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The Impact of PMD on Single-Polarization
Nonlinear Frequency Division Multiplexing

Iman Tavakkolnia, Member, IEEE, and Majid Safari, Member, IEEE

Abstract—The impact of polarization mode dispersion (PMD)
is studied on the single-polarization signal transmission over
the continuous spectrum (CS) of a long-haul optical fiber link
defined by nonlinear Fourier transform (NFT). It is shown that
a linear all-order PMD compensation can reverse most of PMD
effects in the temporal domain. However, due to the nonlinear
interaction of the two polarization modes, the CS is distorted in
the nonlinear spectral domain. Simulation results are presented,
and a perturbation model is proposed based on the simulation
results to describe the impact of PMD for different modulation
formats and fiber parameters. It is demonstrated that, after
linear PMD compensation, the residual polarization-dependent
effects generate a constellation rotation and additional noise in
the nonlinear spectral domain. The performance of NFT-based
system in the presence of both PMD and amplifier noise is also
studied. The results show that the effect of PMD is small provided
that an efficient linear PMD compensation is performed in time
domain.

Index Terms—Optical fiber communication, nonlinear Fourier
transform, polarization mode dispersion, continuous spectrum.

I. INTRODUCTION

The nonlinear Fourier transform (NFT) is regarded as a
potential solution to the fiber nonlinearity problem, which is
the main origin of data rate limitation in long-haul optical fiber
communication [1]–[3]. The NFT transforms the nonlinear
propagation of temporal signal, governed by the nonlinear
Schrödinger equation (NLSE), into simple linear evolution
of continuous and discrete spectra in the so-called nonlinear
spectral domain [4]–[6]. These spectra and the corresponding
nonlinear spectral domain, defined by the NFT, are the general-
ized counterparts of the linear spectrum and frequency domain
defined by the ordinary Fourier transform. Using the NFT, the
optical fiber channel is effectively linearised, and the basic
idea is to utilize degrees of freedom in the nonlinear spectral
domain for data transmission [7]. However, many aspects of
this concept require rigorous investigation due to complexity
and infancy of the approach [2].

In NFT-based optical communication, systems can be de-
fined based on data transmission over the continuous spec-
trum (CS) [8], [9], the discrete spectrum (DS) [10]–[13] or
both spectra [14]–[16]. Signalling on the CS is an attractive
approach since the CS basically consists of a continuous
complex waveform, and thus many known conventional com-
munication techniques can be applied. High data rates have
already been demonstrated for the CS by simulation and
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experiment [17], [18]. The capacity of such communication
system is studied [19], [20], the computational complexity and
essential practical considerations are investigated [21], [22],
and many performance improvement techniques are proposed
[23]–[26]. Recently, dual polarization NFT-based systems for
CS [27], [28] and DS [29], [30] were proposed, and new
forms of NFT were defined based on the Manakov equation.
Nevertheless, most of the current literature focuses on single
polarization NFT-based systems where the NFT is originally
defined based on the scalar NLSE. Therefore, a major as-
sumption is needed in the definition of NFT, which is the
absence of randomly varying birefringence and polarization
mode dispersion (PMD). Nevertheless, this is usually not a
practical assumption specifically in long-haul optical fiber
systems, where fibers are subject to unavoidable environmental
stress (e.g., pressure on fibers laid on the sea bed). Even in
dual polarization systems [27]–[31], the random effect of PMD
should be studied separately. In [32], the perturbative effect of
PMD was briefly studied and the nonlinear frequency division
multiplexing (NFDM) was compared with the wavelength
division multiplexing (WDM). It was stated that the achievable
information rates for WDM and NFDM are almost equal
including the effects of PMD and higher order dispersion.

In this paper, the effect of PMD on the CS is studied for a
single-polarization NFT-based transmission system. Generally,
in high-speed coherent optical communication systems, some
treatment of PMD effects is essential. Due to the lack of
an optimal PMD compensation method in the presence of
nonlinearity, the all-order linear PMD compensation method
is opted here. Simulation results show that such a PMD com-
pensation is effective and can reverse most of the distortion
caused by PMD in temporal domain. Then, the impact of
the remaining uncompensated effects of PMD on CS, as a
consequence of nonlinear interaction between the polarization
modes, are examined. It is observed from simulation results
that the main impact of the residual polarization-dependent
effect includes a signal-dependent phase shift and a noise-
like error. Similar effects were also reported in [27] for dual-
polarization NFT-based systems. An analytical framework is
also provided based on simulation results to model the impact
of PMD after linear compensation. It is demonstrated that,
apart from the PMD parameter, the fiber length, input power,
and instantaneous signal amplitudes are the parameters that
can be used to describe the residual perturbation caused
by PMD. Our results show that, an effective linear PMD
compensation in time domain makes the distortion caused by
PMD negligible in most cases. Finally, the combined effects
of PMD and amplified spontaneous emission (ASE) noise are
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evaluated.
The paper is presented as follows. In Section II, the NLSE,

the definition of NFT and the channel model for CS are
reviewed. The temporal channel model in the presence of PMD
is explained in Section III. The effect of PMD is studied in
Section IV, and numerical results are presented in Section V
for different PMD parameters, link lengths, and signal powers.
A brief abstract of this work was published in [33].

II. SYSTEM MODEL

In this section, we briefly review the system model for the
basic single-polarization communication system that uses the
CS of nonlinear optical fiber for data transmission by ignoring
polarization effects. In the next sections, the effect of randomly
varying polarization state and PMD will be investigated.

Most of the proposed NFT-based systems are defined based
on the assumption that the optical signal is transmitted in
a single polarization, the polarization state does not change
along the fiber, and the PMD is negligible. Therefore, a
scaler channel model without PMD is used. In such an ideal
condition, the propagation of the optical field in a single
polarization in a standard single-mode fiber can be described
by the well-known scaler stochastic nonlinear Schrödinger
equation (NLSE) [34]. The NLSE is the model widely used
in optical fiber communication and is also regarded as an
accurate model for simulating optical fiber links. We assume
that the fiber loss is compensated using an ideal distributed
amplification system. Thus, the NLSE is described as

∂Q(T, l)

∂l
=− jβ2

2

∂2Q(T, l)

∂T 2
+ jγQ(T, l) |Q(T, l)|2

+N(T, l), 0 ≤ l ≤ L,
(1)

where Q(T, l), l, and T respectively represent the complex
envelope of the optical field, distance, and time. N(T, l)
represents the ASE noise added by the amplifiers which is
a white Gaussian process [34], [35]. Throughout this paper,
we consider the focusing case β2 < 0 without any kind of
dispersion compensation. The NLSE (1) can be normalized in
the form of

j
∂q(t, z)

∂z
=
∂2q(t, z)

∂t2
+ 2|q(t, z)|2q(t, z) + n(t, z), (2)

by normalization rules

q =
√
γT 2

0 /|β2|Q, z =
|β2|l
2T 2

0

, t =
T

T0
, (3)

where T0 is the normalization parameter that is considered
equal to 0.25 ns throughout this paper.

The NFT is defined based on (2), and the time domain
optical signal is transformed into scattering data which evolve
linearly along the fiber in nonlinear spectral domain [36]. The
CS, represented as ρ(λ, z), is defined on the real axis λ ∈ R,
and can be obtained by solving the so-called Zakharov-Shabat
eigenvalue problem [37]. It can be shown that, in a noise-free
scenario, eigenvalues are preserved during the evolution along
the fiber, and the nonlinear fiber only imposes an exponential
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Fig. 1: Block Diagram of a single-polarization NFT-based system
without PMD.

transfer function on the continuous and discrete spectra [36].
For CS, the evolution equation is expressed as

ρ(λ, z) = ρ(λ, 0)e−4jλ2z. (4)

There exist several fast and efficient numerical methods in the
literature for NFT and INFT operations [38]–[42]. We use the
Ablowitz method for NFT and discretization of Marchenko
equations to implement INFT operation [14]. The split-step
Fourier method is applied for simulating the propagation of
signal along the fiber. More details about our simulation
method can be found in [20].

As stated earlier, in this paper, we consider the signalling
only on the CS, which corresponds to dispersive radiation
waves. In other words, solitonic waves are not studied through-
out this paper. For simplicity in notation, the dependence to
the distance is dropped and shown as a subscript. In Fig. 1,
ρ0(λ) is the input CS signal which is derived by applying
a raised-cosine filter to the vector containing the modulated
data symbols. Then, INFT is applied to generate the time
domain signal q0(t). The single-polarization optical transmitter
(1Pol Tx) launches the signal into the fiber after all required
operations, such as normalization in (3), optical filtering, and
digital-to-analog conversion. The signal is propagated along a
standard single mode fiber without considering the PMD. Ideal
distributed amplification is assumed. The signal is detected by
a single-polarization optical receiver (1Pol Rx), and necessary
operations are performed to capture the digital time domain
signal qL(t). Then, NFT is applied, the phase shift introduced
according to (4) is removed, and the noisy CS signal ρ̃L(λ) is
obtained. Using perturbation theory and numerical simulation
[19], [20], it has been shown that the channel model in the
nonlinear spectral domain can be expressed as

ρ̃L(λ) = ρ0(λ) + ηL(λ, ρ0(λ)), (5)

where ηL(·) is generally a complex non-Gaussian noise with a
signal-dependent variance. The noise samples can be assumed
uncorrelated when the symbols are distant enough in nonlinear
frequency domain. More details along with the distribution of
ηL(·) is presented in [20].

III. FIBER PROPAGATION MODEL WITH PMD

Two orthogonally polarized modes (e.g., x and y) can travel
through the single mode fiber at the same time. These modes
are degenerate in the sense that their refractive indexes are
identical as long as the fiber is perfectly cylindrical and
free from environmental stress. In realistic conditions, fiber
is subject to imperfections and random effects which violate
the ideal condition of perfect symmetry. This causes random
variation of the propagation constants (or refractive indexes)
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as well as the orientation of two orthogonally polarized modes
along the fiber. Consequently, the fields in the two polarization
states would randomly interact as the light propagates down
the fiber. The accumulated effect of random birefringence in
fiber leads to pulse broadening which is referred to as PMD.

In order to model the effects of random birefringence and
PMD on a propagating signal [34], [43], [44], the fiber is split
into segments of correlation length lc having constant bire-
fringence while the birefringence orientation randomly varies
from one segment to another. The optical signal propagation
within each of those segments with fixed birefringence can
be described by the coupled nonlinear Schrödinger equations
(CNLSE) as [43], [45]

∂U

∂l
= −1

2
∆β1

∂U

∂T
− j 1

2
β2
∂2U

∂T 2
+ jγ

(
|U |2 +

2

3
|V |2

)
U,

(6a)
∂V

∂l
= +

1

2
∆β1

∂V

∂T
− j 1

2
β2
∂2V

∂T 2
+ jγ

(
|V |2 +

2

3
|U |2

)
V,

(6b)
where U ≡ U(T, l) and V ≡ V (T, l) are slowly varying
complex envelopes of optical fields in the two orthogonal
linear polarizations aligned with the orientation of birefrin-
gence. Note that the CNLSE in (6) are derived for the practical
physical case of small beat length compared to the other length
scales (i.e., nonlinearity, chromatic dispersion, and polarization
induced differential group delay). For this case, the effect of
rapid variations due to the birefringent beating is cancelled
out by averaging over the rapidly varying term (containing
exp(±∆β0l)) [45]. This condition is almost always satisfied
for practical scenarios of optical fiber communication.

In (6), the terms including ∆β1 is responsible for the
effect of linear birefringence, where ∆β1 is the inverse group
velocity difference between the two polarization modes. Other
additional terms in (6) with respect to (1) are nonlinear terms
with the factor 2/3, which describe the cross-phase modulation
(XPM) between the two polarization modes. The XPM terms
induce nonlinear coupling between the polarization modes
leading to a nonlinear birefringence effect. Note that in the
absence of PMD (i.e., ∆β1 = 0) and assuming single polariza-
tion transmission (i.e., U(T, 0) = Q(T, 0) and V (T, 0) = 0),
the CNLSE in (6) reduces to the scalar NLSE in (1) and thus
the two effects indicated above would not be present.

In order to model the variation of the birefringence orienta-
tion along the fiber, the optical fields are rotated randomly at
the end of each segment by a unitary complex rotation matrix

R =

(
cos(θ) sin(θ)ejφ

− sin(θ)e−jφ cos(θ)

)
(7)

where −π ≤ θ ≤ π and −π/2 ≤ φ ≤ π/2 are uniform random
variables, representing an arbitrary rotation on the Poincare
sphere with random geometrical rotation θ and random phase
difference φ between U and V [43], [44]. Note that in the
presence of PMD, even if the initial signal is polarized in
one of the orthogonal polarization states, part of the energy is
coupled to the other polarization state during the propagation
due to linear and nonlinear birefringence as well as the
randomly varying orientation of birefrngence.

IV. EFFECTS OF PMD ON THE CS

The single-polarization NFT is defined based on nonlinear
fiber propagation while neglecting the PMD effect, and this is
an inherent assumption in most of the current research on the
NFT-based systems. Here, we intend to evaluate the degrading
effects of PMD on such NFT-based systems, focusing on
the signalling over CS. Based on (6), for signal-polarization
transmission even if the signal is initially aligned with one of
the orthogonal polarizations of the fiber, a significant portion
of the energy is coupled to the other polarization mode after
propagation over a long link due to PMD. Therefore, in
order to achieve an effective signal detection using single-
polarization NFT, first some form of PMD compensation is
required to return most of the signal energy to the original
polarization state.

For linear scenarios, several optical compensation tech-
niques are proposed which basically require determining the
principal polarization states of the fiber and applying a fixed
or variable delay between them in one or multiple stages
thereby compensating PMD to the first or higher orders [46]–
[48]. Electronic equalization techniques can provide similar
performances while enabling a low-complexity design. How-
ever, there is no systematic method to take into account the
effect of nonlinearity in the compensation of PMD effects [45].
Therefore, here, we use an ideal linear PMD compensation
technique that can adaptively mitigate all orders of PMD effect
in the absence of fiber nonlinearity. It should be mentioned that
we expect such a linear all-order PMD compensation method
to work reasonably well for the CS because, in the absence of
soliton component, the large dispersion would push the system
to a nearly linear regime after an initial link distance.

A. Linear all-order PMD compensation

In the linear regime, the effect of PMD in the fiber is
modelled as the concatenation of randomly oriented birefrin-
gent segments and can be represented as frequency dependent
unitary Jones matrices as [34], [46]

A(ω) =

K∏
k=1

Ak(ω), (8)

where

Ak(ω) =

(
eiω∆β1klc/2 0

0 e−iω∆β1klc/2

)
(

cos(θk) sin(θk)ejφk

− sin(θk)e−jφk cos(θk)

)
,

(9)

and ∆β1k is the inverse group velocity in kth segment. Note
that, in the absence of nonlinearity (γ = 0 in (6)), the first term
in the right hand side of (9) simply models linear propagation
in a segment of fiber with fixed birefringence. Therefore,
the linear effect of PMD can be fully mitigated by applying
A−1(ω) to the received field [46]. This is called all-order PMD
compensation and requires channel state information or, in
other words, the matrix A(ω) at every frequency. Although
the linear all-order PMD compensation would essentially
eliminate the PMD effect in the linear regime, it cannot reverse
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Fig. 2: Block Diagram of a single-polarization NFT-based system
with PMD compensation.

the interaction of PMD with nonlinearity when such an effect
is significant.

To apply the linear all-order PMD compensation described
above to the NFT-based communication system, a dual polar-
ization coherent optical receiver is required as shown in Fig.
2 where the PMD compensation is performed digitally using
the PMD compensation (PMDC) block as(

ÛL(ω)

V̂L(ω)

)
= A−1(ω)

(
UL(ω)
VL(ω)

)
(10)

where UL(ω) and VL(ω) are the fields in frequency domain.
It is assumed that the matrix A(ω) is fully known at the
receiver through estimation based on a training sequence.
Assuming that the input optical signal is linearly polarized
in the x direction, the output of PMDC block qL(t) is given
as ÛL(T ) = IFFT[ÛL(ω)] normalized by (3). Note that the
fiber propagation with PMD, in Fig. 2, is described by (6),
where U0(T ) = Q0(T ) and V0(T ) = 0. The rest of the
system is identical to conventional structure in Fig. 1. Using
the relationship DP = ∆β1

√
8lc/3π to determine the average

value of ∆β1 [43], the received signal at the output of different
blocks in Fig. 2 can be generated as shown in Figs. 3a and 3b.
For this simulation, the transmission of a 16QAM modulated
CS signal over the length of L = 2000 km of fiber with PMD
parameter DP = 0.4 ps/

√
km is assumed. Throughout this

paper, symbols are modulated on 64 “subcarriers” of CS in
nonlinear frequency domain [16], [20]. Raised-cosine filter is
used to generate the continuous waveform containing the data
symbols. The signal bandwidth is 52 GHz and the baud rate
is 20 Gbuad. The parameter ∆β1 is random and assumed to
be normally distributed. The correlation length is lc = 100 m.

During the propagation of signal along the fiber, birefrin-
gence causes the signal energy to transfer from one polar-
ization state to the other. Hence part of the signal energy
would be coupled into the non-original polarization state, as
shown in Fig. 3a. In fact, before any PMD compensation, each
of the two received polarization components contain almost
half of the signal energy for sufficiently long fibers. Then, by
applying the linear all-order PMD compensation, most of the
signal energy is recovered at the original polarization state,
and only a small portion of the energy remains in the other
polarization state due to the nonlinear interaction between
the two polarizations, as observed in Fig. 3b. This residual
polarization-dependent distortion can be seen also after NFT
as in Fig. 3c where the recovered CS is slightly distorted. This
affects the detection of transmitted bits modulated on CS. In
order to characterize this residual effect, in the next subsection,
we first investigate the transmission of signals with single or
multi-level constellations in the absence of noise.
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Fig. 3: (a) Received signals in two polarization before PMDC. (b)
Signals in two polarizations after PMDC. (c) CS after PMDC in
comparison to PMD-free case.

In this paper we use the error vector magnitude (EVM) to
evaluate the performance degradation in the presence of ASE
noise or PMD, which is defined as

EVM =

√
1
I

I∑
i=1

|siL − si0|2

|smax
0 |

(11)

for total number of simulation samples I . Here, si0 and
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Fig. 4: Detected symbols after PMDC and NFT operation for QPSK
modulation at launch powers (a) -9 dBm and (b) -6 dBm. Blue dots
are the detected symbols, black pluses are the original symbols, and
red crosses are mean values of detected symbols.

siL respectively represent the ith transmitted and received
symbols. In (11), |smax

0 | is the maximum symbol amplitude
in the constellation.

B. Single- and multi-level signalling in the presence of PMD

Here, we evaluate the performance of the NFT-based com-
munication system in Fig. 2 after linear all-order PMD com-
pensation considering single- and multi-level modulations. In
order to elucidate the impact of PMD, a noise-free case
(n(t, z) = 0) is initially considered.

First, the transmission of a QPSK signal is simulated at two
different launch powers with channel parameters the same as
before (i.e., DP = 0.4 ps/

√
km and L = 2000). The received

symbols after propagation along the fiber and experiencing
nonlinearity and random birefringence are demonstrated in
Fig. 4. Note that linear all-order PMD compensation is already
applied at the receiver. The results clearly show that the
constellation diagram is rotated, and symbols are received
with random errors. Moreover, both effects of rotation and
random errors increase at higher launch power. Fig. 5 shows
the received symbols after 2000 km of fiber length with PMD
parameter DP = 0.4 ps/

√
km for a 16QAM modulation

format. It is observed that similar to the QPSK format, the
residual polarization-dependent effect depends on the launch
power. Also, it can be seen that the rotation angle of the
constellation diagram and noise cloud size depend on the
symbol amplitude as well as launch power. Note that similar
effects were also reported in [27] in dual-polarization NFT-
based system, where PMD effects were compensated by a
linear training sequence based equalization algorithm.

Table I reports the average EVM and average rotation angle
(shown by ψ) of the constellation diagram for the QPSK
modulation. It is observed that both quantities increase for
larger values of power and fiber length. Thus, the residual
polarization-dependent nonlinear effect on CS in single-level
modulation can be described as a power and distance de-
pendent phase shift and a contribution to the additive signal
dependent noise in CS.

Following the observation in Fig. 5 that the nonlinear
polarization-dependent perturbation not only depends on sig-
nal power but also on the signal amplitude, the average EVM

-0.75 0 0.75

-0.75
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0.75

(a)

-1.5 0 1.5

-1.5
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(b)

Fig. 5: Detected symbols after PMDC and NFT operation for
16QAM modulation at launch powers (a) -9 dBm and (b) -6 dBm.
Blue dots are the detected symbols, black pluses are the original
symbols, and red crosses are mean values of detected symbols.

TABLE I: The average EVM and average rotation angle of the
constellation ψ for QPSK modulation format with launch powers
-9 and -6 dBm for DP = 0.4 ps/

√
km.

L = 1000 [km] L = 2000 [km]
P [dBm] ψ [Rad] EVM [%] ψ [Rad] EVM [%]

-9 0.0306 3.18 0.0387 3.99
-6 0.0812 8.55 0.1026 10.77

and average rotation angles of constellation are calculated
for three different symbol amplitudes in 16QAM modulation
format. For such a modulation format, rings with constant
amplitude are shown by rj for j = 1, 2, 3. The definition of
EVM for each ring is

EVMj =

√
1
Ij

Ij∑
i=1

|sijL − s
ij
0 |2

|smax
0 |

(12)

where Ij is the total number of the simulation samples for
corresponding ring j. The results presented in Table II, confirm
that both perturbation effects (i.e., constellation rotation and
random error) directly depend on the symbol amplitude as well
as average power and fiber length although the dependence of
the rotation angle to signal amplitude is not as strong as other
dependencies.

C. Modified NLSE perturbed by the residual polarization-
dependent effect

In the absence of nonlinearity, the linear all-order PMD
compensation in Fig. 2 perfectly reverses effects of PMD.
However, when the nonlinearity is not negligible some
polarization-dependent effects remain uncompensated. This
residual effect is caused by the cross-phase modulation defined
by (6) which is not taken into account in the linear PMD
compensation as well as the random birefringence along the
fiber. Note that, for larger DP and thus larger ∆β1, the
signal’s degree of polarization degrades more quickly due
to the increased linear birefringence and this may further
reinforce the nonlinear interaction defined by the XPM terms
in (6) as observed in the results of the next section. As
indicated before, the use of the linear PMD compensator
allows for the application single-polarization NFT defined by
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TABLE II: The average EVM and average rotation angle ψ for
16QAM modulation format with launch powers -9 and -6 dBm for
DP = 0.4 ps/

√
km and L = 2000 km.

P [dBm] ψ [Rad] EVMj [%]
r1 r2 r3 r1 r2 r3

-9 0.0424 0.0442 0.0466 1.55 3.41 4.8
-6 0.1004 0.1093 0.1178 3.61 8.5 12.45

scalar NLSE. Therefore, the NFT-based transmission system
after linear PMD compensation can be still modelled by the
scalar NLSE while additionally perturbed by the residual
polarization-dependent effects described above. As a result,
we consider a modified NLSE given by

j
∂q(t, z)

∂z
=
∂2q(t, z)

∂t2
+ 2|q(t, z)|2q(t, z) + n(t, z) + h(t, z),

(13)
where h(t, z) is the additional perturbation term representing
the residual polarization-dependent effect. Note that the pro-
posed model in (13) is a general perturbation model for the
NLSE, which is a common approach in modeling the effect of
distortions that make the NLSE deviating from its ideal form.

Based on the simulation results presented in the last subsec-
tion, we can characterize the residual polarization-dependent
effect as the combination of a deterministic effect, i.e., the
average rotation of constellation points and a random effect,
i.e., the random error cloud around the average constellation
points. Results in Tables I and II show that the impact of the
polarization-dependent perturbation, h(t, z), depends on both
the fiber length as well as the signal amplitude. Therefore,
h(t, z) can be generally modelled as

h(t, z) = G(q(t, z)) + e(t, z). (14)

where the deterministic signal-dependent function G(q(z, t))
models the average rotation of constellation points while
e(t, z) represents the zero-mean noise-like random error
after linear PMD compensation. Therefore, G(q(t, z)) =
Eq{h(q(t, z))} manifests the average perturbation effect over
different signals in time while e(t, z) describes the fluctuations
around this average which depends on the actual realizations
of the signal.

Now, let us first focus on the special case of single level
modulation (i.e., all symbols have the same amplitude, such
as QPSK) where results in Fig. 4 and table I shows a fixed
rotation angle for all the constellation points and random
error around them with the same cloud size. While the
rotation angle or error cloud size are fixed across different
constellation points, they increase by increasing the launch
power or link length. Note that based on our results in Table
I, the statistics of e(t, z) in CS (after NFT operation) is signal
dependent, which is similar to the effect of ASE noise after
NFT transformation as investigated in [20]. Therefore, the
term e(t, z) is modelled as a statistically independent noise
term that can be merged into the original noise term as
n′(t, z) = n(t, z) + e(t, z). On the other hand, the generic
function G(q(t, z)) should represent the effect of the constant
constellation rotation averaged over different single-level mod-
ulated signals and can be thus replaced by the simpler form,

G(q(t, z)) = P (z)q(t, z), as we will explain next. Therefore,
the proposed deterministic perturbed NLSE (i.e., disregarding
ASE noise n(t, z) and error e(t, z)) is expressed as

j
∂q(t, z)

∂z
=
∂2q(t, z)

∂t2
+ 2[|q(t, z)|2 +

1

2
P (z)]q(t, z), (15)

which is in the same form as the NLSE that describes the
propagation of electromagnetic waves in an inhomogeneous
plasma. In [49], it was shown that for a real function P (z),
the inverse scattering method holds for solving (15) without
major modifications. Therefore, after a simple manipulation
of Zakharov-Shabat eigenvalue problem and the corresponding
evolution problem, the evolution of CS can be derived as [36],
[49]

ρL(λ) = ρ0(λ)e−4iλ2z+ψ(z), (16)

where
ψ(z) = −i

∫ z

0

P (ζ)dζ, (17)

denotes the average phase shift defining the constant rotation
of the different constellation points in single-level modulation
as observed in our results. The equality in (17) confirms
that the average phase shift introduced in the solution of
the modified NLSE is expressed in terms of the integral of
the function P (z) which should be a real function of the
fiber length, PMD parameter, and signal power1 as expected
for single-level modulation based on the results of the last
subsection. Consequently, when noise and the residual random
error (i.e., n′(t, z) = n(t, z)+e(t, z)) are included, the solution
of the modified NLSE after linear dispersion compensation
(i.e., removing e−4iλ2z according to (4)) can be expressed as

ρ̃L(λ) = ρ0(λ)eψ(z) + η′L(λ, ρ0(λ)), (18)

where η′L(·) describes the combined effect of noise and error
in the nonlinear spectral domain which is signal dependent
as discussed in [20] 2. Therefore, the solution of the pro-
posed modified NLSE given by (18) characterizes the residual
polarization-dependent effect as observed in our simulation
results for single level modulation. Note that the dependency
of P (z) to the parameters of the fiber communication system
can be investigated via numerical simulations, which will be
the subject of future research.

In the perturbation model presented for single level modula-
tion, the generic term G(q(t, z)) was simplified as P (z)q(t, z)
to describe the constant average rotation of different constella-
tion points where the perturbation only depends on the signal
power, PMD parameter, and the link length. On the other hand,
while the simulation results for multi-level modulation show
similar behaviour as in single-level modulation but they also
indicate that the constellation point rotation (i.e., phase shift)
is not necessarily constant across different amplitude levels

1Note that the perturbation term, h(t, z), is a function of the signal
realizations in time rather than its statistics (e.g., signal power). However,
the statistics of h(t, z), including G(q(t, z)) = Eq{h(q(t, z))} or P (z) can
be related to the signal power.

2It can be analytically shown that in asymptotic scenario the variance of
noise in nonlinear frequency domain is explained by [20, Eq. 17] demonstrat-
ing its dependency on the instantaneous signal amplitude |ρ0| as well as fiber
length z.
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(i.e., rings). Nevertheless, by inspecting Table II, we can see
that the dependence of the rotation angle on the amplitude of
the constellation points (or ring number) is not as significant
as its dependence to link length or signal power. We therefore
propose that the modified NLSE in (15) can be used to approx-
imately describe the propagation of multi-level signals along
the fiber as well. Note that the inclusion of the term e(t, z) as
an independent noise term in time can describe the significant
dependence of random error strength on individual symbol
amplitudes as shown in Table II. In conclusion, the model
proposed based on the modified NLSE in (15) characterizes
the behaviour of the NFT-based communication system in the
presence of residual polarization-dependent effect for single-
level modulation accurately and for multi-level modulation
approximately.

D. Constellation rotation precompensation at transmitter

In previous subsections, it was demonstrated that, after
the all-order linear PMD compensation, the CS signal is
affected by a constellation rotation as well as a noise-like
error as a result of the residual polarization-dependent effect.
The error part is combined with the ASE noise and will be
investigated in the next section. The average constellation
rotation is not a fundamental distortion and can be dealt
with at the transmitter or receiver side. It can be estimated
for any communication link before data transmission because
it only depends on the constant PMD parameter associated
to the particular link, modulation format, and transmission
system parameters. Although the decision boundaries can be
modified with Maximum-Likelihood detection at the receiver,
a simpler way is to precompensate such an effect by rotating
the constellation at the transmitter in reverse with proper
angles at each symbol amplitude. Later, in section V, the
combined effects of ASE noise and PMD are studied with
the assumption that the required information is available and
such precompensation is conducted at the transmitter. The
study of achievable spectral efficiency in the presence of PMD
with optimal detection schemes will be considered in future
research.

V. NUMERICAL ANALYSIS

In this section, the performance of single polarization NFT-
based communication systems is investigated in the presence
of PMD as a function of the fiber length and the PMD
parameter in the absence or presence of ASE noise.

It was demonstrated in previous section that larger launch
power leads to an increase in the residual polarization-
dependent effect due to higher nonlinearity. Likewise, it is
expected that PMD effects on the CS channel are more
severe for longer fiber length or larger PMD parameter. This
is investigated here by simulation. The 16QAM modulation
format and -6dBm launch power is assumed while fiber length
and PMD parameter vary. The average rotation angle of the
constellation points and EVM (average on all amplitudes) are
measured. The results are demonstrated in Figs. 6 and 7,
where it is confirmed that the average value for both EVM
and ψ increases for longer fiber or larger DP . Note that for
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Fig. 6: Average rotation angle for different fiber lengths and PMD
parameters for 16QAM modulation and -6dBm launch power.
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Fig. 7: Average EVM for different fiber lengths and PMD parameters
for 16QAM modulation and -6dBm launch power.

simulations in this paper a CS signal containing 64 randomly
modulated symbols is transmitted through the fiber 100 times
separately with random independent signal and noise realiza-
tions [16], [20]. In other words, 6400 samples are used for
each measurement. Note that we assume the system model
in Fig. 2 which includes a linear PMD compensation, and
the constellation rotation is not compensated when calculating
EVM in Fig. 7.

It is observed that EVM and ψ follow similar trends. An
interesting observation is that the difference between the 1000-
km link and 2000-km link is larger than the difference between
the 2000-km and 3000-km links. This effect can be explained
by taking into account the effect of the chromatic dispersion.
As the fiber length grows, the signal in time domain is dis-
persed more, and its amplitude is reduced. As a consequence,
the impact of nonlinearity is smaller. In other words, it may be
expected that the residual polarization-dependent effect does
not increase after an asymptotically long fiber length when
linear all-order PMD compensation is used.

The effect of PMD on the CS signal was studied in previous
sections without including the ASE noise. The average rotation
of the constellation diagram can be compensated by pre-
compensating at the transmitter for fixed link parameters as
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TABLE III: Average EVM after pre-compensation for different fiber lengths L [km] and launch power Pin [dBm].

Sampling Filtering
Pin L PMD ASE ASE+PMD PMD ASE ASE+PMD

-9
1000 0.83 9.97 10.22 0.81 4.21 4.31
2000 0.95 17.3 17.54 0.92 6.09 6.14
3000 1.01 24.77 25.36 0.98 8.82 9.04

-6
1000 2.73 11.41 11.85 2.53 4.37 5.09
2000 3.14 20.96 21.97 2.93 6.46 7.19
3000 3.33 31.96 33.43 3.08 10.86 11.63

the average rotation angle can be assumed to be known or
estimated in a NFT-based optical fiber communication system.
Here, in the second simulation in this section, we assume that
such information is available, and the rotation of constellation
diagram is compensated at the transmitter. We intend to study
the combined effects of ASE noise and PMD by measuring
the average EVM by simulation. Obviously the performance is
degraded in case the average rotation angles are unknown and
pre-compensation is impossible. Again, DP = 0.4 ps/

√
km is

considered as the PMD parameter of optical fiber. Apart from
sampling the CS for detection, the performance with the linear
filtering method, introduced in [8], is also presented, which is
expected to improve the performance. For the linear filtering
method, 18 samples per symbol are calculated by NFT.

Results are presented in Table III for three scenarios:
“PMD” where ASE noise is neglected, “ASE” where PMD is
not considered, and “ASE+PMD” when both ASE and PMD
are present. It can be seen that the average EVM values for
only PMD are much smaller than the values obtained for
only ASE noise. However, PMD definitely affects the overall
system performance because the EVM values including both
PMD and noise are always larger than noise-only case. As
expected, the average EVM increases for higher power or
longer fiber. The linear filtering method has marginal effect
on the PMD alone but significantly improves the performance
in presence of ASE noise, with or without PMD. It can be
observed in Table III that the difference between ASE+PMD
and PMD increases when the ASE noise power increases
(i.e., longer fiber length), and the impact of PMD becomes
negligible compared to ASE. Likewise, the difference between
ASE+PMD and ASE scales directly with the value of PMD
parameter. For instance, compared to results in Table III
in L = 1000 km and Pin = −6 dBm, the EVM values
are 12.17% and 11.52%, respectively for DP = 0.8 and
0.1 ps/

√
km for ASE+PMD.

It can be seen in Table III that the average EVM squared
for the ASE+PMD case is larger than the addition of the
square of average EVMs for cases when only one of the
effects exists. This implies that there is a correlation between
the error originated from PMD and ASE in CS. Also, as
explained in [20], an increase of noise power in time-domain
is not linearly transformed to the noise added to CS. Note
that the values shown in Table III are obtained including the
pre-compensation of constellation rotation. As an example,
without such compensation and any other modified detection
according to the PMD induced phase shift, average EVMs are
equal to 23.02 and 9.86, respectively for direct sampling and
linear filtering, for Pin = −6 dBm and L = 2000 km for

ASE+PMD. This happens because the EVM in this case is
calculated considering original unrotated constellation points.

VI. CONCLUSIONS

The effect of PMD, as an inevitable phenomena in long-haul
optical fiber communication, on the CS channel was studied.
Due to the lack of an effective PMD compensation method
that takes into account nonlinearity, an ideal linear PMD
compensation method was exploited. It was demonstrated that,
although most of the energy is returned to the original polariza-
tion using this method, the CS signal is affected by a residual
polarization-dependent effect which is not compensated by the
all-order linear PMD compensation method. A constellation
rotation as well as a noise-like error was observed for the
CS channel in simulations and was characterized based on a
new perturbation model. The results show that for long-haul
systems, at least a linear PMD compensation at the receiver
should be included. Also, the constellation rotation can be
precompensated at the transmitter side to further reduce the
negative impact of PMD. In conclusion, the residual distor-
tion remaining after linear PMD compensation is effectively
negligible in our results although the highest level of PMD
parameter is considered.
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[18] H. Bülow, “Experimental demonstration of optical signal detection using
nonlinear Fourier transform,” J. Lightwave Technol., vol. 33, no. 7, pp.
1433–1439, Apr. 2015.

[19] S. A. Derevyanko, J. E. Prilepsky, and S. K. Turitsyn, “Capacity esti-
mates for optical transmission based on the nonlinear Fourier transform,”
Nature Commun., vol. 7, pp. 1–8, Sep. 2016.

[20] I. Tavakkolnia and M. Safari, “Capacity analysis of signaling on the
continuous spectrum of nonlinear optical fibers,” J. Lightwave Technol.,
vol. 35, no. 11, pp. 2086–2097, Jun. 2017.

[21] I. T. Lima, T. D. DeMenezes, V. S. Grigoryan, M. O’sullivan, and C. R.
Menyuk, “Nonlinear compensation in optical communications systems
with normal dispersion fibers using the nonlinear Fourier transform,” J.
Lightwave Technol., vol. 35, no. 23, pp. 5056–5068, Dec. 2017.

[22] S. Civelli, E. Forestieri, and M. Secondini, “Why noise and dispersion
may seriously hamper nonlinear frequency-division multiplexing,” IEEE
Photon. Technol. Lett., vol. 29, no. 16, pp. 1332–1335, Aug. 2017.

[23] S. T. Le, J. E. Prilepsky, P. Rosa, J. D. Ania-Castanon, and S. K. Turitsyn,
“Nonlinear inverse synthesis for optical links with distributed Raman
amplification,” J. Lightwave Technol., vol. 34, no. 8, pp. 1778–1786,
Apr. 2016.

[24] M. Kamalian, J. E. Prilepsky, S. T. Le, and S. K. Turitsyn, “On the design
of NFT-based communication systems with lumped amplification,” J.
Lightwave Technol., vol. 35, no. 24, pp. 5464–5472, Dec. 2017.

[25] I. Tavakkolnia and M. Safari, “Dispersion pre-compensation for NFT-
based optical fiber communication systems,” in Proc. Conf. Lasers
ElectroOpt. Optical Society of America, Jun. 2016, p. SM4F4.

[26] ——, “Efficient signalling on the continuous spectrum of nonlinear
optical fibre,” in Proc. Conf. Lasers ElectroOpt. Eur., Eur. Quantum
Electron. Conf., Jun. 2017, p. CI 1 2.

[27] J.-W. Goossens, M. I. Yousefi, Y. Jaouën, and H. Hafermann,
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