
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VEBO: A Vertex- and Edge-balanced Ordering Heuristic to Load
Balance Parallel Graph Processing
Citation for published version:
Sun, J, Vandierendonck, H & Nikolopoulos, DS 2019, VEBO: A Vertex- and Edge-balanced Ordering
Heuristic to Load Balance Parallel Graph Processing. in Proceedings of the 24th Symposium on Principles
and Practice of Parallel Programming. PPoPP '19, ACM, New York, NY, USA, pp. 391-392, Principles and
Practice of Parallel Programming 2019, Washington, United States, 16/02/19. DOI:
10.1145/3293883.3295703

Digital Object Identifier (DOI):
10.1145/3293883.3295703

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/195269395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3293883.3295703
https://www.research.ed.ac.uk/portal/en/publications/vebo-a-vertex-and-edgebalanced-ordering-heuristic-to-load-balance-parallel-graph-processing(33c42e5b-3a53-495f-9a74-b060de7d312e).html


Poster : VEBO: A Vertex- and Edge-Balanced Ordering
Heuristic to Load Balance Parallel Graph Processing

Jiawen Sun
The Queen’s University of Belfast

jsun2@ed.ac.uk

Hans Vandierendonck
The Queen’s University of Belfast
h.vandierendonck@qub.ac.uk

Dimitrios S. Nikolopoulos
The Queen’s University of Belfast

d.nikolopoulos@qub.ac.uk

Abstract
This work proposes Vertex- and Edge-Balanced Ordering
(VEBO): balance the number of edges and the number of
unique destinations of those edges. VEBO balances edges
and vertices for graphs with a power-law degree distribution,
and ensures an equal degree distribution between partitions.
Experimental evaluation on three shared-memory graph pro-
cessing systems (Ligra, Polymer and GraphGrind) shows that
VEBO achieves excellent load balance and improves perfor-
mance by 1.09× over Ligra, 1.41× over Polymer and 1.65×
over GraphGrind, compared to their respective partition-
ing algorithms, averaged across 8 algorithms and 7 graphs.
VEBO improves GraphGrind performance with a speedup of
2.9× over Ligra on average.

CCS Concepts •Computingmethodologies→ Shared
memory algorithms; •Computer systems organization
→Multicore architectures;

1 Introduction
Parallel graph processing is prone toworkload imbalance due
to the skewed interconnection structure of graphs [1, 9, 10].
Most graph processing systems use simple, constant-time [5]
or linear-time [4, 6, 8] algorithms to assign work to threads
due to the size of the graph. These algorithms are prone to
introducing load imbalance [1, 9]. Load imbalance mainly
results from inappropriately placing the few vertices that
have very high connectivity.
This work proposes a solution to the load balance prob-

lem in shared memory system by proposing VEBO, a novel
algorithm for distributing graph processing across threads.
The algorithm leverages graph partitioning, which is increas-
ingly used in shared memory systems [6, 8, 9]. Moreover, the
algorithm runs in linear time as function of the size of the
graph and logarithmic time as a function of the number of
partitions.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PPoPP ’19, February 16–20, 2019, Washington, DC, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6225-2/19/02.
https://doi.org/10.1145/3293883.3295703

VEBO balances the number of edges and the number of
distinct destination vertices per partition to obtain a well-
balanced workload while minimizing the computational com-
plexity of graph partitioning. These optimization goals can
be achieved in linear-time. In contrast, prior work often aims
to jointly balance the number of edges per partition while
minimizing the number of partitions where each vertex ap-
pears (vertex replication) [2]. No algorithms are known that
solve this problem exactly and heuristics leave significant
room for optimization [2].
A key motivation for VEBO is provided by the classifica-

tion of GraphGrind [6], which distinguishes between edge-
oriented algorithms and vertex-oriented algorithms [6]. Edge-
oriented algorithms, like PageRank, strongly favour balanced
edge counts. In contrast, vertex-oriented algorithms, like
Breadth-First Search, perform an amount of computation
proportional to the number of vertices and strongly favour
balanced vertex counts. Performance can be affected by as
much as 40% if the wrong partitioning heuristic is used [6].
VEBO achieves both balanced edge and vertex counts, cater-
ing for both classes of algorithms.

2 The VEBO Algorithm
VEBO follows an approach similar to the multi-processor
job scheduling heuristic [3]: place a set of objects in order
of decreasing size, for each object selecting the least-loaded
partition.We adapt the algorithm to balance both the number
of objects (vertices) and their size (degree).

The VEBO algorithm consists of three phases: In the first
phase, VEBO assigns vertices with non-zero in-degree in
order of decreasing in-degree. This is performed in two steps
in order to maintain any spatial locality that may exist in the
original vertex IDs. First we determine how many vertices
should be assigned to each partition using the multiprocessor
scheduling heuristic. Then we place the required number
of vertices according to their increasing original IDs. This
achieves a near-equal edge count and in-degree distribution
in each partition. In the second phase, zero-degree vertices
are placed. These vertices do not affect edge balance. As such,
we aim to maintain vertex balance during their placement.
We follow a similar two-step approach to maintain locality.
The third phase reorders the vertices. It assigns new sequence
numbers to the vertices such that each partition consists of
contiguous vertex IDs and rewrites the graph data structures.
Further details are provided in [7].

https://doi.org/10.1145/3293883.3295703


PPoPP ’19, February 16–20, 2019, Washington, DC, USA Jiawen Sun, Hans Vandierendonck, and Dimitrios S. Nikolopoulos

0.0

2.0

4.0

0 100 200 300 400

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)

Number of Partition

Friendster-original Friendster-VEBO

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

0 100 200 300 400

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)

Partition ID

(a) PR – time

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50

L
L
C
_L
oc
al
_M
PK
I

Thread ID

(b) PR – local misses

Figure 1. Execution time and micro-architectural statistics
per partition or per thread for PR with Friendster. Measured
on GraphGrind using 384 partitions. Thread t executes parti-
tions 8t to 8t +7. Architectural statistics expressed in misses
per thousand instructions (MPKI).

3 Evaluation
We evaluate the performance on a 4-socket 2.6GHz Intel
Xeon E7-4860 v2 machine, totaling 48 threads and 256 GB of
DRAM. We disregard hyperthreading. We compile all codes
using the Clang 4.9 compiler with Cilk support.

3.1 Load Balance and Locality
VEBO balances execution at the micro-architectural level,
e.g., miss rates for caches (Figure 1). We observed that VEBO
improves memory locality for the majority of the graphs. as
the cache statistics are reduced (Figure 1b). VEBO improves
each partition’s locality performance but this is compensated
by improved load balance. Compared to original order graph,
VEBO ensures each partition has a balanced cache miss. Fig-
ure 1 shows that this load balance translates to run-time
statistics on the PR algorithm for Friendster graph. Figure 1a
shows the execution time for each of the 384 partitions. There
is a large variation on the execution time for the original
graph, e.g., from 1.73 s per iteration to 3.37 s.

3.2 Balanced Degree Distributions
Besides balancing vertices and edges, VEBO also balances
the degree distribution in each partition. We calculated the
power law exponent (α ) for each partition using a least-
squares fit (Figure 2a). A sizeable proportion of partitions
in the original graph are a bad fit to the power-law distri-
bution. Partitions of the original graph have widely varying
degree distributions, while VEBO ensures partitions have
equal degree distribution.
The skewedness of the degree distribution impacts on

execution time. We plot how execution time varies with α
and indicate which partitions are a bad fit to the power-law
distribution (Figure 2b). For the partitions that fit well, a
general trend emerges that execution time increases with
increasing α . Higher α values imply that there are more low-
degree vertices, which confirms that low-degree vertices
require more processing time than high-degree vertices.

1
2
3
4
5
6
7

0 100 200 300 400

Po
w

er
 L

aw
 E

xp
on

en
t

Partiton ID #

Original VEBO

(a) Twitter

0.2

0.7

1.2

1.7

2.2

0 2 4 6 8

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)

Power Law Exponent

Original VEBO

Bad Fit

(b) Twitter

Figure 2. Power law exponent of in-degree distribution per
partition. Bad Fit means these α points with high sum of
squared errors do not fit the power law distribution.

4 Conclusion
The established heuristic to balance the processing time of
graph partitions is to create edge-balanced partitions. Edge-
balance alone does not create good load balance. Considering
vertex-balance along with edge-balance improves load bal-
ance significantly. Moreover, we show that minimizing edge
cut or vertex replication is not necessary on shared memory
systems. We present VEBO, a vertex reordering algorithm
for joint vertex, edge and degree distribution balancing and
demonstrate that it achieves excellent load balance.

Acknowledgments
This work is supported by the European Community’s FP7
under the ASAP project, grant agreement no. 619706, and by
the EU Horizon 2020 research VINEYARD, grant agreement
No 687628.

References
[1] M. Besta, F. Marending, E. Solomonik, and T. Hoefler. 2017. SlimSell: A

Vectorizable Graph Representation for Breadth-First Search. In IPDPS.
32–41. DOI:https://doi.org/10.1109/IPDPS.2017.93

[2] J. E Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. 2012. Pow-
erGraph: Distributed Graph-Parallel Computation on Natural Graphs..
In OSDI.

[3] R. L. Graham. 1969. Bounds on Multiprocessing Timing Anomalies. In
SIAM J. Appl.Math. 416-429.

[4] A. Kyrola, G. E Blelloch, and C. Guestrin. 2012. GraphChi: Large-Scale
Graph Computation on Just a PC. In OSDI, Vol. 12. 31–46.

[5] J. Shun and G. E. Blelloch. 2013. Ligra: A Lightweight Graph Processing
Framework for Shared Memory. In PPoPP. 135–146.

[6] J. Sun, H. Vandierendonck, and D.S. Nikolopoulos. 2017. GraphGrind:
Addressing Load Imbalance of Graph Partitioning. In ICS,. 16:1-16:10.

[7] J. Sun, H. Vandierendonck, and D. S. Nikolopoulos. 2018. VEBO: A
Vertex- and Edge-Balanced Ordering Heuristic to Load Balance Parallel
Graph Processing. eprint arXiv:1806.06576 (June 2018).

[8] K. Zhang, R. Chen, and H. Chen. 2015. NUMA-aware graph-structured
analytics. In PPoPP. 183–193.

[9] Y. Zhang, M. Yang, R. Baghadi, S. Kamil, J. Shun, and A. Amarasinghe.
2018. GraphIt - A High-Performance DSL for Graph Analytics. eprint
arXiv:1805.00923 (June 2018).

[10] X. Zhu, W. Chen, W. Zheng, and X. Ma. 2016. Gemini: A Computation-
Centric Distributed Graph Processing System. In OSDI. 301–316.

https://doi.org/10.1109/IPDPS.2017.93

	Abstract
	1 Introduction
	2 The VEBO Algorithm
	3 Evaluation
	3.1 Load Balance and Locality 
	3.2 Balanced Degree Distributions

	4 Conclusion
	References

