumps and the same correlation matrix (Ai,j)mi,j=1

is also a branched p-rough, and its generator differs from that of X only by a drift term. As a
consequence of Lemma 25, we see that every such X̃ can be constructed by applying a (deterministic)
translation map Mv to X. In particular, the full signature of X̃ can be recovered from that of X,
generalising the example from Section 4.1.

Corollary 26. Let v = v0 ∈ BN and Mv : HN 7→ HN the truncation of the translation map from
Section 3.2.3.

Then Mv(X) is the (unique in law) GN -valued (left) Lévy process with generator given for all
f ∈ C2

0 (GN ) by

lim
t→0

t−1E [f(x ?Mv(Xt))− f(x)] = (•0 + v)f(x) +
1

2

m∑
i,j=1

Ai,j(τ iτ jf)(x).

Remark 27. The statement of the corollary likewise holds for every algebra morphism M : HN 7→
HN satisfying M•0 = •0 + v and Mτ = τ for all forests τ ∈ HN without a label 0, which is a
manifestation of the final point of the upcoming Theorem 28 (ii).

5 Rough differential equations

5.1 Translated rough paths are rough paths

We now show that the maps Tv and Mv act on the spaces of weakly geometric and branched rough
paths. Throughout, we regard these rough paths as fully lifted, as can always (and uniquely) be
done thanks to the extension theorem. The action of our translation operator is then pointwise, i.e.

(MvX)s,t := Mv(Xs,t),

and similarly for the geometric rough path translation operator T . In the following, we let |w|
denotes the length of a word w ∈ T (R1+d) (resp. number of nodes in a forest w ∈ H), and equip
the space of α-Hölder weakly geometric (resp. branched) rough paths with the inhomogeneous
Hölder norm

||X||α-Höl;[s,t] = max
|w|≤b1/αc

sup
u6=v∈[s,t]

|〈Xu,v, w〉|
|v − u||w|α

,

where the max runs over all words w ∈ T (R1+d) (resp. forests w ∈ H) with |w| ≤ b1/αc.

Theorem 28. Let α ∈ (0, 1] and X a α-Hölder weakly geometric (resp. branched) rough path over
R1+d

(i) Let v = (v0, v1 . . . , vd) be a collection of elements in LN (R1+d) (resp. in BN ).

Then TvX (resp. MvX) is a α/N -Hölder weakly geometric (resp. branched) rough path
satisfying

||TvX||α/N-Höl;[s,t] (resp. ||MvX||α/N-Höl;[s,t]) ≤ Cv ||X||α-Höl;[s,t] (9)

for a constant Cv depending polynomially on v.

22



(ii) Let v = (v0, 0, . . . 0) for v0 ∈ LN
(
R1+d

)
(resp. v0 ∈ BN ). Suppose that X satisfies

||X||(1,α)-Höl;[s,t] := max
|w|≤b1/αc

sup
u6=v∈[s,t]

|〈Xu,v, w〉|
|v − u|(1−α)|w|0+α|w| <∞, (10)

where the max runs over all words w ∈ T (R1+d) (resp. forests w ∈ H) with |w| ≤ b1/αc and
|w|0 denotes the number of times the letter e0 (resp. label 0) appears in w.

Then TvX (resp. MvX) is a α ∧ (1/N)-Hölder weakly geometric (resp. branched) rough path
over R1+d satisfying

||TvX||α∧(1/N)-Höl;[s,t] (resp. ||MvX||α∧(1/N)-Höl;[s,t]) ≤ Cv ||X||(1,α)-Höl;[s,t]

for a constant Cv depending polynomially on v.

Finally, in the setting of branched rough paths, let M : H∗ 7→ H∗ be any algebra morphism
which preserves G and such that Mτ = τ for every forest τ ∈ H without a label 0, and
M•0 = Mv•0 = •0 + v0. Then MX = MvX.

Before the proof of the theorem, several remarks are in order.

Remark 29. In Theorem 28 we treat α-Hölder weakly geometric rough paths as already enhanced
with their iterated integrals. Thus Xs,t is an element of T ((R1+d)) and (TvX)s,t is just the image
of Xs,t under Tv. Therefore the statement of the proposition is that not only does (TvX)s,t have
the correct regularity on the first n = b1/αc levels to qualify as a rough path but that all further
iterated integrals are already given, in a purely algebraic way, by (TvX). That said, if one takes the
level-n view, writing πn(TvX) for the translation only defined as a level-n rough path, the extension
theorem asserts that there is a unique full rough path lift, say Z. But then, by the uniqueness part
of the extension theorem, Z = TvX so that our construction is compatible with the rough path
extension.

The same remark applies to branched rough paths, where we recall that, as a particular conse-
quence of the sewing lemma, every α-Hölder branched rough paths admits a unique lift (extension)
to all of H∗ ([Gub10] Theorem 7.3, or [HK15] p.223). We would also like to point out that Boedi-
hardjo [Boe15] recently extended a result on the factorial decay of lifts of geometric rough paths
(first shown in [Lyo98]) to the branched setting, answering a conjecture in [Gub10].

Remark 30. In the case of geometric rough paths the previous remark points to an alternative
(analytic) construction of the translation operator, first defined on a smooth path X identified with
its full lift X ≡ (1, X1, X2, ...), and subsequently extended to geometric rough paths by continuity.
We stick to the case of one Lie polynomial v0 = v = (v1, v2, ...vN ) which we want to add at constant
speed to X. At level 1, obviously (TvX)1

s,t = X1
s,t + (t − s)v1 and (TvX) is a Lipschitz path (a

1-rough path). We then perturb the canonically obtained (extended) 2-rough path which in turn
we can perturb on the second level by adding (t−s)v2, thereby obtaining a (non-canonical) 2-rough
path. Iterating this construction allows us to “feed in, level-by-level” the perturbation v until we
arrive at a rough path TvX with regularity α-Höl ∧ (1/N). We leave it to the reader to check that
this construction yields indeed TvX. The downside of this construction is its restricted to geometric
rough paths, not to mention its repeated use of the (analytic) extension theorem, in a situation
that is within reach of purely algebraic methods.

Remark 31. The condition (10) on X is very natural and arises by “colifting” a Lipschitz path X0

with a d-dimensional α-Hölder weakly geometric rough path. Moreover, this is a special case of
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a weakly geometric (p, q)-rough path (see [FV10] Section 9.4), and the statement can readily be
extended to this general setting. One can also make a statement about the continuity of the maps
(v,X) 7→ TvX and (v,X) 7→MvX in suitable rough path topologies. However these points will not
be explored here further.

Remark 32. The proof of Theorem 28 part (i) will reveal that the only properties required of Tv
(resp. Mv) is that it be an algebra morphism, preserves group-like (or equivalently primitive)
elements, is upper-triangular (increases grading), and that it increases the grade of every word of
length k (resp. forest with k nodes) to at most Nk. While already the first of these conditions
uniquely determines Tv once Tv(ei) = ei + vi is chosen, we emphasise that without demanding that
Mv is a pre-Lie algebra morphism, there is freedom to how Mv can be extended to satisfy these
properties even after Mv(•i) = •i + vi is chosen.

In general, different choices of Mv will give rise to different branched rough paths Mv(X). There
is a notable exception to this, which is when X is the canonical lift of a Lipschitz (or more generally
α-Hölder, α ∈ (1/2, 1]) path in R1+d. Then for every algebra morphism M : H∗ 7→ H∗ such that
M•i = Mv•i = •i+vi, it holds that MX = MvX. Indeed, in this case X is necessarily in the image
of G(R1+d) ⊂ T ((R1+d)) under the embedding (3), and since M and Mv agree on the generators
•i, it follows that MX = MvX (this discussion relates of course to the final point of Theorem 28
part (ii), where upon demanding additional structure on X, we see that all maps M satisfying the
specified properties agree on X).

Remark 33. In [BCF17], two examples are studied of families of random bounded variation paths
(Xε)ε>0 whose canonical lifts to geometric rough paths (Xε)ε>0 diverge as ε → 0. In particular,
ODEs driven by Xε in general also fail to converge. However, for suitably chosen vε = vε0 ∈ LN (Rd),
for which in general limε→0 |vε| =∞, one obtains convergence of the translated rough paths TvεX

ε.
In particular, it follows from the upcoming Theorem 36 that solutions to modified ODEs driven
by Xε, with terms generally diverging as ε → 0, converge to well-defined limits. In this specific
context, the translation maps Tvε are precisely the renormalization maps occurring in regularity
structures when applied to the setting of SDEs; we shall make this connection precise in Section 6.

Remark 34. Observe that the level-N lift of a weakly geometric rough path is precisely the solution
to the linear RDE

dYt = L(Yt)dXt, Y0 = 1 ∈ TN (R1+d),

where L = (L0, . . . , Ld) are the linear vector fields on TN (R1+d) given by right-multiplication by
(e0, . . . , ed) respectively. In much the same way, the level-N truncation of the translated path
Yt := πN (TvXt) is the solution to the modified linear RDE

dYt = Lv(Yt)dXt, Y0 = 1 ∈ TN (R1+d),

where now Lv = (Le0+v0
, . . . , Led+vd) are given by right-multiplication by (e0 + v0, . . . , ed + vd)

(which is a special case of the upcoming Theorem 36).
We note however that the same conclusion does not hold for branched rough paths. Indeed,

even the level-N lift of a branched rough path X, N ≥ b1/αc, is in general not the solution of a
linear RDE driven by X, which can easily be seen from the fact that linear RDEs are completely
determined by the values 〈Xs,t, τ〉 where τ ranges over all linear trees τ = [. . . [•i1 ]•i2 . . .]•im (see,
e.g., [HK15] Example 3.11). A simple example is any branched rough path X for which 〈X, τ〉 ≡ 0
for all linear trees τ (e.g., the 1

3 -Hölder branched rough path for which 〈Xs,t, τ〉 = t − s for some
τ = [•i•j ]•k and zero for every other tree τ of size |τ | ≤ 3), so that every linear RDE driven by X
is constant.
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Proof of Theorem 28. (i) We are required to show that

1. TvX takes values in G(R1+d),

2. Chen’s relation (TvX)s,t⊗̇(TvX)t,u = (TvX)s,u holds, and

3. the analytic condition (9).

The first two properties follow immediately from the analogous properties of X and the fact that
Tv
∣∣
G(R1+d)

: G(R1+d) 7→ G(R1+d) is group morphism. To verify the final property, fix a word

w ∈ T (R1+d). It readily follows from Proposition 3 and Remark 4 that T ∗vw =
∑
i λiwi where

λi ∈ R and wi is a word which satisfies N |wi| ≥ |w|. However

|〈Xs,t, wi〉| ≤ ||X||α-Höl;[s,t] |t− s|
α|wi|,

and thus
|〈(TvX)s,t, w〉| = |〈Xs,t, T

∗
vw〉| ≤ C ||X||α-Höl;[s,t] |t− s|

α|w|/N

with C depending only on w and (polynomially) on v. It follows that TvX is indeed a α/N -Hölder
rough path, and the desired estimate (9) follows by running over all w with |w| ≤ bN/αc. The
proof for the case of branched rough paths is identical, using now Proposition 17.

The proof of the first statement of (ii) is virtually the same, except we now observe that Propo-
sition 3 and the condition v = v0 ∈ LN (R1+d) imply that T ∗vw =

∑
i λiwi where λi ∈ R and wi is

a word which satisfies
N |wi|0 + (|wi| − |wi|0) ≥ |w|.

The first statement of (ii) now follows from (10), and the proof for the case of branched rough paths
is again identical.

To show the last point of (ii), consider the subspace Hk(Rd)⊕ 〈•0〉 ⊂ Hk spanned by •0 and all
forests τ ∈ Hk without a label 0. Observe that it suffices to show that for every k ≥ 0, the level-k
truncation πkX takes values in the subalgebra of Hk generated by Hk(Rd)⊕ 〈•0〉.

To this end, consider the space C̃∞ defined as the collection of all piecewise smooth paths
x : [0, T ] 7→ Gk for which ẋ ∈ Hk(Rd)⊕〈•0〉 (so that in fact ẋ ∈ Bk(Rd)⊕〈•0〉). For every partition
D = (t0, . . . , tm) ⊂ [0, T ], we can construct xD ∈ C̃∞ as the piecewise geodesic path (for the
Riemannian structure of Gk) whose increment over [ti, ti+1] is exp(πBk(Rd)⊕〈•0〉 log Xti,ti+1

). One

can verify that condition (10) guarantees that xD → πkX uniformly as |D| → 0. The conclusion now
follows since, by construction, xD takes values in the subalgebra generated by Bk(Rd)⊕ 〈•0〉.

5.2 Effects of translations on RDEs

Throughout this section, we assume that f = (f0, . . . , fd) is a collection of vector fields on Re which
are as regular as required for all stated operations and RDEs to make sense.

Observe that f induces a canonical map from LN (R1+d) to the space of vector fields Vect(Re)
which extends the map ei 7→ fi. Write fv for the image of v ∈ LN

(
Rd
)

under this map, e.g., for v =
[e1, e2], we have the vector field f[e1,e2] ≡ [f1, f2]. Given a collection v = (v0, . . . , vd) ⊂ LN (R1+d),
we write

fv = (fv0 , . . . , f
v
d ) = (fe0+v0 , . . . , fed+vd).

Similarly, f induces a canonical map from BN to Vect(Re) which extends •i 7→ fi using the pre-
Lie product . on Vect(Re) (recall from Example 9 that in coordinates

(
f i∂i

)
.
(
gj∂j

)
≡
(
f i∂ig

j
)
∂j).
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Once more write fv for the image of v ∈ BN under this map, e.g., for v = [•1]•2 = •1 y •2, we
have the vector field

f•1y•2 = f[•1]•2
≡ f1 . f2

(note that our notation fv agrees with that of [HK15] Section 3). Again given a collection v =
(v0, . . . , vd) ⊂ BN , we write

fv = (fv0 , . . . , f
v
d ) = (f•0+v0 , . . . , f•d+vd).

Remark 35. Treating LN (R1+d) (resp. BN ) as a nilpotent Lie (resp. pre-Lie) algebra, the map
considered above is not in general a Lie (resp. pre-Lie) algebra morphism into Vect(Re).

Theorem 36. (i) Let notation be as in Theorem 28 part (i). Then Y is an RDE solution flow
to

dY = f (Y ) d (TvX) (resp. dY = f (Y ) d (MvX))

if and only if Y is an RDE solution flow to

dY = fv (Y ) dX.

(ii) Let notation be as in Theorem 28 part (ii). Then Y is an RDE solution flow to

dY = f (Y ) d (TvX) (resp. dY = f (Y ) d (MvX))

if and only if Y is an RDE solution flow to

dY = fv(Y )dX ≡ f (Y ) dX + fv0 (Y ) dX0.

Remark 37. Since the space of weakly geometric rough paths embeds into the space of branched
rough paths using the map (3), the statements in Theorem 36 for weakly geometric rough paths
are a special case of those for branched rough paths. We make a distinction between the two cases
only for clarity.

Proof. For clarity, we first prove the statement for geometric rough paths and then generalise to
branched rough paths (although by Remark 37, it suffices to prove the statement only in the
branched case).

Observe that for weakly geometric rough paths, (i) will follow directly from the usual Euler
RDE estimate ([FV10] Corollary 10.15) once we show that∑

|u|≤b1/αc

〈Xs,t, u〉fvu(y) =
∑

|u|≤bN/αc

〈TvXs,t, u〉fu(y) + rs,t, ∀y ∈ Re, ∀s, t ∈ [0, T ], (11)

where |rs,t| = o(|t − s|) and where the sums run over any orthonormal basis of Lb1/αc(R1+d) and
LbN/αc(R1+d) respectively.

Consider for the moment that f = (f0, . . . , fd) is a collection of smooth vector fields, so that
Φf : u 7→ fu is a genuine Lie algebra morphism from L(R1+d) into Vect∞(Re). Hence, whenever f
are smooth, the maps Φf ◦Tv and Φfv are both Lie algebra morphisms from L(R1+d) into Vect∞(Re)
which furthermore agree on the generators ei. Thus Φf ◦ Tv = Φfv , and so∑

u

〈x, u〉fvu =
∑
u

〈Tvx, u〉fu, ∀x ∈ L(R1+d), (12)
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where both sums run over any orthonormal basis of L(R1+d). This proves (11) for smooth f =
(f0, . . . , fd). For the general case where f are only sufficiently regular for the stated RDEs to make
sense, we note that equality (12) is purely algebraic, so (11) can be readily deduced by truncation.

To extend this argument to the case of branched rough paths, (i) will follow directly from the
Euler estimate derived in [HK15] Proposition 3.8 once we show that∑

τ∈Bb1/αc
〈Xs,t, τ〉fvτ (y) =

∑
τ∈BbN/αc

〈MvXs,t, τ〉fτ (y) + rs,t, ∀y ∈ Re, ∀s, t ∈ [0, T ], (13)

where |rs,t| = o(|t− s|) and where the sums run over all trees τ in Bb1/αc and BbN/αc respectively.
As before, suppose first that f = (f0, . . . , fd) is a collection of smooth vector fields, so that

Φf : x 7→ fx ≡
∑
τ∈B〈x, τ〉fτ is a pre-Lie algebra morphism from B into Vect∞(Re). Hence,

whenever f are smooth, the maps Φf ◦Mv and Φfv are both pre-Lie algebra morphisms from B
into Vect∞(Re) which furthermore agree on the generators •i. Thus Φf ◦Mv = Φfv , and so∑

τ∈B
〈x, τ〉fvτ =

∑
τ∈B
〈Mvx, τ〉fτ , ∀x ∈ B.

As the above equality is purely algebraic, we again deduce (13) by truncation in the general case
where f are only sufficiently regular for the stated RDEs to make sense.

The desired result in (ii) for both geometric and branched rough paths follows in the same
way.
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6 Link with renormalization in regularity structures

We now recall several notions from the theory of regularity structures and draw a link between
the map δ from Section 3.3 and the coproduct ∆− associated to negative renormalization [BHZ16,
Hai16]. In particular, we demonstrate how negative renormalization maps on the regularity struc-
ture associated to branched rough paths carry a natural interpretation as rough path translations
(see Theorem 47 below).

6.1 Regularity structures

Regularity structures usually deal with (e.g. SPDE solutions) u = u(z) where z ∈ Rn (e.g. space-
time), u takes values in R (or Re). Equations further involve a β-regularizing kernel, and there
are d sources of noise, say ξ1, ..., ξd, of arbitrary (negative) order αmin, as long as the equation is
subcritical.

6.1.1 Generalities

We review the general (algebraic) setup in the case n = 1, β = 1 and αmin ∈ (−1, 0).

In the spirit of Hairer’s formalism, consider the equation

u(t) = u(0) +

(
K ∗

d∑
i=1

fi(u(·))ξi(·)

)
(t), t ∈ R, (14)

where u(t) is a real-valued function for which we solve, ξi(t) are driving noises, fi are smooth
functions on R (one could readily extend to the case that u takes values in Re and fi are vector
fields on Re), and K is a kernel which improves regularity by order β = 1.

Remark 38. The example to have in mind here is K(s) = exp(−λs)1s>0, which allows to incorporate
an additional linear drift term (“−λudt”), or of course the case λ = 0, i.e. the Heaviside step
function, which leads to the usual setting of controlled differential equations. We shall indeed
specialize to the Heaviside case in subsequent sections, as this simplifies some algebraic constructions
and so provides a clean link to rough path structures. For the time being, however, we find it
instructive to work with a general 1-regularizing K, as this illustrates the need for polynomials
decorations as well as symbols Jk, representing k-th derivatives of the kernel.

Our driving noises ξi(t) should be treated as distributions on R of regularity Cα−1 for some
α ∈ (0, 1) (which will later correspond to the case of α-Hölder branched rough paths). In the case
that α ≤ 1/2, due to the product fi(u)ξi, (14) is singular and thus cannot in general be solved
analytically. However the equation is evidently sub-critical in the sense of [Hai14], and so one can
build an associated regularity structure.

Introducing the symbols

We first collect all the symbols of the regularity structure required to solve (14) and which is
stable under the renormalization maps in the sense of [BHZ16]. Define the linear space

T = 〈W〉,

where W is the set of all rooted trees where every node carries a decoration k ∈ N∪ {0} and where
every edge which ends on a leaf may be (but is not necessarily) assigned a type tΞi , i ∈ {1, . . . , d}.
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An edge with type i corresponds to the driving noise ξi. Every other edge has a type tK which
means that it is associated to the kernel K. (For now, we only assume K is 1-regularizing, later
we will take it to be the Heaviside step function.) Also, each node has at most one incoming edge
with type belonging to {1, . . . , d}.4

To avoid confusion between the different meaning of trees inW and those introduced in Section 3,
we will color every tree inW blue. Every such tree has a corresponding symbol representation, e.g.,

tK ↔ ↔ I, tΞi ↔ ↔ Ξi, k
↔ Xk,

↔ I(I(Ξ1)I(Ξ2X
5)I(X7))X6,

where we implicitly drop the 0 decoration (↔ X0) from the nodes. It is instructive to check
that W provides an example of a structure built from a subcritical complete rule (in the sense
of [BHZ16] Section 5) arising from the equation (14). Indeed, we can give the set of rules used for
the construction of

R(Ξi) = {()}, R(I) = {([I]`), ([I]`,Ξi), ` ∈ N ∪ {0}, i ∈ {1, ..., d}}.

The notation [I]` is a shorthand notation for I, ..., I where I is repeated ` times.
We define a degree | · | associated to an edge type and a decorated tree. For edge types and

polynomials, we have
|Ξi| = α− 1, |I| = 1, |Xk| = k.

Then by recursion,

|I(τ)| = |τ |+ |I|,

∣∣∣∣∣∏
i

τ i

∣∣∣∣∣ =
∑
i

|τ i|.

For a non-recursive definition see [BHZ16] where the degree is described through a summation over
all the edge types and the decorations in the tree.

Remark 39. Remark that W ≡ WBHZr (the “r” in BHZr refers to reduced, in the terminology
of [BHZ16] these are trees without any extended decorations) will contain certain symbols which
do not arise if one follows the original procedure of [Hai14] (which, in some sense, is the most
economical way to build the structure):

WHai14 ⊂ WBHZr ⊂ WBHZ.

Indeed in [Hai14], the set of rules is not necessarily complete so one has to add terms by hand coming
from the renormalization procedure and in the end one works with a space W̄Hai14 lying between
WHai14 and WBHZr. For example, I(Ξi)I(Ξj), I(I(Ξk), and I() ≡ I(X0) do not appear in WHai14,
but all of these appear inWBHZr. These in turn are embedded inWBHZ, a set of trees with extended
decorations on the nodes and also colourings of the nodes which give more algebraic properties. In
the setting of [BHZ16], we would work with an additional symbol 1α for α ∈ R, representing an
extended decoration, which provides information on some “singular” (negative degree) tree which
has been removed, and all of these symbols are would be placed using a complete set of rules.

4This rules out symbols corresponding to products of noise, such as ΞiΞj with i, j ∈ {1, . . . , d}.

29



Introducing T−
We define the space T− as

T− = {τ1 • · · · • τn, τ i ∈ W, |τ i| < 0}. (15)

where • is the forest product and the unit is given by the empty forest. (In other words, T− is
the free unital commutative algebra generated by elements in W of negative degree.) We now
recall that T− can be equipped with a Hopf algebra structure T− for which there exists a coaction
∆− : T 7→ T− ⊗ T such that (T ,∆−) is a (left) comodule over T−. Then the action of a character
` ∈ T ∗− on x ∈ T , termed “negative renormalization”, is given by M`x = (`⊗ id)∆−x.

Following [Hai16] Section 2 we can describe the coaction ∆− as follows. Fix a tree τ ∈ W,
consider a subforest A ⊂ τ , i.e., an arbitrary subgraph of τ which contains no isolated vertices. We
then write RAτ for the tree obtained by contracting the connected components of A in τ . With
this notation at hand, we then define a linear map, the coaction,

∆− : T → T− ⊗ T

by setting, for τ ∈ W,

∆−τ =
∑
A⊂T−

A⊗RAτ . (16)

Unfortunately, this is not quite the correct coaction as it does not handle correctly the powers of
X. However, upon restriction to T̃ ⊂ T , as done in detail in the next section, this is precisely the
form of the coaction (now on T̃ ). When moving to a coproduct this fortunately plays no role (since
T− does not contain any non-zero powers of X or a factor of the form I()). By abuse of notation,
∆− also acts as a coproduct, that is

∆− : T− → T− ⊗ T−. (17)

To be explicit, given f = τ1 · · · τn ∈ T , we have ∆−(f) = ∆−(τ1)...∆−(τn) with each ∆−(τ i) as
defined above, but with an additional projection to the negative trees on the right-hand side of the
tensor-product.

Remark 40. The spaces T− ≡ T −BHZr, T
−

BHZ and T −Hai14 are the same in this framework (cf. assump-
tions from the beginning of this subsection). Indeed, all negative trees of W have a degree of the
form Nα− 1. Then if we remove one negative subtree, of degree Mα− 1 say, from a negative tree,
we obtain a degree (N −M)α which is positive and hence the “cured” tree does not belong to T−.

Introducing T+

In order to describe the space T+ as in [BHZ16], we need to associate to each edge a decoration
k ∈ N ∪ {0} viewed as a derivation of the kernels or the driving noises. Such a decoration does not
appear in T . Thus we will replace the letter I by J in this context. We do not give any graphical
notation for Jk, the edge with type tK and decoration k representing K(k), because these symbols
ultimately will not appear in our context.

We define T+ as the linear span of

{Xk
n∏
i=1

Jki(τ i) | k, n ∈ N ∪ {0}, ki ∈ N ∪ {0}, τ i ∈ W, |τ i|+ 1− ki > 0}.
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(In other words, T+ is the free unital commutative algebra generated by {X} ∪ {Jkτ | τ ∈ W, |τ |+
1− k > 0}). We use a different letter J to stress that W is different from W+. Moreover, the use
of this letter is viewed in [BHZ16] as a colouration of the root and plays a role in the sequel. We
also define the degree of a term

τ = Xk
n∏
i=1

Jki(τ i) ∈ T+, |τ | = k +

n∑
i=1

1− ki + |τ i|.

The space T+ is used in the description of the structure group associated to T . More precisely,
recall that T+ can be equipped with a Hopf algebra structure for which there exists a coaction
∆+ : T 7→ T ⊗ T+ such that (T ,∆+) is a (right) comodule over T+. Following Hairer’s survey
[Hai16], the coaction

∆+ : T → T ⊗ T+ (18)

is given by
∆+Xi = Xi ⊗ 1 + 1⊗Xi , ∆+Ξi = Ξi ⊗ 1 , (19)

and then recursively by

∆+I(τ) = (I ⊗ id)∆+τ +
∑

`∈N∪{0}

X`

`!
⊗ J`(τ) (20)

and
∆+(τ τ̄) = ∆+τ ∆+τ̄ . (21)

The coproduct ∆+ : T+ → T+ ⊗ T+ is then defined in the same way by replacing (20) with

∆+Jk(τ) = (Jk ⊗ id)∆+τ +
∑

`∈N∪{0}

X`

`!
⊗ Jk+`(τ),

in which ∆+τ is understood as the coaction ∆+ : T → T ⊗ T+.
Then the action of a character g ∈ T ∗+ on x ∈ T , termed “positive renormalization”, is given by

Γgx = (id⊗ g)∆+x.
Unfortunately, there is a problem here in that, with definition (20), a desirable cointeraction

between ∆+ and ∆− fails (see Remark 42). The “official” remedy, following [BHZ16], is to use the
extended decorations through another degree | · |+ which takes into account these decorations and
behaves the same as | · | for the rest. For example, one has |I(1βτ)|+ = |τ |+ + 1 +β. The “correct”
coaction ∆+ (see [BHZ16, (4.14)]) then also involves these extended decorations. In the present
setting, however, we can get away by replacing (20) with the same formula, but only keeping ` = 0
in the sum; that is, with J ≡ J0,

∆+I(τ) = (I ⊗ id)∆+τ + 1⊗ J (τ). (22)

Remark 41. The space T+ ≡ T +
BHZr depends strongly on the space W. We have

T +
Hai14 ⊂ T

+
BHZr ⊂ T

+
BHZ.

These two inclusions are Hopf subalgebra inclusions. Indeed, as proved in [BHZ16], the second one,
with T+ equipped with coproduct ∆+ is a Hopf subalgebra inclusion (with ∆+

BHZ found in [BHZ16,
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(4.14)]). The same is also true for T +
Hai14. The key point for the Hopf algebra structure is that, in

the terminology of [BHZ16], the symbols defined in [Hai14] and [BHZ16] are obtained by a “normal
rule” which guarantees the invariance under ∆+. In the case of T +

BHZ, we use the degree | · |+ which
is exactly | · | when we restrict ourselves to T +

BHZr.

Remark 42. The extended decorations are crucial in [BHZ16] for obtaining a cointeraction between
the two Hopf algebras (T+,∆

+) and (T−,∆−):

M(13)(2)(4)
(
∆− ⊗∆−

)
∆+ =

(
id⊗∆+

)
∆−

where M(13)(2)(4) is given as M(13)(2)(4) (τ1 ⊗ τ2 ⊗ τ3 ⊗ τ4) = (τ1 • τ3)⊗ τ2 ⊗ τ4. This identity is
both true on T through the comodule structures and on T+ when the coproduct ∆− is viewed as an
action on T+. We have already crossed something similar in Lemma 18 but in that case the maps
involved were not really coproducts. In our simple framework, this property is not satisfied if we
just consider the reduced structure. One can circumvent this by changing the coproduct to (22) as
mention above. This approach is possible in our context because we know a priori that each edge
type I in the elements of W with negative degree has the same “Taylor expansion” of length 1 in
(20) (` = 0). In general, we would use the extended decorations to maintain this property, however,
in our setting, we can just fix the length in the coproduct and not use the extended decorations.
We follow this approach in the sequel when we restrict ourselves to the rough path setting by
choosing the Connes-Kreimer coproduct for ∆+. We can also get rid of the colour when we have
no derivatives on the edges at the root: if we want to extract from I(τ1Ξi)I(τ2Ξj) all the negative
subtrees, we observe that it is not possible to extract one at the root, and thus are only left with
negative subtrees in τ1Ξi and τ2Ξj , which ensures that

M`I(τ1Ξi)I(τ2Ξj) = I (M` (τ1Ξi)) I (M` (τ2Ξj)) .

In the setting of [BHZ16], this multiplicativity property is encoded by a colour at the root which
avoids the extraction of a tree containing the root.

6.1.2 The case of rough differential equations

As in the last subsection: n = 1, β = 1 and noise degree αmin ∈ (−1, 0) > −1. We further specialize
the algebraic set in that no symbols Jk and polynomials Xk with k > 0 are required in describing
T+.

Assuming K to be the Heaviside step function, all derivatives (away from the origin) are zero,
hence there is no need (with regard to W) to have any polynomial symbols (Xk with k > 0).
Removing these from W leaves us with W̃ ⊂ W which we may list as

W̃ = {Ξi, ..., I(Ξi)I(Ξj)Ξk, ..., 1, I(Ξi), I(Ξi)I(Ξj), ...

..., I(I(Ξi)I(Ξj)Ξk), I(I(Ξi)I(Ξj)), ..., I()I(), I(I()), ...},
(23)

(all indices are allowed to vary from 1, ..., d), with associated degrees |τ | as follows:5

α− 1, ..., 3α− 1, ...., 0, α, 2α, ... ..., 3α, 2α+ 1, ...., 2, 2, ...

5tacitly assuming α < 1/3
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As in the case of W, elements of W̃ can be viewed as rooted trees, but without node decorations.
For instance,

↔ I(Ξi)I(Ξj)Ξk, ↔ I(I(Ξi)I(Ξj)Ξk),

are trees (↔ symbols) contained in W, and also in WHai14, the symbols arising in the construction
of [Hai14], whereas

↔ I()I(), ↔ I(I()), ↔ I(Ξi)I(Ξj), ↔ I(I(Ξi)I(Ξj)),

are contained inW, following the above construction taken from [BHZ16], in order to obtain stability
under the negative renormalization maps (but not included in WHai14.)

A linear subspace of T = 〈W〉 is then given by

T̃ := 〈W̃〉. (24)

Symbols for negative renormalization

Recall that, thanks to β = 1, noise degree α − 1 ∈ (−1, 0), no terms X,X2 or I(), ... arise as
symbol in W− := {τ ∈ W | |τ | < 0}. (As a consequence, replacing W by WHai14, W̃ or WBHZ in
the definition of the negative symbols makes no difference.) In particular,

W− = {Ξi, I(Ξi)Ξj , ..., I(Ξi)I(Ξj)Ξk, ...}.

(where W− “ends” right before the element 1 in (23) above) contains no powers of X, (hence no
need to introduce “W̃−”). As previously defined (see (15)), we have

T− = free unital commutative algebra generated by W−.

For instance, writing • for the (free, commutative) product in T−,

2Ξi −
1

3
Ξi • Ξj + I(Ξi)Ξj • (I(Ξi)I(Ξj)Ξk)•2 ∈ T−.

Interpreting • as the forest product, elements in T− can then be represented as forests, such as

2 − 1

3
+

One can readily verify that ∆− : T → T− ⊗ T restricted to T̃ maps T̃ → T− ⊗ T̃ , also denoted by
∆− so that (T̃ ,∆−) is a subcomodule of (T ,∆−).
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Symbols for positive renormalization and T+.

Recall that T+ was generated, as a free commutative algebra, by

W+ := {X} ∪ {Jkτ | τ ∈ W, |τ |+ 1− k > 0}.

Writing J ≡ J0 as usual, we define a subset W̃+ ⊂ W+ as follows

W̃+ := {J τ | τ ∈ W̃} (25)

= {1,J (Ξi),J (I(Ξi)Ξj),J (I(I(Ξi)Ξj)Ξk),J (I(Ξi)I(Ξj)Ξk), ...,J (I(Ξi)I(Ξj)), ...}

with degrees 0, α, 2α, 3α, 3α, ..., 2α+ 1, ... here.
Recall that elements in W+ can be represented by elementary trees, in the sense that - dis-

regarding the trivial (empty) tree 1 - only one edge departs from the root. The same is true for
elements in W̃+. Set

T̃+ := free unital commutative algebra generated by W̃+.

For example, writing τ1τ2 for the (free, commutative) product of τ1, τ2 ∈ T̃+, an example of an
element in this space would be

J (I(Ξi)Ξj) + J (I())J (1) + 3 J (Ξi)J (Ξj) + J (I(Ξi)Ξj)J (I(Ξk)Ξl) ∈ T̃+.

Fortunately, every such element can still be represented as a tree; it suffices to interpret the free
product in T+ as the “root-joining” product (which is possible since all constituting trees are
elementary). The (abstract) unit element 1 ∈ T+ is then indeed given by the (trivial) tree • ↔ X0,
where we recall our convention to drop the node decoration “0”. For instance, the above element
becomes6

+ + 3 + ∈ T+.

Remark 43. Though we used the same formalism to draw trees as in the case of W̃ above, the
interpretation here is slighly different in that all root-touching edges refer to J rather than I. As
mentioned before, in [BHZ16], this is indicated by a blue colouring of the root.

As before, we define a coaction of T̃+ on T̃ (which we again denote ∆+ : T̃ → T̃ ⊗ T̃+)
by (19), (21), and (22) as well as a coproduct ∆+ : T̃+ → T̃+ ⊗ T̃+ defined in the same way, but
with I changed to J in (22). We note already that (T̃+,∆

+) is isomorphic to the Connes-Kreimer
Hopf algebra H arising from the identifications laid out in the following subsection (and which will
be used crucially in the proof of the upcoming Proposition 45).

6Remark that J (1), which corresponds to the right branch of the second term, could also have been written as
J (), reflecting our convention to drop the decoration 0 from nodes (here: 1 ≡ X0). By the same logic, we could also
write I(), one of the symbols arising in W, as I(1).
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6.2 Link with translation of rough paths

6.2.1 Identification of spaces

We now give a precise description the map ∆− in our context as well as its connection to the map
δ from Section 3.3. To do so, we first need to introduce several identification of vector spaces and
algebras, as well as appropriately identify branched rough paths as models on a regularity structure.

Recall the space H = H(•0, ..., •d) from Section 3 spanned by labelled forests with label set
{0, 1, . . . , d}. Consider now the enlarged vector space

H̃ := H⊕HΞ1 ⊕ ....⊕HΞd. (26)

With T̃ as defined in (24), we then have a vector space isomorphism

H̃ ↔ T̃

obtained by adding an extra edge to indicate a noise Ξi, i 6= 0, and by “forgetting” the label 0
(which is equivalent to setting the noise Ξ0 to the constant 1). For example,

1

02

↔ I [I(Ξ1)I(1)Ξ2] =

2

10

0

3

Ξ4 ↔ I [I(1)I(Ξ1)Ξ2] I [I(Ξ3)] Ξ4 = .

Recall that B = B(•0, ..., •d) denotes the subspace of H spanned by trees, and define

B− = B−(•1, ..., •d) ⊂ B ⊂ H

as the subspace of B spanned by trees with no label 0 and with at most b1/αc nodes. Observe that
there is a vector space isomorphism given by

τ 7→ φ(τ) ≡ τ̇ ,

where
φ : B− 7→ 〈W−〉 ⊂ HΞ1 ⊕ ....⊕HΞd ⊂ H̃, (27)

and where we have used the identification H̃ ↔ T̃ ⊃ 〈W−〉 for the first inclusion (and both inclusions

being strict: for the first, just consider the element
0

3

Ξ1 /∈ 〈W−〉). For example,

φ :
3

21

7→ I(Ξ1)I(Ξ2)Ξ3,
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where we assume α ∈ (0, 1/3) so the tree appearing on the left is indeed an element in B−. Corre-
spondingly, the symbol on the right has negative degree as an element of W, hence is an element
of W−.

Write B∗− for the dual of the (finite-dimensional) vector space B−. Of course, B∗− ∼= B− which
allows us to identify B∗− with 〈W−〉. Recall that (T−, •) was defined as the free unital commutative
algebra generated by W−, and that G− ⊂ T ∗− denotes the group of characters on T−. By definition
of T−, we then have a bijection

B∗− ↔ G−. (28)

To be fully explicit about this, recall that

T− = 〈τ̇1 • .... • τ̇n : τ̇ i ∈ W−, n = 1, 2, ...〉,

so writing τ i = φ−1(τ̇ i) ∈ B−, we have that associated to v ∈ B∗− the character ` ∈ G− given
explicitly by the formula

`(τ̇1 · .... · τ̇n) = `(τ̇1)...`(τ̇n) = 〈v, τ1〉...〈v, τn〉.

Define now
(H−, ·)

as the free commutative algebra generated by the subspace B− of H̃ (remark that the product in
H− has nothing to do with the product in H itself), so that there is an algebra isomorphism

H− ↔ T−.

A typical element of H− looks like:

2
Ξ1 + Ξ2 + Ξ2 ·

1

23

Ξ3,

whereas one has
2
/∈ H−.

Note that we can also make the identification of algebras

H ↔ T̃+.

For instance, using the bracket notation,

[•0]•0 •0 +[•i]•j [•k]•l ↔ J (I())J (1) + J (I(Ξi)Ξj)J (I(Ξk)Ξl) ∈ T̃+.

We denote by G̃+ ⊂ T̃ ∗+ the characters on T̃+ and note that there is also a bijection G ↔ G̃+, where
we recall that G ⊂ H∗ is the Butcher group over R1+d, i.e., the set of characters on H.

To summarise, we have the following identifications in place

H̃ ↔ T̃ ,
H− ↔ T−,
H ↔ T̃+,

B∗− ↔ 〈W−〉 ↔ G− ⊂ T ∗−
G ↔ G̃+ ⊂ T̃ ∗+ .
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6.2.2 Renormalization as rough path translations

It now only remains to identify (a family of) branched rough paths with a class of models on a
suitable regularity structure. Define the index set A := {0}∪αN∪ (αN− 1). Recall that the action
of g ∈ G̃+ on T̃ is given exactly as before by

Γgτ = (id⊗ g)∆+τ , ∀τ ∈ T̃ .

Note that Γg indeed maps T̃ to itself due to the definition of G̃+. Note further that ΓgΓh (as a

composition of linear maps) is exactly Γg◦h (with ◦ the product in G̃+ given as the dual of ∆+),
and so

G := {Γg : g ∈ (G̃+, ◦)}.
is indeed a group of endomorphisms of T̃ .

Recall now the definition of a regularity structure from [Hai14] Definition 2.1.

Lemma 44. The triplet (A, T̃ , G) is a regularity structure.

Proof. The only non-trivial property to check is that for all τ ∈ T̃ of degree α ∈ A and Γ ∈ G,
Γτ − τ is a linear combination of terms of degree strictly less than α, which in turn is a direct
consequence of the definition of ∆+ : T̃ → T̃ ⊗ T̃+ from (22) (see end of Section 6.1.2).

Recall also the definition of a model on a regularity structure (see [Hai14] Definition 2.17). Let
M[0,T ] denote the set of all models (Π,Γ) for (A, T̃ , G) on R such that

(i) Πt1 is the constant function 1 for all t ∈ R,

(ii) Γst = id for s, t ∈ (−∞, 0] and for s, t ∈ [T,∞),

(iii) (ΠtIy)′ = Πty for all t ∈ R and y ∈ T̃ . (Here (..)′ denotes the Schwartz derivative.).

On the other hand, let Rα
[0,T ] be the set of all (1 + d)-dimensional α-Hölder branched rough

paths X : [0, T ]2 → G whose zeroth component is time, i.e., 〈Xs,t, •0〉 = t− s and

〈Xs,t, [τ ]•0〉 =

∫ t

s

〈Xs,u, τ〉du, ∀τ ∈ H, s, t ∈ [0, T ]. (29)

Observe that this condition necessarily implies that X satisfies condition (10) from Theorem 28
(cf. Remark 31). Note that Xs,t can be identified with an element of G̃+ due to the identification

G ↔ G̃+,.
Finally, observe that φ defined in (27) may be extended to an vector space isomorphism

φ : B ↔ HΞ0 ⊕HΞ1 ⊕ ....⊕HΞd ∼= H⊕HΞ1 ⊕ ....⊕HΞd ≡ H̃

which maps a tree τ ∈ B into a forest φ(τ) ≡ τ̇ , as illustrated in

0
2

1

0

↔
0

2

1

Ξ0 ↔
0

2

1

,
2

10

0

3

4

↔
2

10

0

3

Ξ4.

Conversely, φ−1 adds an extra node (which becomes the root) and should be thought of as taking
the integral of a symbol in H̃. The following result makes this precise by giving a bijection between
M[0,T ] and Rα

[0,T ].
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Proposition 45. There is a bijective map I : Rα
[0,T ] →M[0,T ] which maps a branched rough path

X to the unique model (Π,Γ) ∈M[0,T ] with the property that

(ΠsI τ̇)(t) = 〈Xs,t, τ〉 ∀ τ ∈ B ∀s, t ∈ [0, T ],

where we have made the identifications φ(τ) ≡ τ̇ ∈ H̃ ↔ T̃ . Furthermore, the model (Π,Γ) satisfies
Γts = ΓXs,t (where we have made the identification Xs,t ∈ G ∼= G̃+) and the multiplicativity property

Πt((Iy1) . . . (Iyn)) = Πt(Iy1) . . .Πt(Iyn), ∀n ∈ N ∀yi ∈ T̃ . (30)

Proof. Consider X ∈ Rα
[0,T ]. For all s, t ∈ [0, T ] define Γts = ΓXs,t and (ΠsI τ̇)(t) = 〈Xs,t, τ〉 for all

τ ∈ B. Observe that we may further impose on (Π,Γ) that properties (i) and (ii) hold. Furthermore,
for every τ /∈ IT̃ , we may define Πtτ = (ΠtIτ)′, which completely characterises Π. It remains to
verify (30), that property (iii) holds for all τ ∈ IT̃ , and that (Π,Γ) is indeed a model.

For (30), note that from (29)

Πt(I τ̇1 . . . I τ̇n) = (ΠtI(I τ̇1 . . . I τ̇n))′

= (〈Xt,·, φ
−1(I τ̇1 . . . I τ̇n)〉)′

= (〈Xt,·, [τ1 . . . τn]•0〉)′

= 〈Xt,·, τ1 . . . τn〉
= 〈Xt,·, τ1〉 . . . 〈Xt,·, τn〉 = Πt(I τ̇1) . . .Πt(I τ̇n).

To show property (iii) for τ̇ = I ˙̄τ ∈ IT̃ , where ˙̄τ ∈ T̃ , observe that φ([τ̄ ]•0) = τ̇ , so that again
by (29)

Πtτ̇ = ΠtI ˙̄τ

= 〈Xt,·, τ̄〉
= (〈Xt,·, [τ̄ ]•0〉)′

= (ΠtIφ([τ̄ ]•0))′

= (ΠtI τ̇)′.

It remains to show that (Π,Γ) is a model. We first verify that ΠsΓs,t = Πt. Let τ ∈ B, so

that I(τ̇) ∈ T̃ . Recall that the Connes-Kreimer coproduct ∆? : H 7→ H ⊗H as was introduced in
Section 3.1 can be defined recursively by

∆?[τ1 . . . τn]•i = [τ1 . . . τn]•i ⊗ 1 + (id⊗ [·]•i)∆?(τ1 . . . τn), ∀τ1, . . . , τn ∈ B, i ∈ {0, . . . , d}.

With this recursion, one can verify that

∆+ : I(T̃ ) 7→ I(T̃ )⊗ T̃+

agrees with the “reversed” Connes-Kreimer coproduct

σ1,2∆? : B 7→ B ⊗H,
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where σ1,2 : H ⊗ B 7→ B ⊗ H, σ1,2 : τ ⊗ τ̄ 7→ τ̄ ⊗ τ , and where we make the usual identification

H ↔ T̃+ as well as φI : B 7→ I(T̃ ) via φI : τ 7→ I(τ̇) (which is of course just I ◦ φ). Therefore,
treating Xs,t as a character on H ↔ T̃+, we have for all τ ∈ B

(ΠtΓtsI τ̇)(u) = (Πt(id⊗Xs,t)∆
+I τ̇)(u)

= 〈Xt,u, (φ
I)−1(id⊗Xs,t)∆

+I τ̇)〉
= 〈Xt,u, (Xs,t ⊗ id)∆?τ)〉
= 〈Xs,t ⊗Xt,u,∆?τ〉
= 〈Xs,t⊗̇Xt,u, τ〉
= 〈Xs,u, τ〉
= Πs(I τ̇)(u).

(31)

Observe now that for τ ∈ T̃ , we have

ΓtsIτ = IΓtsτ + 〈Xs,t, Iτ〉1,

where we emphasize the symbol 1 ∈ T̃ . Therefore, by the (already established) properties (i)
and (iii), it follows that for any τ ∈ T̃

ΠtΓtsτ = (ΠtIΓtsτ)′ = (Πt(ΓtsIτ − 〈Xs,t, Iτ〉1))′ = (ΠtΓtsIτ)′ = (ΠsIτ)′ = Πsτ ,

which shows that ΠtΓts = Πs.
It remains to verify the analytic bounds on (Π,Γ). As in Theorem 28, denote by |τ | the number

of nodes in τ and by |τ |0 the number of nodes with the label 0. It follows that the degree of I τ̇ is
given by |I τ̇ | = |τ |0(1− α) + |τ |α. Since X satisfies (10), we have the analytic bound

|(ΠsI τ̇)(t)| = |〈Xs,t, τ〉| . |t− s||Iτ̇ |.

Since Πsτ = (ΠsIτ)′ by property (iii), we see that Π satisfies the correct analytic bounds. The
exact same argument applies to Γ upon using the identification of ∆+ with σ1,2∆? above. Therefore
(Π,Γ) is a model in M[0,T ] as claimed.

Finally, it remains to observe that we may reverse the construction. Indeed, starting with a
model (Π,Γ) in M[0,T ], we may define X by 〈Xs,t, τ〉 = (ΠsI τ̇)(t). The facts that X satisfies (29)
follows from property (iii), while the required analytic bounds for X to be an α-Hölder branched
rough path follow from the analytic bounds associated to Π. To conclude, it suffices to verify that
X thus defined satisfies Γts = ΓXs,t and Xs,t⊗̇Xt,u = Xs,u. To this end, note that by definition of

the structure group G, there exists γts ∈ G̃+
∼= G such that Γts = (id⊗γts)∆+. Let X̃s,t ∈ G be the

element associated to γts in the identification G̃+
∼= G, and we aim to show X̃s,t = Xs,t. Indeed,

from our identification H ↔ T̃+, it follows that for all τ ∈ B

〈γts,J τ̇〉 = 〈X̃s,t, τ〉.

On the other hand, we know that for all τ ∈ B

〈Xs,t, τ〉 = (ΠsI τ̇)(t) = (ΠtΓtsI τ̇)(t) = (Πt(id⊗ γts)∆+I τ̇)(t) = 〈γts,J τ̇〉,

where for the last equality we have used property (i) and the fact that

∆+I τ̇ = 1⊗ J τ̇ +
∑
I(τ̇ (1))⊗ τ̇ (2),
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where every term I(τ̇ (1)) is of positive degree, and so (ΠtI(τ̇ (1)))(t) = 0. This concludes the proof
that Γts = ΓXs,t . To verify that Xs,t⊗̇Xt,u = Xs,u, we can now simply reorder the sequence of
equalities (31).

Following [BHZ16] we introduce the renormalization map M` given by7

M` : T̃ → T̃ , τ 7→ (`⊗ id) ∆−τ ,

for a given character ` ∈ G− ⊂ T ∗− . In our case, we have the fact that M` commutes with I (cf.
end of Remark 42)

M`I = IM`, (32)

which is readily verified by hand: I amounts to adding another edge to the root (thereby creating
a new root), whereas M` amounts to extracting (negative) subtrees and maps them to R (via `).
Clearly, the afore-mentioned edge (of degree 1) can not possibly be part of any singular subtree,
hence the desired commutation.

This map acts on a model Π = (Π,Γ) and yields the renormalised model (see [BHZ16] Theo-
rem 6.15) given by

ΠM`
s := ΠsM`, ΓM`

t,s =
(

id⊗ γM`
t,s

)
∆+, γM`

t,s = γt,sM`.

Recall from Section 3.3 the map δ : B 7→ A ⊗ B, where A is the free commutative algebra
generated by B (thought of as an isomorphic but different space to H). Let π− : H̃ ∼= B 7→ B− ∼=
〈W−〉 denote the projection onto terms of negative degree, which we extend multiplicatively to an
algebra morphism π− : A 7→ H−. We now define the map

δ− = (π− ⊗ id)δ : H̃ 7→ H− ⊗ H̃.

For instance
δ−•0 = 1⊗ •0,

whereas
δ•0 = •0 ⊗ •0 + 1⊗ •0.

We are now ready to state the link between translation of branched rough paths and negative
renormalization in the following two results.

Lemma 46. (i) We have
∆−τ̇ = ∆−φ (τ) = (φ⊗ φ) δ− (τ) .

(ii) For all v ∈ B∗− it holds that
M`τ̇ = M`φ (τ) = φ (M∗v τ)

Proof. (i) Let us consider [τ ]•i ∈ B. We then have the following identities:

∆−φ([τ ]•i) = ∆−τΞi =
∑

C=A·B⊂τ
(C ⊗ (RCτ)Ξi +A ·BΞi ⊗RCτ) . (33)

7While we deliberately used the same letter, do not confuse M` : T̃ → T̃ with Mv : H∗ →H∗.

40



The sum is taken over all the couples (A,B) where A is a negative subforest of τ which does not
include the root of τ and B is a subtree of τ at the root disjoint from A. In the sum in (33), the
first term means that Ξi does not belong to the tree extracted at the root, while for the second
term, Ξi belongs to the tree which comes from the product between Ξi and B giving a subtree of
negative degree. One can derive the same identity for δ−. We first rewrite δ−:

δ−τ =
∑
A⊂τ

A⊗ R̃Aτ ,

where A is a subforest of τ and R̃Aτ means that we contract the trees of A in τ and we leave a 0
decoration on their roots. Then the equivalent of (33) in that context is given by:

δ−[τ ]•i =
∑

C̃=Ã·B̃⊂τ

(
C̃ ⊗ [R̃C̃τ ]•i + Ã · [B̃]•i ⊗ R̃Ã·[B̃]•i

[τ ]•i

)
(φ⊗ φ) δ−[τ ]•i =

∑
C̃=Ã·B̃⊂τ

(
φ(C̃)⊗ (R̃C̃τ)Ξi + φ(Ã) · B̃Ξi ⊗ φ

(
R̃Ã·[B̃]•i

[τ ]•i

))
.

Now we have the following identifications:

φ(C̃)↔ C, B̃Ξi ↔ BΞi, φ
(
R̃Ã·[B̃]•i

[τ ]•i

)
= R̃C̃τ ↔ RCτ , (R̃C̃τ)Ξi ↔ (RCτ)Ξi,

which gives the result.
(ii) Recall that δ− (τ) has an image of the form “forest ⊗ tree”, and that ` ◦ φ = v (which

is a “dual” tree and multiplicative over forests). Also note that M∗v τ = (v ⊗ id) δ = (v ⊗ id) δ−

whenever v ∈ B∗− (which not true for general v ∈ B∗), so that

M`τ̇ = (`⊗ id) ∆−τ̇

= (`⊗ id) ∆−φ (τ)

= (v ⊗ φ) δ− (τ)

= φ
(
(v ⊗ id) δ−

)
= φ (M∗v τ) .

Theorem 47. (i) It holds that the restriction ∆− : T̃ 7→ T−⊗T̃ coincides with δ− : H̃ 7→ H−⊗H̃,
where we have made the identifications H̃ ↔ T̃ and H− ↔ T− as above.

(ii) Let v be an element of B∗− and let ` ∈ G− by the associated element in G− ⊂ T ∗−, as was
detailed in (28). Then the following diagram commutes

X ←→ Π
↓ ↓
MvX ←→ ΠM`

(iii) For v, v′ ∈ B− with associated characters `, `′ ∈ G−, it holds that the character associated to
v + v′ is ` ◦ `′, so that (B−,+) ∼= (G−, ◦).
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Remark 48. The final statement (iii) effectively says that the renormalization group associated
to branched rough path is always abelian, despite the highly non-commutative nature of H∗, the
Grossman-Larson Hopf algebra.

Remark 49. The above theorem along with the discussion in Section 5.2 (see in particular Remark 33
and Theorem 36) provides a straightforward example of how S(P)DEs change under the negative
renormalization maps in the sense of [BHZ16].

Proof of Theorem 47. Part (i) is a straightforward consequence of Lemma 46 (i).
To verify (ii), in view of Proposition 45, we only need to check

ΠMl
s I τ̇ = 〈MvXs,·, τ〉 = 〈Xs,·,M

∗
v τ〉 ∀τ ∈ B.

The LHS can be rewritten as, thanks to (32) and Lemma 46 (ii)

ΠM`
s I τ̇ = ΠsM`I τ̇

= ΠsIM`τ̇

= ΠsIφ (M∗v τ) .

Applying Proposition 45 with τ̇ = φ (Mvτ) then shows that

ΠsIφ (Mvτ) = 〈Xs,·,M
∗
v τ〉

which is what we wanted to show.
Finally, to show (iii), we note that

〈` ◦ `′, τ〉 = 〈`⊗ `′,∆−τ〉 = 〈`, τ〉+ 〈`′, τ〉, ∀τ ∈ W−,

where the first equality follows by definition and the second from the fact that every element ofW−
is primitive with respect to the coproduct ∆−. Indeed from the Remark 40, we deduce that the
coaction ∆− maps every τ ∈ W− into τ ⊗ 1 +

∑
(τ) τ

′⊗ τ ′′ such that τ ′′ is a tree of positive degree.

However, ∆− as coproduct on T− (see (17)), will annihilate any term with τ ′′ of (strictly) positive
degree. In particular then, ∆−τ = 1⊗ τ + τ ⊗ 1 for all τ ∈ W−, that is, any such τ is primitive.
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