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Bayesian Cluster Analysis: Point Estimation and
Credible Balls (with Discussion)

Sara Wade∗ and Zoubin Ghahramani†

Abstract. Clustering is widely studied in statistics and machine learning, with
applications in a variety of fields. As opposed to popular algorithms such as ag-
glomerative hierarchical clustering or k-means which return a single clustering
solution, Bayesian nonparametric models provide a posterior over the entire space
of partitions, allowing one to assess statistical properties, such as uncertainty on
the number of clusters. However, an important problem is how to summarize the
posterior; the huge dimension of partition space and difficulties in visualizing it
add to this problem. In a Bayesian analysis, the posterior of a real-valued pa-
rameter of interest is often summarized by reporting a point estimate such as the
posterior mean along with 95% credible intervals to characterize uncertainty. In
this paper, we extend these ideas to develop appropriate point estimates and cred-
ible sets to summarize the posterior of the clustering structure based on decision
and information theoretic techniques.

Keywords: mixture model, random partition, variation of information, Binder’s
loss.

1 Introduction

Clustering is widely studied in statistics and machine learning, with applications in a
variety of fields. Numerous models and algorithms for clustering exist, and new studies
which apply these methods to cluster new datasets or develop novel models or algorithms
are constantly being produced. Classical algorithms such as agglomerative hierarchical
clustering or the k-means algorithm (Hartigan and Wong (1979)) are popular but only
explore a nested subset of partitions or require specifying the number of clusters apriori.
Moreover, they are largely heuristic and not based on formal models, prohibiting the
use of statistical tools, for example, in determining the number of clusters.

Model-based clustering methods utilize finite mixture models, where each mixture
component corresponds to a cluster (Fraley and Raftery (2002)). Problems of determin-
ing the number of clusters and the component probability distribution can be dealt with
through statistical model selection, for example, through various information criteria.
The expectation-maximization (EM) algorithm is typically used for maximum likelihood
estimation (MLE) of the mixture model parameters. Given the MLEs of the parameters,
the posterior probability that a data point belongs to a class can be computed through
Bayes rule. The cluster assignment of the data point corresponds to the class with max-
imal posterior probability, with the corresponding posterior probability reported as a
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measure of uncertainty. Importantly, however, this measure of uncertainty ignores un-
certainty in the parameter estimates. As opposed to MLE, Bayesian mixture models
incorporate prior information on the parameters and allow one to assess uncertainty in
the clustering structure unconditional on the parameter estimates.

Bayesian nonparametric mixture models assume that the number of components is
infinite. As opposed to finite mixture models, this not only avoids specification of the
number of components but also allows the number of clusters present in the data to
grow unboundedly as more data is collected. Bayesian nonparametric mixture models
induce a random partition model (Quintana (2006)) of the data points into clusters, and
the posterior of the random partition reflects our belief and uncertainty of the clustering
structure given the data.

However, an important problem in Bayesian nonparametric cluster analysis is how
to summarize this posterior; indeed, often the first question one asks is what is an ap-
propriate point estimate of the clustering structure based on the posterior. Such a point
estimate is useful for concisely representing the posterior and often needed in applica-
tions. Moreover, a characterization of the uncertainty around this point estimate would
be desirable in many applications. Even in studies of Bayesian nonparametric models
where the latent partition is used simply as a tool to construct flexible models, such as
in mixture models for density estimation (Lo (1984)), it is important to understand the
behavior of the latent partition to improve understanding of the model. To do so, the
researcher needs to be equipped with appropriate summary tools for the posterior of
the partition.

Inference in Bayesian nonparametric partition models usually relies on Markov chain
Monte Carlo (MCMC) techniques, which produce a large number of partitions that
represent approximate samples from the posterior. Due to the huge dimension of the
partition space and the fact that many of these partitions are quite similar differing
only in a few data points, the posterior is typically spread out across a large number
of partitions. Clearly, describing all the unique partitions sampled would be unfeasi-
ble, further emphasizing the need for appropriate summary tools to communicate our
findings.

In a typical Bayesian analysis, the posterior of a univariate parameter of interest is
often summarized by reporting a point estimate such as the posterior mean, median,
or mode, along with a 95% credible interval to characterize uncertainty. In this paper,
we aim to extend these ideas to develop summary tools for the posterior on partitions.
In particular, we seek to answer the two questions: 1) What is an appropriate point
estimate of the partition based on the posterior? 2) Can we construct a 95% credible
region around this point estimate to characterize our uncertainty?

We first focus on the problem of finding an appropriate point estimate. A simple
solution is to use the posterior mode. If the marginal likelihood of the data given the
partition, that is with all mixture component parameters integrated out, and the prior
of the partition are available in closed form, the posterior mode can be estimated based
on the MCMC output by the sampled partition which maximizes the non-normalized
posterior. In practice, a closed form for the marginal likelihood or prior is often unavail-
able, specifically, if conjugate priors for the component specific parameters do not exist
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or are not utilized or hyperpriors are assigned to any hyperparameters. More generally,
the posterior mode can be found by reporting the partition visited most frequently in the
sampler. Yet this approach can be problematic, as producing reliable frequency counts is
intractable due to the huge dimension of the partition space. In fact, in many examples,
the MCMC chain does not visit a partition more than once. To overcome this, alter-
native search techniques have been developed to locate the posterior mode (Heller and
Ghahramani (2005), Heard et al. (2006), Dahl (2009), Raykov et al. (2014)). However,
it is well-known that the mode can be unrepresentative of the center of a distribution.

Alternative methods have been proposed based on the posterior similarity matrix.
For a sample size of N , the elements of this N by N matrix represent the probability
that two data points are in the same cluster, which can be estimated by the proportion
of MCMC samples that cluster the two data points together. Then, classical hierarchical
or partitioning algorithms are applied based on the similarity matrix (Medvedovic and
Sivaganesan (2002), Medvedovic et al. (2004), Rasmussen et al. (2009), Molitor et al.
(2010)). These methods have the disadvantage of being ad-hoc.

A more elegant solution is based on decision theory. In this case, one defines a
loss function over clusterings. The optimal point estimate is that which minimizes the
posterior expectation of the loss function. For example, for a real-valued parameter θ,
the optimal point estimate is the posterior mean under the squared error loss L2(θ, θ̂) =

(θ − θ̂)2 and the posterior median under the absolute error loss L1(θ, θ̂) = |θ − θ̂|.
The question to answer then becomes what is an appropriate loss function on the

space of clusterings. The 0-1 loss function, a simple choice which leads to the posterior
mode as the point estimate, is not ideal as it does not take into account the similarity
between two clusterings. More general loss functions were developed by Binder (1978),
and the so-called Binder’s loss, which measures the disagreements in all possible pairs
of observations between the true and estimated clusterings, was studied in a Bayesian
nonparametric setting by Lau and Green (2007). Alternative loss functions considered
in Bayesian nonparametrics can be found in Quintana and Iglesias (2003) and Fritsch
and Ickstadt (2009).

In this paper, we propose to use the variation of information developed by Meilă
(2007) as a loss function in a Bayesian nonparametric setting. Both the variation of
information and Binder’s loss possess the desirable properties of being metrics on the
space of partitions and being aligned with the lattice of partitions. We provide a detailed
comparison of these two metrics and discuss the advantages of the variation of informa-
tion over Binder’s loss as a loss function in Bayesian cluster analysis. Additionally, we
propose a novel algorithm to locate the optimal partition, taking advantage of the fact
that both metrics are aligned on the space of partitions.

Next, to address the problem of characterizing uncertainty around the point es-
timate, we propose to construct a credible ball around the point estimate. As both
Binder’s loss and the variation of information are metrics on the partition space, we can
easily construct such a ball. Interestingly, the two metrics can produce very different
credible balls, and we discuss this in detail. In existing literature, quantifications of
uncertainty include reporting a heat map of the estimated posterior similarity matrix.
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However, there is no precise quantification of how much uncertainty is represented by
the posterior similarity matrix, and in a comparison with the 95% credible balls, we find
that the uncertainty is under-represented by the posterior similarity matrix. Finally, we
provide an algorithm to construct the credible ball and discuss ways to depict or report
it.

The paper is organized as follows. Section 2 provides a review of Bayesian nonpara-
metric clustering and existing point estimates of the clustering structure from a decision
theoretic approach. In Section 3, we give a detailed comparison of two loss functions,
Binder’s loss and the variation of information, pointing out advantages of the latter.
The optimal point estimate under the variation of information is derived in Section 4
and a novel algorithm to locate the optimal partition is proposed. In Section 5, we con-
struct a credible ball around the point estimate to characterize posterior uncertainty
and discuss how to compute and depict it. Finally, simulated and real examples are
provided in Section 6.

2 Review

This section provides a review of Bayesian nonparametric clustering models and existing
point estimates of the clustering in literature.

2.1 Bayesian nonparametric clustering

Mixture models are one of the most popular modeling tools in Bayesian nonparametrics.
The data is assumed conditionally i.i.d. with density

f(y|P ) =

∫
K(y|θ)dP (θ),

where K(y|θ) is a specified parametric density on the sample space with mixing param-
eter θ ∈ Θ and P is a probability measure on Θ. In a Bayesian setting, the model is
completed with a prior on the unknown parameter, which in this case, is the unknown
mixing measure. In the most general setting, this parameter P can be any probability
measure on Θ, requiring a nonparametric prior. Typically the nonparametric prior has
discrete realizations almost surely (a.s.) with

P =

∞∑
j=1

wjδθj a.s.,

where it is often assumed that the weights (wj) and atoms (θj) are independent and the
θj are i.i.d. from some base measure P0. Thus, the density is modeled with a countably
infinite mixture model

f(y|P ) =
∞∑
j=1

wjK(y|θj).

Since P is discrete a.s., this model induces a latent partitioning c of the data where
two data points belong to the same cluster if they are generated from the same mixture
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component. The partition can be represented by c = (C1, . . . , CkN
), where Cj contains

the indices of data points in the jth cluster and kN is the number of clusters in the
sample of size N . Alternatively, the partition can be represented by c = (c1, . . . , cN ),
where cn = j if the nth data point is in the jth cluster.

A key difference with finite mixture models is that the number of mixture compo-
nents is infinite; this allows the data to determine the number of clusters kN present
in the data, which can grow unboundedly with the data. Letting yj = {yn}n∈Cj , the
marginal likelihood for the data y1:N given the partition is

f(y1:N |c) =
kN∏
j=1

m(yj) =

kN∏
j=1

∫ ∏
n∈Cj

K(yn|θ)dP0(θ).

The posterior of the partition, which reflects our beliefs and uncertainty in the clus-
tering given the data, is simply proportional to the prior times the marginal likelihood

p(c|y1:N ) ∝ p(c)

kN∏
j=1

m(yj), (1)

where the prior of the partition is obtained from the selected prior on the mixing mea-
sure. For example, a Dirichlet process prior (Ferguson (1973)) for P with mass parameter
α corresponds to

p(c) =
Γ(α)

Γ(α+N)
αkN

kN∏
j=1

Γ(nj),

where nj = |Cj | is the number of data points in cluster j. Various other priors de-
veloped in Bayesian nonparametric literature can be considered for the mixing mea-
sure P , such as the Pitman–Yor process (Pitman and Yor (1997)), also known as the
two-parameter Poisson–Dirichlet process, or the normalized generalized Gamma pro-
cess or more generally, a prior within the class of normalized completely random mea-
sures, Poisson–Kingman models (Pitman (2003)), or stick-breaking priors (Ishwaran
and James (2001)). See Lijoi and Prünster (2011) for an overview.

In general, the marginal likelihood of the data given the partition or the prior of
the partition used to compute the posterior in (1) may not be available in closed form.
Moreover, there are

SN,k =
1

k!

k∑
j=0

(−1)j
(

k
j

)
(k − j)N ,

a Stirling number of the second kind, ways to partition the N data points into k groups
and

BN =

N∑
k=1

SN,k,

a Bell number, possible partitions of the N data points. Even for small N , this number is
very large, which makes computation of the posterior intractable for the simplest choice
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of prior and likelihood. Thus, MCMC techniques are typically employed, such as the
marginal samplers described by Neal (2000) with extensions in Favaro and Teh (2013)
for normalized completely random measures and in Lomelĺı et al. (2016) for σ-stable
Poisson–Kingman models; the conditional samplers described in Ishwaran and James
(2001), Papaspiliopoulos and Roberts (2008), or Kalli et al. (2011), with extensions
in Favaro and Teh (2013) for normalized completely random measures and in Favaro
and Walker (2012) for σ-stable Poisson–Kingman models; or the recently introduced
class of hybrid samplers for σ-stable Poisson–Kingman models in Lomelĺı et al. (2015).
These algorithms produce approximate samples (cm)Mm=1 from the posterior (1). Clearly,
describing all the posterior samples is infeasible, and our aim is to develop appropriate
summary tools to characterize the posterior.

Extensions of Bayesian nonparametric mixture models are numerous and allow one
to model increasingly complex data. These include extensions for partially exchangeable
data (Teh et al. (2006)), inclusion of covariates (MacEachern (2000)), time dependent
data (Griffin and Steel (2006)), and spatially dependent data (Duan et al. (2007)) to
name a few. See Müller and Quintana (2004) and Dunson (2010) for an overview. These
extensions also induce latent clusterings of the observations, and the summary tools
developed here are applicable for these settings as well.

2.2 Point estimation for clustering

Firstly, we seek a point estimate of the clustering that is representative of the posterior,
which may be of direct interest to the researcher or, more generally, important for
understanding the behavior of the posterior. From decision theory, a point estimate is
obtained by specifying a loss function L(c, ĉ), which measures the loss of estimating the
true clustering c with ĉ. Since the true clustering is unknown, the loss is averaged across
all possible true clusterings, where the loss associated to each potential true clustering is
weighted by its posterior probability. The point estimate c∗ corresponds to the estimate
which minimizes the posterior expected loss,

c∗ = argmin
ĉ

E[L(c, ĉ)|y1:N ] = argmin
ĉ

∑
c

L(c, ĉ)p(c|y1:N ).

A simple choice for the loss function is the 0-1 loss, L0−1(c, ĉ) = 1(c �= ĉ), which
assumes a loss of 0 if the estimate is equal to the truth and a loss of 1 otherwise. Under
the 0-1 loss, the optimal point estimate is the posterior mode. However, this loss function
is unsatisfactory because it doesn’t take into account similarity between two clusterings;
a partition which differs from the truth in the allocation of only one observation is
penalized the same as a partition which differs from the truth in the allocation of many
observations. Moreover, it is well-known that the mode can be unrepresentative of the
center of a distribution. Thus, more general loss functions are needed.

However, constructing a more general loss is not straightforward because, as pointed
out by Binder (1978), the loss function should satisfy basic principles such as invariance
to permutations of the data point indices and invariance to permutations of the cluster
labels for both the true and estimated clusterings. Binder notes that this first condition
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implies that the loss is a function of the counts ni j = |Ci ∩ Ĉj |, which is the cardinality

of the intersection between Ci, the set of data point indices in cluster i under c, and Ĉj ,

the set of data point indices in cluster j under ĉ, for i = 1, . . . , kN and j = 1, . . . , k̂N ;
the notation kN and k̂N represents the number of clusters in c and ĉ, respectively. He
explores loss functions satisfying these principles, starting with simple functions of the
counts ni j . The so-called Binder’s loss is a quadratic function of the counts, which for
all possible pairs of observations, penalizes the two errors of allocating two observations
to different clusters when they should be in the same cluster or allocating them to the
same cluster when they should be in different clusters:

B(c, ĉ) =
∑
n<n′

l11(cn = cn′)1(ĉn �= ĉn′) + l21(cn �= cn′)1(ĉn = ĉn′).

If the two types of errors are penalized equally, l1 = l2 = 1, then

B(c, ĉ) =
1

2

⎛⎝ kN∑
i=1

n2
i+ +

k̂N∑
j=1

n2
+ j − 2

kN∑
i=1

k̂N∑
j=1

n2
i j

⎞⎠ ,

where ni+ =
∑

j ni j and n+ j =
∑

i ni j . Under Binder’s loss with l1 = l2, the optimal
partition c∗ is the partition c which minimizes∑

n<n′

|1(cn = cn′)− pnn′ | ,

or equivalently, the partition c which minimizes∑
n<n′

(1(cn = cn′)− pnn′)
2
, (2)

where pnn′ = P (cn = cn′ |y1:N ) is the posterior probability that two observations n and
n′ are clustered together. This loss function was first studied in Bayesian nonparametrics
by Lau and Green (2007). We note that in earlier work Dahl (2006) considered mini-
mization of (2) but without the connection to Binder’s loss and the decision theoretic
approach.

Binder’s loss counts the total number of disagreements, D, in the
(
N
2

)
possible pairs

of observations. The Rand index (Rand (1971)), a cluster comparison criterion, is defined
as the number of agreements, A, in all possible pairs divided by the total number of
possible pairs. Since D + A =

(
N
2

)
, Binder’s loss and the Rand index, denoted R(c, ĉ),

are related:

B(c, ĉ) = (1− R(c, ĉ))

(
N

2

)
,

and the point estimate obtained from minimizing the posterior expected Binder’s loss
is equivalent to the point estimate obtained from maximizing the posterior expected
Rand’s index. Motivated by this connection, Fritsch and Ickstadt (2009) consider max-
imizing the adjusted Rand index, introduced by Hubert and Arabie (1985) to correct
the Rand index for chance. An alternative loss function is explored by Quintana and
Iglesias (2003) specifically for the problem of outlier detection.
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3 A comparison of the variation of information and
Binder’s loss

Meilă (2007) introduces the variation of information (VI) for cluster comparison, which
is constructed from information theory and compares the information in two clusterings
with the information shared between the two clusterings. More formally, the VI is defined
as

VI(c, ĉ) = H(c) + H(ĉ)− 2I(c, ĉ)

= −
kN∑
i=1

ni+

N
log

(ni+

N

)
−

k̂N∑
j=1

n+ j

N
log

(n+ j

N

)
− 2

kN∑
i=1

k̂N∑
j=1

ni j

N
log

(
ni jN

ni+n+ j

)
,

where log denotes log base 2. The first two terms represent the entropy of the two clus-
terings, which measures the uncertainty in bits of the cluster allocation of an unknown
randomly chosen data point given a particular clustering of the data points. The last
term is the mutual information between the two clusterings and measures the reduction
in the uncertainty of the cluster allocation of a data point in c when we are told its
cluster allocation in ĉ. The VI ranges from 0 to log(N). A review of extensions of the
VI to normalize or correct for chance are discussed in Vinh et al. (2010). However, some
desirable properties of the VI are lost under these extensions.

In this paper, we propose to use the VI as a loss function. Note that since I(c, ĉ) =
H(c) + H(ĉ)−H(c, ĉ), we can write

VI(c, ĉ) = H(c) + H(ĉ)− 2H(c)− 2H(ĉ) + 2H(c, ĉ),

= −H(c)−H(ĉ) + 2H(c, ĉ),

=

kN∑
i=1

ni+

N
log

(ni+

N

)
+

k̂N∑
j=1

n+ j

N
log

(n+ j

N

)
− 2

kN∑
i=1

k̂N∑
j=1

ni j

N
log

(ni j

N

)
.

We provide a detailed comparison with an N -invariant version of Binder’s loss, defined
as

B̃(c, ĉ) =
2

N2
B(c, ĉ) =

kN∑
i=1

(ni+

N

)2

+

k̂N∑
j=1

(n+ j

N

)2

− 2

kN∑
i=1

k̂N∑
j=1

(ni j

N

)2

.

Both loss functions are considered N -invariant as they only depend on N through the
proportions ni j/N . We focus on these two loss functions as they satisfy several desirable
properties.

The first important property is that both VI and B̃ are metrics on the space of
partitions.

Property 1. Both VI and B̃ are metrics on the space of partitions.

A proof for VI can be found in Meilă (2007). For B̃, the proof results from the fact that
B̃ can be derived as the Hamming distance between the binary representation of the
clusterings.
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Figure 1: Hasse diagram for the lattice of partitions with a sample of size N = 4. A line
is drawn from c up to ĉ when c is covered by ĉ.

The next properties involve first viewing the space of partitions as a partially ordered
set. In particular, consider the space of partitions C and the binary relation ≤ on C
defined by set containment, i.e. for c, ĉ ∈ C, c ≤ ĉ if for all i = 1, . . . , kN , Ci ⊆ Ĉj

for some j ∈ {1, . . . , k̂N}. The partition space C equipped with ≤ is a partially ordered
set.

For any c, ĉ ∈ C, c is covered by ĉ, denoted c ≺ ĉ, if c < ĉ and there is no ̂̂c ∈ C

such that c < ̂̂c < ĉ. This covering relation is used to define the Hasse diagram, where
the elements of C are represented as nodes of a graph and a line is drawn from c up to
ĉ when c ≺ ĉ. An example of the Hasse diagram for N = 4 is depicted in Figure 1.

The space of partitions possesses an even richer structure; it forms a lattice. This
follows from the fact that every pair of partitions has a greatest lower bound and least
upper bound ; for a subset S ⊆ C, an element c ∈ C is an upper bound for S if s ≤ c
for all s ∈ S, and c ∈ C is the least upper bound for S, denoted c = l.u.b.(S), if
c is an upper bound for S and c ≤ c′ for all upper bounds c′ of S. A lower bound
and the greatest lower bound for a subset S ⊆ C are similarly defined, the latter
denoted by g.l.b.(S). We define the operators ∧, called the meet, and ∨, called the
join, as c ∧ ĉ = g.l.b.(c, ĉ) and c ∨ ĉ = l.u.b.(c, ĉ). Following the conventions of lattice
theory, we will use 1 to denote the greatest element of the lattice of partitions, i.e. the
partition with every observation in one cluster c = ({1, . . . , N}), and 0 to denote the
least element of the lattice of partitions, i.e. the partition with every observation in its
own cluster c = ({1}, . . . , {N}). See Nation (1991) for more details on lattice theory
and the Supplementary Material (Wade and Ghahramani, 2017) for specific details on
the lattice of partitions.

A desirable property is that both VI and B̃ are aligned with the lattice of partitions.

Specifically, both metrics are vertically aligned in the Hasse diagram; if ̂̂c is connected

up to ĉ and ĉ is connected up to c, then the distance between ̂̂c and c is the vertical

sum of the distances between ̂̂c and ĉ and between ĉ and c (see Property 2). And,
both metrics are horizontally aligned ; the distance between any two partitions is the
horizontal sum of the distances between each partition and the meet of the two partitions
(see Property 3).
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Figure 2: Hasse diagram stretched by VI with a sample of size N = 4. Note 2− 3
4 log(3) ≈

0.811. From the VI stretched Hasse diagram, we can determine the distance between
any two partitions. Example: if c = ({1, 2}, {3, 4}) and ĉ = ({1}, {3}, {2, 4}), then
c ∧ ĉ = ({1}, {2}, {3}, {4}) and d(c, ĉ) = d(c ∧ ĉ,1) − d(c,1) + d(c ∧ ĉ,1) − d(ĉ,1) =
2− 1 + 2− 1.5 = 1.5.

Figure 3: Hasse diagram stretched by B̃ with a sample of size N = 4. From the B̃
stretched Hasse diagram, we can determine the distance between any two partitions.
Example: if c = ({1, 2}, {3, 4}) and ĉ = ({1}, {3}, {2, 4}), then c∧ĉ = ({1}, {2}, {3}, {4})
and d(c, ĉ) = d(c∧ ĉ,1)−d(c,1)+d(c∧ ĉ,1)−d(ĉ,1) = 0.75−0.5+0.75−0.625 = 0.375.

Property 2. For both VI and B̃, if c ≥ ĉ ≥ ̂̂c, then
d(c, ̂̂c) = d(c, ĉ) + d(ĉ, ̂̂c).

Property 3. For both VI and B̃,

d(c, ĉ) = d(c, ĉ ∧ c) + d(ĉ, ĉ ∧ c).

Proofs can be found in the Supplementary Material. These two properties imply that if
the Hasse diagram is stretched to reflect the distance between any partition and 1, the
distance between any two partitions can be easily determined from the stretched Hasse
diagram. Figures 2 and 3 depict the Hasse diagram for N = 4 in Figure 1 stretched
according to VI and B̃ respectively.

From the stretched Hasse diagram, we gain several insights into the similarities
and differences between the two metrics. An evident difference is the scale of the two
diagrams.
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Property 4. A distance on partitions satisfying Properties 2 and 3 has the property
that for any two partitions c and ĉ,

d(c, ĉ) ≤ d(1,0).

Thus,

VI(c, ĉ) ≤ log(N) and B̃(c, ĉ) ≤ 1− 1

N
.

A proof can be found in the Supplementary Material. In both cases, the bound on the
distance between two clusterings depends on the sample size N . However, the behavior
of this bound is very different; for VI, it approaches infinity as N → ∞, and for B̃, it
approaches one as N → ∞. As N grows, the number of total partitions BN increases
drastically. Thus, it is sensible that the bound on the metric grows as the size of the
space grows. In particular, 1 and 0 become more distant as N → ∞, as there is an
increasing number, BN − 2, of partitions between these two extremes; for B̃, the loss
of estimating one of these extremes with the other approaches the fixed number one,
while for VI, the loss approaches infinity.

From the stretched Hasse diagram in Figures 2 and 3, we can determine the clos-
est partitions to any c. For example, the closest partitions to 1 are the partitions
which split 1 into two clusters, one singleton and one containing all other observa-
tions; and the closest partitions to ({1}, {2}, {3, 4}) are the partition which merges the
two smallest clusters ({1, 2}, {3, 4}) and the partition which splits the cluster of size two
({1}, {2}, {3}, {4}).
Property 5. For both metrics VI and B̃, the closest partitions to a partition c are:

• if c contains at least two clusters of size one and at least one cluster of size two,
the partitions which merge any two clusters of size one and the partitions which
split any cluster of size two.

• if c contains at least two clusters of size one and no clusters of size two, the
partitions which merge any two clusters of size one.

• if c contains at most one cluster of size one, the partitions which split the smallest
cluster of size greater than one into a singleton and a cluster with the remaining
observations of the original cluster.

A proof can be found in the Supplementary Material. This property characterizes the
set of estimated partitions which are given the smallest loss. Under both loss functions,
the smallest loss of zero occurs when the estimated partition is equal to the truth.
Otherwise, the smallest loss occurs when the estimated clustering differs from the truth
by merging two singleton clusters or splitting a cluster of size two, or, if neither is
possible, splitting the smallest cluster of size n into a singleton and a cluster of size
n− 1. We further note that the loss of estimating the true clustering with a clustering
which merges two singletons or splits a cluster of size two, is 2

N and 2
N2 for VI and B̃

respectively, which converges to 0 as N → ∞ for both metrics, but at a faster rate for
B̃.
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Next, we note that the Hasse diagram stretched by B̃ in Figure 3 appears asymmetric,
in the sense that 1 is more separated from the others when compared to the Hasse
diagram stretched by VI in Figure 2.

Property 6. Suppose N is divisible by k, and let ck denote a partition with k clusters
of equal size N/k.

B̃(1, ck) = 1− 1

k
>

1

k
− 1

N
= B̃(0, ck).

VI(1, ck) = log(k) ≤ log(N)− log(k) = VI(0, ck), for k ≤
√
N,

and

VI(1, ck) = log(k) ≥ log(N)− log(k) = VI(0, ck), for k ≥
√
N.

Property 6 reflects the asymmetry apparent in Figure 3. In particular, for B̃, a
partition with two clusters of equal size c2 will always be closer to the extreme 0 of each
data point in its own cluster than the extreme 1 of everyone in one cluster. However, as
the sample size increases, c2 becomes equally distant between the two extremes. For all
other values of k, the extreme 0 will always be closer. This behavior is counter-intuitive
for a loss function on clusterings. VI is much more sensible in this regard. If k =

√
N ,

0 and 1 are equally good estimates of ck. For k <
√
N , ck is better estimated by 1 and

for k >
√
N , ck is better estimated by 0; as the sample size increases, these preferences

become stronger. In particular, note that loss of estimating c2 with 1 will always be
smaller than estimating it with 0 for N > 4.

Additionally, we observe from Figure 3 that the partitions with two clusters of sizes
one and three are equally distant between the two extremes under B̃. The following
property generalizes this observation.

Property 7. Suppose N is an even and square integer. Then, the partitions with two
clusters of sizes n = 1

2 (N −
√
N) and N − n are equally distant from 1 and 0 under B̃.

This property is unappealing for a loss function, as it states that the loss of esti-
mating a partition consisting of two clusters of sizes 1

2 (N −
√
N) and 1

2 (N +
√
N) with

the partition of only one cluster or with the partition of all singletons is the same. In-
tuitively, however, 1 is a better estimate. The behavior of VI is much more reasonable,
as partitions with two clusters will always be better estimated by 1 than 0 for N > 4
and partitions with

√
N clusters of equal size are equally distant from 0 and 1.

Finally, we note that as both VI and B̃ are metrics on the space of clusterings, we
can construct a ball around c of size ε, defined as:

Bε(c) = {ĉ ∈ C : d(c, ĉ) ≤ ε}.

From Property 5, the smallest non-trivial ball will be the same for the two metrics. When
considering the next smallest ball, differences emerge; a detailed example is provide in
the Supplementary Material. In the authors’ opinions, the VI ball more closely reflects
our intuition of the closest set of partitions to c.
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4 Point estimation via the variation of information

As detailed in the previous section, both VI and B̃ share several desirable properties
including being aligned with the lattice of partitions and coinciding in the smallest
non-trivial ball around any clustering. However, in our comparison, differences also
emerged. Particularly, we find that B̃ exhibits some peculiar asymmetries, preferring
to split clusters over merging, and we find that the VI ball more closely reflects our
intuition of the neighborhood of a partition. In light of this, we propose to use VI as a
loss function in Bayesian cluster analysis. Under the VI, the optimal partition c∗ is

c∗ = argmin
ĉ

E[VI(c, ĉ)|D]

= argmin
ĉ

N∑
n=1

log(

N∑
n′=1

1(ĉn′ = ĉn))− 2

N∑
n=1

E[log(

N∑
n′=1

1(cn′ = cn, ĉn′ = ĉn))|D], (3)

with D denoting the data. For a given ĉ, the second term in (3) can be approximated
based on the MCMC output, and evaluating this term is of order O(MN2) (recall M
is the number of MCMC samples). This may be computationally demanding if the
number of MCMC samples is large and if (3) must be evaluated for a large number of
ĉ. Alternatively, one can use Jensen’s inequality, swapping the log and expectation, to
obtain a lower bound on the expected loss which is computationally more efficient to
evaluate:

argmin
ĉ

N∑
n=1

log(

N∑
n′=1

1(ĉn′ = ĉn))− 2

N∑
n=1

log(

N∑
n′=1

P (cn′ = cn|D)1(ĉn′ = ĉn)). (4)

Similar to minimization of the posterior expected Binder’s loss, minimization of (4)
only depends on the posterior through the posterior similarity matrix, which can be
pre-computed based on the MCMC output. In this case, computational complexity for
a given ĉ is reduced to O(N2).

Due to the huge dimensions of the partition space, computing the lower bound
in (4) for every possible ĉ is practically impossible. A simple technique to find the
optimal partition c∗ restricts the search space to some smaller space of partitions. The R
package ‘mcclust’ (Fritsch (2012)), which contains tools for point estimation in Bayesian
cluster analysis and cluster comparison, includes a function minbinder() that finds the
partition minimizing the poster expected Binder’s loss among the subset of partitions
1) visited in the MCMC chain or 2) explored in a hierarchical clustering algorithm
with a distance of 1 − P (cn = cn′ |D) and average or complete linkage. An alternative
search algorithm developed in Lau and Green (2007), which is based on binary integer
programming, is also implemented.

We propose a greedy search algorithm to locate the optimal partition c∗ based on the
Hasse diagram, which can be used for both VI and B̃. In particular, given some partition
ĉ, we consider the l closest partitions that cover ĉ and the l closest partitions that ĉ
covers. Here, the distance used to determine the closest partitions corresponds to the

selected loss of VI or B̃. Next, the posterior expected loss E[L(c, ̂̂c)|D] is computed for all

proposed partitions ̂̂c, and we move in the direction of minimum posterior expected loss,
that is the partition c′ with minimal E[L(c, c′)|D] is selected. The algorithm stops when
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no reduction in the posterior expected loss is obtained or when a maximum number of
iterations has been reached. At each iteration, the computational complexity is O(lN2).

We have developed an R package ‘mcclust.ext’ (Wade (2015)), expanding upon the
‘mcclust’ package, that is currently available on the author’s website1 and includes
functions minbinder.ext() and minVI() to find the partition minimizing the poste-
rior expected Binder’s loss and VI, respectively. In addition to implementing the search
algorithms of minbinder() in ‘mcclust’ described previously, the greedy search algo-
rithm is also included. As is common in greedy search algorithms, results are sensitive
to both the starting value of ĉ and the step size l. In practice, we recommend multiple
restarts, for example, at different MCMC samples or the best partition found by the
other search algorithms. A larger value of l will allow more exploration and reduce the
need for multiple restarts, and we have chosen a default value of l = 2N as this showed
good exploration in the examples considered with little sensitivity to the initial value
of ĉ. However, for larger datasets, this may be too expensive and multiple restarts with
smaller l may be preferred.

An advantage of the greedy search algorithm over simply restricting to partitions
visited in the chain is that partitions not explored in the MCMC algorithm can be
considered; in fact, in almost all simulated and real examples, the clustering estimate is
not among the sampled partitions and results in a lower expected loss than any sampled
partition.

5 Credible balls of partitions

To characterize the uncertainty in the point estimate c∗, we propose to construct a
credible ball of a given credible level 1− α, α ∈ [0, 1], defined as

Bε∗(c
∗) = {c : d(c∗, c) ≤ ε∗},

where ε∗ is the smallest ε ≥ 0 such that P (Bε(c
∗)|D) ≥ 1 − α. The credible ball is

the smallest ball around c∗ with posterior probability at least 1 − α. It reflects the
posterior uncertainty in the point estimate c∗; with probability 1 − α, we believe that
the clustering is within a distance of ε∗ from the point estimate c∗ given the data. It
can be defined based on any metric on the space of partitions, such as VI and B̃. If the
smallest non-trivial ball under VI or B̃ has posterior probability of at least 1 − α, the
credible balls under the two metrics will coincide (see Property 5). Typically, however,
they will be different.

From the MCMC output, we can obtain an estimate of ε∗, and thus the credible ball
of level 1−α. First, the distance between all MCMC samples {cm} and c∗ is computed.
For any ε ≥ 0,

P (Bε(c
∗)|D) = E[1(d(c∗, c) ≤ ε)|D] ≈ 1

M

M∑
m=1

1(d(c∗, cm) ≤ ε),

and ε∗ is the smallest ε ≥ 0 such that 1
M

∑M
m=1 1(d(c

∗, cm) ≤ ε) ≥ 1− α.

1https://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/wade/.

https://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/wade/
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To characterize the credible ball, we define the vertical and horizontal bounds of
the credible ball. The vertical upper bounds consist of the partitions in the credible
ball with the smallest number of clusters that are most distant from c∗. The vertical
lower bounds consist of the partitions in the credible ball with the largest number of
clusters that are most distant from c∗. The horizontal bounds consist of the partitions
in the credible ball that are most distant from c∗. The bounds are defined more formally
below, where the notation k(c) is used for the number of clusters in c.

Definition 1 (Vertical upper bounds). The vertical upper bounds of the credible ball
Bε∗(c

∗), denoted vuε∗(c
∗), are defined as

vuε∗(c
∗) = {c ∈ Bε∗(c

∗) : k(c) ≤ k(c′) ∀ c′ ∈ Bε∗(c
∗) and

d(c, c∗) ≥ d(c′′, c∗) ∀ c′′ ∈ Bε∗(c
∗) with k(c) = k(c′′)}.

Definition 2 (Vertical lower bounds). The vertical lower bounds of the credible ball
Bε∗(c

∗), denoted vlε∗(c
∗), are defined as

vlε∗(c
∗) = {c ∈ Bε∗(c

∗) : k(c) ≥ k(c′) ∀ c′ ∈ Bε∗(c
∗) and

d(c, c∗) ≥ d(c′′, c∗) ∀ c′′ ∈ Bε∗(c
∗) with k(c) = k(c′′)}.

Definition 3 (Horizontal bounds). The horizontal bounds of the credible ball Bε∗(c
∗),

denoted hε∗(c
∗), are defined as

hε∗(c
∗) = {c ∈ Bε∗(c

∗) : d(c, c∗) ≥ d(c′, c∗) ∀ c′ ∈ Bε∗(c
∗)}.

These bounds describe the extremes of the credible ball and with 1 − α posterior
probability, how different we believe the partition may be from c∗. An example is pro-
vided in the Supplementary Material. In practice, we define the vertical and horizontal
bounds based on the partitions in the credible ball with positive estimated posterior
probability.

In existing literature, quantification of uncertainty in the clustering structure is
typically described through a heat map of the estimated posterior similarity matrix.
However, as opposed to the credible ball of Bayesian confidence level 1− α, there is no
precise quantification of how much uncertainty is represented by the posterior similar-
ity matrix. Moreover, in the examples of Section 6, we find that in a comparison with
the 95% credible balls, the uncertainty is under-represented by the posterior similar-
ity matrix. Additionally, the credible balls have the added desirable interpretation of
characterizing the uncertainty around the point estimate c∗.

6 Examples

We provide both simulated and real examples to compare the point estimates from VI
and Binder’s loss and describe the credible ball representing uncertainty in the clustering
estimate.
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Figure 4: The data is simulated from a mixture of four normals with locations (±2,±2)′

and colored by cluster membership. In (b) components having varying standard devia-
tions.

6.1 Simulated examples

Two datasets of size n = 200 are simulated from:

Xi
iid∼

4∑
j=1

1

4
N

([
(−1)�

(j−1)
2 �2

(−1)j−12

]
,

[
σ2
j 0
0 σ2

j

])
.

In the first example, σj = 1 for all components, while in the second example, components
have varying standard deviations; σj = 1 for the two components located in the first
and third quadrants, σj = 0.5 in the second quadrant, and σj = 1.5 in the fourth
quadrant. The datasets for both examples are depicted in Figure 4 and colored by
cluster membership.

We consider a Dirichlet process (DP) mixture model:

Xi|P iid∼
∫

N

([
μ1

μ2

]
,

[
σ2
1 0
0 σ2

2

])
dP (μ,Σ) and P ∼ DP(αP0), (5)

where μ = (μ1, μ2)
′ and Σ is a diagonal matrix with diagonal elements (σ2

1 , σ
2
2). The

base measure of the DP is the conjugate product of normal inverse gamma priors with
parameters (μ0,i, ci, ai, bi) for i = 1, 2, i.e. P0 has density

p0(μ1, μ2, σ
2
1 , σ

2
2) ∝

2∏
i=1

√
ci
σ2
i

exp

(
− ci
2σ2

i

(μi − μ0,i)
2

)
(σ2

i )
−ai−1 exp

(
− bi
σ2
i

)
.

The parameters were fixed to μ0,i = 0, ci = 1/2, ai = 2, bi = 1 for i = 1, 2. The mass
parameter α is given a Gam(1, 1) hyperprior.

A marginal Gibbs sampler is used for inference (Neal (2000)) with 10,000 iterations
after a burn in period of 1,000 iterations. Trace plots and autocorrelation plots (not
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Figure 5: Clustering estimate with color representing cluster membership for Binder’s
loss (first row) and VI (second row) with columns corresponding to examples.

shown) suggest convergence. Among partitions sampled in the MCMC, only one is
visited twice and all others are visited once in the first example, while no partitions are
visited more than once in the second example.

Figure 5 depicts the partition estimate found by the greedy search algorithm for
Binder’s loss and VI and for both examples (with multiple restarts and the default
value of l = 2N); colors represent cluster membership with the posterior expected
cluster-specific mean and variance represented through stars and ellipses, respectively.
Tables in the Supplementary Material provide a comparison of the true partition with
the estimates through a cross tabulation of cluster labels. In all examples, the four true
clusters are visible; however, Binder’s loss creates new small clusters for observations on
the border between clusters where cluster membership is uncertain, overestimating the
number of clusters. This effect is most extreme for the second example, where the fourth
cluster (blue in Figure 4b) has increased overlap with the second and third clusters (red
and green in Figure 4b), while the first cluster (black in Figure 4b) with decreased
variance is well separated from the other clusters and identified in both estimates.

A further comparison of the true partition with the estimates under Binder’s loss
and VI, for both examples, is provided in Table 1. As expected, the B̃ estimate and
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Loss k∗N NI E[B̃|D] B̃(ct, c
∗) E[VILB|D] E[VI|D] VI(ct, c

∗)

Ex 1:
B̃ 9 13 0.062 0.045 0.545 0.816 0.643
VI 4 9 0.064 0.044 0.426 0.77 0.569

Ex 2:
B̃ 12 18 0.088 0.056 0.846 1.068 0.764
VI 4 10 0.093 0.049 0.668 0.99 0.561

Table 1: A comparison of the clustering estimate with B̃ or VI in terms of 1) number
of clusters k∗N ; 2) number of data points incorrectly classified, denoted NI ; 3) expected
B̃; 4) B̃ between the optimal and true clusterings; 5) expected lower bound of VI; 6)
expected VI; and 7) VI between the optimal and true clusterings for both examples.

Ex 1 Loss k∗N NI E[B̃|D] B̃(ct, c
∗) E[VILB|D] E[VI|D] VI(ct, c

∗)

N = 200:
B̃ 9 13 0.062 0.045 0.545 0.816 0.643
VI 4 9 0.064 0.044 0.426 0.77 0.569

N = 400:
B̃ 17 31 0.068 0.052 0.674 1.0 0.769
VI 4 18 0.073 0.044 0.505 0.933 0.54

N = 800:
B̃ 24 62 0.068 0.061 0.615 1.016 0.903
VI 4 47 0.069 0.056 0.477 0.943 0.742

N = 1600:
B̃ 41 93 0.058 0.044 0.551 0.898 0.719
VI 4 49 0.0596 0.045 0.403 0.814 0.629

Table 2: Example 1 with increasing sample size: a comparison of the clustering estimate
with B̃ or VI in terms of 1) number of clusters k∗N ; 2) number of data points incorrectly
classified, denoted NI ; 3) expected B̃; 4) B̃ between the optimal and true clusterings; 5)
expected lower bound of VI; 6) expected VI; and 7) VI between the optimal and true
clusterings.

VI estimate achieve the lowest posterior expected loss for B̃ and VI, respectively, but
interestingly, the VI estimate has the smallest distance from the truth for both B̃ and VI
in both examples, with the greatest improvement in the second example. Furthermore,
the number of incorrectly classified data points is greater for the B̃ estimate than the
VI estimate.

Additional simulated experiments were performed to analyze the effect of increasing
the sample size in the first example. The results are succinctly summarized in Table 2.
As the sample size increases, more points are located on the border where cluster mem-
bership is uncertain. This results in an increasing number of clusters in the B̃ estimate
(up to 41 clusters for N = 1600), while the VI estimate contains only four clusters
for all sample sizes. In both estimates, the number of incorrectly classified data points
increases with the sample size, however this number is smaller for the VI estimate in all
sample sizes, with the difference between this number for Binder’s and VI growing with
the sample size. Furthermore, the VI estimate has improved VI distance with truth and
improved or comparable B̃ distance with truth when compared with the B̃ estimate.

Further experiments were carried out to consider highly unbalanced clusters. In this
case, the conclusions continue to hold; Binder’s loss overestimates the number of clusters
present, placing uncertain observations in new small clusters, and this effect becomes
more pronounced with increased overlap between clusters (results not shown).
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Figure 6: Example 1: 95% credible ball with Binder’s loss around c∗ (a) represented by
the (b) horizontal bound, (c) upper vertical bound, and (d) lower vertical bound, where
color denotes cluster membership, and a heat map of the posterior similarity matrix (e).

For the first example, Figures 6 and 7 represent the 95% credible ball around the opti-
mal partition for B̃ and VI, respectively, through the upper vertical bound, lower vertical
bound, and horizontal bound, with data points colored according to cluster membership.
Analogous plots for the second example are found in Figures 8 and 9. The Supplemen-
tary Material provides tables comparing the bounds with the true clustering through a
cross tabulation of the true cluster labels with the cluster labels for each bound.

In the first example, we observe that elements of the 95% credible ball with positive
estimated posterior probability have at least four clusters for both metrics and at most
18 clusters for B̃ or 16 clusters for VI, while the most distant elements contain 11 clusters
for B̃ and VI (Table 3). For both metrics, these bounds reallocate uncertain data points
on the border with these points either added to one of the four main clusters or to new
small to medium-sized clusters. For example, in the B̃ upper bound, 19 elements of the
third cluster (green in Figure 4a) are added to the fourth cluster (blue in Figure 4a) and
in the B̃ lower bound, the fourth cluster (blue in Figure 4a) is split in two medium-sized
clusters and several small clusters.

In the second example, the first cluster (black in Figure 4b) is stable in all bounds,
while the 95% credible ball reflects posterior uncertainty on whether to divide the re-
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Figure 7: Example 1: 95% credible ball with VI around c∗ (a) represented by the (b)
horizontal bound, (c) upper vertical bound, and (d) lower vertical bound, where color
denotes cluster membership, and a heat map of the posterior similarity matrix (e).

Loss Upper Lower Horizontal
kuN d(c∗, cu) klN d(c∗, cl) khN d(c∗, ch)

Ex 1:
B̃ 4 0.097 18 0.097 11 0.097
VI 4 1.02 16 1.152 11 1.213

Ex 2:
B̃ 4 0.137 19 0.131 10 0.137
VI 3 1.043 16 1.342 6 1.403

Table 3: A summary of the credible bounds with B̃ or VI in terms of the number of
clusters and distance to the clustering estimate for the upper vertical, lower vertical,
and horizontal bounds and for both examples.

maining data points into 3 to 18 clusters for B̃ and 2 to 15 clusters for VI (Table 3).
Notice the high uncertainty in the fourth cluster with increased variance (blue in Fig-
ure 4b). Additionally, note the greater uncertainty around the optimal estimate in Ex-
ample 2, as the horizontal distance in Table 3 is greater for Example 2 for both metrics.

Figures 6–9 also present heat maps of the posterior similarity matrix for both ex-
amples. In general, the posterior similarity matrix appears to under-represent the un-
certainty; indeed, one would conclude from the similarity matrix that there is only
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Figure 8: Example 2: 95% credible ball with Binder’s loss around c∗ (a) represented
by the (b) horizontal bound, (c) upper vertical bounds (only one of two shown for
conciseness), and (d) lower vertical bound, where color denotes cluster membership,
and a heat map of the posterior similarity matrix (e).

uncertainty in allocation of a few data points in Example 1. Moreover, the 95% credible
ball gives a precise quantification of the uncertainty.

6.2 Galaxy example

We consider an analysis of the galaxy data (Roeder (1990)), available in the MASS
package of R, which contains measurements of velocities in km/sec of 82 galaxies from
a survey of the Corona Borealis region. The presence of clusters provides evidence for
voids and superclusters in the far universe. The data is modeled with a DP mixture (5).
The parameters were selected empirically with μ0 = x̄, c = 1/2, a = 2, b = s2, where x̄
represents the sample mean and s2 represents the sample variance. The mass parameter
α is given a Gam(1, 1) hyperprior.

With 10,000 samples after 1,000 burn in, the posterior mass is spread out over 9,636
partitions, emphasizing the need for appropriate summary tools. Figure 10 plots the
point estimate of the partition found by the greedy search algorithm for Binder’s loss
and VI (with multiple restarts and the default value of l = 2N). The data values are
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Figure 9: Example 2: 95% credible ball with VI around c∗ (a) represented by the (b)
horizontal bound, (c) upper vertical bound, and (d) lower vertical bound, where color
denotes cluster membership and a heat map of the posterior similarity matrix (e).

plotted against the estimated density values from the DP mixture model and colored
according to cluster membership, with correspondingly colored stars and bars along the
x-axis representing the posterior mean and variance within cluster. Again, we observe
that Binder’s loss places observations with uncertain allocation into singleton clusters,
with a total of 7 clusters, 4 of which are singletons, while the VI solution contains 3
clusters. Table 4 compares the point estimates in terms of the posterior expected B̃,
lower bound of VI, and VI; as anticipated, the B̃ solution has the smallest posterior
expected B̃ and the VI solution has the smallest posterior expected VI.

Loss k∗N E[B̃|D] E[VILB|D] E[VI|D]

B̃ 7 0.218 0.746 1.014
VI 3 0.237 0.573 0.939

Table 4: Galaxy example: a comparison of the optimal partition with Binder’s loss and
VI in terms of posterior expected B̃, lower bound to VI, and VI.

The 95% VI credible ball contains all partitions with a VI distance less than 1.832.
Figure 11 depicts the 95% credible ball through the upper vertical, lower vertical,
and horizontal bounds, which are further described and summarized in Table 5 and
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Figure 10: Galaxy example: optimal clustering estimate with color representing cluster
membership for Binder’s loss and VI, with correspondingly colored stars and bars along
the x-axis representing the posterior mean and variance within cluster.

Upper Lower Horizontal
kuN d(c∗, cu) klN d(c∗, cl) khN d(c∗, ch)

Galaxy 2 1.364 15 1.669 8 1.832

Table 5: Galaxy example: a summary of the credible bounds with VI in terms of the
number of clusters and distance to the clustering estimate for the upper vertical, lower
vertical, and horizontal bounds.

in cross tabulation tables in the Supplementary Material. We observe a large amount
of variability around the optimal partition. With 95% posterior probability, we believe
that, on one extreme, the data could be modeled using only 2 components, one with
a large variance to account for outliers (black cluster in Figure (11a)). On the other
extreme, the data could be further split into one medium sized cluster and many, 14
to be precise, smaller clusters. The horizontal bound, the most extreme partition in
the credible ball, splits the largest cluster (red in Figure 10b) into two medium sized
clusters and four small clusters and reallocates some of its data points to the first
cluster (black in Figure 10b). Figure 11d emphasizes that the posterior similarity ma-
trix under-represents the uncertainty around the point estimate in comparison to the
credible ball.

7 Discusssion

Bayesian cluster analysis provides an advantage over classical cluster analysis, in that
the Bayesian procedure returns a posterior distribution over the entire partition space,
reflecting uncertainty in the clustering structure given the data, as opposed to returning
a single solution or conditioning on the parameter estimates and number of clusters. This
allows one to assess statistical properties of the clustering given the data. However, due
to the huge dimension of the partition space, an important problem in Bayesian cluster
analysis is how to appropriately summarize the posterior. To address this problem, we
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Figure 11: Galaxy example: 95% credible ball with VI represented by the (a) upper
vertical bound, (b) lower vertical bound, and (c) horizontal bound, where color denotes
cluster membership, with correspondingly colored stars and bars along the x-axis rep-
resenting the posterior mean and variance within cluster, and (d) a heat map of the
posterior similarity matrix.

have developed tools to obtain a point estimate of clustering based on the posterior and
describe uncertainty around this estimate via the 95% credible ball.

Obtaining a point estimate through a formal decision theory framework requires
the specification of a loss function. Previous literature focused on Binder’s loss. In this
work, we propose to use an information theoretic measure, the variation of information,
and provide a detailed comparison of the two metrics. We find that Binder’s loss ex-
hibits peculiar asymmetries, preferring to split over merge clusters, and the variation
of information is more symmetric in this regard. This behavior of Binder’s loss causes
the optimal partition to overestimate the number of clusters, allocating uncertain data
points to small additional clusters. In addition, we have developed a novel greedy search
algorithm to locate the optimal partition, allowing one to explore beyond the space of
partitions visited in the MCMC chain.

To represent uncertainty around the point estimate, we construct 95% credible balls
around the point estimate and depict the credible ball through the upper vertical, lower
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vertical, and horizontal bounds. In addition to a heat map of the posterior similarity
matrix, which is often reported in literature, the 95% credible ball enriches our un-
derstanding of the uncertainty present. Indeed, it provides a precise quantification of
the uncertainty present around the point estimate, and in examples, we find that an
analysis based on the posterior similarity matrix leads one to be over certain in the clus-
tering structure. The developed posterior summary tools for Bayesian cluster analysis
are available2 through an R package ‘mcclust.ext’ (Wade (2015)), expanding upon the
existing R package ‘mcclust’ (Fritsch (2012)).

In future work, we aim to extend these ideas to Bayesian feature allocation analy-
sis, an extension of clustering which allows observations to belong to multiple clusters
(Griffiths and Ghahramani (2011)). A further direction of research will be to explore
posterior consistency for the number of clusters based on the VI estimate for Bayesian
nonparametric mixture models; this is of particular interest in light of the negative re-
sults of Miller and Harrison (2013) and Miller and Harrison (2014) and the positive
results in our simulation studies (Table 2). Finally, scalability issues of Bayesian non-
parametric mixture models are an important concern for very large datasets. To scale
with large sample sizes, a number of papers have avoided exploration of the posterior on
partitions through MCMC and focused on finding a point estimate of the partition, of-
ten through MAP inference (Heller and Ghahramani (2005), Dahl (2009), Raykov et al.
(2014)) or the DP-means algorithm and its extensions (Kulis and Jordan (2012), Jiang
et al. (2012), Broderick et al. (2013)). One direction of future research is to develop an
algorithm to find the point estimate which minimizes the posterior expected VI that
avoids MCMC. Of course, while gaining in scalability, we lose the uncertainty in the
clustering structure.

Supplementary Material

Supplementary material for Bayesian cluster analysis: Point estimation and credible
balls (DOI: 10.1214/17-BA1073SUPP; .pdf).
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Invited comment on Article
by Wade and Ghahramani

Stefano Monni∗

Professor Wade and Professor Ghahramani have written an interesting paper that deals
with the very important question of how to summarize the posterior distribution of
partitions in nonparametric models. The summary of the posterior they propose is
in the form of a point estimate and an associated credible ball, which quantifies the
uncertainty of the estimate, using a decision-theoretic approach.

I enjoyed reading the paper and would like to make two comments. The first one is a
clarification. The second is concerned with the graphical representation of the credible
ball.

The authors consider the variation of information (VI) and Binder’s loss; show that
these criteria for comparison of clusters are metrics/distances; give proofs of some of
their properties, such as vertical and horizontal collinearity; determine their bounds and
their scales; obtain the closest cluster to a given cluster according to those distances. All
these properties (and a few more others) are already described and proven in the paper
of Meilă (2007), where the VI distance is introduced. Indeed, the authors explicitly refer
to that paper for some proofs. However, they do so only for the VI. Because of this,
some readers may be left with the impression that the properties of the Binder’s loss
and some of the advantages of the VI over the Binder’s loss when comparing clusters
were never described in detail before this paper. Thus, I think it is important to stress
that Meilă does give details of the properties of the Binder’s loss. To be precise, Meilă
considers a number of criteria useful to compare clusters, among which the Mirkin
metric (Mirkin and Chernyi, 1970). The latter metric is equal to twice the Binder’s loss
B(c, ĉ), and its N -invariant version is equal to the N -invariant Binder’s loss B̃(c, ĉ). In
fact Meilă provides a quite explicit comparison of the VI with the Mirkin metric. With
this clarified, the entire Section 3 of the paper under discussion should only be seen
as a review of the comparison of Binder’s loss with the VI as criteria for comparison
of clusters. To be fair, in other sections of the paper, the contrasts between these two
distances are analyzed further (for example in the description of the credible balls)
although not at the same level of formality.

The fact that the Binder’s loss and the VI are distances is brought to bear in the
definition of the credible ball, which is the most interesting part of the paper. The
credible ball is a very useful concept and I agree with the authors that it allows a
characterization of uncertainty of the point estimate. Naturally, since the ball is a subset
of the partition space, one is faced, yet again, with the problem of summarizing a
subset of partitions. It is perhaps for this reason that the authors introduce the concept
of vertical and horizontal bounds. If one looks at the graphical representations of the
credible balls presented in the paper (Figures 7 and 8 for instance), one will undoubtedly
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find them pleasing and informative. However, some questions should be asked about such
plots. Namely, I’m concerned about graphically representing the credible ball when the
vertical and horizontal bounds consist of more than one partition. Indeed, the definitions
of the bounds do not prevent such occurrences and, in fact, examples of such bounds are
explicitly given in section 2 of the supplementary material. If the number of objects to
cluster is large, it is quite plausible that the horizontal and vertical bounds too are sets
of large size. The problem of representing a credible ball has turned into the problem
of representing the bounds, which appears to be just as intricate, if not identical. In
the paper it is stated that what is used in practice to define the bounds is the subset
of partitions in the credible ball that have positive estimated posterior probabilities,
but, even so, the bounds will hardly contain one partition. I would be very interested
in knowing what the authors suggest should be done when the sets of the bounds are
large. One can perhaps just depict one representative partition for each of the bounds
that is selected on the basis of additional considerations. As a selection criterion one
could employ the value of the posterior probability or of the expected posterior loss,
but it is difficult to see whether this could really work well. To put it another way, I’m
suggesting the authors should think of a refinement of the definition of bounds.

Wade and Ghahramani propose the credible ball as an elegant alternative to the
posterior similarity matrix in assessing the uncertainty of a cluster estimate. They state
that the posterior similarity matrix under-represents this uncertainty, when compared
with the credible ball. While I’m sure that they will agree with me that much more
evidence is necessary to conclude whether this is true in general, I suspect that the
difficulty I see in representing the credible ball may limit its success. The heatmap of the
posterior similarity matrix continues to be in my view a very valid (if not irreplaceable)
tool for assessing the uncertainty of cluster estimates. However, I hope to hear from
Wade and Ghahramani that my concerns about the graphical representation of the
credible ball are misplaced.
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Giorgio Paulon∗, Lorenzo Trippa†, and Peter Müller ‡

We thank the authors for an interesting discussion of estimates and uncertainty sum-
maries for random partitions. A coherent description of uncertainties is one of the
strengths of the Bayesian approach, but it is difficult to summarize and report it in
the case of a random partition. The clever and elegant approach of Wade and Ghahra-
mani addresses this critical gap in the literature. However, the approach relies on loss
functions that ignore the underlying inference problem that gave rise to the random
partition. In other words, the loss functions are generic inference losses that ignore the
context of the scientific question that the investigators are trying to address. In this
discussion we would like to elaborate on the authors’ related comment that alternative
loss functions could be tailored to specific problems.

We assume that the inference problem and sampling model include cluster-specific
parameters, θ�

j , j = 1, . . . , kN . For example, if θ�
j were the mean times to progres-

sion for patients in a clinical trial, the clusters would describe patient subpopulations
with different mean time to progression. A summary of the random partition should
then focus on partitions with meaningfully different θ�

j ’s. Similarly, in some contexts,
one might prefer avoiding inclusion and reporting of small clusters. Inspired by Xu
et al. (2016) who use a determinantal point process to favor configurations with diverse
cluster-specific parameters, we propose the following loss function. The loss function
formalizes a tradeoff between reporting clusters that are representative of the posterior
and, with the second term, favoring partitions with clusters Cj that are diverse:

Lrep(c, ĉ,θ
�, θ̂�) =

1

N

N∑
n=1

(
θ�cn − θ̂�ĉn

)2

− λ det(Φ̂),

where [Φ̂ij ]i,j = φτ (θ̂
�
i , θ̂

�
j ) for some kernel φτ (x, y), e.g. the squared exponential

φτ (x, y) = exp{−0.5[(x − y)/τ ]2}. That is, det(Φ̂) is the volume of a parallelotope

spanned by the columns of Φ̂, which is zero when θ�i = θ�j for any i �= j, and maximized
when they are very distinct. Of course the squared distance in the loss can be replaced
by a different distance, e.g. one that allows for asymmetric costs of misfit. The second
component of the loss function could also be modified to mirror specific goals, for ex-
ample penalizing configurations that include small clusters. The point here is that, in
general, the particular application should drive the choice of the loss function.
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Figure 1: Optimal ĉ for the normal mixture example. The histogram shows the data;
the black curve shows the estimated posterior mean of the random probability mea-
sure, along with pointwise 95% credible intervals. Color shows the estimated cluster
membership for xi.

We compared Lrep with the VI loss and also with the squared loss (Dahl, 2006) in
the following example. Let N(x; m, s) denote a normal p.d.f. with location m and scale
s evaluated at x, and let μ = (−3,−3.5,−2.6, 0, 1.8, 2.4, 7.1). We simulated N = 1000

observations from a mixture of 7 normals, p(xi | μ) ∝
∑7

j=1 N(xi; μj , 1). We fit the
data using a Dirichlet process mixture of normals model. In this case, only four com-
ponents of the mixture are likely to be practically meaningful. The three values around
-3 and the two around 2 are not meaningfully different (relative to the variances in the
normal kernels). Inference summaries under Lrep and VI loss are shown in Figure 1.

In this example the posterior mode for kN is k̂N = 7. But both loss functions penalize
excessive complexity and shrink the reported partition to the 4 groups shown in the
figure. Although the VI loss does not explicitly favor easy interpretation, it does sur-
prisingly well in this example. We used an implementation that restricted the search for
the Bayes estimate of the partition under Lrep to the simulated partitions only, which
might explain the counter-intuitive lack of monotonicity in the cluster membership in
Figure 1a. One could alternatively use better search algorithms such as, for example, the
sequentially-allocated latent structure optimization (SALSO) in the sdols R package
(Dahl and Müller, 2017). We do not show the results obtained under squared loss or
Binder’s loss, since both clearly overfit the data reporting kN = 53 components.

Next we investigate a scenario with a small number of observations. We compare
the same two loss functions with a dataset from a clinical trial for sarcoma patients
with binary endpoints (tumor response) (León-Novelo et al., 2013). The goal of the
study is to cluster N = 10 different sarcomas subtypes. That is, the experimental units
for the random partition are the disease subtypes. The sampling model is binomial
sampling, xi|πi ∼ Bin(Mi, πi) for the number of tumor responses xi for a given number
of patients Mi under each sarcoma subtype, i = 1, . . . , N . The number of patients,
Mi for each subtype are moderately small, between 2 and 29. We implement inference



592 Invited comment on Article by Wade and Ghahramani

using a Dirichlet process mixture of probit models. Inference under VI and squared loss
reports 10 singleton clusters, a partition which is difficult to interpret, also because of
the negligible differences between estimated cluster-specific response rates. See Figure 2
for a summary of the posterior estimated response rates πi. In contrast, the desired
preference for interpretable structure is explicitly included in Lrep, leading us to report
ĉ = (1, 1, 1, 1, 1, 1, 1, 1, 2, 1), which appears more plausible in the light of the estimated
response probabilities (the singleton cluster is Ewings’ sarcoma).

Figure 2: 90% posterior credible intervals of the Binomial success probabilities πi for
each sarcoma. For reference the dashed vertical line marks 0.1.

There are two more aspects of inference for random partitions that we would like
to briefly discuss. Both are related to the underlying data analysis problem. In many
applications the main inference target is not the entire partition, but only a special
subset. Assume, for example, that in an analysis of clinical trial data cluster-specific
parameters θ�

j are interpreted as treatment effects. An important problem is to find the
subset of patients who most benefit from the treatment under consideration, that is, the
subset with the largest θ�

j . This is known as subgroup analysis. Let B = Cj� denote the
subset Cj with the largest θ�

j . Characterizing uncertainty on a random partition now
reduces to reporting uncertainty on B. Schnell et al. (2016) develop a clever approach
to determine a pair of subsets (D,S) such that p(D ⊆ B ⊆ S | data) > 1−α. Subgroup
analysis is in general not necessarily linked with random partitions and involves several
other issues. The point here is to emphasize that relevant uncertainty on a random
partition need not treat all subsets symmetrically. Investigators might only be concerned
about a particular subset.

Finally, we would like to bring up one more aspect about summaries of clustering
uncertainty, related to reproducibility. Above, we used a decision theoretic framework to
summarize a random partition with a good estimate that is constructed to be represen-
tative of the posterior distribution. Additionally, we report uncertainty measures that
mirror the distance between the selected configuration and a fictitious latent partition.
Although primarily meant to summarize the posterior distribution, these uncertainty
measures are also vaguely related to the (frequentist) variability of the estimate ĉ. In-
deed, consider repeating the entire experiment de novo, including both, data generation
and analysis. It remains unclear how different the estimated configuration ĉ might turn
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out. In most Bayesian estimation problems of key parameters, including means or me-
dians, estimating this variability is unnecessary to express uncertainty, and the focus
is exclusively on the posterior distribution of the parameter of interest. But clustering
is an attempt to organize data points into conveniently created categories. An under-
lying true unknown partition might be useless or not exist at all. These considerations
lead us to suggest the report of replicability measures that could contrast ĉ and esti-
mates under independent replicates, possibly including variations in the sample size. An
extended set of uncertainty metrics could scrutinize the main drivers of variability, in-
cluding limitations in the measurement of the statistical units (low sample size for each
sarcoma subtype, in the previous application), data preprocessing, clustering methods,
and experimental designs.
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Nial Friel∗ and Riccardo Rastelli†

Abstract. We present a discussion of the paper “Bayesian cluster analysis: point
estimation and credible balls” by Sara Wade and Zoubin Ghahramani. We believe
that this paper contributes substantially to the literature on Bayesian clustering
by filling in an important methodological gap, by providing a means to assess
the uncertainty around a point estimate of the optimal clustering solution based
on a given loss function. In our discussion we reflect on the characterisation of
uncertainty around the Bayesian optimal partition, revealing other possible alter-
natives that may be viable. In addition, we suggest other important extensions of
the approach proposed which may lead to wider applicability.

Keywords: Bayesian clustering, greedy optimisation, latent variable models,
Markov chain Monte Carlo.

We congratulate the authors, Wade and Ghahramani (W&G hereafter), on a wonderful
article which is an excellent contribution to the area of Bayesian cluster analysis. Here
the authors address the problem of appropriately summarising a partition based on a
posterior. This is a crucial issue arising in a variety of clustering contexts. While Markov
chain Monte Carlo techniques, for example, can be used to efficiently sample the cluster
membership variables from the posterior distribution of a variety of mixture models,
it is not immediately clear then how one can reasonably summarise such information.
Similarly to other previous papers, notably Lau and Green (2007), the authors define
the optimal partition as the one minimising the posterior expectation of a suitable
loss function, and propose a greedy algorithm to estimate such an optimal solution.
Somewhat surprisingly, there has been very little in the literature around how one
might assess the uncertainty in this point estimate. W&G address this crucial gap by
introducing a strategy to characterise the uncertainty around the optimal partition
using an adaptation of the credible intervals approach. We consider this to be a major
contribution and expect it stimulate future developments in this field.

We have recently worked on the same problem and published our findings in Rastelli
and Friel (2017) (hereafter referred to as R&F). Similarly to W&G, we rely on a decision
theoretic framework to summarise a collection of partitions, however, differently from
their approach, our contribution is primarily focused on the computational aspects of
the problem. Our method is implemented in the R package GreedyEPL available on
CRAN. In this discussion we compare our findings to those of W&G mainly focusing on
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the following aspects: the choice of loss function used and the ensuing computational
complexity; alternatives to the credible balls approach; the wider applicability of the
methods proposed.

1 Choice of loss function and computational efficiency

As W&G clearly point out in their paper, commonly used loss functions such as the 0−1
loss or the squared error loss are not ideally suited to compare partitions, due to the
discrete nature of the variables and because of the lack of total order in the space. This
leads to the important issue of finding an appropriate and reasonable loss function to
compare partitions. A popular choice in this context is Binder’s loss, primarily for two
main reasons: its close connection to the Rand index; but also since the corresponding
optimal partition can be estimated via the posterior similarity matrix, which itself can be
routinely estimated by Markov chain Monte Carlo, for example. The posterior similarity
matrix is an N × N matrix with element n, n′ (denoted pn,n′ in W&G) equal to the
posterior probability that observations n and n′ are allocated to the same cluster and
where N denotes the size of the dataset. The Variation of Information (VI) loss does
not possess such a representation in terms of the posterior similarity matrix and as such
it turns out that this brings with it an increased computational overhead. However,
W&G neatly sidestep this problem by exploiting Jensen’s inequality to obtain a lower
bound for the VI loss which relies only on the posterior similarity matrix. This input is
interesting, though we note that the effect that this approximation has on the estimated
optimal partition is not clear.

In R&F, the approach we advocate does not rely on the posterior similarity matrix
representation and does not involve any approximation. In fact, our method may be used
with any loss function, L(a, z) that depends on the two partitions, a and z through the
counts nij , denoting the number of data points allocated to group i in partition a and
to group j in partition z, which can conceptually be considered as depending on the
contingency table defined by both partitions. Binders’ loss and VI loss are included in
this family, along with other known losses such as the normalised VI and the normalised
information distance. Moreover, since our approach does not require the posterior sim-
ilarity matrix, its computational complexity in N is decreased to a linear order (See
Figure 1 of Rastelli and Friel (2017)). However, the computational cost of our approach
also becomes increasingly costly as sample size of partitions drawn from the posterior
increases.

Additionally, R&F empirically assess the effect of the various loss functions on simu-
lated data and in particular we refer the reader to Figure 3 of Rastelli and Friel (2017).
The main take home message is that the VI loss typically achieved the best results
in terms of the number of estimated groups, while the other loss functions, including
Binders loss, the normalised VI loss and the normalised information distance often ex-
hibit unreasonable behaviour and overestimation of the number of groups. However, our
findings also reveal that the VI loss tends to be biased towards an overestimation of the
number of groups. This seems not to be case with the results presented in W&G. We
wonder if the approximation the authors introduce may have an impact on the estima-
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tion of the number of groups? All things considered, we deem the research question of
finding an optimal loss function and associated computational strategy still very open.

2 Quantifying the uncertainty around the estimated
Bayes partition

In our experience, the marginal posteriors for the cluster membership variables generally
exhibit some degree of multimodality, even after labeling issues have been taken into
account. This is one important reason why often Markov chain Monte Carlo sampling
methods generally struggle to explore the discrete search space efficiently.

We believe that the same multimodality may also have non-negligible effects on the
characterisation of the uncertainty around the estimated optimal Bayes partition. In a
nutshell: if, by definition, the credible ball has to include 95% of the posterior mass,
it will contain most of the relevant modes, but it may also include many of irrelevant
partitions “between” them, in the sense of the loss considered. This would result in a
quite heterogeneous set which may be hard to characterise, and where the horizontal
and vertical bounds may not be so relevant to the clustering problem. We present a
small experiment here to illustrate this point. Here we simulated a data set by sampling
from a uniform distribution in the square [−1, 1]×[−1, 1]. We assumed the data followed
a Gaussian mixture model and then obtained a posterior sample of partitions using the
R package bayesm. We then applied the methodology proposed by W&G to assess the
uncertainty in the estimated Bayes partition and present the output of this experiment
in Figure 1. In this case, while the optimal Bayes partition seems very reasonable, having
found three contiguous group, the bounds of the credible ball appear quite diverse and
“distant” from the actual optimal solution (particularly the horizontal one). We feel that
these bounds do not necessarily convey much information regarding which partitions
are inside the ball and which are not. Of course, this is a situation where the model is
mis-specified, as is the usual case in practice, and this may partially explain the results
in Figure 1.

Alternatively, one may instead consider an approach based on the idea of high poste-
rior density regions, and simply list all of the partitions that have posterior probability
above a certain threshold. This method would include all of the relevant partitions re-
gardless of their distance from the Bayes partition (in the sense of the distance induced
by the Hasse diagram), providing a good representation of what the possible optimal
alternatives look like. From a computational perspective, both methods are straightfor-
ward to implement once the posterior values and the distances to the Bayes solution
are available for all of the partitions sampled.

3 Wider application of mixture models

W&G propose applications of their methodology to Gaussian mixture models. We would
like to conclude our discussion by remarking that the method they proposed may be
applied in more general mixture modelling contexts, thereby widening their applicability.
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Figure 1: VI loss optimal clustering and credible ball bounds for the simulated uniform
data proposed.

For instance, recent research has focused much on mixture models for network data
(Daudin et al., 2008). Computationally efficient Markov chain Monte Carlo sampling
strategies for network clustering models have been proposed by McDaid et al. (2013)
and Wyse and Friel (2012). In R&F, we propose several applications of the decision
theoretic framework to Gaussian mixture models, but also to stochastic block models
for networks, and to latent block models for bipartite networks. Furthermore, mixed-
membership models (Airoldi et al., 2008) extend the basic clustering structures to partial
memberships, where nodes of the network may distribute their affiliation among the
groups. Extending the decision theoretic framework proposed by W&G to these contexts
would be a great next step forward.
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Abstract. I begin my discussion by giving an overview of the main results. Then
I proceed to touch upon issues about whether the credible ball constructed can
be interpreted as a confidence ball, suggestions on reducing computational costs,
and posterior consistency or contraction rates.

Keywords: Bayesian clustering, variation of information, Binder’s loss, credible
ball, overfitted mixtures, Bayes Lepski.

The authors should be congratulated for producing such an interesting and important
work. In the present paper, Wade and Ghahramani (2017) investigated the issues of
point estimation and uncertainty quantification for Bayesian clustering analysis. Here,
the data density is modelled as a countably infinite mixture and latent variables attach-
ing to each observation are introduced to represent cluster membership. A common prior
for the mixing distribution is the Dirichlet process, and they used this as the default
prior in the simulations and real data analysis. They derived point estimators through
decision theory by considering two different clustering losses/metrics, i.e., Binder’s loss
(N -invariant version) and variation of information (VI). They endowed the space of
partitions with a lattice by including partial order and the covering relation, and this
enables them to compare properties of these two metrics and define a consistent no-
tion of closeness between partitions. This latter notion was further used to develop a
method to construct credible ball over partitions using the aforementioned metrics. The
optimization problem needed to find the point estimate (for VI) is computational de-
manding and the search space is very high-dimensional. To scale up computations, the
authors proposed a greedy search algorithm.

I start my discussion by asking the question whether the credible balls constructed
can be interpreted as confidence balls in the frequentist sense? Specifically, do the 95%
credible balls based on Binder’s loss or VI with their vertical and horizontal bounds,
have also approximate 95% frequentist coverage probability (contains the true clustering
95% of the time)? For finite dimensional parameters, we have the Bernstein-von Mises
theorem to ensure this equivalence; however in the nonparametric setting as in this
paper, this equivalence breaks down and it is in general not true that Bayesian credible
ball is also a frequentist confidence ball. It would be very interesting if we can give
some theoretical guarantees on coverage for the VI credible ball, or maybe compare
the extent of its uncertainty in a simulation with a confidence ball over partitions
constructed based on non-Bayesian methods (if there are any). In complex models,
it is straightforward to use Markov Chain Monte Carlo (MCMC) samples to construct
credible balls, as compared to frequentist methods which rely on complicated asymptotic
normality analysis or bootstrap, and hence such comparisons and coverage guarantees
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will provide good incentives for statisticians (particularly non-Bayesians) to use the
methods proposed in this paper to do clustering in their own work.

A recurring theme that came up when designing algorithms in the paper is the abil-
ity to scale to massive datasets and to speed up computations. Instead of using infinite
mixtures which entails searching over the entire partition space, one can use overfitted
mixtures as investigated in Rousseau and Mengersen (2011), where one intentionally
overfit the model by choosing a larger but finite number of components than necessary
and use some sparsity-inducing priors to zero out the unnecessary components. Alterna-
tively, by observing in Table 2 that the number of clusters for the VI credible ball stays
constant for the different sample sizes considered, its robust property suggests that we
could first try to estimate the correct number of clusters, through MAP (Maximum
a posteriori) or the recently proposed Bayes Lepski’s method (Yoo and van der Vaart
(2018)), and only explore the part of the partition space corresponding to this estimated
number of clusters.

I totally agree with the authors that we need results on posterior consistency and
contraction rates, in order to fully resolve the ambiguity caused by the positive results
of the present paper and the negative results of Miller and Harrison (2014). Question
of interests include characterizing the rate at which the number of clusters estimated
under the VI posterior approaches the true number, and whether this rate is optimal.
In addition, it would also be interesting to study miss-classification errors and how they
grow with sample size or depend on the chosen loss function. A deeper understanding
of these issues will help statisticians choose the right priors and design algorithms to
control these errors.

The present paper proposes a very promising method to obtain point estimate and
uncertainty quantification for Bayesian cluster analysis, which is a great improvement in
terms of interpretability over posterior similarity matrices commonly considered in the
literature. I envision that the lattice-based framework introduced here can be extended
to other settings as well, e.g., multiple membership clusters, and I am certain this work
will further spur research in these areas.
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Sylvia Frühwirth-Schnatter†, Bettina Grün‡, and Gertraud Malsiner-Walli§

We would like to congratulate the authors on addressing the difficult problem of summa-
rizing the posterior distribution of partitions. The high dimensionality of the partition
space and the low support for any single partition make this problem very challeng-
ing. To our knowledge, their approach is the first one, which tries to systematically
estimate bounds for confidence regions of the partition posterior. In this comment, we
would like to emphasize that their proposed procedure is not only useful for Bayesian
nonparametric mixture models, but can also prove very useful for finite mixture models.

1 Sparse finite mixture models

As opposed to common belief which is also expressed in the introduction of the paper,
the number of clusters in the data is not necessarily fixed a priori for finite mixtures and
can be estimated from the data, in particular when using sparse finite mixture models
(Malsiner-Walli et al., 2016, 2017; Frühwirth-Schnatter and Malsiner-Walli, 2018). The
authors’ procedure for summarizing uncertainty in the posterior of the partitions is
particularly appealing for such sparse finite mixture models where the number of data
clusters is random. Data clusters in this context refer to clusters of data points induced
by the partitions. Sparse finite mixture models are based on an overfitting finite mixture
distribution with the numberK of components exceeding the number of data clusters, in
combination with a very small value for the hyperparameter e0 of the Dirichlet prior on
the mixture weights. Such a setting encourages partitions with less clusters than there
are components, implying that during Markov chain Monte Carlo (MCMC) sampling
data points are only assigned to a subset of the components and some components are
left empty. Sampling from the posterior of the partitions for sparse finite mixture models
is straightforward as standard MCMC sampling schemes developed for finite mixtures
can be used.

2 Illustration using example 1 of the paper

To illustrate how the proposed inference tools can be used for post-processing the par-
titions sampled from a sparse finite mixture model, we fit a sparse finite mixture model
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Figure 1: Left: trace plot of the number of data clusters K+ including burn-in. Middle
and right: scatter plots of the data indicating the final partition c� using four different
colors except for the data points marked with black stars which belong to different
clusters in the upper and lower bounds using α = 0.50 (middle) and α = 0.05 (right).

Partition k∗N NI Cluster sizes ARI
Upper bound α = 0.05 4 17 65, 50, 45, 40 0.78
Upper bound α = 0.50 4 16 60, 59, 42, 39 0.80
c� 4 6 56, 54, 47, 43 0.92
Lower bound α = 0.50 5 13 55, 51, 48, 45, 1 0.84
Lower bound α = 0.05 5 30 50, 48, 47, 41, 14 0.71

Table 1: The final partition c� and boundary partitions of the credible balls. For each
partition, the number of clusters k∗N , the number of misclassified data points NI , the
cluster sizes (in decreasing order) and the adjusted Rand indices (ARI) are reported.

with K = 10 in combination with e0 = 0.01 to the data set of their example 1. The
priors on the component means and variances follow Frühwirth-Schnatter (2006). Gibbs
sampling with data augmentation is initialized by assigning data points to all available
components and 10,000 posterior samples are drawn after a burn-in of 1,000 iterations.

For each partition drawn during MCMC sampling, the number of data clusters K+

induced by the non-empty components is determined and the corresponding trace plot
is shown in Figure 1. During burn-in, most components become empty and the sampler
iterates between partitions with 4 and 5 data clusters. These partitions (excluding the
burn-in) are summarized based on the VI loss using the R package mcclust.exe.

Table 1 shows characteristics of the estimated final partition c� and reports the
upper and lower bounds for α = 0.50 and α = 0.05. If α decreases, the cluster size of
the largest cluster increases for the upper bounds and the cluster size of the smallest
data cluster increases for the lower bounds. This behavior might be expected from the
order relation discussed in Property 5 of the paper. The adjusted Rand index (ARI)
measures the correspondence between the true clustering and each of the partitions.
The partition which minimizes the expected VI loss has the highest ARI. The ARI
decreases with decreasing α for both, the lower as well as the upper bounds. Figure 1
illustrates the final partition in a scatter plot of the data using different colors for the
data clusters identified. In addition, data points which are not consistently allocated to
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the same clusters in the final and boundary partitions using either α = 0.50 or α = 0.05
are marked with black stars. These data points could be regarded as “uncertain” in
their cluster membership.

3 Final remarks

The close relationship between Bayesian cluster analysis based on finite and infinite
mixtures is again demonstrated by indicating how inference tools developed for the
infinite case also prove useful in the finite case. For finite mixtures, the proposed infer-
ence tools have a number of advantages for post-processing samples from the partition
posterior: (1) no model selection needs to be performed, (2) no identified model where
label-switching is resolved is required and (3) uncertainty estimates for the partition
posterior are readily available based on the credible balls. We hope that future work on
Bayesian cluster analysis follows our example and develops and demonstrates inference
tools not only for the infinite mixture case, but also considers the finite case.
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Roberto Casarin∗ and Stefano Tonellato†

Abstract. This article discusses the Wade and Ghahramani’s (2017) paper on
a new estimator for clustering structures based on the variation of information
(VI) metric. The present discussion focuses on the estimation of concentration
parameter of the Dirichlet process. In estimating the clustering structure, the
concentration parameter is integrated out and the marginal posterior distribution
of the random partition is used to evaluate the posterior loss. Here we propose to
use the optimal VI for model selection.

MSC 2010 subject classifications: Primary 62G05, 62F15, 60G57, 60G09.

Keywords: Bayesian nonparametrics, Dirichlet process prior, model selection,
variation of information criterion.

1 Introduction

The authors are to be congratulated on their excellent intuition, which has culminated
in the development of a new Bayesian point estimator for clustering structure which
can find applications in many Bayesian nonparametrics studies. Their Bayesian ap-
proach to clustering estimation is inspired by the paper of Meilǎ (2007). The proposed
model provides an alternative to the Dahl (2006) method widely used in the Bayesian
nonparametric literature.

In the application to the galaxy data we assume the same DP mixture model as in
equation (5) of the paper and the same prior setting μ0 = x̄, c = 1/2, a = 2 and b = s2.
Instead of estimating α we assume the concentration parameter α takes values in the
finite set A = {α1, . . . , αn} and for each element αj of this regular grid we evaluate the
partition posterior distribution p(c|y1:N , αj) given by

p(c|y1:N , αj) ∝
Γ(αj)

Γ(αj +N)
αkN
j

kN∏
j=1

Γ(nnj )m(yj),

where m(yj) is the marginal likelihood of the observations in the j-th partition. For
each value of α ∈ A we run the Gibbs sampler as in the algorithm 8 of Neal (2000) and
find the optimal value of the VI criterion at α (VICα) as

VICα = min
ĉ

∫
L(c, ĉ)p(c|y1:N , α)dc.

∗Department of Economics, University Ca’ Foscari of Venice, Cannaregio 873, 30121, Venezia, Italy,
r.casarin@unive.it

†Department of Economics, University Ca’ Foscari of Venice, Cannaregio 873, 30121, Venezia, Italy,
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c VICα VI
α = 0.5 α = 1 α = 1.5

1/2 0.61 0.72 0.83 0.74
1/10 0.23 0.32 0.41 0.29

Table 1: Optimal VICα for α ∈ {0.5, 1, 1.5} and different values of c.

The VICα obtained are given in Table 1 for α ∈ {0.5, 1, 1.5}. The optimal VI value with α
integrated out, using a Ga(1, 1) prior, is reported in the last column. The minimumVICα

is attained for α = 0.5 and it is always smaller than the integrated VI. The result
suggests the VICα is favoring smaller values of the concentration parameter.

2 Conclusion

In their paper, the authors sketch a number of possible extensions. We would suggest as
further research line also the combination of posterior clustering probabilities obtained
from the different models. It is clear that this is an exciting and stimulating work. We
are therefore very pleased to be able to propose the vote of thanks to the authors for
their work.
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Eduard Belitser∗ and Nurzhan Nurushev†‡

We would like to congratulate the authors on an impressive paper that solves an open
problem on uncertainty quantification in cluster analysis from a practical point of view.
Let us first summarize some key ides of the present paper. Due to the huge dimension
of the partition space in Bayesian nonparametric cluster analysis, one of the main prob-
lems in Bayesian cluster analysis is how to appropriately summarize the posterior. This
problem in the present paper is addressed by providing tools to obtain a point estimate
of clustering based on the posterior and describe uncertainty around this estimate via
the 95% credible ball. The computation of the point estimate c∗ is based on the greedy
search algorithm and Hasse diagram, which can be used for both the variation of infor-
mation and Binder’s loss. In simulation study the authors construct a credible ball of a
given credible level 1 − α, α ∈ [0, 1], defined as Bε∗(c

∗) = {c : d(c∗, c) ≤ ε∗}, where ε∗

is the smallest ε such that P (Bε(c
∗)|D) ≥ 1− α.

However, the practical results of the present paper leads to the question of whether
the credible ball Bε∗(c

∗) is “optimal”. Namely, does the credible ball Bε∗(c
∗) lead

to confidence? The point estimate c∗ can be very close to, or far away from the true
clustering c, without us knowing the actual distance. One would like to have some sort of
quantification for the reliability of the estimator c∗, which can be seen as the problem
of constructing confidence balls for c∗. Confidence balls are a type of set estimates
intended to quantify the accuracy of the estimator. The size of the ball quantifies the
level of uncertainty of the estimator c∗.

Let us specify the optimality framework for confidence balls. Assume that any par-
tition c belongs to some functional class Cβ indexed by unknown structural parameter
β ∈ B (e.g., number of clusters). Denote the probability measure of the data D by

Pc = P
(N)
c , the minimax concentration rate over Cβ by rN,β . The goal is to construct

such a confidence ball BCε∗(c
∗) = {c : d(c∗, c) ≤ Cε∗} that for any α1, α2 ∈ (0, 1] there

exist C, c > 0 such that

sup
c∈C0

Pc

(
c /∈ BCε∗(c

∗)
)
≤ α1, sup

c∈C1

Pc

(
ε∗ ≥ crN,β

)
≤ α2, (1)

for some C0,C1 ⊆ Cβ and all β ∈ B. The minimax concentration rate rN,β is a bench-
mark for the effective radius of the confidence ball BCε∗(c

∗). The first expression in
(1) is called coverage relation and the second size relation. It is desirable to have the
coverage and size relations to be hold for the biggest C0,C1. For example, if we insist
on overall uniformity C0 = C1 = Cβ , then the results in Li (1989) and Cai and Low
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(2004) (more refined versions are in Baraud (2004) say basically that the radius of con-
fidence ball cannot be of a bigger order than N1/4. Many good confidence balls cannot
be optimal in this sense (called “honest” in some papers), e.g., in sparse normal means
model. Instead, it makes sense to sacrifice in the set C0 = Cβ\C′, by removing a prefer-
ably small portion of “deceptive parameters” C′ from C so that the optimal minimax
rate becomes attainable in the size relation with interesting (preferably “massive”) sets
C1 (see Belitser and Nurushev (2017) for details). To the best of our knowledge, it is
not known whether it is possible to construct a confidence ball simultaneously with a
good coverage and optimal size adaptively to some scale Cβ in the studied model. This
is a challenging problem and of great importance to our understanding of uncovering
partitions c.

Admittedly, the above optimality framework is formulated from the frequentists
perspective whereas the authors pursue a purely Bayesian approach. An advantage is
that such a framework allows to compare different procedures. We wonder whether
the authors could come up with a general idea of how to compare different Bayesian
procedures from the purely Bayesian perspective. We understand that the authors were
mainly focused on the practical results related to the construction of credible balls,
but we hope this comment will inspire the authors and other people to work on this
interesting problem in the future.

We would like to finish with the question to the authors whether the point estimates
studied in the present paper can be used for the Hamming loss function. If it was possible
then it might be interesting to create a new simulation study in the stochastic block
model and compare the radius ε∗ of credible ball BCε∗(c

∗) (based on the Hamming loss
function) with the minimax rate for community detection problem studied in Zhang
and Zhou (2016). Then one could answer the question whether the radius ε∗ of credible
ball BCε∗(c

∗) is optimal in this sense or not.
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Reza Mohammadi∗

I would first like to congratulate Dr Wade and Professor Ghahramani for their excellent
exposition of the Bayesian nonparametric cluster analysis by developing point estimates
and credible sets to summarize the posterior of the clustering structure. Their method
is based on a greedy search algorithm to locate the optimal partition based on Hasse
diagram, which can be used for both the variation of information and the Binder’s
loss. Here, I would like to contribute to the discussion by suggesting a comparison with
the Bayesian parametric methods of finite mixture distributions based on the trans-
dimensional Markov chain Monte Carlo (MCMC) algorithms.

Comparison with finite mixture distributions

This paper illustrates the high potential of the Bayesian nonparametric cluster analysis.
Here, I focus on the Bayesian parametric approaches for finite mixture distributions
based on trans-dimensional MCMC sampling algorithms.

In the Bayesian analysis of finite mixture distributions with an unknown number
of components, the main problem is sampling from the posterior distributions. Since
the number of components is unknown, it requires advanced search algorithms which
can potentially move in the model space. Transdimensional search algorithms explore
the model space when the model does not have a fixed dimension; common ones are
the reversible jump MCMC by Green (1995) and birth-death MCMC Stephens (2000).
In the context of finite mixture distributions, these methods have been used by Green
(1995); Stephens (2000); Mohammadi et al. (2013) and in the case of graphical models
Mohammadi and Wit (2015).

To compare the performance of the Bayesian nonparametric method, proposed in
the paper, with the Bayesian parametric method based on finite mixture distributions,
we apply the finite mixture of normal distribution for galaxy data with the same sce-
nario as in subsection 6.2 of the paper. We run the birth-death MCMC algorithm pro-
posed by Stephens (2000) using the R-package bmixture (Mohammadi, 2018), function
bmixnorm(), with 10K samples with 10K burnin.

Figure 1(b) shows that the data came from 5 or 6 clusters. The sum of the estimated
posterior probability of the number of clusters for the case of 4 up to 8 clusters is 0.95,
which can be considered as the 95 percent confident interval for the number of clusters;
The results are comparable with the results in Table 5 of this paper.
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Figure 1: (a) Histogram of galaxy data and estimated density based on the finite mixture
of Normal distribution and (b) the estimation of the posterior distribution of the number
of clusters.

It would be quite useful if the authors could comment on the comparison of their

approach to finite mixture distributions as Bayesian parametric approaches and the pos-

sibility of replacing greedy search algorithm in their Bayesian nonparametric framework

with the trans-dimensional MCMC algorithms.
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Julyan Arbel∗, Riccardo Corradin†, and Micha�l Lewandowski∗

Abstract. We propose a simulation study to emphasise the difference between
Variation of Information and Binder’s loss functions in terms of number of clusters
estimated by means of (1) the use of the Markov chain Monte Carlo (MCMC)
output only and (2) a “greedy” method.

Wade and Ghahramani’s paper is a very neat contribution to Bayesian cluster analysis in
at least two respects: (i) by formalizing cluster credible coverage via Hasse diagrams, and
(ii) by recasting the problem in a decision theory framework, with tangible improvements
brought by the Variation of Information (VI) loss function (Meilă, 2007) over Binder’s
(Binder, 1978; Dahl, 2006).

We propose a simulation study implementing two algorithms provided by Wade and
Ghahramani’s package mcclust.ext for finding the argument minimizing the posterior
expected loss: (1) the draw algorithm, which restricts the minimization problem to the
MCMC output, and (2) the greedy algorithm, which is more reliable as it also scans the
neighbouring clusters of the MCMC output, but with a larger computational cost. While
increasing the sample size, we point out the radically different behavior of the number
of clusters estimated under VI and Binder, especially with the greedy algorithm.

Our simulation study is based on the same data generation as in the first example of
Section 6.1 in Wade and Ghahramani (2017): a mixture of four Gaussian distributions
equally weighted with means (±2,±2) and identity covariance matrix. We estimated the
model using a marginal approach provided by BNPmix1 R package. We synthesised the
output with mcclust.ext package.2 The Dirichlet process mixture model was estimated
with mass parameter fixed to 1, and by specifying an independent base measure on
locations and scales, with a 0-vector prior mean for the location component and an
identity matrix prior mean for the scale component (25 000 iterations with 5 000 burn-
in period). We considered four different sample sizes n = {20, 40, 100, 300}.

The results are shown in Figure 1. With the draw algorithm, the cluster estimates
under both losses are quite close in terms of number of clusters. In contrast, the greedy
algorithm leads to cluster estimates obtained via Binder’s loss function with excessive
size, while that obtained via VI remains coherent with the number of components of
the model (four).

Similarly to the authors’ finding, ours’ indicates that Binder’s loss function exhibits
an undesirable property of overestimating the number of clusters (Miller and Harrison,
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https://github.com/rcorradin/BNPmix
https://www.researchgate.net/publication/279848498_mcclustext_10tar
mailto:julyan.arbel@inria.fr
mailto:michal.lewandowski@inria.fr
mailto:riccardo.corradin@unimib.it
https://github.com/rcorradin/BNPmix
https://github.com/rcorradin/WGdiscussion


612 Contributed comment on Article by Wade and Ghahramani

Figure 1: Size of the cluster estimate under VI (yellow line) and Binder (green light).
Left: draw algorithm. Right: greedy algorithm.

2013, 2014). Variation of Information tends to lessen this problem. As alluded to by the
authors, a theoretical study of the asymptotic behavior of the VI estimator would be
very timely. Especially in light of the recent contribution by Rajkowski (2016) about
the asymptotic behavior of the cluster estimator under the 0− 1 loss (MAP estimator).
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Bernardo Nipoti∗ and Weining Shen†

We vividly congratulate the authors for providing very interesting insight on how to
summarize posterior belief on the space of partitions, and characterize its uncertainty.
In this comment we focus on the latter point and we build upon the authors’ definition
and characterization of credible balls of partitions. Specifically, we would like to suggest
that an alternative formulation of such quantities might be considered and might provide
additional insight, useful to the difficult task of summarizing a posterior belief on the
space of partitions. We articulate our comment in two points.

1. Where to center? Commonly adopted measures of posterior uncertainty, such as
highest posterior density or quantile-based posterior intervals, are defined independently
of any posterior estimator, which might vary based on the choice of the loss function.
Similarly, while the authors define a credible ball of partitions Bε∗(c

∗) as centered
around a point estimate c∗, we would like to observe that such definition could be
tweaked so to make it independent of any point estimator. This could be achieved by
centering the credible ball around the true partition c0 and by averaging across all
possible true partitions. That is, following the same idea used in Section 2.2 of Wade
and Ghahramani (2017), we can define a credible ball Bε∗ of credible level 1− α as

Bε∗ = {c : Ec0 [d(c, c0) | D] ≤ ε∗} ≈
{
c :

1

M

M∑
m=1

d(c, cm) ≤ ε∗

}
,

where {cm}Mm=1 is the set of partitions visited by the Markov chain Monte Carlo
(MCMC) algorithm. An estimate of ε∗ in this case is obtained from the MCMC output
by choosing ε∗ as the smallest ε ≥ 0 such that the average of pairwise distances satisfies

2
M(M−1)

∑M
n=1

∑M
m>n 1(d(c

n, cm) ≤ ε) ≥ 1 − α. Compared with the authors’ credible

ball definition, the alternative construction is computationally more expensive, but it
does not rely on the correct estimation of a posterior point estimator. It would be inter-
esting to investigate the theoretical properties (e.g. frequentist coverage) of these two
different definitions.

2. To center or not to center? Alternatively, credible balls could be defined without
resorting to the idea of centering them at any given partition, being it a point estimate
c∗ or the true c0. A simple approach consists in sorting the MCMC samples via a certain
measure, such as entropy. More specifically, if we call H(c) the entropy of a partition

c = (C1, . . . , CkN
), defined as H(c) = log(N) − 1/N

∑kN

j=1 nj log(nj), where nj = |Cj |
is the number of data points in cluster j, then a entropy-based credible ball B

(H)
ε∗ can
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be defined as

B
(H)
ε∗ = {c : HL ≤ H(c) ≤ HU},

where HL := H(c
(l)
H ) and HU := H(c

(u)
H ), and c

(l)
H and c

(u)
H are empirical quantiles

of the sorted set of observed partitions, such that M−1
∑M

m=1 1{HL ≤ H(c(m)) ≤
HU} ≥ 1 − α. As a by-product a point estimate c∗H can be obtained by considering
the posterior median partition. Following Example 2 in Section 6.1 of the main paper,
we considered the simulated data from a mixture of four bivariate normal distributions
with unequal covariance matrices, used the posterior samples output from the R package

“mcclust.ext”, and obtained a quantile-based 95% credible ball B
(H)
ε∗ . The plots for the

posterior median c∗H , upper bound c
(u)
H and lower bound c

(l)
H are presented in Figure 1.

Compared with Figure 9 in the main paper, the clustering results look quite similar,

with a lower bound c
(l)
H showing a moderately smaller number of clusters than the VI

lower vertical bound. For both methods, the effect of outliers and over-estimation of
the number of clusters in the lower bound is apparent. This is expected since Dirichlet
mixture priors are known to provide consistent density estimation (Shen et al., 2013),
while overestimating the number of clusters (Miller and Harrison, 2013). It would be
interesting to investigate and compare entropy-based and VI vertical bounds, using other
prior distributions known to have better inferential properties in terms of clustering,
such as normalized random measures (Barrios et al., 2013).

Figure 1: Posterior median c∗H (4 clusters, left), upper bound c
(u)
H (5 clusters, middle)

and lower bound c
(l)
H (12 clusters, right) of a quantile-based 95% credible ball B

(H)
ε∗ .
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Federico Castelletti∗ and Stefano Peluso†

We congratulate the authors for the insightful paper. We find particularly interesting
the adoption of the two ball sizes as concise and easily interpretable measure of uncer-
tainty associated to point estimates on non-standard and large supports. In the present
discussion we want to highlight the applicability of the method proposed by the authors
beyond the space of random partitions, to Directed Acyclic Graphs (DAGs) and to their
Markov equivalence classes, namely to Essential Graphs (EGs).

In Consonni and La Rocca (2012) an Objective Bayes model selection procedure
is proposed for DAGs, later extended in Consonni et al. (2017) to covariate-adjusted
model selection, and to EGs in Castelletti et al. (2018). Similarly to the space of random
partitions, exhaustive enumeration of DAGs and EGs is not feasible (Madigan et al.,
1996), since the number of DAGs and EGs grows super-exponentially in the number
of nodes (Gillispie and Perlman, 2002). Therefore the posterior probability associated
to DAGs and EGs for non-trivial dimensions is only available up to a normalizing
constant, requiring appropriate Markov Chain Monte Carlo (MCMC) procedures to
perform posterior inference.

The need of summarizing MCMC visits on the space of DAGs and EGs through a
point estimate and an uncertainty measure raises, among others, difficulties similar to
those in the paper under discussion: the 0-1 loss function adopted in Consonni et al.
(2017) resulted in the choice of the modal DAG as point estimate, whilst the point
estimator of the EG in Castelletti et al. (2018) is based on the inclusion of edges with
marginal posterior inclusion probability higher than 50%. Also, in both cases no mea-
sure of uncertainty on the whole structure has been provided, but only MCMC-based
uncertainty measures on graph features (as on the number of chain components and
v -structures), or rough uncertainty measures based on variation of the edge inclusion
probability threshold.

Potentially, both estimates can be improved and the uncertainty around the esti-
mated graph can be measured following the lines suggested in Wade et al. (2017). First,
the 0-1 loss function can be replaced by a graph-equivalent of the first metric proposed
in the current paper: the error in the classification to the correct cluster becomes the
error in the inclusion of an edge. A ball at level (1−α) would be represented by the set
of visited EGs whose distance with respect to the point-estimated graph Ĝ is less than
the threshold ε∗. Then, vertical and horizontal bounds, as defined in the paper, can be
also introduced. Coherently, one can for instance consider the graph with the smallest
(largest) number of edges that are most distant from Ĝ as the vertical lower (upper)
bound. Similarly for the horizontal bound.
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Second, the information-based metric from Meilă (2007) is strictly related to the
Hamming distance between the binary representations of the clusterings. It could be
interesting to find in the graphical context a metric related to the Structural Hamming
Distance (the number of edge insertions, deletions or flips needed to transform one
graph into another) among (classes of) graphs. Finally, metrics alternative to the 0-1
loss introduce an additional layer of complexity for DAGs and EGs: the estimated graph
might lie outside of its support, and therefore some projection onto the proper space
could be necessary (Castelletti et al., 2018).

Third, the adoption of the VI metric as a measure of distance between clusterings
can be also interesting when model selection of DAG models can be performed in an
interventional setting (Hauser and Bühlmann, 2015). In general, the size of a Markov
equivalence class of DAGs is used as a measure of complexity of causal learning (He
et al., 2013). Assuming faithfulness of the observed data to some true DAG model,
interventions on variables from randomized experiments can be used to improve the
identifiability of such a model and then reduce the size of the estimated equivalence class.
The problem of optimal choice of intervention targets is carried out in He and Geng
(2008) from a design of experiments perspective. Specifically, each Markov equivalence
class can be partitioned into DAG sub-classes, each with common edges orientations
on the intervened nodes. A different intervention target induces a different partition
of DAGs, and the VI metric among DAG partitions suggests maximum-entropy-based
criteria for optimized choices of targets.
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Bent Natvig∗

In Wade et al. (2018), considering Bayesian cluster analysis, it is stated in the intro-
duction that a more elegant solution, than the one presented in some papers, is based
on decision theory. Furthermore, it is stated that the question to answer then becomes
what is an appropriate loss function over clusterings?

This leads my mind to a paper, Natvig and Tvete (2007), on Bayesian hierarchical
space-time modeling of earthquake data. Our aim was to get some insight into where and
when large earthquakes occur, or otherwise stated, we were interested in the clustering
of large earthquakes. We would like to judge our model more specifically, based upon
its ability to avoid two errors by not predicting the large earthquakes and signal false
alarms.

In that paper we took a coarse point of view considering grid cells of 50×50 km and
time periods of 4 months, which seems suitable for predictions. We discussed different
alternatives of a Bayesian hierarchical space-time model inspired by the paper Wikle
et al. (2001). For each time period the observations were the magnitudes of the largest
observed earthquake within each grid cell. As data we applied parts of an earthquake
catalogue provided by The Northern California Earthquake Center where we limited
ourselves to the area 32–37 degrees N and 115–120 degrees W, and for the time period
January 1981 through December 1999 containing the Landers and Hector Mine earth-
quakes, respectively measuring 7.3 and 7.1 on the Richter scale. Based on space-time
model alternatives one step earthquake predictions for the time periods containing these
two events for all grid cells are arrived at.

We constructed a specially designed loss function, weighted over the X spatial cells,
that penalizes both these errors. The weight for a given spatial cell, x, for a given
prediction period,t, is dependent both upon the magnitude of the observed earthquake,
M(x,t), and the distance between the observed earthquake and the predicted value
M̂(x, t, j) for sample j. To take signalized earthquakes in neighbouring cells into account
we let, suppressing the time notation t, M̂(x, j) be a spatially weighted average of
the predictions, {M∗(x, j)}Xx=1, where each of the two, three, or four predictions at a
neighbouring cell has half the weight of the one at x and the rest given weight zero. The
specially designed loss function, for a given predicted period, is given by:

L2(M, M̂) =

[
1

X

X∑
x=1

1

N

N∑
j=1

w(M̂(x, j),M(x))(M̂(x, j)−M(x))2

]1/2

,
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w(M̂(x, j),M(x)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.2 if M(x) ∈ [0, 1) and |M̂(x, j)−M(x)| ≥ 3,

0.24 if M(x) ∈ [1, 2) and |M̂(x, j)−M(x)| ≥ 2.3,

0.28 if M(x) ∈ [2, 3) and |M̂(x, j)−M(x)| ≥ 1.6,

0.36 if M(x) ∈ [3, 4) and |M̂(x, j)−M(x)| ≥ 1.0,

0.48 if M(x) ∈ [4, 5) and |M̂(x, j)−M(x)| ≥ 0.8,

0.64 if M(x) ∈ [5, 6) and |M̂(x, j)−M(x)| ≥ 0.7,

0.80 if M(x) ∈ [6, 7) and |M̂(x, j)−M(x)| ≥ 0.6,

1.00 if M(x) ≥ 7 and |M̂(x, j)−M(x)| ≥ 0.5,

0 otherwise.

The weights w(M̂(x, j),M(x))) are subjectively designed to punish a lack of ability
to predict large earthquakes. This is reflected in the equation above by giving a weight
equal to 0.2 when M(x) ∈ [0, 1) increasing to 1, in nondecreasing steps, when M(x) ≥ 7.
The weights are also designed to punish a lack of ability to predict the large earthquakes
more accurately than the small ones. Hence, to have a loss when M(x) ∈ [0, 1) the
absolute difference between the predicted and the maximal earthquake must be greater
or equal to 3. This threshold decreases, in nonincreasing steps, to 0.5 when M(x) ≥
7. The basic idea behind the equation above should be reflected in any modification
of it.

Let M̂p be the spatial average of the pth percentiles in the simulated prediction
distribution {M∗(x, j)}Nj=1. We then also compute another specially designed loss func-
tion:

L3(M, M̂p) =

[
1

X

X∑
x=1

w(M̂p(x),M(x))(M̂p(x)−M(x))2

]1/2

.

L3 is different from L2 in that we consider the pth percentile rather than all the sampled
predictions. This is a sensible loss function to consider in the search of predictions giving
the smallest overall loss. It can be shown that the losses L2 and L3 are quite small for
the less extreme period, somewhat larger for the Hector Mine period and again larger
for the Landers period. This is as expected due to the earthquake activity in the various
periods. Due to the fact that all weights are less than or equal to 1, the L2 values are
much smaller than the L1 values given in Natvig and Tvete (2007). Obviously, one will
obtain large losses when predicting periods where there is a high earthquake activity,
and small losses in less extreme periods. W feel that the estimated loss values are not
alarmingly high.
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Sara Wade∗ and Zoubin Ghahramani†

We sincerely thank the discussants for the interesting and insightful comments. Our
paper investigates approaches to summarize the posterior distribution over the space of
partitions. The massive dimension of the partition space and its categorical nature com-
bined with the low posterior probability of any single partition make this a challenging
problem. As highlighted by the discussants, there are a number of relevant extensions
and open problems.

Properties. As noted by Monni, Meilă (2007) details various properties of the VI and
other cluster comparison measures, including an equivalent version of Binder’s loss.
The aim of Section 3 was to highlight the asymmetry of Binder’s loss compared to VI,
accumulating in Properties 6 and 7. This was not discussed in Meilă (2007), and for
completeness, we include a through review of some relevant properties described by
Meilă (2007), such as vertical and horizontal collinearity.

Credible balls. To characterize uncertainty in the point estimate, we defined credible
balls around the point estimate based on a chosen metric, e.g. VI or Binder’s loss. We
agree with Monni that the posterior similarity matrix is an important tool for assessing
uncertainty but emphasize that the credible ball provides additional information that
enriches our understanding of uncertainty around the point estimate. We proposed to
summarize these balls based on the vertical and horizontal bounds, and as noted by
Monni (and in the paper), these bounds may consist of more than one partition. In
theory, this could be a large number, but in practice, we restrict the bounds to partitions
with positive posterior probability, which in our experience provides at most a handful
of partitions for each bound. This restriction is for computational purposes, but also
serves as a refinement of the bound. We encourage further research into the construction
of credible balls of partitions. Friel and Rastelli propose an interesting idea based on
highest posterior density (HPD) regions. In practice, the MCMC may not visit any
partition more than once; thus, the suggested HPD region, which considers partitions
with posterior probability over a threshold, would contain all or no partitions in this
setting. Moreover, relevant summaries of the HPD regions may be needed in practice.
Nipoti and Shen outline some alternative ideas for defining credible balls. First, they
consider centering the ball at the true partition, not the point estimate; this however
comes at a computational cost, as it requires evaluating pairwise distances between all
MCMC samples. Second, they propose a construction of entropy-based credible balls.
These ideas are certainly interesting and more work is needed to investigate and compare
the credible balls in theory and simulations. We suspect that the entropy-based credible
balls could be quite different from VI credible balls. For example, consider the case
with N = 4 depicted in Figure 1. We note that the Hasse diagram stretched by the
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Figure 1: Example of the VI ball around c = ({1, 2}, {3, 4}), with rainbow color indi-
cating increasing distance from c. The smallest non-trivial credible ball contains all the
red clusterings, the next smallest contains the red and orange clusterings, and so on.

entropy results in the same relative positions of the partitions, with the values on the
y-axis simply rescaled to be between 0 and log(4). Suppose that the VI point estimate of
c = ({1, 2}, {3, 4}) has posterior probability of 0.5, then the 50% VI credible ball would
contain only that partition. On the other hand, the 50% entropy credible ball would
contain the black and blue partitions, that is, all partitions with two clusters of equal
size; the blue partitions, however, have the greatest VI distance from c = ({1, 2}, {3, 4}),
and the VI credible ball would have to be extended to 100% credibility to contain these
partitions. Another interesting direction is discussed by Paulon, Trippa, and Müller,
where it may be relevant to understand uncertainty of a subset of the partition.

Computations. Friel and Rastelli in Rastelli and Friel (2017) expand upon our work
and develop an alternative technique for optimizing the posterior expected loss, which
is linear in N but increasingly expensive in the number of MCMC samples. Also, their
approach does not require the approximation of the posterior expected loss through
Jensen’s inequality. As they highlight, more work is needed to understand the impact
of this approximation, particularly, as their studies suggest that optimizing the lower
bound to the posterior expected VI may actually perform better at recovering the true
number of clusters. Arbel, Corradin, and Lewandowski point out the improvements
in optimization of the greedy search algorithm over restricting to the MCMC samples
(at a computational cost). Related to this, we note that the simple proposed approach
to locate the credible bounds restricts to the MCMC samples. Similar improvements
could be expected here by searching outside of the MCMC samples; this would however
require a novel algorithm to locate the bounds as well as an appropriate refinement
of the bounds (because, as highlighted by Monni, without restriction to the MCMC
samples the bounds could contain a large number of partitions). One simple approach
could be to restrict the search to partitions that are vertically aligned with the point
estimate; this, however, also has its limitations.

Asymptotics. A study of the asymptotic properties of the proposed estimators and
credible balls is an important and timely research direction, especially in light of the
negative results of Miller and Harrison (2014) on posterior inconsistency for the number
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Figure 2: Credible probability against estimated coverage probability from 50 replicated
experiments of Example 1 with N = 200; the solid represents the optimal setting when
the 1− α credible ball achieves 1− α coverage.

of clusters and the positive results of the experiments in Table 2, as well as the recent
results for the MAP estimator Rajkowski (2016), pointed out by Arbel, Corradin,
and Lewandowski. Belitser and Nurushev and Yoo raise an interesting question
on optimality of the proposed (1 − α) ∗ 100% credible balls; specifically, do they also
have (1−α)∗100% frequentist coverage probability? We carried out a small experiment
by simulating 50 datasets with the same data-generating mechanism as described in
Example 1. We first note that k̂N = 4 for the VI estimate in 90% of the experiments
(although only one starting point was considered for the greedy search, and this may be
improve with multiple restarts). Figure 2 depicts the estimated coverage probabilities
as a function of the credible probability. This suggests that, in this setting, VI credible
balls can be interpreted as confidence balls, although they are not optimal and have
quite large coverage probabilities. The reasons for this could be a combination of the
nonparametric model and the data-generating mechanism, as well as the credible ball
definition, and it would be interesting to extend this simulation study for parametric
models, large sample sizes, and other data-generating mechanisms. Overall, a deeper
understanding of the frequentist coverage of the credible balls and other asymptotic
properties is needed. Belitser and Nurushev: to the best of our knowledge, we do
not know of results on minimax rates in the community detection problem for Binder’s
loss or VI, but note that Binder’s loss can be viewed as the Hamming distance between
the binary representation of clusterings. And, we would be intrigued to understand if
the work of Zhang and Zhou (2016) could help to shed light on the coverage of the
proposed credible balls for the community detection problem.

Applications. Our paper focused on Bayesian nonparametric mixture models and exper-
iments considered Gaussian mixtures, but as highlighted by the discussants, the pro-
posed tools have applications beyond this. Friel and Rastelli and Belitser and Nu-
rushev discuss stochastic block models for networks. Frühwirth–Schnatter, Grün,
and Malsiner–Walli and Yoo discuss sparse finite mixture models and Frühwirth–
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Schnatter, Grün, and Malsiner–Walli extend Example 1 by using the proposed
summary tools for sparse finite mixtures. Mohammadi considers finite mixture mod-
els and trans-dimensional MCMC, which allows exploration of the space of partitions.
The proposed summary tools are relevant in this case as well, and instead of “replacing”
the trans-dimensional MCMC, the greedy search algorithm would be used to find a point
estimate of the partition based on those explored in the trans-dimensional MCMC. In
addition to considering marginal properties, such as the posterior on the number of
clusters, we have developed tools to further understand the posterior on the clustering
structure. Castelletti and Peluso describe an interesting application and extension
to DAGs and EGs.

Loss functions. We have proposed and motivated the use of VI as a general loss func-
tions for partitions, and developed tools for summarizing MCMC samples of partitions.
However, in some applications one may be interested in more problem-specific loss func-
tions. An interesting example for clinical trials is provided by Paulon, Trippa, and
Müller, where the loss function is a combination of the squared error loss for the true
and estimated parameters of each patient and a penalization term that encourages clus-
ter parameters to be distinct. Another interesting example is provided by Natvig and
Tvete, where a problem-specific loss function is designed for earthquake data.

Model selection. Casarin and Tonellato propose an interesting use of the posterior
expected VI as a model selection tool to identify hyperparameters. Although this re-
quires fitting several models, it can result in a lower posterior expected VI, compared
with the hierarchical model with hyperpriors on the hyperparameters. Casarin and
Tonellato have outlined a promising research direction, and we would, for example,
be interested in the use of the posterior expected VI as a model selection tool to com-
pare nonparametric priors on partitions, beyond the the Dirichlet process (Lijoi and
Prünster (2011), Barrios et al. (2013)) or the sparse finite mixture models investigated
by Frühwirth–Schnatter, Grün, and Malsiner–Walli.
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