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Abstract

The Indian buffet process (IBP) provides a principled prior distribution for inferring
the number of latent features in a dataset. Traditionally, inference for these mod-
els is slow when applied to large datasets, which motivates the use of amortized
neural inference methods. However, previous works on variational inference for
these models require the use of a truncated approximation, in which the maximum
number of features is predetermined. To address this problem, we present a new dy-
namic variational posterior by introducing auxiliary variables to the stick-breaking
construction of IBP. We describe how to estimate the evidence lower bound, which
contains summations of infinite terms, using Russian roulette sampling.

1 Introduction

A latent feature model with an Indian buffet process (IBP) prior is an example of a Bayesian
non-parametric model, a model which can infer the number of features during inference given the
observed data (Gershman & Blei, 2012). However, inference in such models can be computationally
challenging. Among the most common inference algorithms are Markov Chain Monte Carlo (MCMC)
based methods, which includes Gibbs sampling and slice sampling (Griffiths & Ghahramani, 2011;
Teh et al., 2007). These methods are flexible but slow, making them hard to apply to large datasets.
Recent advances in amortized variational inference (Kingma & Welling, 2013; Rezende et al., 2014;
Ranganath et al., 2014; Mnih & Gregor, 2014) present a promising opportunity to accelerate the
inference process using neural networks (NNs). Amortized inference for non-parametric models is
difficult, however, because the dimensionality of latent variables in such models is not fixed. This
problem is commonly bypassed by using a truncated variational approximation (Blei & Jordan, 2004;
Doshi-Velez et al., 2009), which places an upper bound on the size of the latent space under the
approximate posterior. Many previous works on amortized inference in Bayesian non-parametrics
rely on truncation (Miao et al., 2017; Nalisnick & Smyth, 2017; Chatzis, 2014; Singh et al., 2017).

However, the truncated approximation has several drawbacks. First, if the truncation level is chosen
too large, then inference will be slow, removing one of the main advantages of a variational approxi-
mation. Second, a large truncation level can interact poorly with amortized inference, because these
methods are known to have issues with over-pruning (Burda et al., 2015; Yeung et al., 2017). In the
context of amortized inference or variational auto-encoders (VAEs), over-pruning means that some
of the latent variables are inactive, behaving as if they are nearly independent of the observations.
Finally, as the truncation level is essentially part of the variational parameters (Blei et al., 2006),
fixing it means restricting the variational posterior to a smaller family of distributions, thus leading to
a less expressive approximate posterior distribution.

In this work, we overcome these limitations using a new dynamic variational posterior, which
can adapt its size over the course of the optimization. Our method is based on the stick-breaking
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construction (SBC) of IBP (Teh et al., 2007), and the necessary expectations for the evidence lower-
bound (ELBO) are computed using the Russian roulette sampling method from statistical physics
(Lux & Koblinger, 1991; Carter & Cashwell, 1975), which has been applied to Bayesian inference by
Lyne et al. (2015). This allows us to use recurrent neural networks (RNNs) to define a variational
distribution over the parameters of interest that reflects their unknown size. We show that our
inference method is able to automatically decide the number of latent features to use.

2 Background

The Indian buffet process defines a probability distribution over sparse binary matrices with a finite
number of rows and an unbounded number of columns (Griffiths & Ghahramani, 2011), which
is denoted as Z ∼ IBP(α). Variational inference for IBP models relies on the stick-breaking
construction (SBC) from Teh et al. (2007), under which the generative process of Z with N rows is

νk ∼ Beta(α, 1), πk =

k∏
j=1

νj , znk ∼ Bern(πk), (1)

for n ∈ 1 . . . N and k ∈ 1, 2, . . . ,∞. We denote it as Z ∼ SBC(α,N,K) if this process is stopped
after K columns. Teh et al. (2007) shows that Z ∼ SBC(α,N,K) follows IBP(α) when K →∞.

The IBP can be used as a prior over sparse latent representation of data X ∈ RN×D. Conditioned on
the representation Z = [z1 . . . zN ] of all data points, we can model the data as

Z ∼ IBP(α), A ∼ N (0, σ2
AI), X ∼ pθ(X | Z,A), (2)

for n ∈ 1 . . . N , When A is a global variable (a matrix withD columns and infinitely many rows) and
pθ(X | Z,A) = N (ZA, σ2

XI), the model is the well-studied linear Gaussian model. For simplicity,
we use the linear Gaussian model as an example, but the techniques are applicable to more general
models (e.g. data-dependent A) and arbitrary likelihood functions parameterized by NNs.

The posterior distribution over the latent variables P (Z,A,ν |X) is intractable. One way of deal-
ing with inference problems in such models is to use variational inference. Singh et al. (2017)
show that structured variational inference based on the method of Hoffman & Blei (2015) is
better than a mean-field approximation, as it introduces dependencies between a local (Z) and
global variables (ν and A). The variational posterior from Singh et al. (2017) is given by
q(Z,A,ν) = q(A)q(ν(1:∞))

∏N
n=1

∏∞
k=1 q(znk | ν(1:k)). The ELBO for structured variational

inference is (derivation is in Appendix A)

L =− KL
[
q(ν(1:∞) ‖ p(ν(1:∞))

]
− KL [q(A) ‖ p(A)]

+

∫
ν1:∞

q(ν1:∞)

N∑
n=1

Eq(zn|ν(1:∞))[− log
q(zn | ν(1:∞))

p(zn | ν(1:∞))
+ log p(Xn· | zn,A)].

(3)

When performing neural variational inference, in order to allow the inference network for Z to have an
output of varied dimensionality and the generative network to take inputs with varied dimensionality,
we parameterize them with by recurrent neural networks (RNNs), inspired by Eslami et al. (2016).

Training VAEs requires sampling to compute the Monte Carlo estimation of the ELBO. This sampling
step still needs to be differentiable. This can be made possible with the reparameterization trick.1 For
the IBP, we employ reparameterizations of the Beta distribution (Nalisnick & Smyth, 2017) and the
Bernoulli distribution (Jang et al., 2016; Maddison et al., 2016).

Russian roulette sampling Russian roulette sampling (Lux & Koblinger, 1991; Carter & Cashwell,
1975; Lyne et al., 2015) is a Monte Carlo technique for estimating very large sums. The idea can
be explained by a small example. To approximate an expectation µ = E[X1 +X2], we can use the

Monte Carlo estimate µ̂ =

{
x1 with prob π
x1 +

1
(1−π)x2 with prob 1− π , where x1 and x2 are realizations of

X1 and X2. It is easy to see that E[µ̂] = µ.

1Alternatives include REINFORCE (Williams, 1992), the generalized reparameterization gradient (Ruiz
et al., 2016), and automatic differentiation variational inference (Kucukelbir et al., 2017).
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3 Related Work

To the best of our knowledge, existing (neural) variational methods for IBP models rely on truncating
the variational distribution q. Both Chatzis (2014) and Singh et al. (2017) use a finite truncation
and parameterize the inference network and generative network with feed-forward neural networks.
For amortized inference in other Bayesian non-parametric models, some authors have tried to relax
the truncation, however these methods require running the variational optimisation to convergence
separately for different values of K. For example, Hughes et al. (2015) use split and merge steps
to change the structure of the model but this results in a more complex algorithm with heuristics.
Similarly, Nalisnick & Smyth (2017) mentions some exploratory experiments on making the level of
stick-breaking adaptive by putting a threshold on the percentage of the remaining stick but reports
that this approach results in slow optimization procedures.2 Eslami et al. (2016) auto-encodes a
generative model with a Binomial prior on the number of items using RNNs. However, using a prior
with a finite support is crucially different from the problem that non-parametric models (such as IBP)
solve because the model complexity is unbounded.

4 Method

In this section, we introduce the techniques used in our truncation-free neural variational inference
method. We start by introducing the dynamic variational posterior in Section 4.1. We then show
how to estimate the ELBO with infinite summations using Russian roulette sampling in Section 4.2.
Generally, the method follows the reparameterization version in Singh et al. (2017).

4.1 Dynamic variational posterior

The dynamic variational posterior q is a modified version of the SBC with auxiliary variables sk for
each potential feature k to control the possible number of activated features. The variables sk are
binary, and indicate that the distribution must “stop” generating new features. That is, if sk = 0 for
some k, then zn` = 0 and s` = 0 for all ` > k. The variational posterior q can be defined formally as

νk ∼ Beta(αk, βk), πk =

k∏
j=1

νj , sk ∼ Bern(ρksk−1), znk ∼ Bern(fφ(πk,Xn·)sk) (4)

for n ∈ 1 . . . N and k ∈ 1, 2, . . . ,∞, where fφ(·) represents the inference network, αk, βk, ρk and
φ are the variational parameters and the initial stopping token s0 = 1.

LetK denote the stopping level, that is, given a matrix Z, letK be the minimum value such that z` = 0
for all ` > K. There is a one-to-one correspondence between auxiliary variables sk and the stopping
level K. So we can reparameterize the variational distribution q(K = K∗) = (1− ρK∗+1)

∏K∗

i=1 ρi.
Note that the representation is still truncated but the truncation level K is dynamic and follows q(K).

Amortization of variational parameters The only parameters we amortize are those for the
variational distribution of Z and other (global) parameters are not amortized but optimized directly.
This variational distribution, q(znk | ν(1:∞)), is a continuous relaxation of Bernoulli, a Concrete
distribution (Jang et al., 2016; Maddison et al., 2016), with an amortized parameter

pk = fφ(πk,Xn·) = sigmoid(logit(πk) + (RNNφ(Xn·))k), (5)

where (RNNφ(·))k is the k-th output from a RNN with ReLU activation between hidden states.

When computing the ELBO, one also needs to compute the probability of a given Z under this
sampling process, i.e. q(Z | ν(1:∞)), marginalizing out the sk. Appendix B describes a way to
estimate this probability.

4.2 Russian roulette sampling for ELBO estimation

As in VAEs, we use samples from the proposed variational posterior to estimate the ELBO. But
this causes problems for infinite-sized variational distributions. Specifically, there is no gradient for

2We omit works in MCMC approaches with adaptive truncation levels as we focus only on works that use VI.
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the parameters ρk of the auxiliary stopping variables from the reconstruction term, because they
vanish once we apply the Monte Carlo approximation. Intuitively, this vanishing occurs because the
auxiliary variables only occur in the condition of the stochastic control flow of q; see Appendix C
for details. We solve this problem by using the Russian roulette estimate instead of standard Monte
Carlo. First, we write

Eq[log p(X | Z,A)] =

∫
Z

∞∑
k=0

q(Z | k,ν(1:∞))q(K = k) log p(X | Z,A)dZ

=

∞∑
k=0

q(K = k)

∫
Z

q(Z | k,ν(1:∞)) log p(X | Z,A)dZ =:

∞∑
k=0

q(K = k)Rk.

We can obtain an unbiased estimate of this infinite summation by Russian roulette sampling. We use
the estimate SK =

∑K
k=0

q(K=k)Rk∏k
i=1 ρi

with probability γK = (1− ρK+1)
∏K
k=1 ρk. We set γ0 = 0 so

the estimate always contains at least one term. Appendix D shows that this process gives an unbiased
sample of the infinite summation.

5 Results

We demonstrate the proposed inference method on the synthetic dataset from Griffiths & Ghahramani
(2011), which is generated by random combinations of 4 pre-defined features with a noiseN (0, 0.12)
added. We use a RNN with 50 hidden units, 0.2 as the temperature of Concrete reparamerization and
0.001, 0.99 and 0.99 as the learning rate, first and second momentum of the Adam optimizer.

The trace of the stopping level during training, the distribution over the stopping level after training
and the inferred features are shown in Figure 1. More results are included in Appendix E. The trace
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Figure 1: Training trace and inference results (α = 4.0)

plot in Figure 1a shows that during the early phase of the training the method attempts to use more
features than 4 but converges to 4 after around 80 epochs. The plot of the probability mass function
of the stopping level in Figure 1b shows that after training, the variational posterior for the auxiliary
variables gives a corresponding distribution of the stopping level that concentrates on the true number
of features. The inferred features in Figure 1c are same as the 4 pre-defined features we used to
generate the dataset. There are no unused “dummy” features inferred compared with methods that
require a large fixed truncation level, because our method automatically infers the number of features
to use in the variational approximation.

6 Conclusions and Discussions

The proposed dynamic variational posterior using a Russian roulette Monte Carlo estimate provides
a probabilistic way to perform neural amortized variational inference without truncating to a fixed
number of features, or requiring a heuristic search over the number of features in the approximation.
However, this does introduce more computation during training as we need to compute the log-
likelihood term with 1 toK features, which is significant when the generative network is large. Future
work will involve finding a way to reduce this computation, as well as applying the proposed method
for other non-parametric models.
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A Derivation of the ELBO with infinite terms kept

The ELBO with infinite terms kept that is being used in this paper is adapted from Singh et al. (2017),
which is based on the structured stochastic variational inference (SSVI) method of Hoffman & Blei
(2015). For our variational distribution q(ν(1:∞),Z) = (

∏∞
k=1 q(ν(k)))(

∏N
n=1 q(zn· | ν(1:k))), the

KL divergence to the posterior p(ν(1:∞),Z |X(1:N)) is given by

KL [q ‖ p] =
∫
ν1:∞,Z

q(ν(1:∞),Z) log
q(ν(1:∞),Z)

p(ν(1:∞),Z |X(1:N))

=

∫
ν1:∞,Z

q(ν(1:∞),Z) log
q(ν(1:∞),Z)p(X

(1:N))

p(ν(1:∞),Z,X(1:N))

= Eq[log q(ν(1:∞),Z)]− Eq[log p(ν(1:∞),Z,X
(1:N))] + log p(X(1:N))

.

This leads to the ELBO as

L ≡ Eq[log p(ν(1:∞),Z,X
(1:N))]− Eq[log q(ν(1:∞),Z)]

= Eq[log
p(ν(1:∞),Z,X

(1:N))

q(ν(1:∞),Z)
]

= Eq[log
p(Z,X(1:N) | ν(1:∞))p(ν(1:∞))

q(Z | ν(1:∞))q(ν(1:∞))
]

= Eq[log
p(ν(1:∞))

q(ν(1:∞))
] + Eq[log

p(Z,X(1:N) | ν(1:∞))

q(Z | ν(1:∞))
]

= Eq[log
p(ν(1:∞))

q(ν(1:∞))
] + Eq[log

∏N
n=1 p(zn·,X

(n) | ν(1:∞))∏N
n=1 q(zn· | ν(1:∞))

]

= Eq[log
p(ν(1:∞))

q(ν(1:∞))
] + Eq[log

N∏
n=1

p(zn·,X
(n) | ν(1:∞))

q(zn· | ν(1:∞))
]

= Eq[log
p(ν(1:∞))

q(ν(1:∞))
] + Eq[

N∑
n=1

log
p(zn·,X

(n) | ν(1:∞))

q(zn· | ν(1:∞))
]

=

∫
Z,ν1:∞

q(Z,ν1:∞) log
p(ν(1:∞))

q(ν(1:∞))
+

∫
Z,ν1:∞

q(Z,ν1:∞)

N∑
n=1

log
p(zn·,X

(n) | ν(1:∞))

q(zn· | ν(1:∞))

=

∫
Z,ν1:∞

q(Z | ν1:∞)q(ν1:∞) log
p(ν(1:∞))

q(ν(1:∞))
+

∫
Z,ν1:∞

q(Z | ν1:∞)q(ν1:∞)

N∑
n=1

log
p(zn·,X

(n) | ν(1:∞))

q(zn· | ν(1:∞))

=

∫
ν1:∞

q(ν1:∞)(

∫
Z

q(Z | ν1:∞) log
p(ν(1:∞))

q(ν(1:∞))
+

∫
Z

q(Z | ν1:∞)

N∑
n=1

log
p(zn·,X

(n) | ν(1:∞))

q(zn· | ν(1:∞))
)

=

∫
ν1:∞

q(ν1:∞)(

∫
Z

q(Z | ν1:∞) log
p(ν(1:∞))

q(ν(1:∞))
+

∫
Z

N∏
n=1

q(zn· | ν1:∞)

N∑
n=1

log
p(zn·,X

(n) | ν(1:∞))

q(zn· | ν(1:∞))
)

=

∫
ν1:∞

q(ν1:∞)(log
p(ν(1:∞))

q(ν(1:∞))
+

N∑
n=1

∫
zn·

q(zn· | ν1:∞) log
p(zn·,X

(n) | ν(1:∞))

q(zn· | ν(1:∞))
)

= −KL
[
q(ν1:∞) ‖ p(ν(1:∞))

]
+

∫
ν1:∞

q(ν1:∞)(

N∑
n=1

∫
zn·

q(zn· | ν1:∞) log
p(zn·,X

(n) | ν(1:∞))

q(zn· | ν(1:∞))
)

.

(6)

Note that the equality
∫
Z

∏N
n=1 q(zn· | ν1:∞)

∑N
n=1 log

p(zn·,X
(n)|ν(1:∞))

q(zn·|ν(1:∞))
=
∑N
n=1

∫
zn·

q(zn· |

ν1:∞) log
p(zn·,X

(n)|ν(1:∞))

q(zn·|ν(1:∞))
we use can be shown as below:
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∫
Z

N∏
n=1

qn

N∑
n=1

log
qn
pn

=

∫
z¬n·

∏
i 6=n

qi

∫
zn·

qn(
∑
i 6=n

log
qi
pi

+ log
qn
pn

)

=

∫
z¬n·

∏
i 6=n

qi

∫
zn·

qn
∑
i 6=n

log
qi
pi

+

∫
z¬n·

∏
i6=n

qi

∫
zn·

qn log
qn
pn

=

∫
z¬n·

∏
i 6=n

qi
∑
i 6=n

log
qi
pi

∫
zn·

qn +

∫
zn·

qn log
qn
pn

(

∫
z¬n·

∏
i 6=n

qi)

=

∫
z¬n·

∏
i 6=n

qi
∑
i 6=n

log
qi
pi

+

∫
zn·

qn log
qn
pn

=

N∑
n=1

∫
zn·

qn log
qn
pn
,

where qn ≡ q(zn· | ν1:∞) and pn ≡ p(zn·,X(n) | ν(1:∞)).

Here the integral inside the summation of the end of Equation 6 can be rewritten as∫
zn·

q(zn· | ν(1:∞)) log
p(zn·,X

(n) | ν(1:∞))

q(zn· | ν(1:∞))

=

∫
zn·

q(zn· | ν(1:∞)) log
p(X(n) | zn·,ν(1:∞))p(zn· | ν(1:∞))

q(zn· | ν(1:∞))

=− KL
[
q(zn· | ν(1:∞)) ‖ p(zn· | ν(1:∞))

]
+ Eq(zn·|ν(1:∞))[log p(X

(n) | zn·,ν(1:∞))]

By substituting it into L we have

L =− KL
[
q(ν1:∞) ‖ p(ν(1:∞))

]
+

∫
ν1:∞

q(ν1:∞)

N∑
n=1

(−KL
[
q(zn· | ν(1:∞)) ‖ p(zn· | ν(1:∞))

]
+ Eq(zn·|ν(1:∞))[log p(X

(n) | zn·,ν(1:∞))])

(7)

B Estimating marginal density of Z under the variational posterior

Given a sample Z from the variational posterior with known feature level K∗, to approximate the
marginal density q(Z|ν), we can use an underestimate using a truncated sum:

q(Z|ν) =
∞∑
k=1

q(Z|k,ν(1:∞))q(K = k)

=

K∗−1∑
k=1

q(Z|k,ν(1:∞))q(K = k) +

∞∑
k=K∗

q(Z|k,ν(1:∞))q(K = k)

= 0 +

∞∑
k=K∗

q(Z|k,ν(1:∞))q(K = k)

≥
K∗+1∑
k=K∗

q(Z|k,ν(1:∞))q(K = k)

= q(Z|K∗,ν(1:∞))q(K = K∗) + q(Z|K∗ + 1,ν(1:∞))q(K = (K∗ + 1)).

(8)

C Probabilistic program for the dynamic variational posterior

In practise, the sampling for this distribution is done by the probabilistic program below.
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1 for k = 1...Inf:
2 nu[k] = rand(Beta(alpha[k], beta[k])); pi[k] = prod(s[1:k])
3 s[k] = rand(Bern(rho[k] * s[k-1]))
4 if s[k] == 0:
5 break
6 z[n,k] = rand(Bern(f(pi[k], x[n]) * s[k]))

As you can see, after being sampled, the auxiliary variables are only used in Line 4 to determine
whether or not to break the loop. A common generic automatic differentiation engine cannot provide
any gradient from the parameters of sk.

D Samples from the Russian roulette sampling is an unbiased estimation of
the infinite summation

To see the proposed Russian roulette sampling gives unbiased expectation of the original term, we
investigate the k-th term in the summation and evaluate its expectation over the Russian roulette
sampling. We introduce the notation

rk =
q(K = k)Rk∏k

i=1 ρi
,

so that the full Russian roulette estimate can be written

S =

∞∑
k=0

rkδ{k ≤ K},

where K is the randomly chosen stopping level. Taking the expectation of a single term over the
Russian roulette sampling, we see

E[rkδ{k ≤ K}] = lim
K→∞

rkγk + rkγk+1 + · · ·+ rkγK

= lim
K→∞

rk(1− ρk+1)

k∏
i=1

ρi + rk(1− ρk+2)

k+1∏
i=1

ρi + · · ·+ rk(1− ρK+1)

K∏
i=1

ρi

= lim
K→∞

rk

(
(1− ρk+1)

k∏
i=1

ρi + (1− ρk+2)

k+1∏
i=1

ρi + · · ·+ (1− ρK+1)

K∏
i=1

ρi

)

= lim
K→∞

rk

k∏
i=1

ρi

(
(1− ρk+1) + (1− ρk+2)

k+1∏
i=k+1

ρi + · · ·+ (1− ρK+1)

K∏
i=k+1

ρi

)

=rk

k∏
i=1

ρi lim
K→∞

(
(1− ρk+1) + (1− ρk+2)

k+1∏
i=k+1

ρi + · · ·+ (1− ρK+1)

K∏
i=k+1

ρi

)

=rk

k∏
i=1

ρi · 1

=
q(K = k)Rk∏k

i=1 ρi

k∏
i=1

ρi

=q(K = k)Rk,
(9)

which completes the proof.

E More results

More results for the proposed method on the synthesized dataset are given in Figure 2.
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Figure 2: More results

The same collection of results on a larger synthesized dataset (34 features) with α = 8.0 are given in
Figure 3.

As you can see the method tends to infer less features than the true number.
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Figure 3: Results on a larger synthesized dataset
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